)) ~ Departamento de _ _
Universidade de Aveiro Electrénica, Telecomunicacdes e Informatica

2012
Pedro Filipe do Contract-Java: Programacao por Contrato em
Amaral Goucha Java

Francisco
Contract-Java: Design by Contract in Java

)) ~ Departamento de _ _
Universidade de Aveiro Electrénica, Telecomunicacdes e Informatica

Pedro Filipe do
Amaral Goucha
Francisco

2012

Contract-Java: Programacao por Contrato em
Java

Contract-Java: Design by Contract in Java

Dissertacdo apresentada a Universidade de Aveiro para cumprimento dos
requisitos necessarios a obtencdo do grau de Mestre em Engenharia de
Computadores e Telematica, realizada sob a orientacdo cientifica do Doutor
Miguel Augusto Mendes Oliveira e Silva, Professor do Departamento de
Eletrénica, Telecomunicagdes e Informatica da Universidade de Aveiro

o jari / the jury

presidente / president Prof. Doutor José Luis Guimaraes Oliveira
Professor Associado da Universidade de Aveiro

vogais / examiners committee Prof. Doutor Jorge Miguel Matos Sousa Pinto
Professor Associado do Departamento de Informéatica da Escola de Engenharia da
Universidade do Minho

Prof. Doutor Miguel Augusto Mendes Oliveira e Silva
Professor Auxiliar da Universidade de Aveiro (orientador)

agradecimentos /
acknowledgements

Agradeco a minha familia, aos meus amigos e aos conhecidos que, de forma
continuada, ocasional ou Gnica, me apoiaram e incentivaram ao longo do
meu percurso académico.

N3o posso também deixar de agradecer ao meu orientador, Professor Miguel
Augusto Mendes Oliveira e Silva, por todo o apoio dado ao longo da real-
izac3o deste trabalho.

Palavras-chave

Resumo

Programacdo por Contrato, DbC, Java, Contract-Java

A programacg3o por contrato € uma metodologia de programacgdo que imple-
menta mecanismos de correccdo de forma bem adaptada a programacio ori-
entada por objectos, facilitando a construcdo de software correto e robusto,
permitindo também a sua documentacio e especificacdo e a construcio de
programas tolerantes a falhas. No entanto, ao contrario da programacio
orientada por objectos, a programacdo por contrato tem uma difusdo bas-
tante reduzida. Uma das razdes para tal facto é a quase completa auséncia
de suporte para a metodologia na grande maioria das linguagens de progra-
macdo usadas actualmente, nas quais se inclui a linguagem Java. Apesar de
existirem algumas ferramentas para tentar suprir essa omissdo da linguagem
Java, s3o aproximag¢des incompletas que ndo permitem usufruir de todas as
vantagens e capacidades da programacgio por contrato.

Neste trabalho pretende-se definir quais as caracteristicas necessarias numa
linguagem de modo a permitir a implementacdo completa da metodologia,
avaliando as falhas que as ferramentas existentes possuem e, de seguida,
definir e construir uma nova linguagem, “Contract-Java", definida como uma
extensdo da linguagem Java, que permita usar a programacio por contrato
na sua totalidade.

Keywords

Abstract

Design by Contract, DbC, Java, Contract-Java

Design by Contract is a programming methodology which implements cor-
rection mechanisms well adapted to object-oriented programming, easing the
construction of correct and robust software, as well as allowing its documen-
tation and specification and the construction of fault-tolerance programs.
However, unlike object-oriented programming, Design by Contract has a very
low distribution. One of the reasons for such is the lack of support for it
on most programming languages currently in use, in which Java is included.
Although a few tools attempt to workaround such lack of support, they all
present incomplete approaches which do not support all the advantages and
capabilities of Design by Contract.

In this work, we intend to define which characteristics are necessary in order
to fully implement the methodology, evaluating the faults of existing tools
and, afterwards, defining and constructing a new language, “Contract-Java”,
defined as an extension of the Java language, which allows to use Design by
Contract in its entirety.

Contents

[Contentsl i
|List of Figures| v
[List of Tables| vii
ix
[1__Introductionl 1
.1 Motivation|. e 1
[1.1.1 Design-by-Contract as an improvement to correction, documentation |

| and debugl. 1
[1.1.2 Design-by-Contract implementations for Java| 3

[1.2 Objectives| e 3
1.3 Methodology| 3
[1.4 Document organization|.o 3

2 Design by Contract| 5
2.1 The meaning of DbC| 5
[2.1.1 Hoare's triplets| 7

2.2 DbC and Object-Oriented Languages| 8
[2.2.1 Abstract Data Types|. 8

[2.2.2 Liskov’s substitution principlef. oL 9

[2.2.3 Command-query separation| 10

2.3 Error Handling| 10
2.4 DbC as Programming methodology| 11
2.5 DbC versus Defensive programming|. 12
[2.5.1 Exceptions as a defensive programming construct{ 14

[2.5.2 Java: checked exceptions versus unchecked exceptions| 15

26 Framerules 15
[2.7 Summary of requirements for DbC language support| 16

13 Existing language support for DbC] 17
[3.1 Analysis of native support in languages|. oL 17
BIT Eiffell. o oo 17

B.1.2 Native Javal L 17
BI3Others« o o 19

B2T Jasd o o 21
822 Modern Jass 22
13.2.3 Java Modeling Language|. 22
3.2.4 Cofojal 24
..................................... 24
326 ezContractl 25
[3.2.7 Summary of teatures| 25
[3.2.8 Other implementations|. 25

4 The language Contract-Javal 29
4.1 Method Contractsl 30
42 Class Contracts| 32
M3 Javainterfaced 33
4.4 DbC exceptions| 34
4.5 Debugging in Contract-Java] L. 35
HEST Errorl. - . o oo 35
4.5.2 Fine-tuning| 37

4.6 Pure queries detection| 37
4.7 Other assertionsl. 37
4.8 Contract-Java native library| o000 37
4.9 Documentation] 38
[Tmplementing Contract-Javal 39
b.1 Work strategy|. 39
5.2 Implementation strategy| L o 40
b.2.1 Choice of grammar| 40
b.2.2 Compiling phases| 40
2.3 Code Generationl Lo 41

b.3 Method Contractd 41
.4 Class Contracts| e 42
b.b Java Interfacelo 42
5.6 DbC exceptions| 44
b7 Other assertions|. L 44
0.8 Contract-Java native library{ 45
(.9 Documentation] 45
[5.10 Contract-Java notes/issues|. 46
5.10.1 Tane numbersl 46

0 Usage] e e e e e e 46

D11 ANTLR issues o . e 47
[b.11.1 Matching several text tokens| 47
b.11.2 Documentation caveats| 47
[5.11.3 Invalid code generated| 48
b.11.4 Composite grammars|. v v vt v e 48
[5.11.5 Backtracking and Error handlingl 48

ii

|IA Example code

IBibliography|

iii

iv

List of Figures

2.1 _Class contracts for Date ADT.) 9
4.1 Contract-Java’s method syntax diagram| 30
4.2 Contract-Java’s precondition syntax diagram| 30
4.3 Contract-Java’s postcondition syntax diagram| 30
4.4 Contract-Java’s assertion clause syntax diagram|. 31
4.5 Contract-Java’s rescue syntax diagram| 32
4.6 Contract-Java’s class syntax diagram| 33
4.7 Contract-Java’s invariant syntax diagram| 33
b.1 Compiling phases| 40

vi

List of Tables

[2.1 Business contract comparison (extracted from [Meyer 92af)[. 6
2.2 Exception handling anti-patterns| 15

[3.1 Reasoning of assert instruction as inadequate towards implementing contracts| . 18

vil

viii

Listings

[2.1 Example of Detensive programming: calculating sqrtf 12
2.2 Example ot Defensive programming: calculating sqrtf 13
2.3 Example of Defensive programming: calculating sqrt| 13
8.1 __Eaffel code with contractsl L. 18
3.2 _Oak attributes with contractsl 19
3.3 Oak methods with contractsl L. 20
3.4 C# Code Contracts example| 20
3.5 Ada 2012 example with contracts oL 21
[3.6 Jass example code (extracted from [Shanley 03[)] 22
[3.7 Jass rescue example code (extracted from [Jas 12)[. 22
3.8 Modern Jass example code|.o oL 23
3.9 JML example code| 24
[3.10 cofoja example code| 25
3.11 DbC4J example code| 26
13.12 ezContract example code|.o oo oo 27
4.1 Contract-Java snippet| 29
4.2 Example of real code of how to implement contracts on aclass| 31
4.3 Example of real code of how to implement contracts on an abstract class| 32
4.4 Defining contracts on an interface|. 34
4.5 Example of real code of how to define a rescue clause on a class| 35
4.6 Simple assert usage| 36
4.7 Output example of Native Java’s assert| 36
4.8 Simple precondition usage| L Lo 36
4.9 Example of a possible output of Contract Java’s boolean expansion| 36
[4.10 Example of real code of how to define a check clause on a method|. 38
b.1 Example of generated code of how to implement contracts on a class methods| . 42
5.2 Example of generated code of how to implement contracts on a class| 43
5.3 Example of a possible code generation to handle intertace contracts| 43
0.4 Example of a possible code generation to handle existing exceptions on a method| 44
5.5 Example of a possible code generation to handle a rescue clause on a class| . . . 45
5.6 Example of a possible code generation to handle a check assertion on a method| 46
5.7 Invoking the Contract-Java compiler| 46
IA.1 The implementation of an Array in Contract-Javal. o1
A2 We define an abstract class Listable which will be reused by the tollowing classes.| 52
IA.3 A generic stack partially implemented.o 0000000 93
|A.4 The full implementation of a Stack, using an Array as the internal representation.| 54

ix

[A.5 'The full implementation ot a Stack, using a Linked List as the internal repre-

sentationd 55

[A.6 A simple queue, using DbC constructs, follows.| 57
|A.7 We implement an Associative Array using DbC constructs to strengthen the |

[code correctness) L 59

Chapter 1

Introduction

In this work we intend to implement a new Java extension for Design-by-Contract program-
ming. Design-by-Contract programming, or officially Design by C’ontmct®|ﬂ (DbC) is a devel-
opment methodology inspired both by studies on formal programming and also, in many ways,
by the way contracts work in the "real world". It was born in 1986[Meyer 86| [Mandrioli 92,
p. 1-50] [Meyer 92a] and first implemented within the Eiffel language (1988) [Meyer 88al.
Several approaches exist to extend Java to support this methodology but all have achieved
just a portion of the features required by the methodology.

In this work we intend to identify and discuss the requirements posed to provide a complete
support for DbC and design and implement a compiler for an DbC extension to Java.

1.1 Motivation

We will detail the two main motivations for this work. We believe Design-by-Contract is
a enhancement to the current way software is developed and we do not recognize most of the
Design-by-Contract requirements and advantages to be fulfilled by existing tools in Java, nor
believe it can be achieved using approaches taken by existing approaches.

1.1.1 Design-by-Contract as an improvement to correction, documentation
and debug

Software development methods have been refined over the years, with some success in
reducing the cost of software development. Some of those methods are behavioral, like bet-
ter planning. Others are at the software level: structured programming and object-oriented
programming have eased the programmer’s ability to grasp his/her or others code; such de-
velopments and, more recently, the increasing usage of unit tests, brought benefits in terms
of required maintenance and lower bug count. We can consider that software is slowly but
increasingly being more logically organized, allowing for the easy development of unit tests,
which strengthens the advantages of code modularity.

Even so, software is not expected to work well on release. It is not expected to do its job
well until one or two releases have gone by. Companies regularly apply the "ship now, fix
later" mentality. Sometimes this is a strategy designed to reduce time to market; for example,
most Google® software, in the form of web applications, is released with the “beta” label,

'trademarked by Eiffel Software in the United States

reaching maturity on later stages of development. However, the public perception is that
most times the first version of a software is indeed in “beta” state, with the purchasers of the
first versions of a software finding a bigger number of bugs than it would be acceptable for a
final product in any other kind of market. Though beyond the scope of this discussion, the
fact is that consumer software is usually accepted "as is". Furthermore, consumer market
demands themselves may not focus on quality but on more features or better interface. Even
when things go wrong, the lack warranty for consumer market means the software vendor has
reduced incentives to provide a bug-free product from the start. On the professional market
however there is the economic incentive to demand better software.

With the increased competition, software ubiquity and lower time to market, the only way
software companies can survive is to embrace all possibilities of enhanced software produc-
tion available. In either case, if we consider that the cost of a programming error increases
proportionally to the time it takes until the problem is detected and fixed, we can consider
that strategies that further reduce code maintenance demands potentially increase the profits
associated with it.

It is therefore of interest to everyone involved in the ecosystem of software development
to ask the following question: “How to achieve that demanded higher quality?”. The Design-
by-Contract programming methodology may be one of the possible answers.

Design-by-Contract programming has similarities with the logic of unit-testing, in which
we test a method input and output. However, unlike unit-testing, in which tests are made
separately from the code (both in terms of temporal as well as ’spatial’ location), the Design-
by-Contract programming methodology focuses on what is already common on current pro-
gramming, input validation and associated error handling, separating it from the main code
to a preceding, logically distinct, code block.

Mirroring real-world contracts, when constructing a method the programmer establishes
a contract, in which its clauses are called preconditions, which must be fulfilled by the calling
code. By not having to deal with malformed input and by separating clearly input validation
logic from method work logic, the method’s code is easier to understand. And since the input
is guaranteed to be valid once we enter the method, the code flow is unique.

Design-by-Contract programming also allows for an invariant to be established: a more or
less rigid set of rules which defines the class conceptually, that can be defined as a class-wide
verification of the internal logic, in what can be seen as a contract of the class with itself —
or an executable validation of the class as an ADTE . An invariant violation means the class
does not have the properties expected from it, as a result of the programmer’s error, and is
therefore unreliable.

Besides the preconditions and the invariant, a method should also check the return it
provides, validating its output using contracts (called 'postconditions’) established by the
supplier detailing not only what the client can expect from its work but also what the class
expects to have changed having ended that method. Again, a failure of these validations mean
the contracted method has made an error and cannot be trusted.

These assertions, invariants, preconditions and postconditions, provide a valuable tool in
the early detection of programming errors by allowing the programmer to write a specification
for the program which allows for the verification of its correctness (or more precisely, the lack
of errors according to such specification). However, they also provide automatic documenta-
tion, a fault-tolerance mechanism, a clear responsibility distribution and, finally, promoting a

2 Abstract Data Type; we present a definition in section

disciplined and systematic programming approach.

