
Universidade de Aveiro
Departamento de
Eletrónica, Telecomunicações e Informática

2012

André Filipe
Ferreira Prata

Gestão de ligações baseada em IEEE 802.21

Connection management based on IEEE 802.21

Universidade de Aveiro
Departamento de
Eletrónica, Telecomunicações e Informática

2012

André Filipe
Ferreira Prata

Gestão de ligações baseada em IEEE 802.21

Connection management based on IEEE 802.21

Dissertação apresentada à Universidade de Aveiro para cumprimento dos
requisitos necessários à obtenção do grau de Mestre em Engenharia de
Computadores e Telemática, realizada sob a orientação científica do Doutor
Diogo Nuno Pereira Gomes, Professor auxiliar convidado do Departamento
de Eletrónica, Telecomunicações e Informática da Universidade de Aveiro, e
do Doutor Pedro Alexandre de Sousa Gonçalves, Professor adjunto da Escola
Superior de Tecnologia e Gestão de Águeda da Universidade de Aveiro.

o júri / the jury

presidente / president Professor Doutor António Luís Jesus Teixeira
Professor associado da Universidade de Aveiro

vogais / examiners committee Doutor Pedro Miguel Naia Neves
Investigador da Portugal Telecom Inovação

Professor Doutor Diogo Nuno Pereira Gomes
Professor auxiliar convidado da Universidade de Aveiro

Professor Doutor Pedro Alexandre de Sousa Gonçalves
Professor adjunto da Universidade de Aveiro

agradecimentos /
acknowledgements

O sucesso deste trabalho atribui-se também aos meus pais, aos professores
Diogo Gomes e Pedro Gonçalves, ao Daniel Corujo e ao Carlos Guimarães.

Palavras Chave linux, 802.21, gestão de ligações

Resumo Avanços recentes nas telecomunicações conduziram a uma combinação de
várias interfaces de acesso à rede num único dispositivo. Os programas
de gestão de ligações atuais lidam com as diferentes tecnologias indivi-
dualmente, e baseiam a seleção da rede de acesso em parâmetros tais
como a potência de sinal, ou taxa de transmissão máxima. Nem sempre
estes mecanismos refletem a performance real de uma rede, levando a uma
experiência de acesso fraca.

Neste trabalho é implementada uma framework de gestão de ligações
inovadora, baseada na norma IEEE 802.21. Esta norma disponibiliza
mecanismos que facilitam e otimizam handovers entre diferentes tecnologias
e a seleção de ligações através da troca de informações entre as entidades
da rede e o terminal, incluindo informação de QoS, desempenho ou outras
características. Além disso, a norma permite a gestão de dispositivos
independentemente da tecnologia, através de uma interface uniformizada ao
nível da camada de ligação de dados.

Em virtude da extensão desta interface com mecanismos multi-camada, a
nova framework possibilita a configuração asbtrata das interfaces de rede,
incluindo a associação, configurações de segurança e endereçamento IP. O
acesso a informação da rede capacita ainda os gestores de ligações para
a realização de melhores decisões, tendo em conta o estado da rede e os
requisitos das aplicações do terminal.

Esta framework é integrada com as ferramentas e applets de configu-
ração de rede do sistema operativo GNU/Linux, através da substituição
transparente da aplicação NetworkManager. Em comparação, a nova
framework apresenta overhead insignificante, uma quantidade de código
inferior e melhor consumo de bateria, além de mecanismos otimizados para
ligação oportunística.

Keywords linux, 802.21, connection management

Abstract Recent advances in telecommunications have lead to the combination of
various network access interfaces in a single device. Current network
management software handles different technologies individually, and base
connection decisions on parameters such as signal strength, or maximum
throughput. Often, these network attributes do not reflect the real network
perfomance, leading to poor network experience.

In this work, a novel network management framework is implemented,
based on the IEEE 802.21 standard. This standard provides mechanisms
to facilitate and optimize inter-technology handovers and network selection
through information exchanges between network and terminal entities,
including QoS and other network capability and performance information.
Moreover, it enables media independent device management via a common
link layer interface.

By extending this interface with cross-layer mechanisms, the new framework
allows abstract configuration of the network interfaces, including network
association, security setup procedures and IP address configuration. The
access to network information will additionally empower network managers
to perform better decisions that take network state and terminal application
requirements into account.

This framework is integrated with the existing configuration tools and
applets from the GNU/Linux Operating System, by seamlessly replacing the
existing NetworkManager application. In doing so, the new framework shows
insignificant overhead, a reduced code base and better battery consumption,
on top of optimized procedures for opportunistic network attachment.

Contents

Contents i

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Motivation and Goals . 1
1.2 Document outline . 3

2 Accessing the Internet 5
2.1 Network Device Technologies . 6

2.1.1 IEEE 802.3 . 7
2.1.2 IEEE 802.11 . 7
2.1.3 IEEE 802.16 . 8
2.1.4 Mobile Broadband . 9

2.2 Security Mechanisms . 9
2.3 Internet Protocol . 11

3 GNU/Linux Network Management 13
3.1 Kernel/Hardware interfacing . 14

3.1.1 ioctl . 14
3.1.2 sysfs . 15
3.1.3 Netlink sockets . 16

3.1.3.1 Route Netlink . 18
3.1.3.2 nl80211 . 23

3.2 Application interfacing . 27
3.2.1 Networking Sockets . 29
3.2.2 CORBA . 29
3.2.3 D-Bus . 29

3.2.3.1 Connection . 30
3.2.3.2 Interface . 30
3.2.3.3 Type system . 31

i

ii CONTENTS

3.2.3.4 Summary . 31
3.3 Individual network management tools . 32

3.3.1 Core tools . 32
3.3.2 Wireless tools . 33
3.3.3 Authentication supplicants . 34
3.3.4 DNS . 36
3.3.5 Dynamic Host Configuration Protocol (DHCP) clients 36

3.4 Full-featured network management Solutions 37
3.4.1 wicd . 37
3.4.2 NetworkManager . 38

3.4.2.1 org.freedesktop.NetworkManager 39
3.4.2.2 org.freedesktop.NetworkManager.Device 40
3.4.2.3 org.freedesktop.NetworkManager.Device.Wired 41
3.4.2.4 org.freedesktop.NetworkManager.Device.Wireless 41
3.4.2.5 org.freedesktop.NetworkManager.AccessPoint 41
3.4.2.6 org.freedesktop.NetworkManager.Settings 42
3.4.2.7 org.freedesktop.NetworkManager.Settings.Connection 42

3.4.3 Acceptance . 43
3.5 Conclusion . 43

4 Institute of Electrical and Electronics Engineers (IEEE) 802.21 45
4.1 Motivation . 45
4.2 Architecture . 46

4.2.1 Media Independent Event Service . 48
4.2.2 Media Independent Command Service 48
4.2.3 Media Independent Information Service 50
4.2.4 Media Specific Mappings for Service Access Points (SAPs) 50