1.1.2 Design-by-Contract implementations for Java

Several Design-by-Contract programming frameworks exist for Java but all of them treat
contracts as an after-thought, being usually implemented using annotations. However, annota-
tions fail at convening a close coupling between a class, its methods and contracts enforcement.
The proliferation of annotations lead to a certain "information overload" on the part of the
programmer which can undo many beneficial effects enabled by Design-by-Contract.

On the other hand, an Eiffel-like approach, such as the one we mirrored on the Contract-
Java implementation, presents a cohesive method flow, natural to the Design-by-Contract
concept and avoiding a separate handling of contracts and normal code, both relative to its
location and time of coding. It thus promotes a disciplined programming approach which
yields better specification and correctness, documentation and eases code reuse.

1.2 Objectives

We will define a new language, denominated “Contract-Java”, which allows for the following
of a Design-by-Contract methodology on top of Java. Such objective depends on the support of
various requirements, namely the support of various kinds of assertion instructions (contracts),
differentiated according to their location on the code and thus their semantic meaning, as well
as an unified code flow. It has to feature support for contracts as normal class entities, allowing
for a mechanism of disciplined fault-tolerance to be implemented naturally. We will define
a prototype to allow for the testing of our language, which should support all of the above
requirements and should implement inheritance.

1.3 Methodology

After surveying the existing options available, as well as determining their current support
status and how they worked, we decided to pick a system to generate a parser generator, having
looked at both ANTLR and Bison/Yacc. We tested the usage of the compiler translating Java
to Java; after doing so successfully, we’ve started implementing skeleton code as to provide
a simple exception mechanism which allowed us to implement a exception mechanism with
a minimum amount of overhead. Finally, using a minimal, non-automated, test suite, we
enhanced the code generation using real-world examples and proceeded to write the present
document.

1.4 Document organization

This document is organized as follows. In chapter 2, we will present a introduction to
Design by Contract, followed by an analysis of the state of the art on chapter 3. Afterwards, a
coverage of the steps taken, along with decisions made and problems solved, will be presented.
Finally, we conclude with an overall analysis of our work and whether we have reached the
goals we defined for the work. In Appendix A we present a first approach of a CJ Library
contractualizing the Java API.

Chapter 2

Design by Contract

“I believe that the use of Eiffel-like module contracts is the most important non-
practice in software world today. By that I mean there is no other candidate
practice presently being urged upon us that has greater capacity to improve the
quality of software produced. ... This sort of contract mechanism is the sine-qua-
non of sensible software reuse.”, Tom DeMarco, IEEE Computer, 1997 [North 97|

2.1 The meaning of DbC

From all software quality factors, two are of particular importance within the process of
program development: correctness and robustness. The first measures the ability of software
to meet its specification and the second is its capacity to deal with unexpected conditions
(for example, an hardware malfunction or program errors). Design by Contract [Meyer 88b|
(DbC) is a methodology aiming for a substantial improvement of those two factors.

The essential idea behind DbC is to explicitly attach meaning to software elements, spe-
cially to the most important ones. When a programmer develops a new function there is
no doubt that in his mind there is always a desired meaning attached to it (the function
semantics). Consider, for example, a function minimum implemented in Java:

static int minimum(int vl, int v2)

{

int result = (vl < v2 ? vl : v2);

return result;

}

The meaning of this function is the fact that its result should always be equal to the
lowest value of its two arguments. That is exactly what a client of the function expects to
happen when he chooses to use it. However, this precise meaning can only be found in the
function’s name and on its implementation. If, by any chance, the function is incorrect, such
error could easily bypass the function execution and only show its presence far away from its
origin (somewhere else in the clients code). From a formal point of view, there is also nothing
in the function that states explicitly its meaning so one could (theoretically) argue that the
function is not incorrect because it is not formally specified. We could (and should), of course,
attach a comment to the function making a more explicit statement of its desired meaning.
However, comments may also be the source of undesirable programming errors because nothing
guarantees that the comments correctly specify the attached software element.

Table 2.1: Business contract comparison (extracted from [Meyer 92a])

provide telephone service

OBLIGATIONS

BENEFITS

Client

Provide letter or pack-
age of no more than
5kgs. Pay 100 francs.

Get package delivered to
recipient in less than 4
hours

Supplier

Deliver package to re-

No need to deal with de-

cipient in less than four
hours.

liveries too heavy or un-
paid

Recognizing that all software elements have meaning, a more powerful technique is neces-
sary to make it explicit. That is what DbC is all about.

static int minimum(int vl, int v2)

{
int result = (vl < v2 ? vl : v2);
assert result = vl && result <= v2 || result = v2 && result <= vl;
return result ;

}

In this modification of function minimum, a native Java’s approach is taken to make such
a meaning both explicit and formal. Its meaning is expressed as a boolean expression (an
assertion) — required to be always true in a correct program — and checked by an assert
instruction which launches an exception when the assertion is false (otherwise it does nothing).

Unlike previous discussed approaches, this one not only makes the function’s meaning
explicit, but also makes it testable regardless of the existence of incorrect comments or the
clients code. This is a first example of a DbC contract (involving a so called postcondition).

Design by Contract® can be traced back to Meyer’s book “Object-oriented software con-
struction” [Meyer 88b| and to its developed programming language Eiffel [Meyer 92b]. The
first published references appear in 1986 [Meyer 86| (other relevant publications can be found
in [Mandrioli 92 pg. 1-50] and [Meyer 92a]).

The concepts in which Design by Contract is based are present in the works of Tur-
ing [Turing 89], Floyd [Floyd 67|, Hoare [Hoare 69|, Dijkstra [Dijkstra 76|, Gries [Gries 87],
Jones [Jones 80, [Jones 86| and also Goguen |[Goguen 7§].

DbC takes the approach of viewing software elements as contracting parties with obli-
gations and benefits, akin to a business contract. In a normal business contract, there is a
client and a supplier, and both agree on certain conditions to be fulfilled before and after an
exchange between the two, as exemplified in table

Contracts not only gives the possibility to explicitly state what is desired — hence making
it unambiguously clear what is a program error — but also makes it absolutely clear the
responsibilities of both parts: the supplier and the client.

When adapting contracts for software elements — as DbC does — the same goal is aimed.
Software contracts not only specify the meaning/correctness of the entities to which they are
attached to, but also clearly distribute the responsibility of errors when a contract fails. From
a practical engineering point of view, this achievement makes a significant contribution to ease
software development.

2.1.1 Hoare’s triplets

As the given example makes it clear, an assertion poses an obligation upstream, to the
preceding code (in the example: the function implementation), and a guarantee downstream
(to all clients of the function). Hence, depending on the position of the assertion regarding
the software element it can be seen as a precondition or as a postcondition.

In its origin, the formalism of preconditions and postconditions in programming was pro-
posed by Hoare as his famous triplets [Hoare 69]. According to Hoare, correctness is a relative
notion directly dependent upon a specification [Hoare 69]. Hoare triplets fill that gap provid-
ing a formal specification for a program block:

{P} Q {R}

“If the assertion P is true before initiation of a program @, then the assertion R
will be true on its completion.” [Hoare 69|

Being @) a set of instructions, P and R are, respectively, the preconditions and postcon-
ditions. If the method, given arguments which respect P, after computation, respects R, we
can reasonably assume the computation is correct [Bolstad 04].

Given its importance for software developing, methods are the more important application
of Hoare’s triplets.

static String minimum(String wl, String w2)

{
assert wl != null && wl.length() > 0: "Missing word in argument wl";
assert w2 != null && w2.length() > 0: "Missing word in argument w2";
String result = (wl.compareTo(w2) < 0 ? wl : w2);
assert result =— wl && result.compareTo(w2) < 0 |]
result = w2 && result.compareTo(wl) < 0;
return result;
}

In this new minimum function, unlike in the previous one, it makes sense the define a
precondition stating the existence of nonempty object strings. Both the preconditions and the
postconditions completely specify the minimum function.

From the examples given, the first two DbC requirements for an appropriate language
support can be stated:

R1-different assertions: Different assertions for different types of contracts (pre-
conditions, postconditions, invariants and others): the existence of a assert instruc-
tion, along with different kinds of assertions for the different types of contracts we
are establishing, namely preconditions, postconditions and invariants. These asser-
tions, which convey the enforcement of the defined contracts, assume different roles
depending on their kind, carefully assigning responsibility to different parts of the
program.

R2-locality: Contracts should be defined near to the entities they specify. The
meaning (specification) of a software entity the contracts should be defined near the
classes they contractualize; they are integral part of the code.

2.2 DbC and Object-Oriented Languages

Taking a closer look to the last example code, a new problem can be identified: if those
assertions specify the function, how come they are part of the function implementation and
not its interface? Clearly, function contracts should be part of its declaration, not its imple-
mentation.

This problem, directly linked to the meaning and purpose of functions (methods in Java)
within a program, it further enhanced when we consider the other important object-oriented
structuring mechanism: classes, and its related abstraction mechanisms: subtype polymor-
phism.

2.2.1 Abstract Data Types

An Abstract Data Type (ADT) [Liskov 74, [Meyer 88b| is defined as a type that is com-
pletely defined by the external operations it provides and its semantics. A class is the imple-
mentation, possibly partial, of an ADT [Meyer 97| pg. 142|.

And finally, an object-oriented program is a structured collection of ADT implementa-
tions [Meyer 97, pg. 147].

Hence, ADTs are the most important abstraction blocks within object-oriented program-
ming.

However, ADTs without explicit semantics (as provided by non DbC languages such as
Java) suffer from the same serious problems as methods without contracts, increased by a
scale factor because an ADT exports multiple methods (and not just one), and contains a
(possible abstract) data representation.

Since a class is much more than the sum of its public methods, a new contract is required
to express such semantics. That is the role of invariants, which express assertions that are
always true when the class’s instances (objects) are in an observable state (named: stable
times [Meyer 97, pg. 364]).

The set of contracts (preconditions and postconditions) of all the class’s public methods
together with the class invariant form the class contract. This contract is the most important
contract in object-oriented programming.

If we take a broader view of many of concepts presented so far — ADTs, contracts, methods
and classes — we can recognize that they all fit perfectly together. ADTs define the class
interface. The class contract implements the ADT’s semantics. The class is defined as a set
of public methods glued by a common invariant. Methods contracts implements the method
semantics.

R3-interface: Contracts are part of the interface (not implementation): contracts
are expected to be readily available to anyone, with or without access to the source
code of a contracted program: they are part of a program’s interface with the rest
of the program.

Figure shows a native Java attempt to implement an Date ADT, regardless of its
possible internal representation.

public class Date

{

// invariant: valid (day(),month(),year());
public static boolean validMonth (int month)
boolean result;

assert result && (month >= 1 && month <= 12) ||

'result && (month < 1 || month > 12);
}
public static int monthDays(int month, int year)
{

assert validMonth (month);
int result;

assert result >= 28 && result <= 31; // inc.

}

public static boolean valid (int day, int month, int year)
boolean result ;

assert result && validMonth (month) && (day >= 1 && day <= monthDays(month, year) ||
[

'result && (!validMonth (month) day < 1 || day > monthDays(month, year));
}
public Date(int day, int month, int year)
{
assert valid (day,month,year);
}

public int day() {...}
public int month() {...}
public int year() {...}

Figure 2.1: Class contracts for Date ADT.

When methods are part of an ADT, their meaning is not simply the one presented previ-

ously (see|2.1.1)). What is missing is the ADT’s invariant.

To include the invariant of a class as part of the method’s contract using Hoare’s triplets,

we need to check the invariant before checking for the method precondition and after checking

for the method postcondition [Meyer 88bl pg. 127].

{invariant A precondition} method-body {postcondition A invariant}

2.2.2 Liskov’s substitution principle

Liskov’s substitution principle states that, on object-oriented programming, any property

which is verified on a supertype also holds for its subtype objects.

Let ¢(x) be a property provable about objects x of type T . Then ¢(y) should be
true for objects y of type S where S is a subtype of T [Liskov 94].

In the context of DbC, this implies that class contracts must be inherited. As Meyer
states [Meyer 88b| it is possible to redefine contracts on child classes as long as certain con-
ditions are met. The precondition of the child class must be equal or weaker than that of
the parent class and, in the case of invariants and postconditions, the child class must abide
at least by the parent class, meaning it can further restrict its invariant and/or its output
(postconditions), but never to weaken them.

Since contracts must be taken in consideration by the child classes in order to not change
the ADT associated with the parent class, we further strengthen the need for requirement
R3: the contracts must be part of the class interface and not implementation — otherwise, the
semantic meaning of the class would be partially hidden from the outside view, stripping the
added value which contracts bring on defining ADT. To underline such dependence upon the
parent class contracts, we thus define our fourth requirement for successfully implementing
DbC:

R4-inheritance: Contracts are inherited: a derived class must fulfill at least all
contracts of its parent class, as well as its method’s postconditions; preconditions
can, but don’t have to, be loosened.

The typical implementation of the above is done applying ’or’ clauses to the preconditions
and ’and’ clauses to the invariant and postconditions. This approach is not without its flaws,
namely on the validation of contract inheritance redefinition correctness [Findler 01b], but
such issues are beyond the scope of this work.

2.2.3 Command-query separation

Command-query separation is the concept of, as the name implies, having well defined
effects for a method: it can either be a command and thus possible to affect the object it is
applied to, a query, in which case the object is not affected.

Command-query separation refers to the clear separation of a command and a query. A
command is a void method which is expected (but not necessarily always) to change the state
of the program. A query is a method which returns a value, being an observer of the object
state, and can, but does not have to, change the state of the program. A query which never
changes the state of the program is called a “pure query”.

It can be seen as a compromise between functional programming language properties,
which allow for the application of mathematical techniques (at the cost of not allowing imper-
ative language constructs) and the typical imperative paradigm used in Java, C and C++, in
which a method call can be both a query and a modifier [Feldman 05]

This separation is very important in Design by Contract due to the fact of a contract
cannot ever change the state of the program. As such contracts are to be implemented using
only pure queries, which validate the program state but do not change it. To implement
contracts properly, a clear way of identifying a query as pure is recommendedE].

2.3 Error Handling

The first Law of software contracting [Meyer 88c| states that a routine can only finish in
two different ways: either it guarantees its contract or it doesn’t. No other way for the routine

!Contract-Java does not deal with this issue

10

to finish is possible.

It shouldn’t be possible to return to the caller pretending nothing happened during the
callee execution, as it is possible in the large majority of languages. For instance, those which
based their fault mechanism on the try/catch instruction.

In summary, it is impossible to ignore an exception: it has to be dealt with. The method
must be fully run, meaning it must reach the end of the method. To be able to do this, a
method must therefore be able to select a different approach to do its job, or clearly fail, with
no manual throw required: the failure of reaching the end of the method means the failure of
the whole method. The end of the method without any failure not contract violation means
the method ended successfully. This is the principle of the Disciplined Exception Mechanism.

The Second Law of software contracting [Meyer 88c| states that if a callee fails, then the
caller also fails to fulfill its contract.

This leads to the question, then, on how to deal with a routine failure. It is consid-
ered [Meyer 88¢c| only two possible approaches exist: the method must decide that either it is
impossible to continue and, after guaranteeing its internal state, report failure to the caller,
having then the caller then to take the same decision (the “organized panic” approach) or the
“resumption” approach, in which the method attempts to fix the conditions which triggered
its incapability of guaranteeing its contract and retries its body again. For example, in Eiffel,
only such two responses are possible.

The DbC approach to exceptions is in stark contrast to Java’s approach. In Java, an
exception is possible to be ignored. The caller routine, by failing to implement the catch
clause correctly, will resume its operation without having dealt with the error properly.

We are thus able to extract the fifth requirement:

R5-DbC exceptions: we need the support for fault tolerance without disruption to
the code flow with a disciplined exception mechanism; a contract failure must never
be possible to ignore (and any failure while executing the methods’ code is also
a contract failure); we need a mechanism similar to the rescue clause in Eiffel in
opposition to the try/catch mechanism in Java, which allows to ignore exceptions.

2.4 DbC as Programming methodology

“Reuse without a precise specification mechanism is a disastrous risk.” [Jazequel 97]

We can extract from the our description so far of DbC that, first and foremost DbC is
a programming methodology, well adapted to object-oriented programming. In addition to
defining a class hierarchy and methods, loosely defining their semantic using the method
names and comments (which may or not be accurate), we further define those same methods
with additional assertions which truthfulness is always verified at runtime. Those assertions
bring only the need of being able to query the object without modification (“pure queries”); in
exchange, they allow for the definition of contracts which, when thoroughly defined, allow for
a simpler method body, since the method just has to deal with a very well defined condition.
They allow for a clear separation of the method’s real work from everything else and allow of
a more efficient programming fault detection, as near as possible to the faulty section of the
program.

Besides the programming methodology itself, contracts can be used to a variety of appli-
cations. For example Contracts allow the simplification of unit-tests by clearly limiting the

11

domain of possible input, and allowing for generation of unit tests [Meyer 09| and optimizing
the number of unit tests [Hakonen 11].

By allowing a stronger semantic definition of classes and methods, DbC allows for a higher
level of modularization, enhancing the bottom-up approach of object-oriented programming.

Single product principle Design by Contract in its full form also allows for the “single
product principle”: the product is the software. All specification and documentation is in, or
extracted automatically from, the software [Meyer 07].

In order to be useful, the documentation for a class must present the full overview for
such class. This means that the documentation must be presented in flat form: it must
contain not only the contracts that were defined on that class and its methods but as well all
contracts inherited from the implemented interfaces and from its superclass, recursively. The
flat documentation allows for a complete documentation of that class’ semantics in one place.

R6-documentation: The documentation must be not only included in the code
but also validated with the code as much as possible and thus be at least partially
extracted from the defined contracts, forming the class and method specification. In
order to properly support contracts, the documentation must support inheritance.
In addition, to completely document the method/class, the documentation should
feature a flat view of the documented class. Full documentation support for contracts
is not only desirable but a requirement to implement Design by Contract. Contracts
(and thus, the documentation they provide) are validated at every program run.

2.5 DbC versus Defensive programming

Defensive programming is considered to be an effective way to detect and handle program-
ming errors and is the traditional approach [Aho 95, pg. 64| on the C family languages (C,
C++ and now Java) being widely used on those languages libraries.

Its main idea is to detect and handle all possible errors within the program itself. For
instance, a function is required to accept all possible arguments and code must be provided
to test for error conditions

As such, it is considered that all possible errors must be checked and, when present, the
program must provide a way to handle it. But since the error handling code belongs to
the program itself, there is no clear separation between correct and erroneous programs. It
encourages handling the error as late as possible, further complicating blame assignment and
delaying error detection. In addition, the lack of separate error detection forgoes the possibility
of clearly and programatically define the function’s specification.

Listing 2.1: Example of Defensive programming: calculating sqrt

double calculateSqrt (double val)

{

double value;

if (val < 0) {
return —1;
} else {

2 As opposed to DbC approaches, in which the function needs only to be concerned with true preconditions.

12

value = sqrt(double x);

}

return value;

Listing 2.2: Example of Defensive programming: calculating sqrt

double calculateSqrt (double val)

{
double value;
if (val < 0) {
errno = EDOM,;
return —1;
} else {
value=sqrt (double x);
}
return value;
}

Listing 2.3: Example of Defensive programming: calculating sqrt

double calculateSqrt (double val)

{
double value;
if (val < 0) {
throw new Exception("val is not valid");
1 else {
try {
value=sqrt (double x);
} catch {
throw new Exception("something failed");
}
}
return value;
}

There are several ways of implementing defensive programming. The most known is using
return values to indicate unexpected conditions. The return value can specify the exact kind
of error (listing or it can be coupled with the usage of a global variable, like is usual in C
programming languages with the integer global variable errno (listing. Another approach
on defensive programming is to use exceptions to handle errors. As soon as an error is found,
an exception is thrown, which should be handled by someone in a higher layer (listing .

The way all these strategies are implemented is usually through the usage of an if clause.
If a certain condition occurs, depending on the programmer’s approach, leave the method by
throwing an exception or returning a value (possibly setting errno). It is also worth noting
that the Java Language Specification E] refers

3http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html

13

http://docs.oracle.com/javase/specs/jls/se7/html/jls-14.html

Along similar lines, assertions should not be used for argument-checking in public
methods. Argument-checking is typically part of the contract of a method, and
this contract must be upheld whether assertions are enabled or disabled.

Such statement clashes directly with Design by Contract approach, but can be considered
a side-effect of both Java implementing defensive programming throughout its libraries, as
well as, more importantly, the fact that assertions in Java being possible to disable.

The programmer is encouraged to think about everything that is possibly wrong and be
prepared to deal with it in the middle of the normal code flow without a clear separation. The
supplier class will detect the error and return the appropriate construct, for which the client
class will then check for its value and act accordingly. Since in Java the usual error reporting
mechanism is through an Exception, typically a checked exception, this involves extra code
in the client and supplier classes and, at worst case scenario, such validation is spread out
throughout the method’s code, hindering the code clarity and causing additional bookkeeping
for the programmer.

We can consider Defensive programming as the equivalent to a Design by Contract ap-
proach in which all contracts are considered as true: in such case the method has to deal
with all non-conforming input while on the opposite situation, with a strong precondition, the
method only has to deal with correct input. Thus, DbC takes an opposite approach to error
handling: a contract violation is always a programming error. In DbC, the input is validated
as well but on a separated clause which is the contract of the supplier: the client must know
the requirements (preconditions) of the supplier class and should not call it if he can’t meet
its demands. If it does, an exception is thrown. Also, on Design by Contract the input is to
be checked at only one place, namely in the requires clause. This leads to clear code, since
the implementation (work) code is free of validation code.

On the Design by Contract approach, defensive programming may only be of use when
using code which is dependent on several factors which may hasten input, such as input devices
or some other error prone code path.

2.5.1 Exceptions as a defensive programming construct

Exceptions in Java deal with a range of issues. For example, exceptions are used for things
such invalid argumentEl, which is an issue with the program, I0Exception, which can be the
responsibility of the environment of the program, and internal checkm. The class hierarchy
is not clear and programmers can and do develop their own exception wrapper class.

Although contracts use exceptions internally they are presented as semantically different.
Exceptions should deal with something out of the ordinary, exceptional. Input validation can
be dealt separately using preconditions and class and methods specifications by preconditions,
postconditions and invariants. Clearly separating abnormal exceptions from normal allows for
clear code, both on the client as well as the supplier and allows to establish the regular
advantages of the Design by Contract programming as we refer in section

As such, we can consider the usage of contracts, in comparison with traditional, generic
exceptions, provides a greater clarity regarding the role of the exception, allows for the contract
to be expressed on the interface of the class, prevents cluttering the code with excessive

4in Java, I1legalArgumentException
5in Java, AssertionError
Salthough JLS discourages usage of assertions to validate input values (2.5

14

Table 2.2: Exception handling anti-patterns

Exception swallowing is the name given to a programming error in which an exception is
caught and not handled properly. For example, if the catch clause is empty.

Unintended Exception subsumption is a programming error in which an exception in-
tended to be thrown is consumed (subsumed) by a another, more generic, handler; the
exception throwing is vulnerable to an overly reaching catch clause, forcing the program-
mer to be aware of every existing exception handling code paths.

Exception overriding is a programming error in which an exception intended to be thrown
is caught and then replaced by another which is then thrown; the original one is dropped
and cannot be recovered.

try/catch (for example, Eiffel’s rescue clause), simplifying the understanding of the code and
forces the verification of the postconditions (a badly handled, generic, exception throw would,
for proper handling, require that the try/catch block to be in a loop in which the routine would
be retried until successfully fulfilling the post condition). In addition, the usage of contracts
emphasizes the role of the contract as a subordinate of the method and not as a use of the
method and avoids the cluttering of code with try/catch to be used in regular, well-defined
patterns, providing a clear blame assignment of what failed and who is the responsible for
such failure (the client or the supplier).

2.5.2 Java: checked exceptions versus unchecked exceptions

In Java, an exception can be checked or unchecked. Checked exceptions have to to be
declared at the method’s signature and have to be caught at the level of the client method (or
declared to be thrown). Unchecked exceptions have neither of such requirements. Checked
exceptions also force the programmer to make a decision when he may not have full information
on what the best decision may be; in addition, certain errors, such as programming errors,
should not throw checked exceptions, as the client class has no way to handle them.

Checked exceptions are vulnerable to some design anti-patterns which are detrimental to
their handling in which, due to programmer error, the exception is not handled properly or
not handled at all [Rebélo 11]. We detail such anti-patterns in table

As such, contract failures should be represented by unchecked exceptions, as contracts vio-
lations are expected not to ever happen in a correct program. The avoidance of required catch
clauses minimizes, although does not prevent, the occurrence of such issues. Furthermore,
since contracts are redundant to the main logic of the program, we should not need to add
the code to deal with checked exceptions.

Finally, it is worth to refer that C# uses only unchecked exceptions [Venners 03)].

2.6 Frame rules

Postconditions are used to specify what changes are supposed to happen in a class after a
method is run; for example, a pop() on a stack is supposed to leave the stack with one less

15

element than before. It would useful to be able to specify which attributes are not supposed
to change during a method’s invocation

Frame rulesﬂ or frame condition, allow for specifying which data is allowed to be modified
by a given method, further strengthening contracts.

2.7 Summary of requirements for DbC language support

To successfully follow the Design by Contract philosophy on any language, we need various
requirements.

R1 (different assertions) assertions define different contracts depending where in the code
they are.

R2 (locality) contacts must be defined near the methods or classes they contractualize.

R3 (interface) contracts are part of a class interface, having the same importance as the
class methods and variables; even if the source is not available, contracts must be.

R4 (inheritance) contracts are inherited: a derived class must fulfill all contacts of its parent
class, as well as its method’s postconditions; preconditions can, but don’t have to, be
loosened.

R5 (fault tolerance) the language must present a mechanism for dealing with faults.

R6 (documentation) contracts are part of the documentation which is automatically gen-
erated.

“Contract-Java does not support frame rules

16

Chapter 3

Existing language support for DbC

Various languages have support for DbC programming. On some, like Eiffel, that support
is native. On others, that support may be incomplete (for example, as Java assert allows)
or may be attempted through third party implementations or libraries. The native support
has the advantage of guaranteeing the DbC support is always in sync with new language
features, while the usage of a third party library adds another possible point of failure on the
maintainability of existing programs. We will focus on approaches to DbC for Java, as well
as some reference languages.

3.1 Analysis of native support in languages

3.1.1 Eiffel

Eiffel is a programming language designed by Bertrand Meyer which supports design by
contract by design.

A typical routine is written as shown in listing

We can see it supports all of the Design-by-Contract constructs, such as class invariants
(invariant keyword) and method preconditions and postconditions (require and ensure
keyword, respectively).

In addition to the support of the language to implement contracts at routines (meth-
ods) and classes, Eiffel additionally supports inheritance and contracts for deferred (abstract)
classes.

Not only are contracts always inherited but there exists also a form of subcontracting,
implemented using the keywords require else and ensure then at derived classes. Addi-
tionally, Eiffel supports the old keyword in postconditions to allow to verify an expected
change occurring after the method being executed regarding a variable value prior to execu-
tion. Eiffel also implements the result keyword where the function return must be saved, as
there is no return instruction.

3.1.2 Native Java

Java, as well as many other languages, provides simple assertion facilities to implement
executable assertions since Java 1.4 [Rogers 01]. The keyword assert implements the same

tdeferred” is the equivalent to “abstract” in Java

17

Listing 3.1: Eiffel code with contracts

deferred class
ACCOUNT

feature — FElement change

deposit (sum: INTEGER)
— Add ‘sum’ to account.

require
non_negative: sum >= 0
deferred
ensure
one_more deposit: deposit count = old deposit count + 1
updated: balance = old balance -+ sum
end;
invariant
consistent balance: balance = all deposits.total

end — class ACCOUNT

functionality as the check keyword on Eiffel. But the assert keyword is seen as a debug
feature rather than part of the language itself and though useful on development phases, it
lacks flexibility to be used as a Design by Contract. On the table [Meyer 07] we refer the
inadequacies of the assert keyword towards achieving the requirements in section To
summarize, the implementation of the assert keyword in Java is inadequate towards DbC and
fails to allow the usage of contracts in a top-down implementation of a module construction.

This means a simple assertion has no semantic meaning whatsoever. As a final note, we
can add that Eiffel has three main facilities which implement internally an assertion, namely
preconditions, postconditions and invariants, but which are coupled with semantic meaning.
Furthermore, Eiffel still has the check keyword, which just checks an assertion. Such check
instruction is the one instruction in Eiffel which resembles Java’s assert. Therefore, the simple
usage of assert cannot convey the full meaning of preconditions, postconditions and invariants,
but only the most basic of its meanings, that a boolean has not the expected value.