4.3 Open Dot Twenty ONE . 50
4.4 Extending 802.21 towards Media Independent Network Management 51

4.4.1 IEEE 802.21 extensions . 52
4.5 Conclusion . 55

5 EMICOM Implementation 57
5.1 D-Bus integration . 58
5.2 Route Netlink and nl80211 wrappers . 59
5.3 Management Processes . 60

5.3.1 Startup . 60
5.3.2 Connect . 61
5.3.3 Disconnect . 62

5.4 Link SAPs implementation . 62
5.4.1 Initial Setup . 62
5.4.2 Link Detected event . 63

CONTENTS iii

5.4.3 Link Up event . 64
5.4.4 Link Down event . 65
5.4.5 Link Parameters Report event . 65
5.4.6 Link Going Down event . 66
5.4.7 Link Handover Imminent event . 67
5.4.8 Link Handover Complete event . 67
5.4.9 Link PDU Transmit Status event . 67
5.4.10 Link Conf Required event . 67
5.4.11 Link Capability Discover command . 68
5.4.12 Link Event Subscribe command . 68
5.4.13 Link Event Unsubscribe command . 69
5.4.14 Link Get Parameters command . 69
5.4.15 Link Configure Thresholds command 69
5.4.16 Link Actions command . 71
5.4.17 Link Conf command . 71
5.4.18 L3 Conf command . 72

5.5 Media Independent Handover Function (MIHF) Extension 73
5.6 Network Manager implementation . 73

5.6.1 Network Manager . 74
5.6.2 Settings . 74
5.6.3 Device . 75
5.6.4 DeviceWired (Ethernet) . 75
5.6.5 DeviceWireless (Wi-Fi) . 76

5.6.5.1 AccessPoint . 76
5.7 Summary . 77

6 Evaluation 79
6.1 Test Setup . 79
6.2 Inter process overhead . 80
6.3 Code base . 82
6.4 Memory usage . 82
6.5 Benefits . 83

6.5.1 Battery life . 83
6.5.2 Optimal selection . 84

7 Conclusions and Future Work 87
7.1 Contributions . 87
7.2 Future work . 88

Bibliography 91

A Memory Management 97

iv CONTENTS

B EMICOM Command Line Parameters 99

List of Figures

3.1 Intel protection rings. 13
3.2 Linux device model. 15
3.3 Netlink message format. 17
3.4 Generic Netlink Message format. 18
3.5 Linux Wireless layered interface. 23
3.6 wicd ’s graphical user interface window. 38
3.7 NetworkManager ’s configuration Graphical User Interface (GUI). 39
3.8 Gnome’s NetworkManager applet. 40

4.1 IEEE 802.21 Reference Model . 47
4.2 IEEE 802.21 General Architecture. 47
4.3 General MIHF reference. 51
4.4 IEEE 802.21 architecture for network management. 52
4.5 Architectures for 802.21 based Network Manager. 53

5.1 EMICOM architecture. 58
5.2 Message signalling for framework startup. 60
5.3 Message signalling for a connection request. 61
5.4 Message signalling for a disconnection request. 62
5.5 Link SAP implementation diagram. 63
5.6 Threshold configuration command handling. 70
5.7 Network Manager Media Independent Handover (MIH) User components. 74
5.8 Example of carrier detection feedback. 76

6.1 Testbed architecture. 80
6.2 Battery drain comparison. 84
6.3 Optimal AP selection for throughput. 85

v

List of Tables

3.1 net-tools replacement by iproute2. 33
3.2 Comparison between wireless-tools and iw tools. 33

6.1 Computer attributes. 79
6.2 MIH message sizes. 80
6.3 Network configuration timings, in seconds. 81
6.4 Code base comparison, in number of source code lines. 82
6.5 Memory allocated by each solution, in bytes. 83

vii

List of Acronyms

3GPP 3rd Generation Partnership Project

AAA Authentication, Authorization and Accounting

ABC Always Best Connected

AES Advanced Encryption Standard

AP Access Point

API Application Programming Interface

ARP Address Resolution Protocol

ASCII American Standard Code for Information Interchange

BS Base Station

BSS Basic Service Set

CCMP Counter Cipher Mode with Block Chaining Message Authentication Code
Protocol

CID Connection Identifier

CORBA Common Object Request Broker Architecture

CoS Class of Service

CPU Central Processing Unit

CQM Connection Quality Monitor

CRDA Central Regulatory Domain Agent

DCOP Desktop Communication Protocol

DE Desktop Environment

DHCP Dynamic Host Configuration Protocol

DHCPv4 DHCP version 4

ix

x List of Tables

DHCPv6 DHCP version 6

DNS Domain Name System

DSL Digital Subscriber Line

EAP Extensible Authentication Protocol

EAPoL EAP over LAN

EEPROM Electrically Erasable Programmable Read-Only Memory

ESS Extended Service Set

ETSI European Telecommunications Standards Institute

FTP File Transfer Protocol

GCC GNU Compiler Collection

GPRS General Packet Radio Service

GSM Global System for Mobile communication

GTK+ GIMP Toolkit

GUI Graphical User Interface

HESSID Homogeneous ESS Identifier

IBSS Independent Basic Service Set

ICMP Internet Control Message Protocol

IEEE Institute of Electrical and Electronics Engineers

IE Information Element

IPC Inter-Process Communication

IP Internet Protocol

IPsec Internet Protocol Security

IPv4 IP version 4

IPv6 IP version 6

ISC Internet Systems Consortium

KDE K Desktop Environment

LAN Local Area Network

List of Tables xi

LEAP Lightweight Extensible Authentication Protocol

LLC Logical Link Control

LSAP Link Service Access Point

LTE Long Term Evolution

LXDE Lightweight X11 Desktop Environment

MAC Media Access Control

MIB Management Information Base

MICS Media Independent Command Service

MIHF Media Independent Handover Function

MIH Media Independent Handover

MIIS Media Independent Information Service

MN Mobile Node

MTU Maximum Transmission Unit

NAT Network Address Translation

NTP Network Time Protocol

OS Operating System

PDU Protocol Data Unit

PID Process ID

PIN Personal Identification Number

PKI Public Key Infrastructure

PMK Pairwise Master Key

PMKSA Pairwise Master Key Security Association

PoA Point of Attachment

PoS Point of Service

PUK Personal Unblocking Code

QoS Quality of Service

RADIUS Remote Authentication Dial In User Service

xii List of Tables

RAII Resource Acquisition Is Initialization

RC4 Rivest Cipher 4

RSSI Received Signal Strength Indicator

SAP Service Access Point

SIM Subscriber Identity Module

SNR Signal to Noise Ratio

SINR Signal over Interference plus Noise Ratio

SMS Short Message Service

SNMP Simple Network Management Protocol

SSID Service Set Identifier

SS Subscriber Station

TCP Transmission Control Protocol

TKIP Temporal Key Integrity Protocol

TLV Type-Length-Value

TOS Type of Service

UDP User Datagram Protocol

UMTS Universal Mobile Telecommunications System

URL Uniform Resource Locator

USB Universal Serial Bus

VLAN Virtual Local Area Network

VPN Virtual Private Network

WEP Wired Equivalent Privacy

WEs Wireless Extensions

WIMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

WMAN Wireless Metropolitan Area Network

WPA2 Wi-Fi Protected Access 2

List of Tables xiii

WPA Wi-Fi Protected Access

WPS Wi-Fi Protected Setup

XML Extensible Markup Language

Chapter 1

Introduction

The Internet has steadily gained popularity from its first days to the point that, in 2011, one
third of the world population was estimated to be using it [1]. This fact is attributed to the
widespread use of computers and, more recently, mobile phones. These devices enable virtually
instant access to information, entertainment as well as voice and video communications across
the globe.

Various physical and logical data communication technologies emerged for interconnecting
these devices. Nowadays, most computers and smartphones offer at least two network access
interfaces. Computers can also be coupled with after-market dongles for access to additional
network technologies. Some technologies are focused on high throughput for stationary de-
vices, while others attempt to provide mobile access in geographically broad areas. Various
technologies combined in a single device complement each other, enabling the device to adapt
to the network scenarios that better support its purpose.

1.1 Motivation and Goals

The combination of multiple network technologies in a single device requires a management
entity for controlling each device and chose, at any given time, the best interface for network
access. To achieve this, modern Operating Systems (OSs) usually have a component called
a Network Manager. Network Managers offer a high level interface to control the physical
and logical properties of the network interfaces, and usually provide Graphical User Interfaces
(GUIs) for users to configure network parameters and connectivity preferences.

Currently, there is a myriad of connection management software for mobile terminals.
They are usually distributed as pre-installed software by Operating Systems or device ven-
dors, and also integrated with device driver bundles, provided by network interface vendors
and operators. When provided by Operating Systems, these programs are meant as generic
solutions that attempt best at keeping an active connection with every available interface
(although it is usually possible to configure mutual exclusion). Operators, on the other hand,
develop custom software in order to introduce added value associated with their provided
services. Depending on the operator, this includes the ability to track data usage, place calls

1

2 CHAPTER 1. INTRODUCTION

or Short Message Service (SMS) interactions, locate operator hotspots, etc. The following set
of issues can be detected in virtually every connection management solution:

• OS portability: there is a multitude of available Operating Systems that provide
different programmable interfaces and technologies for network management. While
there are software technologies that allow high level programs to run in different OSs,
network management software must deal with low level aspects of the machine for which
there are no OS-independent frameworks.

• Technology independence: network manager implementations are tied to specific
hardware technologies as much as they are to the OS on which they are deployed.
Different technologies require different control primitives, which in turn result in the
need for different software drivers and programmable interfaces. As such, Network
Managers are usually tailored for a few specific network technologies, leaving the others
out of the supported feature list.

• Network communication: existing Network Managers usually take into account var-
ious metrics about each network in order to select the best possible connection, such as
“signal quality”, or maximum “bit rate”. More often than not, these metrics result in bad
network selection decisions, since the experience provided by a network greatly depends
on a number of factors that clients cannot perceive, such as the load of a network end-
point. However, the network knows about these factors, and may issue information that
helps clients better choose points of attachment. Some operators implement proprietary
solutions to address this problem.

• Application requirements: there is no single “best network” for any given scenario.
Depending on the applications and services a terminal is running, the perceived user
experience may depend on available throughput, minimum latency, or other network
policies. These variables seldom determine network selection, as this information is not
available prior to attachment to a target network.

With different kinds of access technologies available to multi-interface mobile terminals,
achieving an optimal network selection decision depends on multiple parameters [2], ranging
from:

1. The dynamics of the wireless strata (e.g., Signal to Noise Ratio (SNR), available band-
width, cell load);

2. Requirements placed by the service content being accessed (e.g., minimum latency);

3. Requirements placed by the user (e.g., perceived video and/or audio quality, cost);

4. Network conditions (e.g., cell load, requested service, policies).

The different criteria involved must not only take into consideration the capabilities of
the service being provided, but also the resources available in the network and, ultimately,

1.2. DOCUMENT OUTLINE 3

the user satisfaction. As such, optimal decisions have the need to assess different objectives,
from different layers of the network stack, in order to achieve an Always Best Connected
(ABC) [3] solution. In this sense, different schema are possible, varying between mobile
terminal centric decisions [4], network controlled decisions [5], or even combinations of both
where the perspective of the terminal and network come together to optimize the handover
decision to a broader set of requirements [6].

A new IEEE standard, by the 802.21 [7] group, defines a technology independent interface
for handover optimization. This interface targets link layer operations, and standardizes
communication between network and terminal entities in order to facilitate decisions regarding
network handovers. The goal of this dissertation is to leverage from this standard, extending
it when necessary, in order to provide an Enhanced Media Independent COnnection Manager
(EMICOM) framework that will enable enhanced network management with the previously
enumerated issues in mind. The framework is to be integrated with the GNU/Linux desktop
OS by seamlessly replacing the most widely used Network Manager for the platform.

1.2 Document outline

The remainder of the document is structured as follows. Chapter 2 introduces some of the
most common network technologies and requirements for Internet access. Chapter 3 exposes
the GNU/Linux platform from the point of view of a programmer targeting the control of
network devices and protocols, as well as the integration with other desktop applications.
This is followed by an overview of the existing network management tools for the platform.
Chapter 4 presents the new IEEE 802.21 standard and an open-source implementation of the
protocol. Some required extensions to the protocol are proposed in the same Chapter, in order
to allow network management tasks. The developed framework is described in Chapter 5, and
evaluated in Chapter 6. Finally, Chapter 7 concludes and gives an insight of future work based
on this dissertation.

Chapter 2

Accessing the Internet

In telecommunications, passing information from one point to another comprises a complex
series of interactions. Any group of devices passing information between one another is said
to form a network. Two networks can be interconnected to form a larger network; this is the
origin of the term Internet (short for Internetwork); it is a large network of networks that is
supported by a considerably large amount of devices (hardware) and programs (software). The
Internet architecture is based on a layered stack that isolates protocols in different layers [8];
new protocols can be introduced in one layer without affecting other layers or protocols. When
data is sent from one device to another on a network, it travels down these layers in the form
of packets, which are then physically transported to the destination, where they will travel
up the stack until they arrive at the intended program. At the top of the protocol stack is
the client of the Internet itself, the software that is looking to transmit data to another host;
the bottom concerns to the device that effectively transmits the data through the physical
medium. In between are the following four layers considered by the Internet architecture [8]:

• Application (or Layer 5): software clients of the Internet design their own protocols for
distributed communication, such as the File Transfer Protocol (FTP), for transferring
files over the Internet.

• Transport (or Layer 4): several applications can use the Internet concurrently from
the same system. The protocols in the transport layer assign each application a number,
called port, that allows unequivocal delivery of packets to the intended client. Such is
the case of the Transmission Control Protocol (TCP), whose goal is also to implement
a reliable, ordered delivery of packets between clients.

• Internet (or Network Layer, or Layer 3): the Internet Protocol (IP) itself is defined in
this layer. It solves the problem of correctly forwarding the packets, if necessary through
intermediate routers, to the desired recipient. As the name points out, it is the core of
the Internet, and will be further detailed in section 2.3.