In addition to not having the keywords constructs to support Design-by-Contract, Java
presents several other issues which stem not only from the language from the specification but

Table 3.1: Reasoning of assert instruction as inadequate towards implementing contracts

1. Clients cannot see asserts as part of the interface (doesn’t fulfill R3 from section

2. Not explicit whether an assert represents a precondition, post-conditions or invariant.

(doesn’t fulfill R1 from section
3. Asserts do not support inheritance. (doesn’t fulfill R4 from section

4. Asserts do not yield automatic documentation. (doesn’t fulfill R6 from section

18

Listing 3.2: Oak attributes with contracts

class Calender {
static int lastDay[12]=
{31,29,31,30,31,30,31,31,30,31,30,31};
int month assert (month>=1 && month<=12);
int date assert(date>=1 && date<=lastDay [month]);

}

from the design philosophy of the Java platform itself.

Java violates the command-query principle separation in the language and libraries, pre-
venting a clear separation of functionality and difficulting the implementation of sound con-
tracts.

Most native libraries use defensive programming, adding to the complexity of the code and
platform method call handling.

Java does not support natively programming by contract and none of the features described
on section Although Java uses classes and as such allows to define what could be an ADT,
it can do so only using the method’s names, which are insufficient to fully define the ADT, as
method names are insufficient to define the semantic associated with an ADT. If contracts were
possible, they would allow to define not only the semantic but to extract the class specification.

Additionally, there is no support for DbC exceptions. The try/catch mechanism is insuf-
ficient to properly implement contracts, as we detailed in section [2.5.1]

Oak

One of the early drafts of Java specification (being at the time the language called “Oak”)
supported contracts, namely defining preconditions, postconditions and class invariants, using
the assert clause [Oak 12].

On code[3:2] we can see that the 'invariant’ definition is linked to the internal representation
of the class, which binds such assertions to a specific implementation, instead of making it
representation invariant which would be satisfiable by any implementation of a valid date.

On snippet we see the method contracts were to be defined in the methods code. This
presents a problem when defining contracts to be applied to interfaces and abstract classes,
which have no methods.

However, inherited methods could not redefine the preconditions nor postconditions [Oak 12].

3.1.3 Others

Languages such as Blue, Chrome, D, Lisaac, Nemerle and Sather support Design by Con-
tract natively. However Blue is purely an academic programming language and Sather’s
development has stopped [Agostinho 08a].

Languages such as C, C++, Java (as mentioned above), Python, PHP, NET and OCaml
have the ’assert’ keyword [Agostinho 08a].

C# C+# supports Design by Contract, named “Code Contracts” as an add—onE| [Cauldwell 09].

*http://msdn.microsoft.com/en-us/deviabs/dd491992.aspx

19

http://msdn.microsoft.com/en-us/devlabs/dd491992.aspx

Listing 3.3: Oak methods with contracts

class Stack {

}

int length;
Element element [];
boolean full () {
};

boolean empty() { return length==0; }

Element pop() {
precondition: !empty ();

postcondition: ! full ();

}

void push(Element x) {
precondition: !full ();

postcondition: !empty ();

}

Listing 3.4: C# Code Contracts example

public void Transfer (Account from, Account to, decimal amount)

{

Contract. Requires (from != null);
Contract. Requires(to != null);
Contract . Requires (amount > 0);

Contract . Ensures (from . Balance >= 0);

if (from.Balance < 0 || from.Balance < amount)
throw new InsufficientFundsException ();

from . Balance —= amount;
to.Balance += amount;

Ada Ada 2012 will support Design by Contract natively [Barnes 11al, without the need for

On listing [3.4) we can see the contracts are defined on the method’s body. The consequence
of this is the impossibility to easily define contracts to interfaces or abstract classes.

any add-on; we show an example on listing [Barnes 11b].

3.2 Java extensions for DbC

Several implementations have existed since Java inception. Most of them have been aban-
doned, some have remained research projects and a select few have achieved reconnaissance.

20

Listing 3.5: Ada 2012 example with contracts

generic
type Item is private;
package Stacks is
type Stack is private;
function Is_Empty(S: Stack) return Boolean;
function Is_ Full(S: Stack) return Boolean;
procedure Push(S: in out Stack; X: in Item)
with
Pre => not Is_Full(S),
Post => not Is Empty(S);
procedure Pop(S: in out Stack; X: out Item)
with
Pre => not Is Empty(S),
Post => not Is_ Full(S);
private

end Stacks;

We will analyze if the most well-known or more recent solutions fulfill the requirements for
Design by Contract we defined in section as well as if they are actively developed. Unless
otherwise stated, the projects have a publicly accessible source repository.

3.2.1 Jass

J assEI [Bartetzko 01] has no releases since 2005; source repository is not available. Contracts
are implemented using comments, as we show on listing On its webpage Jass recommends
interested users to look at Modern Jass, since it does not work since Java 1.4.

Jass features contracts with preconditions, postconditions and invariants. Contracts are
defined using special keywords embedded in comments. Contracts are defined near the meth-
ods or classes they apply to, but in the case of methods they are defined inside the method’s
body. Inheritance is not supported by default, though it may be enabled using special con-
structs and annotations (jass.runtime.Refinement).

Jass presents a mechanism for fault tolerance which allows for catching exceptions derived
from contracts failure. Unfortunately, the example shown in listing from Jass’ website,
presents the possibility of catching a precondition failure, which makes no sense in terms
of the blame assignment: the fault of a precondition failure is of the caller of the method.
Furthermore, nothing in the specification defines the lack of possibility in catching contract
assertions using a try/catch mechanism, thus allowing the handling of assertion failures
outside the scope of contracts.

Jass presents documentation support, generating additional javadoc code in the classes it
processes, which allow for documenting the existing contracts automatically, thus avoiding the
need of asking the programmer to manually retype all the contracts in order for them to be
available in the documentation. It does not, however, generate documentation in 'flat’ form.

3http://csd.informatik.uni-oldenburg.de/~jass/

21

http://csd.informatik.uni-oldenburg.de/~jass/

Listing 3.6: Jass example code (extracted from [Shanley 03])

public class XOBoard {

public XOBoard(int xdim, int ydim) {
/+x require [dimensions_ ok]| zdim > 2 &6 zdim < 10
&6 ydim > 2 68 ydim < 10; xx/

this.xdim = xdim;
this.ydim = ydim;
board = new char[xdim|[ydim];

clearBoard ();
/xx ensure board != null; %%/

/x% invariant zdim > 2 &6 zdim < 10 &6 ydim > 2 &6 ydim < 10; *x/

Listing 3.7: Jass rescue example code (extracted from [Jas 12])

public void add (Object obj){
/% require[obj null] objl=null; !isFull() *x/
/xx rescue catch(PreconditionException e){
if(e.label.equals("obj null")) {
o=newDefaultObject ();
retry;
} else
throw e;
}

}

3.2.2 Modern Jass

Modern Jas{] has no releases since 2007 and its source repository indicates it is not de-
veloped since then. It was the work of Johannes Rieken for his master’s thesis [Ricken 07].
Example code on listing The assertions implementing the various type of contracts are
implemented using annotations and contracts are considered to be part of the interface, being
defined near the entities they apply to. Contracts are inherited without the need of special
constructs. However, unlike jass, Modern Jass doesn’t feature a DbC exception mechanism,
reusing normal Java exceptions to express Contract violations. Additionally, Modern Jass
features no documentation support.

3.2.3 Java Modeling Language

Java Modeling Languagdﬂ (JML) is a specification language with several implementations
and its page recommends implementations other than the main one if use of Java 1.5, 1.6
and 1.7 is intended [The 12|. Listing shows a code snippet of language annotated with
JML [Pestana 09]. Assertions for the various contracts are implemented using keywords inside

“http://modernjass.sourceforge.net/
Shttp://wuw.eecs.ucf.edu/~leavens/JML/

22

http://modernjass.sourceforge.net/
http://www.eecs.ucf.edu/~leavens/JML/

Listing 3.8: Modern Jass example code

@ModelDefinitions ({

@Model (name="mTheBuffer", type=Object|[]. class),

@Model (name="mStoreIndex", type=Integer.class),

@Model (name="mExtractIndex", type=Integer.class)})
@InvariantDefinitions ({

@Invariant ("size () >= 0"),

@Invariant (" (0 <= mStorelndex — mExtractIndex) && " +

"(mStoreIndex — mExtractIndex <= mTheBuffer.length)")})

public interface BufferSpec<T> {

Q@Pure

@Post ("@Result = mTheBuffer.length")

public int size ();

@Pure
@QPost ("@QResult = (mStoreIndex=—mExtractIndex)")
public boolean empty ();
@Post ("@QResult = (mStoreIndex — mExtractIndex = mTheBuffer.length)")
@Pure public boolean full ();
@Also ({
@SpecCase (
pre="o != null && !full ()",
post="@Old (mStoreIndex) = mStorelndex — 1"),
@SpecCase (
pre="o = null", signals = NullPointerException.class)})

public void add(@Name("o")T o0);

@Pre("!lempty () ")
public T getNext ();

@SpecCase (
pre="!lempty ()" ,post="@Q0ld (mExtractIndex) =— mExtractIndex — 1")
public T remove ();

@Pure
@Post ("@Result =— @Exists (Object tmp: mTheBuffer;
tmp != null && o.equals(tmp))")

public boolean contains(@NonNull @Name("o") T o);

@Post ("@Result != null")
public BufferSpec<T> copy ();

23

Listing 3.9: JML example code

public interface Stack {
//@ public model instance JMLObjectSequence stack;

/*@ public normal_ behavior
Q@ requires !stack.isEmpty();
@ assignable size, stack;
Q@ ensures stack.equals(|old(stack.trailer()));
Q@ also
(@] public exceptional behavior
Q@ requires stack.isEmpty();
@ assignable |nothing;
@ signals (java.lang. Exception e) true;
@x /
public void pop() throws java.lang.Exception;

}

comments and they are considered as being part of the interface. Inheritance is supported
with classes inheriting from superclasses and interfaces.

Regarding fault tolerance, JML implements exceptional_behavior which permits certain
exceptions under well defined circumstances. However such behavior encourages usage of
Java’s exceptions rather than presenting a disciplined mechanism for dealing with faults.
Finally, JML has no support for any kind of automatic documentation.

3.2.4 Cofoja

Cofoja, or Contracts for Javaﬁ |Lé 11], is the Design by Contract implementation made
by a team of Google engineers. It’s heavily influenced by Modern Jass and the contracts are,
as listing shows [cof 12], defined using annotations. Cofoja has different assertions for
the different contracts and they are defined near the entities they apply to. Inheritance is
fully supported, with contracts being inherited from all the class parents (superclasses and
implemented interfaces). Cofoja does not present a disciplined mechanism for dealing with
exceptions and also does not support automatically generating documentation from the defined
contracts.

3.2.5 DbC4J

Design by Contract for Javaﬂ also known as DbC4J, is the prototype for Sérgio Agos-
tinho’s master thesis [Agostinho 08a]. It uses aspects to implement Design by Contract in
Java while trying to avoid common pitfalls of AOP while applied to defining contracts, as
detailed by Meyer’s "Can Aspects Implement Contracts?" [Balzer 06], namely using AspectJ
and reflection as infrastructure and implementing contracts as methods following a naming
convention (listing [Agostinho 08b]). It has seen no developments since 2008, and while
the source is published, no source repository is available.

Shttp://code.google.com/p/cofoja/
"http://aosd.di.fct.unl.pt/sergioag/prototype/

24

http://code.google.com/p/cofoja/
http://aosd.di.fct.unl.pt/sergioag/prototype/

Listing 3.10: cofoja example code

interface Time {

@Ensures ({
"result >= 0",
"result <= 23"

})

int getHour ();

@Requires ({
Hh >: O" ,
"ho<— 23"
})
@Ensures ("getHour () = h")
void setHour (int h);

It features different assertions for the various contracts, which are implemented using
various methods with a predefined naming convention. Contracts are defined on the same file
as the original methods but do not need to be near them. It supports inheritance but does
not present any kind of support for DbC exceptions nor automatic documentation generation.

3.2.6 ezContract

ezContractE] was a new way to implement contract without breaking source code compati-
bility and maintaining compatibility with Java IDE by using a “new marker method” [Chen 08|
using various static classes as markers and using bytecode manipulation to apply contracts.
Its source repository is not available. It had one binary and source release on 2008 only.
We present some example code in listing [Chen 08], where we can see that there is no
clear separation in terms of language constructs of contracts and code logic: contracts are
considered to be part of the implementation and not of the interface. They present different
assertions for different contracts but have no support for inheritance and provide no support
for any kind of disciplined exception mechanism. ezContract also does not feature any kind
of support for automatically generating documentation.

3.2.7 Summary of features
Table summarizes the features of some of the most known Design-by-Contract imple-
mentations for Java.

3.2.8 Other implementations

Many other implementations of Design by Contract are available. For a question of com-
pleteness we will try to refer all of them along a short summary next.

8http://sourceforge.net/projects/ezcontract/

25

http://sourceforge.net/projects/ezcontract/

Listing 3.11: DbC4J example code

/* original method x/
public int foo () {

//
}

/+* precondition method */
public boolean preFoo() {

/).
}

/% original method x/
public int bar() {
}

/* postcondition method */
public boolean postBar() {

/)
}

/* invariant method x/
public boolean invariant () {

}
/* invariant method — alternative x/
public Boolean invariant () {

Table 3.2: DbC for

Java features

0

=

= 0

e = =

3 S 9

- +

S 8 = 3z

) <} =] =}

=] >y Q < A (<)

ol E | & | & © g

= = =

[< E) O =

& O - = Q 8

S| 2| 5| & A o

1 1 1 1 1 1

— N e AN o) Nej
PpC Java (et a1 (et o o~ o=
Native Java | no | yes | no | no no no
jass yes | yes | no | no | partial | partial
Modern Jass | yes | yes | yes | yes no no
JML yes | yes | yes | yes no no
Cofoja yes | yes | yes | yes no no
ezContract yes | yes | no | no no no
DbC4J yes | yes | yes | no no no

26

Listing 3.12: ezContract example code

public class Stack<T> implements IContract {

(..)

public T pop() {

Require. begin ();
assert size() > 0 : "stack size should be > 0";
Require.end ();

Ensure. begin ();
assert Result.value =— OIld. value (top ())
"item has been saved on top location";
assert size () = Old.value(size()) — 1
"stack size should be decreased by 1";
Ensure.end ();

return (...)

public void classInvariant () {
assert size() >= 0 : "stack size should be >= 0";
}

(..)

Biscotti no longer available in any form, Biscotti was a modification of JDK 1.2 compiler
which added assertions to the language [Meyer 07].

C4J also known as Contracts for Java (http://c4j.sourceforge.net/)) allows for specifying
contract in Java using annotations. Contracts are specified on a different file.

chex4j (http://chex4j.sourceforge.net/) uses annotations to specify contracts and was
inspired by contract4j. It is still being developed, with its last release done on 2011.