• Link (or Layer 2): this layer provides means to address devices physically, through
Media Access Control (MAC) addresses, as well as controlling the access to the shared,

5

6 CHAPTER 2. ACCESSING THE INTERNET

physical medium, including collision detection. MAC addresses are uniquely attributed
by device vendors, but some devices allow to manually assign different addresses. This
layer usually imposes a limit on frame size for transmission, labeled the Maximum
Transmission Unit (MTU); the Network layer handles fragmentation for packets larger
than this limit.

Many devices support Internet access, the most generally known to the user being the
computers, smartphones and tablets. Acquiring network connectivity encompasses the con-
figuration of certain aspects of the Internet Protocol. Some networks also employ security
mechanisms that hosts must support. However, the first step towards network connectivity
is the physical setup of the devices, which varies with technology.

2.1 Network Device Technologies

Network devices are mainly grouped in two categories: wired and wireless. Wired devices
usually communicate with each other through a cabled medium, the most common being based
on copper. Fiber optics is replacing the copper for the newer, higher performing networks,
based on guided beams of light instead of electric current. Wireless devices rely on antennas
that irradiate electromagnetic waves to broadcast information over the air.

The first requirement for network connectivity in wired technologies is simple: correctly
setup the cables between the devices. Different standards define the requirements that the
network cables must conform to, such as maximum length and impedance; as long as the
cables conform to these requirements, attaching a cable will enable physical connectivity on
a network.

Attaching wireless nodes introduces further complexity, because electromagnetic signals
have a limited range that depends on the power of the transmitting device, the sensibility of
the receiving interface, and the physical elements or obstacles in between. Electromagnetic
signal strength decreases with range, and there is no way to evaluate the availability of signal
range in the same way a cable attachment is determined. However, it is possible to measure
the strength of a signal, as perceived by the receiving device. The usual metric for the
“present signal” is the Watt. Since the strength of an electromagnetic signal is inversely
proportional to the square of the distance from the source, the strength is best represented
in a logarithmic scale of the measured Watt value. This is called dBmW (or just dBm), for
decibel of the measured power referenced to one milliWatt (mW), represented by the formula
dBm = 10 log(mW). The amount of signal energy that determines whether communication
is possible varies with specific devices and network technologies.

Networks are also grouped in respect to their geographical span. It is common to consider
Personal, Local, Metropolitan and Wide Area Networks. Wireless Metropolitan and Wide
Area Networks, including IEEE1 802.16 and Cellular technologies such as 3rd Generation
Partnership Project (3GPP)2 standards, offer greater mobility due to their wider geographical

1Institute of Electrical and Electronics Engineers, http://www.ieee.org/
23rd Generation Partnership Project, http://www.3gpp.org/

http://www.ieee.org/
http://www.3gpp.org/

2.1. NETWORK DEVICE TECHNOLOGIES 7

coverage. Local Area Networks (LANs) usually deliver higher bandwidths, and are very
common at home and office environments, the most relevant being the IEEE 802.3 and 802.11
technologies.

2.1.1 IEEE 802.3

IEEE 802.3 [9] is the working group defining the physical and link layer’s MAC of the wired
network technology known as Ethernet. Many Ethernet standards were introduced over the
years, improving on the network capacity past the gigabit per second throughputs. The
first versions relied on coaxial cable buses, later replaced with twisted pairs and optical fiber
cabling.

The technology may be used to create a direct connection between two devices, but the
infrastructure targets more complex setups of many hosts interconnected by devices such as
Hubs and Switches. Hubs are used to connect multiple network interfaces together, making
them act as a single network segment. Switches commute packets between segments, depend-
ing on link layer packet destination address, thus preventing unnecessary bus occupation on
the other segments.

2.1.2 IEEE 802.11

IEEE 802.11 [10] is the set of standards for implementing Wireless Local Area Network
(WLAN) computer communication, from which the commercial Wi-Fi technology originates.
Instead of cables, these networks operate over the electromagnetic spectrum, namely in the
2.4, 3.6 and 5GHz frequency bands, each divided in several channels.

A group of Stations communicating with one another over 802.11 forms a Basic Service Set
(BSS). When all of the stations in the BSS are mobile stations and there is no connection to a
wired network, the BSS is called Independent Basic Service Set (IBSS). An IBSS is a typically
short-lived network, with a small number of stations, that is created for a particular purpose.
In this mode (IBSS) there is no single master, and every station can directly communicate
with each other. When a BSS includes an Access Point (AP), it is called Infrastructure BSS.
When there is an AP, if one mobile station in the BSS must communicate with another mobile
station, the communication is sent first to the AP and it is retransmitted from the AP to the
destination mobile station.

Multiple interconnected BSSs form an Extended Service Set (ESS), where the APs com-
municate among themselves to forward traffic from one BSS to another, and to facilitate
the movement of mobile stations between BSSs. ESSs are identified by a Service Set Identi-
fier (SSID), which is a chosen string of octets with the maximum size of 32 bytes. Wi-Fi is
connectionless and contention-based, meaning that there is no guaranteed logical link between
a station and an AP, and that stations dispute the right to send packets every time they wish
to.

Stations register with the AP in order to establish layer 2 connectivity. This process com-
prises two phases: authentication and association. If a station desires to attach to a different

8 CHAPTER 2. ACCESSING THE INTERNET

AP in the same ESS, it roams by performing a reassociation to the new AP. Associating and
Disassociating is the Ethernet equivalent of attaching and detaching a cable.

Stations know APs exist because they send periodic beacons. Sensing the electromagnetic
spectrum for these beacons is called passive scanning. Active scans are performed by actively
broadcasting probe request frames on the desired channels.

The 802.11 standard defines an arbitrary unit for signal measurement, called Received
Signal Strength Indicator (RSSI). Vendors are free to define an RSSI_Maximum value, within
the one byte range (up to 256 different levels), and there is no standard mapping between a
dBm value and the resulting RSSI metric. Regardless of the vendor, it is common to derive
a percentage metric of the signal strength by dividing current RSSI values by the arbitrary
RSSI_Maximum (and then multiplying by 100). Although percentages do not translate
to any dBm or mW value, a vendor would acknowledge that a perceived signal equal to
RSSI_Maximum (100%) would be great, and assign to 0% the inability to sense any energy
at all.

2.1.3 IEEE 802.16

The IEEE 802.16 group defines the standards for Wireless Metropolitan Area Networks
(WMANs), resulting in a technology commercialized under the name Worldwide Interop-
erability for Microwave Access (WIMAX). The standard was developed to deliver connectiv-
ity between Subscriber Stations (SSs) and Base Stations (BSs) with typical non-line-of-sight
cell radius of three to ten kilometers in the 2 to 11GHz frequency bands, and line-of-sight
distribution service in the 10 to 66GHz bands [11].

IEEE 802.16 is connection-oriented; all services, including inherently connectionless ser-
vices, are mapped to a connection. This provides a mechanism for requesting bandwidth,
associating Quality of Service (QoS) and traffic parameters, and other actions associated
with contractual terms of the service. Connections are referenced with Connection Identi-
fiers (CIDs), and may require continuously granted or on-demand bandwidth. Upon associa-
tion with a BS, an SS is assigned three management connections in each direction:

• The basic connection, which is used for the transfer of short, time-critical physical and
link layer control messages.