Contract4J (http://www.polyglotprogramming.com/contract4j) uses aspects to imple-
ment contracts and annotations to bind them to methods.

Contract Java (without the hyphen) is a language extension focused only on formalizing
the base for correct subtyping with contracts (including interfaces and multiple inheri-
tance) [Findler Ola]. It has not seen any further use and is not publicly available. We
refer it here due to its name similarity to our work.

Custos is not longer available. It used AspectJ to implement contracts.
iContract was developed by Reliable Systems and is no longer available (its website was
http://www.reliable-systems.com/tools/iContract/iContract.htm). It was a pre-

processor which embedded assertions in special comment tags, to preserve Java source
compatibility.

27

http://c4j.sourceforge.net/
http://chex4j.sourceforge.net/
http://www.polyglotprogramming.com/contract4j
http://www.reliable-systems.com/tools/iContract/iContract.htm

iContract2 was the result of an attempt to recreate iContract using a decompiler. It was
a “preprocessor/code-generator” and it used annotations in comments to specify con-
tracts. It is no longer available (its website was http://www.icontract2.org/)); a copy
is available at the JcontractS project page, referred below.

JavaDbC (http://code.google.com/p/javadbc/)) uses AOP and annotations to define con-
tracts. It isn’t developed since 2006.

java-on-contracts (http://code.google.com/p/java-on-contracts/) uses annotations to
bind contracts defined on separate files. Its development has been suspended in early
2012 to allow work on a successor to C4J.

Jcontract (http://www.parasoft.com/ibm/products.jsp) was a commercial product which
used annotations to define Contracts. It seems to be no longer available.

JcontractS (http://jcontracts.sourceforge.net/) is based on iContract2, which is also
available on its page in its original form. It is not developed since 2008, both in terms
of releases as well as source repository activity.

jcontractor (http://jcontractor.sourceforge.net/)) is abandoned since 2004. Contracts
are implemented using naming convention.

JMSAssert (http://www.mmsindia.com/JMSAssert.html) is a commercial product avail-
able only for Windows as a DLL. Contracts are written using JMScript. Although
it is available free of charge, no source is available and its development seems to be
abandoned. It is reported not to work with Java 1.4 (http://wwwl.idc.ac.il/oosc/
jmsassert.htm).

OVal (http://oval.sourceforge.net) uses AOP for implementing contracts and annota-
tions to define them. It is still being developed.

SpringContracts (http://springcontracts.sourceforge.net)) uses annotations to imple-
ment contracts and has no releases since 2007.

STclass (http://www-valoria.univ-ubs.fr/stclass)isa"A Contract Based Built-in Test-
ing Framework (CBBT) for Java" which allows "runtime evaluable contracts". It has
no new releases since 2006 and repository activity since 2007.

Kopi is no longer available (its website was http://www.dms.at/kopi/). It allowed to define
contracts using additional keywords.

28

http://www.icontract2.org/
http://code.google.com/p/javadbc/
http://code.google.com/p/java-on-contracts/
http://www.parasoft.com/ibm/products.jsp
http://jcontracts.sourceforge.net/
http://jcontractor.sourceforge.net/
http://www.mmsindia.com/JMSAssert.html
http://www1.idc.ac.il/oosc/jmsassert.htm
http://www1.idc.ac.il/oosc/jmsassert.htm
http://oval.sourceforge.net
http://springcontracts.sourceforge.net
http://www-valoria.univ-ubs.fr/stclass
http://www.dms.at/kopi/

Chapter 4

The language Contract-Java

Contract-Java language was developed to ease and to take full advantage of DbC pro-
gramming within Java. As seen in the previous chapter, most implementations for Design-
by-Contract for Java work as extensions to the language, usually in the form of annotations

(sections [3.2.2] and [3.2.3) or by using aspects (section [3.2.4). Unlike existing approaches
Contract-Java makes DbC constructs normal language entities and also fully implement&E] all
six requirements for DbC support as specified in section As such, Contract-Java is defined
as a superset of the Java language (hence, “Contract-Java”) with the intent of supporting DbC.

All Java language is valid Contract-Java language.
To achieve a full implementation of all six requirements, Contract-Java extends Java with
9 new keywords: invariant, requires, ensures, rescue, retry, check, local, old and

result.

Listing 4.1: Contract-Java snippet

public class Array<T>

{

public Array(int size)
requires size >= 0; ...

public T get(int idx)
requires idx >= 0 && idx < size ();

(...}

public void set(int idx, T elem)
requires idx >= 0 && idx < size ();

{
}

ensures get(idx) = elem;

public invariant (isEmpty () && size ()

0)

(lisEmpty ()

size () != 0);

Lour current prototype, however, does not

29

o—>| modifiers I—)I type I—)I name arguments l @ >

@ -~
f =

rescue O

—1

Figure 4.1: Contract-Java’s method syntax diagram

o—}(require S)—L)I assertionClause lJ—VO

Figure 4.2: Contract-Java’s precondition syntax diagram

4.1 Method Contracts

In Contract-Java the method assertions must be defined together with the method. Three
new kind of assertions are possible: preconditions (using requires), postconditions (using
ensures) and the DbC fault tolerant exception mechanism (using rescue). Contract-Java
fulfills requirements R1 and R2 of DbC requirements listed in section .

The precondition and the postcondition must be placed immediately before or after, re-
spectively, of the method’s body. The rescue clause, if present, must be put after the postcon-
ditions clauses. A method may also have a local clause, which declares variables whose scope
embraces the main body and rescue clauses, and is defined before the precondition. Methods
in abstract classes and interfaces cannot have local nor rescue. Figure [£.1] describes the
method definition.

Preconditions and postconditions have similar definitions, as we can see on figure and
4. 5!

We will proceed with various examples. On listing we define contracts for a normal
class and on listing [4.3] we define them for an abstract class.

The assertion clause being in a precondition, postcondition or invariant will further define
the internal of a contract clause failure, but its definition is common (figure .

The assertion clause form is common to all contracts and consists in a boolean expression
and optionally, any other object.

In summary, the rescue (figure clause usually includes some code and, possibly, the

postcondition o ensure s)—L>I assertionClause lJ—>o

Figure 4.3: Contract-Java’s postcondition syntax diagram

30

Listing 4.2: Example of real code of how to implement contracts on a class

public class Array<T>
{

public Array(int size)
requires size >= 0;

{
}

public int size ()

{
}

public T get(int idx)
requires idx >= 0 && idx < size ();

{
}

array = (T[]) new Object[size |;

return array.length;

return array[idx];

public void set(int idx, T elem)
requires idx >= 0 && idx < size ();

{

array [idx] = elem;

}

public String toString()

{

String result = "";

for(int i = 0; i < size(); i++)
result = result + " " + get(i);

return result ;

}

protected T[] array;

public invariant (isEmpty() && size() = 0) || (!isEmpty() || size() != 0);

assertionClause | 0—>| conditional Expresstion ° 0

Figure 4.4: Contract-Java’s assertion clause syntax diagram

31

I rescue I o—)(rescue

Figure 4.5: Contract-Java’s rescue syntax diagram

Listing 4.3: Example of real code of how to implement contracts on an abstract class

abstract public class Stack<T> extends Indexable<T>

{

public invariant isEmpty() || (top() = itemAt(0));

abstract public Stack<T> deepClone ();

abstract public void push(T e);
requires !isFull ();

ensures !isEmpty () && top() =— e
ensures size () = old(size (

) + 1
ensures tailList (1).equals(old(ta

ilList (0)));

abstract public void pop ();

requires !isEmpty ();

ensures !isFull ();

ensures size () = old(size()) — 1;

ensures tailList (0).equals(old(tailList (1)));

public T top ()
requires !isEmpty ();

{
}

abstract public void clear ();
ensures isEmpty ();

return itemAt (0);

invariant (isEmpty () && size () = 0) || (!isEmpty() || size() != 0);

retry keyword.
Finally, contracts are inherited and must not be possible to ignore, thus fulfilling the fourth
requirement of our DbC requirements (section .

Abstract classes An abstract class has the same constructs as a normal class (see list-
ing |4.3)).

4.2 Class Contracts

On figure we present the diagram representation of class structure. The invariant is
defined as in figure
The definition of a class invariant can have the same levels of visibility of methods: public,

32

classDeclaration I O—)| modifiers |—)(c1ass name I—L)I typeParameters IJ—y

r N

s N\

o)
Y \ > J |
staticBlock
interfaceDeclaration
-O— -
{ >

classDeclaration

field

ull

—

‘I method I

invariant

#

Figure 4.6: Contract-Java’s class syntax diagram
e

L

invariant)—LA assertionClause IJ—PO

invariant

Figure 4.7: Contract-Java’s invariant syntax diagram

package, protected and private, being the default one, when not specified, package, similarly
to Java.

A public invariant can define the ADT properties (representation invariant), while a non-
publicly accessible invariant will ensure the class internals are working properly, without
adding further relevant information to the ADT specification.

When generating documentation for the ADT, the non-public invariants are omitted.

4.3 Java interfaces

Interfaces specify an ADT while not providing any kind of implementation. As such, for
the ADT to be completely specified, contracts need to be supported on interface classes. In the
same way Native Java’s throws are considered part of the class interface, contracts also belong
to it. By implementing an interface, a class inherits the interface contracts. The same rules
apply to inheritance on interfaces as to normal classes: interfaces are also ADT definitions
and as such have the same treatment.

33

Listing 4.4: Defining contracts on an interface

interface InterfaceStack <T> extends Interfacelndexable<T>

{

public invariant isEmpty() || (top() = itemAt (0));

public void push(T
requires !isFull ();
ensures !isEmpty () && top() = e;
ensures size () = old(size()) + 1;
ensures tailList (1).equals(old(tailList (0)));

e);

public void pop();

requires !isEmpty ();

ensures !isFull ();

ensures size () = old(size()) — 1;

ensures tailList (0).equals(old(tailList (1)));

public T top ();
requires !isEmpty ();

public void clear ();
ensures isEmpty ();

public boolean isEmpty ();
public boolean isFull ();

public int size ();

4.4 DDbC exceptions

The fifth requirement of our DbC requirements (Section is support for DbC exceptions.
A method either succeeds or fails, reporting the fault to the client.

We reuse the exception handling mechanism of Java, while keeping the independence
between normal Java exceptions and DbC exceptions. One mechanism cannot interfere in
any way with the other: they are totally orthogonal. To achieve so, we forbid the usage of
Contract_JavaAssertion or any of its derived classes on our compiler. Furthermore, any
failure which is not a Contract Java contract failure does not trigger rescue execution.

In order to keep both exception mechanism working, we need to enforce the separation
between both kinds of exceptions (Contract-Java exceptions versus “normal” ones). It is thus
possible to use try/catch program exceptions except for Contract-Java exceptions, as a way
to allow interfacing with modules written using defensive programming. Even when catching
Throwable does not result in Contract-Java exceptions being caught.

It is important to emphasize the rescue clause and the try/catch are two different and
independent methods of dealing with exceptions. The try/catch mechanism cannot be used
to catch contract failure exceptions. The Contract-Java language guarantees this, meaning
the try/catch mechanism is orthogonal to contracts’ handling using DbC exceptions (2.7);
full support for DbC exceptions is thus available. So we have the legacy handling of excep-
tional behaviour, using the try/catch mechanism, in which the failure conditions are part

34

Listing 4.5: Example of real code of how to define a rescue clause on a class

public class Array<T>

{
public boolean equals(Array<T> other)
requires other != null;
{
boolean result = (size() = other.size ());
for(int i = 0; result && i < size(); i++)
result = get(i).equals(other.get(i));
return result ;
}
rescue {
// warious code
}
}

of a method implementation and thus not visible to the outside, and the support for DbC
exceptions, in which the failure conditions are visible and part of a class’ interface.

The rescue clause is associated to a real, non-abstract, method. If the failure is of the
method’s responsability (i.e., not on a precondition) then the execution jumps to the rescue
close where the failure is attempted to be dealt with. If the rescue clause reaches its end
without a retry, or there is no rescue clause, the Contract-Java exception is rethrown, in order
for the upper level of execution to be able to decide what to do with the error: either recover
for it, or throw it again to its caller. In case a retry is done, the execution restarts on the
beginning of the method; only local variables will keep its state.

4.5 Debugging in Contract-Java

4.5.1 FError

When checking for an assertion the programmer can define an appropriate error message
to be used when that assertion fails. For example, the program displayed on listing [£.6] would
yield the result in listing

On Contract-Java the error messages associated with the assertion failures are automat-
ically filled with the boolean expression that failed EL in addition to expanding the various
expression values and printing on the screen (and, optionally, normal text), thus reducing the
need of manual definition of the assertions’ associated text and providing a clearer view of
why the assertion failed. We present an example program in listing 4.8| and a possible output

in listing [£.9]

2this feature hasn’t been implemented

35

Listing 4.6: Simple assert usage

public class TestAssert {

static boolean boolFunc01l() { return false; }
static boolean boolFunc02() { return true; }
static boolean boolFunc03() { return false; }

public static void main(String [] args) {
assert (boolFunc01l() && boolFunc02()) ||
boolFunc03 () "unhelpful assertion";

Listing 4.7: Output example of Native Java’s assert

$ java -ea TestAssert
Exception in thread "main" java.lang.AssertionError:
at TestAssert.main(TestAssert.java:16)

unhelpful assertion

Listing 4.8: Simple precondition usage
public class TestPrecondition {
static boolean boolFunc01l() { return false; }
static boolean boolFunc02() { return true; }
static boolean boolFunc03() { return false; }

public void doSomething ()
requires

{
-

(boolFunc01 () && boolFunc02()) |

boolFunc03 ();

Listing 4.9: Example of a possible output of Contract Java’s boolean expansion

$ java TestBooleanExpansion
Exception in thread "main"
at TestBooleanExpansion.main(TestBooleanExpansion. java:16)

Contract_JavaPreconditionFailure

Precondition failed:

boolFunc01() && boolFunc02() ||

boolFunc03 ()

boolFunc01() && boolFunc02() || boolFunc03() => false;
boolFunc01 () && boolFunc02() => false;

boolFunc01() => false;

boolFunc02 () => true;

boolFunc03 () => false;

36

4.5.2 Fine-tuning

There should be the possibility of fine-tuning on enabling and disabling contractsﬂ The
language should present an option of enabling and disabling contracts at the global, pack-
age or class level, at compile time (in opposition to Native Java’s enabling of assertions at
runtime), for example, using a configuration file. In addition to fully enable or disable con-
tracts in selected locations, we need a way to disable only some kind of contracts. Typically
in development, all contract-checking is enabled, while in production only preconditions are
checked.

4.6 Pure queries detection

Contract-Java should only allow pure queries to be used in contract definitions. In order
to do so, Contract-Java should be able to find out if the queries used in the contracts are
pure and prevent them from being used inappropriately. This could be done on compile time,
taking an extra step to determine if a certain method is pure and marking it internally as
such. There is also the possibility of defining a new keyword to do such, however that would
be an extra burden for the programmer and it would be another source of errors if a previously
pure method would change and the keyword were not to be removed; furthermore, it would
be impossible to use methods which were not Contract-Java, as they would not be properly
annotated.

However, neither of these strategies has been implemented and as such, on Contract-Java,
the responsibility of using appropriate queries in contracts is left to the programmer.

4.7 Other assertions

We support the equivalent to the assert keyword from Java, namely check (shown on
listing. check allows for the verification of a boolean expression triggering a failure when
it is not true, of type checkFailure.

It is worth noting that we do not support loop variants and loop invariants. Though
important, through their validation of algorithms used inside a program, they do not directly
contribute towards the DbC requirements (section [2.7)).

4.8 Contract-Java native library

Contract-Java does not support contracting preexisting class files. The alternative is to
create wrapper classes in order to encapsulate access to a preexisting class file, adding the
desired contracts on the wrapper class.

Since Java uses defensive programming, Contract-Java would probably benefit from an
effort to contractualize Java libraries providing new libraries which wrap and contractualize
native libraries, which would lead to new classed’] being defined.

3not implemented

dwith a different ADT, since Java native classes follow defensive programming and have no regard for
command-query separation; also, consider LinkedHashMap, in which a boolean in the constructor changes the
class behaviour — access to the HashMap may then lead to a structural modification

37

Listing 4.10: Example of real code of how to define a check clause on a method

public int pictureMosaic (ArrayList<String> paths) {

PictureMosaic album = new PictureMosaic ();

while (...) {

album.tryAdd (paths.get (i));

check album.isPresent (paths.get(i));

4.9 Documentation

The support for full automatic documentation generation is the sixth requirement of our
DbC requirements (section [2.7). All contracts (with the exception of non-public invariants)
must be extracted from the definition and automatically added to the documentation. In the
cases where inheritance is involved, each class documentation should allow a full listing of
the ADT definition, namely make documentation available in “flat” form (which includes all
available public methods, their contracts and the class public invariant). We intend to have
another tool, “cjavadoc”, to extract the documentation.

38

Chapter 5

Implementing Contract-Java

One of the main ideas of the implementation of Contract-Java compiler prototype was
to reduce the “distance” between the generated Java source code and the original Contract-
Java file. Doing such allows for easier debugging of the compiler, faster implementation and
facilitates feedback from users, being the best strategy for the first phase of developing our
prototype. As a consequence, we preserve as much as possible from the original input, such
as white-space, comments and javadoc.

Implementing the prototype for our Contract-Java compiler involved several phases. We
will detail them next.

5.1 Work strategy

In order to ease the creation of the first version of the tool we decided to implement a
Contract-Java to Java compiler, allowing us to focus on the new constructs while ignoring low-
level details, which we wouldn’t be able to do if we had decided to translate to a lower-level
language such as JVM bytecode.

cjavac javac
Contract-Java } > Java >{ Java bytecode

In order to attain that objective, it was necessary to research available parser generators
which would allow us to easily implement our compiler.

The two most widely known parser generators are bison/yacc and ANTLR EI We chose
ANTLR over bison/yacc because ANTLR has additional features, such as built-in support for
constructing Abstract Syntax Trees, is made in Java, avoiding dealing with another language
such as C, and its webpage already had a full featured Java 1.6 grammar.

As a side note, although in the literature a top-down approach (“recursive descent”), such as
ANTLR’s is less powerful than a bottom-up one (“recursive ascent”), such as bison’s, ANTLR
is able to handle Java-based grammars with no issues.

"We used ANTLR 3.4; ANTLR 4 is yet under heavy development and thus not appropriate for general use

39

Syntactical Analysis }—ﬁ Semantic Analysis }—ﬁ Code Generation

Figure 5.1: Compiling phases

5.2 Implementation strategy

5.2.1 Choice of grammar

Several grammars for Java are available at ANTLR’s Websitﬂ

Having several grammars available for Java for use with ANTLR, we decided to use the
most recent one. It has been developed by the “Compiler Grammar” project of the Open-
JDK group with the intent of replacing the hand-written LALR parselﬂ used by the javac
compiler [Com 12].

We used the lexer and parser from the project while avoiding the tree grammar also
developed by the project, since it implemented javac specific AST nodes which were deemed
not necessary for the objectives we intended to attain.

Another reason which led us to choose this grammar was that after it was integrated with
the javac compiler, the resulting tool was validated by the Java Compatibility Kit, furthermore
supporting the validity of the grammar as a proper Java grammarﬁ

Despite such benefits, we must also note that the OpenJDK project “Compiler Grammar”
has not accompanied the new Java 7 development since such the grammar has not been further
updated. Since the JLS is publicly available such endeavor should be trivial. For the sake of
completeness, however, we must note that none of grammars available on the Java Language
Specification (JLS) totally conforms to javac compiler internal parser [Com 12].

5.2.2 Compiling phases

We use a three-step compiler (see figure , constructing a simple AST from the parser
output. Implementation of an AST was not strictly required but allows for future implemen-
tation of semantical validation to the Java source code. The three phases are detailed on
table — it must be noted that the semantic check phase is very incomplete. Every of such
phase is suppose to be totally completed before proceeding to the next one.

The Contract-Java source files are to be compiled are analyzed for dependencies and addi-
tional files deemed to be necessary for successful compilation are compiled as well, mimicking
the standard javac compiler.

However, we do not currently do semantical validation, deferring such validation to the
Java compiler. This means generated code may not be valid but does not, however, imply the
lack of validity of our prototype.

®http://www.antlr.org/grammar/list

3the email archived at http://mail.openjdk. java.net/pipermail/compiler-grammar-dev/
2010-February/000034.html| mentions the "current version of javac is a hand-written recursive descent
parser, augmented with operator precedence parsing for binary expressions"; however it is irrelevant for the
current discussion

4simply put, the Java Compatibility Kit is the testsuite which Java implementations must pass to prove they
support one or several JSR (Java Specification Requests) and thereby be able to claim to be Java compatible.

40

http://www.antlr.org/grammar/list
http://mail.openjdk.java.net/pipermail/compiler-grammar-dev/2010-February/000034.html
http://mail.openjdk.java.net/pipermail/compiler-grammar-dev/2010-February/000034.html

Table 5.1: List of phases Contract-Java compiler goes through
phase description

syntactical analysis | in this phase we use ANTLR for parsing all the program files
and appropriately tagging the required text in order to use
it later

semantical analysis | in this phase we verify if the symbols used throughout the
program exist and warn the user if necessary

code generation in this phase we finally generate the appropriate code, to a
temporary Java file, and compile it, deploying transparently
on the same directory as cjava file

5.2.3 Code Generation

ANTLR uses and includes a tool called StringTemplate, by the same author. Being a “java
template engine” [Str 12| it allows for generating source code, as well as other formatted text
output.

Since it is already included with ANTLR it was the ideal candidate to generate the new
code. We handle most list of arguments using StringTemplate; it allows more flexibility on
handling exactly how to treat each of the list items, since we can easily apply a rule to
any list item or print it as is, with no processing. StringTemplate coupled with ANTLR’s
TokenRewriteStream allows us to insert new code without needing to manually output the
original code.

StringTemplate is thus responsible for generating all the text used in the output of our
compiler and in the following sections we will show how those templates are used to construct
the intended behaviour.

5.3 Method Contracts

In order to better deal with the fact that Java can have multiple return points, we decided
to wrap the methods in another one, which would be responsible for calling the precondition
statements, saving the return value and calling postconditions and rescue clauses. Thus, we
implemented the calling of contracts by renaming the original methods (using the original
name prefixed by _cj_Wrapped_) and creating new methods which dealt with calling the
contracts and afterwards, called the actual method. This allows us to deal properly with the
return value, which would otherwise require us to track all the returns and add the appropriate
code several times.

The wrapping of functions in others which handle contract calling facilitates the imple-
mentation of contracts inheritance, the saving of the return value and handling of old values.

We decided to name those extra methods as the _cjRequire and _cjEnsure plus the
name of method. The invariant is stored with the name _cjInvariant plus visibility, with
_cjInvariant being responsible for calling all of them. In listing we present a snippet of
code generated by our compiler. All our methods verifying contracts are void and do nothing
if the assertion is true. If it does not verify, a class derived from Contract_JavaAssertion is
thrown.

A snippet of the code generated for the example in the previous chapter (listing is

41

Listing 5.1: Example of generated code of how to implement contracts on a class methods

public class Array<T>

{
public void _cjRequire get(int idx) {
if (! (idx >= 0 && idx < size())) throw
new Contract JavaPreconditionFailure ();

}
public void cjEnsure get(T _cjReturn, int idx) {
}

Jxx
x Gets array’s element at {@code idz} position.
*/

public T get(int idx)

{

T cjReturn;
_cjRequire get(idx);
_cjInvariant ();
_cjReturn=_c¢j Wrapped get(idx);
_cjInvariant ();
_cjEnsure get(cjReturn, idx);
return _cjReturn;

}

}

presented in listing [5.1] and for the invariant on listing

Contract-Java handles inheritance in the following way: if a class is derived from one which
has contracts, those contracts will be called every time the method from the derived class is
called. There is no inheritance for private methods, constructors and static methods and as
such no contracts are inherited as well. The generated code is similar of abstract methods.
The contracts redefinition is done using Meyer’s approach, as referred on section [2.2.2

5.4 Class Contracts

Invariants can be, in terms of visibility, public, protected, private and package-only. In
listing [5.2] we show the result of a possible code generation by the Contract-Java compiler.

5.5 Java Interface

Interfaces imply a specific handling of the contracted code, since interfaces can’t have code
associated. Contract-Java supports setting contracts on interfaces and handles them internally
accordingly. Definition of contracts applied to interfaces are created in a inner class inside the
interface, thus preserving the one to one file generation we have on the other code generation.

42

Listing 5.2: Example of generated code of how to implement contracts on a class

public class Array<T>

{

public void cjInvariantPublic() {

if (! ((isEmpty () && size() = 0) || (!isEmpty() || size() != 0)) throw
new Contract JavalnvariantFailure ();
}
public void _cjInvariant () {
_cjInvariantPublic ();

}

}

Listing 5.3: Example of a possible code generation to handle interface contracts

public interface Interfacelndexable<T> {

public static class contractJava () {

static public void _cjRequire get(Interfacelndexable that, ...) {
}

static public void cjEnsure get(InterfaceIndexable that, ...) {
}

static public void _cjInvariant(Interfacelndexable that) {

}

static public void _cjInvariantPublic(Interfacelndexable that) {
}

}

boolean get (Object o);

43

Listing 5.4: Example of a possible code generation to handle existing exceptions on a method

public double c¢j Wrapped somethingBeingDone(double parameter) {

VAT
* this code is the mnormal code inserted by the programmer
* we handle a non—contracted Stack

*/
Stack stc = new Stack ();
try {

stc.pop()

// generated line follows

} catch(Contract JavaAssertion cja) {
throw cja;

// original catch

} catch(EmptyStackException ese) {
throw new Error("failure in Stack");

}

5.6 DbC exceptions

Throwable

Error

Contract _JavaAssertion
|

[I I 1
PreconditionFailure PostconditionFailure InvariantFailure CheckFailure

The support for a disciplined exception mechanism (section is one of the key features
of Design by Contract. It is implemented recurring to the rescue clause. The existence of
the rescue allows for decluttering the code from error handling. A failure of a method in the
body of the method corresponds to a postcondition failure, and its recovery is done through
rescue clauses.

Since we are implementing our language as a superset of Java, and although the ideal
usage would be to not have to deal with exceptions in our method body, we need to handle
existing exceptions in such a way as to not interfere with Contract-Java exceptions. On
listing we present the proposed solution, in which we always modify the catch clause
to catch Contract_JavaAssertion and rethrow it, to ensure the original catch cannot ever
catch it.

On listing we define a possible rescue clause implementation.

5.7 Other assertions

The assert instruction will still work as in native Java and it’s handling is not changed
in any way, since it is considered a separate assertion mechanism of those implemented by

44

Listing 5.5: Example of a possible code generation to handle a rescue clause on a class

public int methodName(int parameter) {
int _cjReturn;

/% "local” x/

int example attempts = 0;
int example limit = 2;
boolean cjRetry;

do {

invariant ();
precondition (); // caller responsability, out of rescue reach

_cjRetry = false;

try {
_cjReturn=realmethod (int paramenter);
postcondition (int _cjReturn, int paramenter);
invariant ();

} catch(Contract JavaAssertion ex) {
example attempts+-+;

if (example attempts = example limit)
// this is the text which "retry"” generates
{ _cjRetry = true; continue; }

//else fail:

throw ex;
} while(retry)

return _cjReturn;

Contract-Java. However, we define the check instruction which generates an exception which
is dealt by our disciplined exception mechanism. On listing we have the generated code
for the code present in listing

As other assertions, the check instruction can be deactivated at compile-time.

5.8 Contract-Java native library
We present a simple implementation of Stacks, Queue and AssociativeArray on appendix[A]
in order to provide a simple but complete example of the usage of contracts on full classes.
5.9 Documentation
cjavadoc hasn’t been implemented yet, but it should extract all information needed from

contracts and adds them to the class documentation; the usage of javadoc as a backend should
be possible in order to reduce the complexity of cjavadoc.

45

Listing 5.6: Example of a possible code generation to handle a check assertion on a method

public int c¢j Wrapped pictureMosaic(ArrayList<String> paths) {

PictureMosaic album = new PictureMosaic ();

while (...) {

album.tryAdd (paths.get (i));

if (! (album.isPresent (paths.get(i)) != true)) throw new
Contract _JavaCheckFailure ("album.isPresent (paths.get(i)) != true)",
/+ originalFile =/ "pictureClass.cjava", /« original line x/ "17"),
true);

5.10 Contract-Java notes/issues

5.10.1 Line numbers

Contract-Java strives to preserve as much input as possible, thus, when errors are present
in generated source code, they are easy to track. Nevertheless, the fact that Java compiler
errors do not correspond to the original file is a problem from the usability perspective of the
tool. Since we don’t yet have a full semantical validation, it would be desirable to have a clear
proper handling of Javac’s errors, since there will be errors which will only be caught by javac
but not Contract-Java compiler.