• The primary management connection, used to transfer longer, more delay-tolerant mes-
sages such as those used for authentication and connection setup.

• The secondary management connection, used for the transfer of standards-based man-
agement messages such as Dynamic Host Configuration Protocol (DHCP) and Simple
Network Management Protocol (SNMP) messages.

In addition to these management connections, Subscriber Stations are allocated transport
connections for the contracted services. Transport connections are unidirectional and assigned
in pairs, to facilitate different uplink and downlink QoS and traffic parameters.

2.2. SECURITY MECHANISMS 9

2.1.4 Mobile Broadband

The 3GPP develops mobile Internet access technologies with capacity and throughput en-
hancements, through radio interface changes and incremental improvements to existing mobile
telephony core network (both packet and circuit-switched). Several technologies have been
standardized by the group, including the General Packet Radio Service (GPRS), the Universal
Mobile Telecommunications System (UMTS) and, more recently, Long Term Evolution (LTE).

GPRS, originally standardized by the European Telecommunications Standards Institute
(ETSI)1, is a 2.5G mobile communications technology that enables mobile wireless service
providers to offer their mobile subscribers packet-based data services over Global System for
Mobile communication (GSM) networks [12]. Common applications of GPRS include Internet
access, intranet/corporate access, instant messaging, and multimedia messaging. It is a best-
effort service, implying variable throughput and latency that depend on the number of other
users sharing the service concurrently.

UMTS is a 3G mobile communications technology that offers higher throughput, real-time
services, and end-to-end QoS [13]. It offers both connection-oriented and connectionless ser-
vices for point-to-point and point-to-multipoint communication. UMTS network services have
different QoS classes for various types of traffic: conversational (voice and video telephony),
streaming (video on demand), interactive (web browsing, gaming) and background (e-mail,
SMS).

LTE is the 3GPP proposal for simplifying the internal architecture of the system and
reducing network costs and latencies by transiting from the previous packet and circuit-
switched combined network to a pure packet-switched, all-IP network [14, 15]. LTE has
introduced a number of new technologies when compared to the previous cellular systems,
achieving what is called a “flatter architecture”; data is no longer routed by traversing a
hierarchy from the originating user through multiple layers of aggregation to a central core,
and then re-routed back out in a multilayer dis-aggregation hierarchy to the targeted user.

In terms of protocols and infrastructure, mobile broadband networks are still considerably
more complex than the previous technologies. They are commonly accessible through cell-
phones, smartphones and tablets. Computers usually depend on peripheral modems attached
by Universal Serial Bus (USB).

2.2 Security Mechanisms

Many network technologies offer security mechanisms in order to limit network access to a
specified group of people or devices, or to prevent data inside a network from being accessed
from the outside. This issue is more common in wireless networks, since the data is inherently
broadcasted over the air and not concealed in cables. One basic measure for preventing access
from someone outside a network is to ignore all traffic from a specified link layer addresses.

1European Telecommunications Standards Institute, http://www.etsi.org/

http://www.etsi.org/

10 CHAPTER 2. ACCESSING THE INTERNET

This is efficient, but not very effective, because link layer addresses can be forged. It also does
not imply any sort of protection of the data being transported.

Mobile broadband technologies usually require Subscriber Identity Module (SIM) cards
on host devices for authentication purposes. A SIM card has both a memory and a small
processing unit [16]. Part of the memory is accessible by the user, but another part, written
by the operator, is protected and contains a secret key. SIM cards are only accessible after
being provided a Personal Identification Numbers (PINs), and are blocked after a certain
number of wrong PIN inputs. A Personal Unblocking Code (PUK) enables reactivating the
SIM card, but failing this code a number of times will render the device irrevocable unusable.

Other common security mechanisms rely on secret material that is provided to the network
layer by supplicant software. The original IEEE 802.11 standard proposed a security algorithm
that aimed at providing data confidentiality compared to that of a traditional wired network,
named Wired Equivalent Privacy (WEP) [17]. The algorithm was very efficient and easy to
implement in both hardware and software, making it ideal for link layer security. It was based
on a stream cipher generated by the WEP Algorithm (based on Rivest Cipher 4 (RC4)),
with the initial inputs being a fixed-length key (previously shared and secretly stored by both
Stations and APs) and an Initialization Vector (changed as frequently as every packet). WEP
was found to contain several weaknesses [18, 19, 20], which were incorporated into software
that helps to gain access to a network in a matter of seconds1.

In its draft version, the IEEE 802.11i amendment proposed a new algorithm called Wi-Fi
Protected Access (WPA) [21]. It was still based on the RC4 cipher and could be implemented
through simple firmware upgrades to existing IEEE 802.11 devices. The main change to the
WEP algorithm was that the inputs for the pseudorandom generator were less predictable; the
Initialization Vector concept remained intact, but the shared key also changed for each packet,
as described in the Temporal Key Integrity Protocol (TKIP). The final version of the standard
implemented a new protocol, Wi-Fi Protected Access 2 (WPA2). No longer based on RC4,
it replaced TKIP with the CCMP2 protocol, based on the Advanced Encryption Standard
(AES) algorithm. In most cases, new hardware was required for the new algorithm; the 2007
IEEE 802.11 standard included these amendments, and support for the newer algorithm was
mandatory for Wi-Fi certification. Wi-Fi Protected Setup (WPS) was later introduced by the
Wi-Fi Alliance3, as an optional feature. It allows easier setup of a secure connection; instead
of requiring long password inputs on every device, it allows negotiation of keys through the
push of a button on the AP, or using a smaller PIN code.

All methods referred for IEEE 802.11 networks are based on a shared key that must be
distributed through all the devices. This is most common in personal networks; corporate
setups are usually combined with the IEEE 802.1X [22] standard. It defines the encapsulation
of the Extensible Authentication Protocol (EAP) [23] over local and metropolitan networks.
This protocol requires a dedicated Authentication, Authorization and Accounting (AAA)

1aircrack suite, http://www.aircrack-ng.org/
2Counter Cipher Mode with Block Chaining Message Authentication Code Protocol
3Wi-Fi alliance, http://www.wi-fi.org/

http://www.aircrack-ng.org/
http://www.wi-fi.org/

2.3. Internet Protocol 11

server such as RADIUS or Diameter. EAP is just a framework that specifies the transport
of keying material, and supports many authentication methods. There are methods based on
simple identity/password pairs, while more complex methods provide mutual identification
through the use of Public Key Infrastructure (PKI) tokens. Some methods are based on SIM
cards and other hardware-based mechanisms.

2.3 Internet Protocol

The first major version of the Internet Protocol was IP version 4 (IPv4) [24]. IP version
6 (IPv6) [25] is the widely supported version for replacing IPv4, with the most prominent
change being the addressing space, now using 128 bit instead of the previous 32. IP addresses
can be manually or dynamically allocated to devices. Some classes of addresses are intended
for global connectivity, and are uniquely assigned to a particular device; others are limited to
communication inside local networks (subnets). Two different subnets may allocate the same
range of addresses to their devices without collision. Devices without global addresses are
able to reach devices outside that scope through Network Address Translation (NAT) [26].
The Internet Control Message Protocol (ICMP) [27, 28] is used by devices for diagnostic and
control purposes at the network layer. For example, an ICMP Echo Request is a message
used to test whether a device exists with a given IP address.

Other than manually assigning IP addresses, there are protocols for automatic, dynamic
attribution, like the DHCP [29, 30]. This is an application layer protocol; despite dealing
with network layer configuration, it works by broadcasting User Datagram Protocol (UDP)
packets over the network using a null source IP address and special UDP port reserved for
the protocol. DHCP servers listen to these messages and respond by allocating (leasing) an
unused IP address to the host. Leases expire after a period of time; if the host is still in the
network, it is expected to attempt and renew the lease before it expires. After a lease expires,
or if it is explicitly released, the DHCP server considers the IP address free for leasing to
another host.

The IPv6 protocol defines an additional method for devices to configure themselves inde-
pendently. It is called stateless autoconfiguration [31], in contrast with the “stateful” DHCP
version 6 (DHCPv6) method, which depends on information provided by a dedicated server,
that keeps track of the addresses for each device. The stateless mechanism allows a host to
generate its own addresses using a combination of locally available information and informa-
tion advertised by routers. Routers advertise prefixes that identify the subnet(s) associated
with a link, while hosts generate an "interface identifier" that uniquely identifies an interface
on a subnet (usually based on the link layer address). An address is formed by combining
the two. In the absence of routers, a host can only generate link-local addresses. However,
link-local addresses suffice for communication among nodes attached to the same link.

Other than IP addresses, DHCP servers provide additional bootstrap configurations in-
cluding, among many others: static network routes, Network Time Protocol (NTP) servers
and Domain Name System (DNS) servers. The DNS [32, 33] protocol is used to translate do-

12 CHAPTER 2. ACCESSING THE INTERNET

main names (e.g. www.ua.pt) into IP addresses. This allows humans to reach servers without
knowing their IP addresses, which are much harder to remember.

Chapter 3

GNU/Linux Network Management

Modern Central Processing Units (CPUs) define several privilege levels for executed code.
The Intel1 64 and IA-32 Architecture [34] processors, for example, support 4 levels, with level
0 being the most restrictive, and 3 the least privileged, as depicted in Figure 3.1. Typically,
level 0 corresponds to OS kernel code. In Linux this includes the typical memory management
and input/output, but also driver modules, since they are compiled directly or as modules to
the kernel. This is the only level at which software directly controls hardware; code running
without such privileges is said to run in userspace. Linux considers only these two levels.

Privilege levels

0 1 2 3
LowestHighest

Operating

System

Kernel

Operating System

Services (Device

Drivers, Etc.)

Level 0

Level 1

Level 2

Level 3
Applications

Figure 3.1: Intel protection rings.

Network Managing is a process that occurs at high level, including user interaction, but it
implies hardware management as well. Also, many user applications might need to interact
with the Network Manager itself in order to gather or control network information. The
processes by which applications pass information between each other is called Inter-Process
Communication (IPC).

To interact with the Operating System and hardware, programs need to have the kernel
carry out operations for which they do not have the required privileges (manipulation of
hardware and the kernel itself). Such mechanisms are usually referred to as system calls, or
syscalls, for short.

1Intel, http://www.intel.com/

13

http://www.intel.com/

14 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

Section 3.1 will start by discussing system calls and other derived kernel interfaces, followed
by an overview of IPC frameworks in Section 3.2. Sections 3.3 and 3.4 will present the most
common tools and full-featured solutions for Network Managing, respectively.

3.1 Kernel/Hardware interfacing

The Linux kernel provides a set of different syscalls for different, specific operations. Two
complementary examples are the open() and close() syscalls. A call to open() provides the
user with a file descriptor for a file that either exists or is to be created by the operation.
This file descriptor is the information that the process holds and must use for subsequent
operations on the file, including writing (write()), reading (read()) and closing (close()).

Other than file management, the Linux kernel provides system calls for process and mem-
ory control (execl(), exit(), . . .), system maintenance (gettimeofday(), settimeofday(),
. . .) and communication (send(), recv(), . . .), among other standard services. However,
a limited set of syscalls will never suffice for interaction with all existing and newly created
hardware devices. Each system call must be officially assigned a unique number, and and its
behavior and interface must not change through time. To avoid this problem in providing
new device interfaces, a special syscall was created for control of non-standard hardware –
ioctl().

3.1.1 ioctl

ioctl is an abbreviation of input/output control, and provides an interface for operations on
special files. Unlike common system calls, it can be called with a different number and type
of parameters, depending on the intended destination and action to carry out. The call has
the following signature:

#include <sys/ioctl.h>
int ioctl(int d, int request , ...);

To enact a generic interface, the method takes as parameters: a file descriptor, a request
code number, and an optional pointer to arbitrary data for extra parameters1. The file
descriptor identifies the destination itself. The request code number is an identifier, specified
by the device driver, to indicate the action that is to be executed. Depending on the action,
the additional parameter may refer to input arguments, output values, or both; this parameter
was traditionally identified as char *argp, but the ellipsis were introduced later, to prevent
type checking during compilation.

ioctl does what is called “syscall multiplexing”, since it “does wildly different things de-
pending on a flag argument” [35]. This presents various problems; code with several ioctl calls
will easily become hard to read, since the meaning of each invocation is concealed in request
code numbers and parameter structures. Wrapping the invocations may overcome human

1Note the deliberately expressed “optional” as, in this case, the ellipsis do not refer to a variable number
of arguments, but to a single optional one.

3.1. KERNEL/HARDWARE INTERFACING 15

readability problems, but the underlying complexity remains, and debugging will be difficult
as invalid arguments to the function will not trigger compiler errors or even warnings. All of
this does not endorse kernel design and security goals [36]; third party and proprietary device
drivers exposing their interface through ioctl calls may not be audited for flaws or vulnerabil-
ities, posing a great threat to system security and stability. This sorts of reasons caused ioctl
to fall out of favor among kernel developers, and sysfs became one of the alternatives.

3.1.2 sysfs

The Linux kernel supports device hotplugging, and is permanently alert to hardware changes
in the system. This information collected by the kernel is transformed into an object-oriented
representation of the system, the device model, structured similarly to the example in Fig-
ure 3.2. The current device model design dates back to the Linux’s 2.5 development cycle,
and it is exposed to the userspace as a memory-based virtual filesystem, sysfs, mounted at
the /sys directory.

Buses Devices

usb

drivers devices

usb−hid

pci()

dev0:10

usb2

port1

dev1:1−0

Classes

Input devs

Mouse 1

Figure 3.2: Linux device model.