On a C based language we could use the pragma operator to define which source file line
was responsible for generating a certain line in the intermediary Java file would link. On Java
such solution isn’t possible, since there is no preprocessor.

If a complete semantic check proves unfeasible, it may be possible to workaround the issue
using a “Diagnostic Listener’ﬂ which would translate errors’ line numbers from Java files to
the corresponding line number on the original CJava file.

5.10.2 Usage

Contract-Java provides it’s own program to compile both Java programs as well as CJava,
providing a drop-in replacement to calling javac (internally, it calls javac when appropriate).

Listing 5.7: Invoking the Contract-Java compiler

$ java -jar CJ2J.jar <list of Java or CJava files>

Shttp://docs.oracle.com/javase/6/docs/api/javax/tools/DiagnosticListener.html

46

http://docs.oracle.com/javase/6/docs/api/javax/tools/DiagnosticListener.html

All command-line options are properly passed on to javac, with the exception of “@Q” (to
load options from a file), and “-d” (which is needed internally by the Contract-Java compiler
and thus ignored with a warning when specified from the command-line).

5.11 ANTLR issues

Throughout the development of our prototype, we found some issues regarding the usage
of ANTLR. Those issues have arisen mainly from documentation omissions, including the lack
of documentation of known bugs in the code. We will detail them in the following subsections.

5.11.1 Matching several text tokens

After the parse phase ANTLR provides us with two alternatives: a text-based output using
StringTemplate or an Abstract Syntax Tree (AST); from an AST we can always generate a
text-based alternative, if we wish to.

What we did internally was to extract certain ranges of text, namely from functions calls,
and reuse them on the several snippets of code we generated. Such operation is easier on the
parser than on a tree parser phase, as happen when working with an ASTﬁ. To do it properly,
we were required to enforce hierarchy on the various tree nodes, using imaginary nodes as
helpers. However, when using ANTLR’s syntax, we were unable to extract all text below such
new nodes. We were required to use the ANTLR’s internal API to get all the text below such
nodes.

5.11.2 Documentation caveats

ANTLR is a free product, available under the BSD license since version 3 |Z| The author
has, however, two non-free books available to buy. "The Definitive ANTLR guide"lﬂ and
"Language Implementation Patternsﬂ

Probably as a side effect of such strategy, the documentation available for the site is
incomplete and loosely connected, and should be seen only as a complement to the books.

Furthermore, the API documentation is in some cases incomplete, not providing a flat
approach to inheritance with the effect of this hiding some implementation details of ANTLR
which should have found earlier.

Even so, most documentation available details simple transformations of code, which are
usually achievable using an Abstract Syntax Tree (AST). However, in the case of complex
translations (namely, involving saving and deletion of text and insertion of text on different
areas) ANTLR’s syntax presents no solution, having forced us to hook the ANTLR’s lower
level API.

San ’upper’ level rule only matches the leftmost token child instead of the whole tokens; e.g., the rule

"booleanExpression” matches only the first token

"http://www.antlr.org/license.html

8Parr, Terence, "The Definitive ANTLR guide", Pragmatic Programmers

9Parr, Terence, "Language Implementation Patterns: Create Your Own Domain-Specific and General Pro-
gramming Languages", Pragmatic Programmers

47

http://www.antlr.org/license.html

5.11.3 Invalid code generated

ANTLR 3.4.0 (the latest stable version) has an undocumented bug which leads it to gen-
erate invalid code when assigning labels to rules on a parser grammar (but not on a tree
grammar).

Such problem was first solved using an older ANTLR version (3.3)@ and afterwards using
an unreleased version, available on ANTLR’s source repository, as per instructions received
on the support mailing list E that version will eventually be released as ANTLR 3.5@.

5.11.4 Composite grammars

ANTLR’s primary mode is to work with a so called “combined grammar”. Such grammar
is a file consisting of both lexer and parser rules, which define the grammar in its entirety.

However ANTLR has a functionality called “composite grammars”. Following the idea
behind object-oriented programming, ANTLR allows for a grammar to extend another. Since
Contract-Java extends Java, it would make sense to separate the Java grammar for the
Contract-Java grammar, allowing for a clear separation of the languages and easier main-
tenance.

Despite being a good idea, composite grammars presented more issues. Besides finding out
could not import a lexer from another lexer, we also triggered an infinite loop on the grammar
processing and found out a lexer rule is always required on the main grammar file.

We eventually workarounded such issues but in the end the parser generated from a com-
posite grammar didn’t work properly with any of the tested versions of ANTLR (3.3, 3.4 and
what will be 3.5E|). As such, we decided not to follow such code organization.

This does not mean we cannot maintain a different grammar for Java and Contract-Java
and eventually merge the changes from one to the other, but such bugs imply the approach
we can take to get such advantages will probably be more error-prone (e.g., we can use a set
of diffs between our grammar and the original Java.g and port the changes from a more recent
Java.g to the older Java.g and from there to the Contract-Java grammar).

5.11.5 Backtracking and Error handling

Since any of the Java grammars available for ANTLR uses backtracking by default, un-
ambiguously reporting errors is difficult. To be able to properly report errors, it would be
required to refactor the grammar in order to remove left-recursion, which would render it more
difficult to maintain and update. For the purpose of building a prototype, we decided to use
the grammars already available, which require backtracking.

10it may be worth explaining in versions prior to 3.4 ANTLR was dependent on ANTLR 2 to build, which had
a different license and led to projects such as Eclipse to not include ANTLR on their projects, as explained on
http://wuw.antlr.org/wiki/display/ANTLR3/ANTLR+3.4+Release+Notes; version 3.4 was therefore a com-
plete rewrite of ANTLR’s built-in grammars and as such, the appearance of such bug is understandable

"http://thread.gmane.org/gmane.comp.parsers.antlr.general /34301 /focus=35845

2http://markmail.org/thread /vqzeptcda65xpdzz

Bwe used a SNAPSHOT version

48

http://www.antlr.org/wiki/display/ANTLR3/ANTLR+3.4+Release+Notes

Chapter 6

Conclusions

We achieved a significant part of the objectives which were intended. After surveying
existing options and defining the requirements for a new language which implemented contracts
on Java, we defined a new language, Contract-Java, which treats contracts as normal languages
entities, defined the support for inheritance and incentives the usage of Design by Contract
approach as a program development methodology. We implemented a prototype which, while
not supporting Design by Contract to all language constructs, demonstrates the feasibility of
the language Contract-Java.

6.1 Future work

First of all, we intend to make the Contract-Java compiler a more usable prototype or,
if possible, a complete product. Several choices were made during the this work which we
consider useful to revisit sometime; on the other hand, some approaches of our prototype can
be enhanced. A brief description of the different topics follows.

Framerules We should be able to specify frame rules on the language, as a complement to
the specification of contracts.

Loop variants/invariants Loop variants and invariants ease the verification of the proper
functioning of loop contructs. Although not required to implemented DbC, they represent a
useful addition to the language.

Concurrency The usage of contracts within a language may be a way to implement more
efficient concurrency within a language. Contract-Java could expand in that direction.

New operators The construction of contracts could be enhanced by supporting JML con-
structs such as equivalent (“<==>"), implies (“==>") and is implied (“<==").

Support for pure query detection Contract-Java should be able to automatically deter-
mine if a query is pure or not, and forbid accordingly its usage on a contract checking.

49

Debugging in Contract-Java A contract failure should present the user with not only
the line of the contract which failed but an expansion of the boolean expression values, for an
easier interpretation.

Documentation We should also generate flat documentation, extracting the contracts from
the method’s interface and adding them as Javadoc on the various methods and classes.

Native library Defining a new language on top of Java is an important step towards ex-
panding the ease of use of Design by Contract programming but such step is more easily
done with the support of a preexisting, contracted library. The idea will be, in the future, to
implement a Contract-Java library which contractualizes preexisting Java classes, to allow for
seamless use in contracted classes.

IDE support We are also considering the feasibility of implementing IDE support for
Contract-Java on a later phase.

Semantical validation In the future we intend to add support for proper inheritance sup-
port and semantic validation. The Contract-Java translator should support automatic gener-
ation of contract documentation and present it in flat form.

The usage of semantic validation should allow us to:

e verify if an assertion is boolean;

e deny extending Contract_JavaAssertion;

e enforce usage of public methods by public contracts;
e forbid class attributes to be public;

e type consistency;

e an finally, prevent errors from being reported in a more confusing way by the regular
javac.

Grammar choice Although the OpenJDK’s grammar has been fully tested and integrated
in the javac compiler, that came at the cost of having a more complicated grammar: while
that cost was negligible as long as the OpenJDK grammar was maintainted by the OpenJDK
project, once that maintenance is no longer kept the onus of updating it is probably bigger
than using the simpler Terence Parr’s grammar; revisiting the choice of grammar may be of
use for future work.

Internal organization The way the conversion of the Contract-Java files is done internally
is to handle strings of text which are copied from various places to another. Such approach
was the easiest but in the long-term may prove to be unmaintainable and, as such, should
probably be converted on a AST manipulation coupled with AST to text generation.

50

Appendix A

Example code

The following code serves as first approach to the implementation of a Contract-Java
library.

Listing A.1: The implementation of an Array in Contract-Java

VAT
* Generic array module.
*/
public class Array<T>
{
Jxx
x Creates an array with {@code size} elements.
*/
@SuppressWarnings (value = "unchecked")

public Array(int size)
requires size >= 0;

{
array = (T[]) new Object[size |;
}
VAT
* The array’s immutable size
*/
public int size ()
{
return array.length;
}
Jx*
* Queries equality with {@code other} array.
*/
public boolean equals(Array<T> other)
requires other != null;
{
boolean result = (size() = other.size ());
for(int i = 0; result && i < size(); i++)
result = get(i).equals(other.get(i));
return result ;
}

o1

Vit

x Gets array’s element at
*/

public T get(int idx)
requires idx >= 0 && idx <

{
}
/% x

x Sets array’s element at
*/

public void set(int idx, T
requires idx >= 0 && idx <

return array[idx];

{@code idz} position.

size ();

{@code idz} position.

elem)
size ();

{

array [idx] = elem;

}
Jx*

* Returns a {@code String} with all array’s elements separated with a space
*/
public String toString()
{

String result = "";

for (int 0; i < size(); i++)

result = result + " " + get(i);
return result ;

i =

}

public void resize (int newSize) {
T[] newArray = (T[]) new Object[newSize];
int oldSize = size ();
int minimum = (oldSize < newSize) 7 oldSize newSize;

i < minimum;
array [1];

for (int i = 0;
newArray|[i] =

i++) {

array = newArray;

}

protected T[] array;

Listing A.2: We define an abstract class Listable which will be reused by the following classes.

/% x
x Generic
*/
abstract public class Listable <T>

{

listable list.

public invariant size () >= 0;
public invariant (isEmpty() && (size ()
('isEmpty () && !(size() = 0));

92

VAT

* The list total number of elements.
*/

abstract public int size ();

Jx*

* Queries the list emptiness.
*/

public boolean isEmpty ()

{
}
Jxx

* Queries the list fullness.
*/

abstract public boolean isFull ();

return size () — 0;

Vi
x Checks if list is unbounded.

*/

abstract public boolean isLimited ();

Jx*

x The list mazimum number of elements.

*/

abstract public /*@ pure @/ int maxSize ();
requires isLimited ();

Jx*

x Fxtracts all the elements of the list.
*/

abstract public Array<T> toArray ();
ensures result.size () = size ();

/& *

x Clears the list.

*/

abstract public void clear ();
ensures size () =— 0;

Listing A.3: A generic stack partially implemented.

/% x

* Generic stack module.

*/

abstract public class Stack<T> extends Listable<T>

{
public invariant isEmpty() || (top() = toArray.get (0));
protected boolean limited;

/& x

* Adds an element to the top of the stack.
*/

abstract public void push(T e);

requires !isFull ();

ensures !isEmpty () && top() = e;

93

ensures size () = old(size()) + 1;

Jx*

* Remowves the top element from the stack.
*/

abstract public void pop ();

requires !isEmpty ();

ensures !isFull ();

ensures size () = old(size()) — 1;

/% x

* Without changing the stack, returns its top element.
*/

abstract public T top();
requires !isEmpty ();

/% x

* Empties the stack.

*/

abstract public void clear ();
ensures isEmpty ();

public boolean isLimited ()

{
}

return limited;

Listing A.4: The full implementation of a Stack, using an Array as the internal representation.

public class ArrayStack<T> extends Stack<T> {

ArrayStack () {
my = new java.util.ArrayList <>();
limited = false;

}

ArrayStack (int maxSizeln)
requires maxSizeln >= 0;

{
my = new java.util.ArrayList<>(maxSizeln);
limited = true;
maxSize = maxSizeln;

}

public void push(T e) {
my.add(e);

public void pop() {
my.remove (size () —1);
}

public void clear () {
my. clear ();
}

o4

public int size () {
return my. size ();
}

public boolean isFull () {
boolean result ;

if (lisLimited ()) {

result = false;
} else {
result = size () = maxSize ();

}

return result ;

}

public int maxSize ()
ensures isLimited ();

{
}

public T top() {
return my. get (size()—1);
}

public Array<T> toArray () {
Array<T> newArray = new Array(size ());

return maxSize;

for (int i = 0; i < size(); i++) {
newArray.set (i, my.get(i));
}

return newArray;

}

protected java.util.ArrayList<T> my;
protected int maxSize;
protected int index;

Listing A.5: The full implementation of a Stack, using a Linked List as the internal represen-
tation.