A fundamental structure of the device model is the kobject. Just as the name points out, it
is the base representation for a kernel object. When exported to the userspace, every item in
the sysfs file tree has an underlying kobject that binds the structures to the kernel. Any direct
manipulation of a kobject is automatically updated in the sysfs tree. sysfs entries for kobjects
are always directories. Each kobject also exports one or more attributes. An attribute has
a name (key), value, and an associated module responsible for its implementation. Each at-
tribute results in a sysfs file with the same name; reads and writes to the file translate in calls
to the show and store methods of its module, respectively. From a higher level perspective,
directories become objects, files become attribute keys, and file contents become attribute val-
ues. So, for example, /sys/class/net/wlan0/address contains 00:11:22:33:44:55, which

16 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

is the value of the attribute address from the object wlan0.
Although it was initially to facilitate debugging, sysfs (formerly debugfs) became a re-

placement for ioctl [35]. There are limitations to this: sysfs conventions call for all attributes
to contain a single value in a human readable text format, which makes the mechanism unsuit-
able for large data transfers, while also being limited to text-based interfaces. Moreover, the
model does not directly support event signaling for userspace applications, and notifications
have to be handled through separate frameworks. A different solution to replace ioctl was
accepted in early Linux 2.0, based on sockets, called Netlink.

3.1.3 Netlink sockets

There is a large number of socket implementations, with varying types and domain scopes
(or address families). Every socket implementation provides at least two types: stream and
datagram [37]. Stream sockets operate in connected pairs and provide a reliable, bidirectional,
byte-stream communication channel. Datagram sockets are connectionless and transfer data
in separate messages, called datagrams, without any guarantee of delivery.

A socket domain specifies how a socket is addressed, as well as the scope of the com-
munication. Common domains include AF_UNIX, which uses file system paths for addressing
within the same machine, and AF_INET/AF_INET6 for communication over the IPv4 and IPv6
Internet domains, respectively. In the Internet domain, datagram sockets employ the User
Datagram Protocol and stream sockets employ the Transmission Control Protocol.

A socket is created with the socket() syscall. The bind(), method assigns it an address
and the methods send() and recv() are then used to exchange information:

#include <sys/types.h>
#include <sys/socket.h>

int socket(int domain , int type , int protocol);
int bind(int sockfd , const struct sockaddr *addr , socklen_t addrlen);
ssize_t send(int sockfd , const void *buf , size_t len , int flags);
ssize_t recv(int sockfd , void *buf , size_t len , int flags);

Netlink [38] is a datagram-oriented message system1. It allows message passing between
the kernel and userspace, but also among user-space processes, for Inter-Process Communica-
tion. Netlink sockets are addressed in the AF_NETLINK domain, which is similar to AF_UNIX,
but depends on Process IDs (PIDs) for addressing rather than file system paths. The protocol
messages consist of a header, shown in Figure 3.3, and the additional payload attached to it.
Large messages may be split into multiple datagrams; message ordering is not guaranteed,
but the Sequence Number and Flags fields allow correct reconstruction of the payload at the
destination.

Each Netlink protocol (family) defines their own message format to fill the payload, usu-
ally employing a stream of Type-Length-Value (TLV) attributes. The TLV format allows

1Netlink sockets support both SOCK_RAW (for raw network protocol access) and SOCK_DGRAM types, but no
distinction is made between the two.

3.1. KERNEL/HARDWARE INTERFACING 17

0 15 16 31

Total Length

Message Type Message Flags

Sequence Number

Process ID

Header

Type Length

Value
...

 Payload

Figure 3.3: Netlink message format.

the addition of new attributes without breaking backward compatibility of existing appli-
cations [39]. Extending a protocol simply requires adding new attributes and updating the
user-space application to support it; applications that do not support an attribute skip it, and
the rest of the implementation remains intact1. This results in higher flexibility than either
ioctl or sysfs solutions.

There are two communication types for a Netlink bus: unicast and multicast. Unicast is
used for one to one communication; typically to send commands or queries from user to kernel-
space, and receive their corresponding response. Multicast is a one to many communication
channel, and is typically used by the kernel for event notifications; in fact, device model
events, referred in Section 3.1.2, are propagated through Netlink.

Netlink supports up to 32 buses2 in kernel space, each attached to one kernel subsystem,
although several subsystems could share the same bus [39]. As of writing, this listing is
supported:

• NETLINK_ROUTE can be used to modify routing tables and IP addresses both for
IPv4 and IPv6, as well as changing link attributes, queuing disciplines, packet classifiers,
etc. It is also used for broadcasting routing and link updates.

• NETLINK_FIREWALL and NETLINK_IP6_FW are used to transfer packets from
netfilter, the Linux’s packet filtering framework, to the userspace.

• NETLINK_NETFILTER serves as the interface for the netfilter framework, for packet
mangling across each specific protocol stack.

• NETLINK_XFRM, for communication with the kernel module that handles Security
Associations and Security Policies for Internet Protocol Security (IPsec) in Linux.

• NETLINK_USERSOCK, for user space socket protocols.

• NETLINK_W1, for the 1-wire subsystem.

1Removing or changing attributes will break implementations that depend on them.
2This limit is enforced for performance reasons, the protocol can handle 256 buses.

18 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

• NETLINK_ISCSI, for Open-iSCSI.

• NETLINK_INET_DIAG, for INET socket monitoring.

• NETLINK_NFLOG, for Netfilter/iptables ULOG.

• NETLINK_SELINUX, for SELinux event notifications.

• NETLINK_AUDIT, for auditing, as a complement to SELinux.

• NETLINK_FIB_LOOKUP, to lookup Forward Information Base entries.

• NETLINK_CONNECTOR, for the special kernel connector driver.

• NETLINK_DNRTMSG, for DECnet routing messages.

• NETLINK_KOBJECT_UEVENT, for device model notifications to the userspace.

Given the concern that the number of Netlink family numbers might exhaust in the near
future, an additional family was created: NETLINK_GENERIC. Generic Netlink acts as a
Netlink multiplexer, allowing multiple interfaces on a single Netlink bus. Family IDs for new
interfaces are created and discovered at runtime, based on text names. Generic Netlink are
encapsulated in the Netlink payload as shown in Figure 3.4.

0 31

Total Length

Message Type Message Flags

Sequence Number

Process ID

Netlink Header

Command Version Reserved

}
GeNetlink Header

...
Netlink Payload

{ }
GeNetlink Payload

Figure 3.4: Generic Netlink Message format.

For network managing purposes, Route Netlink (NETLINK_ROUTE) and a specific in-
terface on Generic Netlink, nl80211, are of great importance, and will be now further extended.

3.1.3.1 Route Netlink

Route Netlink is considered the most mature of all the Netlink family protocols [40]. The
protocol itself can be subdivided into classes, with specific messages, each of which interfacing
with a specific part of the Linux kernel’s network routing system in the following list:

• LINKS: create, remove or get information about a specific network interface.

• ADDRESSES: add, remove or receive information about an address associated to an
interface.

3.1. KERNEL/HARDWARE INTERFACING 19

• ROUTES: create, remove or receive information about a network route.

• NEIGHBORS: add, remove or receive information about a neighbor table entry.

• RULES: add, delete or retrieve a routing rule.

• DISCIPLINES: add, remove or get a queuing discipline.