VAT
x Stack module implemented with a linked list.
*/
public class LinkedStack<T> extends Stack<T>
{
Jx*
x Creates an unbounded stack.
*/

public LinkedStack ()
{

top = null;
size = 0;
limited = false; // unlimited

95

}
Jx*

x Creates an bounded stack limited to {@code

*/
public LinkedStack (int maxSizeln)
requires maxSize >= 0;

{

top = null;

size = 0;

limited = true;
maxSize = maxSizeln;

}

public int maxSize()
requires isLimited ();

{
}

return maxSize;

public void push(T e)

{
Node<T> n = new Node<T>();

n.e = e;
n.next = top;
top = n;
size++;

}

public void pop()

{
top = top.next;
size ——;

}

public T top() {
return top.e;
}

public int size ()

{
}

return size;

public boolean isFull ()

{

boolean result ;

if (lisLimited ()) {

result = false;
} else {
result = size () = maxSize ();

}

return result ;

o6

mazSize} elements.

public void clear ()

{
top = null;
size = 0;

}

public Array<T> toArray () {
Array<T> ret = new Array<T>(size ());

int i = 0;
Node<T> current = top;
while (current != null) {
ret.set (i, current.e);
current = current.next;
1++;
}
return ret;
}
protected Node<T> top = null;
protected int size = 0;
protected int maxSize = 0;
protected class Node<E>
{

Node<E> next = null;
E e;

Listing A.6: A simple queue, using DbC constructs, follows.

public class Queue<T> extends Listable<T> {

public invariant isEmpty() ||

public Queue() {
my = new java.util.ArrayList<T>();
limited = false;

}

public Queue(int maxSizeln)
requires maxSizeln >= 0;

{
my = new java.util.ArrayList<T>();
limited = true;
maxSize = maxSizeln;

}

public int size () {
return my. size ();
}

public boolean isFull () {
boolean result ;

if (!isLimited()) {

o7

(peek () —

toArray.get (0));

result = false;
} else {

result = size () = maxSize();
}

return result ;

}

public boolean isLimited () {
return limited;
}

public int maxSize ()
requires isLimited ();

{
}

return maxSize;

public void clear () {
my. clear ();
}

ensures size () =— 0;

public Array<T> toArray () {
Array<T> newArray = new Array<T>(size ());

for (int i = 0; i < size(); i++) {
newArray.set (i, my.get(i));
}

return newArray;

}

ensures result != null;
ensures result.size () = size ();

public void in (T in)
requires !isFull ();

{
}

my.add (in);

public void out ()
requires !isEmpty ();

{

}
public T peek()
requires !isEmpty ();

{
}

my.remove (0);

return (T) my.get (0);

protected java.util.ArrayList<T> my;
protected boolean limited;
protected int maxSize;

o8

Listing A.7: We implement an Associative Array using DbC constructs to strengthen the code
correctness.

public class AssociativeArray<K, V> extends Listable<V> {
public AssociativeArray () {
my = new java.util.LinkedHashMap<K, V>();
}

public AssociativeArray (int maxSizeln)
requires maxSizeln >= 0;

{
my = new java.util.LinkedHashMap<K, V>();
maxSize = maxSizeln;
limited = true;

}

public int size () {
return my. size ();
}

public boolean isFull () {
boolean result ;

if (!isLimited ()) {

result = false;
} else {
result = size () = maxSize ();

}

return result;

}

public boolean isLimited () {
return maxSize != 0;
}

public int maxSize ()
requires isLimited ();

{
}

public Array<V> toArray () {

return maxSize;

Array<V> ret = new Array<V>(size ());
java.util. Collection <V> tmp = my. values ();

int i = 0;

for (V j : tmp) {
ret.set (i, j);
i4+;

}

return ret;

99

public void clear () {
my. clear ();
}

ensures size () — 0;

public void set (K key, V val)
requires key != null;
requires val != null;

{
}

ensures get(key) =— val;

my. put (key, val);

public V get (K key)
ensures (key != null);

{
}

public V remove (K key)
ensures key != null;

{
}

public boolean exists (K key)
ensures key != null;

{
}

protected java.util.LinkedHashMap<K, V> my;
protected int maxSize;
protected boolean limited;

return my. get (key);

return my.remove (key);

return my.get (key) != null;

60

Bibliography

[Agostinho 08a] S. Agostinho and M. de Caparica, “An aspect-oriented infrastructure for design by
contract in java”, 2008.

[Agostinho 08b] S. Agostinho, P. Guerreiro, and H. Taborda, “An aspect for design by contract in
java”. ICEIS 2008, June 2008.

[Aho 95] A. V. Aho and J. D. Ullman, Foundations of Computer Science. Computer Science Press, C
Edition edition, 1995.

[Balzer 06] S. Balzer, P. T. Eugster, and B. Meyer, “Can aspects implement contracts?”. In D. Hutchi-
son, T. Kanade, J. Kittler, J. M. Kleinberg, F. Mattern, J. C. Mitchell, M. Naor, O. Nierstrasz,
C. Pandu Rangan, B. Steffen, M. Sudan, D. Terzopoulos, D. Tygar, M. Y. Vardi, G. Weikum,
N. Guelfi, and A. Savidis, eds., Rapid Integration of Software Engineering Techniques, pages 145—
157, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[Barnes 11a] J. Barnes, “Ada 2012 rationale - introduction”. AdaCore, http://www.adacore.com/
uploads/technical-papers/Ada2012_Rational_Introducion.pdf, August 2011.

[Barnes 11b| J. Barnes, “Rationale for ada 2012 - overview: Contracts”. AdaCore, http://www.
ada-auth.org/standards/12rat/html/Rat12-1-3-1.html, 2011.

[Bartetzko 01] D. Bartetzko, C. Fischer, M. Mdller, and H. Wehrheim, “Jass — java with assertions”,
Electronic Notes in Theoretical Computer Science, 55(2):103-117, October 2001.

[Bolstad 04] M. Bolstad, “Design by contract: a simple technique for improving the quality of soft-
ware”. In Users Group Conference, 2004. Proceedings, page 303-307, 2004.

[Cauldwell 09] P. Cauldwell, “Code contracts”. http://www.cauldwell.net/patrick/blog/
CodeContracts.aspx, May 2009.

[Chen 08] C.-T. Chen, Y. C. Cheng, and C.-Y. Hsieh, “Contract specification in java: Classification,
characterization, and a new marker method”, IEICE - Trans. Inf. Syst., E91-D(11):2685-2692,
November 2008.

[cof 12] “cofoja - contracts for java”. http://code.google.com/p/cofoja/| (accessed October 2012),
2012.

[Com 12] “Compiler grammar”. http://openjdk.java.net/projects/compiler-grammar/ (ac-
cessed October 2012), 2012.

[Dijkstra 76] E. W. Dijkstra, A Discipline of Programming. Prentice Hall, Inc., October 1976.

[Feldman 05] Y. A. Feldman, “Teaching quality object-oriented programming”, J. Educ. Resour. Com-
put., 5(1), March 2005.

61

http://www.adacore.com/uploads/technical-papers/Ada2012_Rational_Introducion.pdf
http://www.adacore.com/uploads/technical-papers/Ada2012_Rational_Introducion.pdf
http://www.ada-auth.org/standards/12rat/html/Rat12-1-3-1.html
http://www.ada-auth.org/standards/12rat/html/Rat12-1-3-1.html
http://www.cauldwell.net/patrick/blog/CodeContracts.aspx
http://www.cauldwell.net/patrick/blog/CodeContracts.aspx
http://code.google.com/p/cofoja/
http://openjdk.java.net/projects/compiler-grammar/

[Findler 01a] R. B. Findler and M. Felleisen, “Contract soundness for object-oriented languages”’, ACM
SIGPLAN Notices, 36(11):1-15, 2001.

[Findler 01b] R. B. Findler, M. Latendresse, and M. Felleisen, “Behavioral contracts and behavioral
subtyping”. In ACM SIGSOFT Software Engineering Notes, page 229-236, 2001.

[Floyd 67] R. Floyd and J. Schwartz, “Assigning meanings to programs”. In Proceedings of a Sympo-
sium on Applied Mathematics, pages 19-31, 1967.

[Goguen 78] J. Goguen, J. Thatcher, E. Wagner, and R. Yeh, “An initial algebra approach to the
specification, correctness and implementation of abstract data types”. In Current Trends in
Programming Methodology: Data Structuring, pages 80-149, Prentice—Hall, 1978.

[Gries 87] D. Gries, The Science of Programming. Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 1st edition, 1987.

[Hakonen 11] H. Hakonen, S. Hyrynsalmi, and A. Jarvi, “Reducing the number of unit tests with
design by contract”. In Proceedings of the 12th International Conference on Computer Systems
and Technologies, page 161-166, ACM, New York, NY, USA, 2011.

[Hoare 69] C. A. R. Hoare, “An axiomatic basis for computer programming”, Commun. ACM,
12(10):576-580, October 1969.

[Jas 12| “Jass - documentation / assertions”. http://csd.informatik.uni-oldenburg.de/"jass/
doc/assert.html#rescue (accessed October 2012), 2012.

[Jazequel 97| J.-M. Jazequel and B. Meyer, “Design by contract: the lessons of ariane”, Computer,
30(1):129 —130, January 1997.

[Jones 80] C. B. Jones, Software Development: A Rigorous Approach. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 1980.

[Jones 86] C. B. Jones, Systematic software development using VDM. Prentice Hall International
(UK) Ltd., Hertfordshire, UK, UK, 1986.

[Liskov 74] B. Liskov and S. Zilles, “Programming with abstract data types”, SIGPLAN Not.,
9(4):50-59, March 1974.

[Liskov 94] B. H. Liskov and J. M. Wing, “A behavioral notion of subtyping”, ACM Trans. Program.
Lang. Syst., 16(6):1811-1841, November 1994.

[Lé 11] N. M. Le, Contracts for java: A practical framework for contract programming. 2011.

[Mandrioli 92| D. Mandrioli, Advances in Object-Oriented Software Engineering. Prentice Hall, Febru-
ary 1992.

[Meyer 07] B. Meyer, “Software architecture: Lecture 4: Design by contract”. ETH Zurich, http://se.
inf.ethz.ch/o0ld/teaching/ss2007/0050/slides/04_softarch_contract_6up.pdf, March-
July 2007.

[Meyer 09] B. Meyer, A. Fiva, I. Ciupa, A. Leitner, Y. Wei, and E. Stapf, “Programs that test them-
selves”, Computer, 42(9):46-55, 2009.

[Meyer 86] B. Meyer, Technical Report TR-EI-12/CO. Technical Report, Interactive Software Engi-
neering Inc., 1986.

[Meyer 88a] B. Meyer, “Eiffel: A language and environment for software engineering”, The Journal of
Systems and Software, 1988.

62

http://csd.informatik.uni-oldenburg.de/~jass/doc/assert.html#rescue
http://csd.informatik.uni-oldenburg.de/~jass/doc/assert.html#rescue
http://se.inf.ethz.ch/old/teaching/ss2007/0050/slides/04_softarch_contract_6up.pdf
http://se.inf.ethz.ch/old/teaching/ss2007/0050/slides/04_softarch_contract_6up.pdf

[Meyer 88b| B. Meyer, Object-oriented software construction. Prentice-Hall, New York, 1988.

[Meyer 88c| B. Meyer et al., “Disciplined exceptions”, T echnical report tr-ei-22/ex, Interactive Soft-
ware Engineering, Goleta, CA, 1988.

[Meyer 92a] B. Meyer, “Applying ’design by contract”’, Computer, 25(10):40-51, October 1992.
[Meyer 92b| B. Meyer, Eiffel : the language. Prentice Hall, New York, 1992.
[Meyer 97] B. Meyer, Object-oriented software construction. Prentice Hall PTR, 1997.

[North 97] R. North, T. DeMarco, J. Stern, and D. Morley, “When software is treated much too
lightly”, Computer, 30(2):8 =11, February 1997.

[Oak 12] “Oak language specification”. |www.javaspecialists.eu/archive/files/0akSpec0.2.ps
(accessed October 2012), 2012.

[Pestana 09] J. M. A. Pestana, “A JML-Based strategy for incorporating formal specifications into the
software development process”, 2009. Orientador: Néstor Catano.

[Rebélo 11] H. Rebélo, R. Coelho, R. Lima, G. T. Leavens, M. Huisman, A. Mota, and F. Castor,
“On the interplay of exception handling and design by contract: an aspect-oriented recovery
approach”. In Proceedings of the 13th Workshop on Formal Techniues for Java-Like Programs,
page 7:1-7:6, ACM, New York, NY, USA, 2011.

[Rieken 07] J. Rieken, “Design by contract for java-revised”, Master’s thesis, Department fir Infor-
matik, Universitit Oldenburg, 2007.

Rogers 01| W. P. Rogers, “The trouble with checked exceptions”. JavaWorld.com, http://www.
p
javaworld.com/javaworld/jw-11-2001/jw-1109-assert.html, November 2001.

[Shanley 03] R. Shanley, “Design by contract in java”, 2003.
[Str 12] “StringTemplate”. http://www.stringtemplate.org/ (accessed October 2012), 2012.

[The 12| “The java modeling language (jml) download page”. http://www.eecs.ucf.edu/ leavens/
JML/download.shtml, April 2012.

[Turing 89] A. Turing, “The early british computer conferences”. page 70-72, MIT Press, Cambridge,
MA, USA, 1989.

[Venners 03] B. Venners, “The trouble with checked exceptions”. Artima Developer, http://www.
artima.com/intv/handcuffs.html, August 2003.

63

www.javaspecialists.eu/archive/files/OakSpec0.2.ps
http://www.javaworld.com/javaworld/jw-11-2001/jw-1109-assert.html
http://www.javaworld.com/javaworld/jw-11-2001/jw-1109-assert.html
http://www.stringtemplate.org/
http://www.eecs.ucf.edu/~leavens/JML/download.shtml
http://www.eecs.ucf.edu/~leavens/JML/download.shtml
http://www.artima.com/intv/handcuffs.html
http://www.artima.com/intv/handcuffs.html

64

	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	Motivation
	Design-by-Contract as an improvement to correction, documentation and debug
	Design-by-Contract implementations for Java

	Objectives
	Methodology
	Document organization

	Design by Contract
	The meaning of DbC
	Hoare's triplets

	DbC and Object-Oriented Languages
	Abstract Data Types
	Liskov's substitution principle
	Command-query separation

	Error Handling
	DbC as Programming methodology
	DbC versus Defensive programming
	Exceptions as a defensive programming construct
	Java: checked exceptions versus unchecked exceptions

	Frame rules
	Summary of requirements for DbC language support

	Existing language support for DbC
	Analysis of native support in languages
	Eiffel
	Native Java
	Others

	Java extensions for DbC
	Jass
	Modern Jass
	Java Modeling Language
	Cofoja
	DbC4J
	ezContract
	Summary of features
	Other implementations

	The language Contract-Java
	Method Contracts
	Class Contracts
	Java interfaces
	DbC exceptions
	Debugging in Contract-Java
	Error
	Fine-tuning

	Pure queries detection
	Other assertions
	Contract-Java native library
	Documentation

	Implementing Contract-Java
	Work strategy
	Implementation strategy
	Choice of grammar
	Compiling phases
	Code Generation

	Method Contracts
	Class Contracts
	Java Interface
	DbC exceptions
	Other assertions
	Contract-Java native library
	Documentation
	Contract-Java notes/issues
	Line numbers
	Usage

	ANTLR issues
	Matching several text tokens
	Documentation caveats
	Invalid code generated
	Composite grammars
	Backtracking and Error handling

	Conclusions
	Future work

	Example code
	Bibliography