• CLASSES: add, remove or get a traffic class.

• FILTERS: add, remove or receive information about a traffic filter.

Each class defines an ancillary data type for the messages, and is optionally followed by
a set of subsequent attributes of varying length. These data types define the operations on a
set of objects that can be represented as a table. There are three primitives for operation on
those tables:

• GET, to retrieve entries in the table.

• NEW, to create or edit table entries.

• DEL, to delete table entries.

For the GET message, most of these fields may be set to an unspecified value, to act like
wildcards, or they can be specified to filter results. NEW and DEL messages may be used as
commands, but are also commonly available as multicast messages for notifications on certain
groups.

For the scope of this dissertation, the purpose of the LINK, ADDR and ROUTE message
classes are particularly relevant, and will be presently explained.

The LINK messages

The LINK family of messages allows a user of the Route Netlink protocol to manipulate
information about network interfaces on the system. Each underlying entry on the LINK
table refers to a network interface that exists on the computer, whether physical or virtual.
The three LINK message types are:

• RTM_NEWLINK: create or edit network interfaces.

• RTM_DELLINK: destroy network interfaces.

• RTM_GETLINK: retrieve information about network interfaces.

The NEW and DEL messages may be transmitted as notifications on the RTMGRP_LINK
multicast group of the Route protocol; the NEW message indicates a link creation or link
parameter changes, and the DEL message indicates a link removal. The ancillary data type
for the LINK messages is defined as follows:

20 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

#include <linux/rtnetlink.h>

struct ifinfomsg {
unsigned char ifi_family;
unsigned short ifi_type;
int ifi_index;
unsigned int ifi_flags;
unsigned int ifi_change;

};

• ifi_family: set to AF_UNSPEC, except for interfaces with associated IPv6 addresses,
in which case the field is AF_INET6.

• ifi_type: the interface type, supporting various wired and wireless technologies.

• ifi_index: unique identifier of the interface in the system. It is not statically associated
with the hardware and may vary at each system boot or configuration changes.

• ifi_flags: the interface flags, used to define an interface’s power state, for example.

• ifi_change: reserved for future use, currently set to 0xFFFFFFFF.

In each message, this structure should be followed by additional attributes, including the
interface’s physical address, its MTU the label of the interface in the system, statistics data,
etc.

The ADDR messages

Route Netlink ADDR messages refer to the manipulation of IP addresses in the network
interfaces. It is composed as well by a group of three message types:

• RTM_NEWADDR: add or edit interface addresses.

• RTM_DELADDR: remove addresses from an interface.

• RTM_GETADDR: get addresses from interfaces.

These messages support IPv4 and IPv6 addresses, and an interface can be assigned mul-
tiple IP addresses (previously this was only achieved with alias devices). Much like in the
LINK messages scenario, it is possible to subscribe to a multicast channel that will generate
RTM_NEWADDR and RTM_DELADDR to announce changes to the address table of each
network interface. Every ADDR message contains the following structure:

#include <linux/rtnetlink.h>

struct ifaddrmsg {
unsigned char ifa_family;
unsigned char ifa_prefixlen;

3.1. KERNEL/HARDWARE INTERFACING 21

unsigned char ifa_flags;
unsigned char ifa_scope;
int ifa_index;

};

• ifa_family: the address family to which this address belongs. This is currently limited
to AF_INET and AF_INET6.

• ifa_prefixlen: the length of the address mask of this address.

• ifa_flags: properties of this address. Whether this is a primary or secondary address
for the interface, permanent or temporary, etc.

• ifa_scope: the scope of the address, such as link-local (RT_SCOPE_LINK), site-local
(RT_SCOPE_SITE) or global (RT_SCOPE_UNIVERSE). Two additional scopes are
available, for addresses limited to host boundaries (RT_SCOPE_HOST) and a special
case “nowhere” (RT_SCOPE_NOWHERE).

• ifa_ifindex: the interface this address is associated with. This may be regarded as a
foreign key to the LINK table, as this value uniquely identifies a LINK object.

ADDR messages may also carry additional attributes regarding the address itself (such as
the associated local, broadcast and anycast addresses), or the interface it is associated with
(its interface name or mac address).

The ROUTE messages

These messages baptize the protocol name and, as it points out, they refer to IP routing table
management. Without exception, there are three message types:

• RTM_NEWROUTE: create or edit routes.

• RTM_DELROUTE: remove routes or notify of route removal.

• RTM_GETROUTE: get existing configured routes.

The underlying data type is the rtmsg, declared as follows:

#include <linux/rtnetlink.h>

struct rtmsg {
unsigned char rtm_family;
unsigned char rtm_dst_len
unsigned char rtm_src_len;
unsigned char rtm_tos;
unsigned char rtm_table;
unsigned char rtm_protocol;
unsigned char rtm_scope;

22 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

unsigned char rtm_type;
unsigned int rtm_flags;

};

• rtm_family: similar to the ifa_family field in ADDR messages.

• rtm_dst_len: the length of the destination address of the route entry, included in the
additional message attributes.

• rtm_src_len: the length of the source address of the route entry, included in the
additional message attributes.

• rtm_tos: the Type of Service (TOS) indicator for the route. This makes use of the
TOS header field in the IPv4 header, replaced by the traffic class field in IPv6.

• rtm_table: specifies the routing table ID. Can be default (RT_TABLE_DEFAULT),
main (RT_TABLE_MAIN) or local (RT_TABLE_LOCAL).

• rtm_protocol: how the route originated. Possible values are RTPROT_KERNEL,
if originated by the kernel; RTPROT_REDIRECT if originated by an ICMP redirect;
RTPROT_BOOT during boot and RTPROT_STATIC if set by the administrator.

• rtm_scope: pertains to the scope of the destination, with values ranging similarly to
the ifa_scope field of ADDR messages.

• rtm_type: the type of this route. Possible values include RTN_UNREACHABLE,
RTN_UNICAST, RTN_LOCAL, RTN_BROADCAST and RTN_ANYCAST.

• rtm_flags: various extra parameters for a route.

Just like with other messages, ROUTE messages may require several additional attributes,
such as:

• RTA_DST: the route destination address.

• RTA_SRC: the route source address.

• RTA_IIF: the input interface index.

• RTA_OIF: the output interface index.

• RTA_GATEWAY: the default gateway of the route.

• RTA_PRIORITY: the priority of this route.

• RTA_PREFSRC: the preferred source address for an IPv6 route.

• RTA_METRICS: the route cost metric.

3.1. KERNEL/HARDWARE INTERFACING 23

Summary

The Linux network subsystem exposed by the Route Netlink protocol is significantly larger
than the subset presented in this subsection. As mentioned before, it also allows the config-
uration of neighbor (Address Resolution Protocol (ARP)) tables, routing rules, traffic classes
and filters, and queuing disciplines. These fall out of basic network managing processes and
are not further documented here. For an extensive analysis of this protocol, section 7 of the
“rtnetlink” GNU/Linux manpage can be consulted.

3.1.3.2 nl80211

Several aspects of a network interface can be manipulated by the Route Netlink kernel in-
terface, but there is a very wide range of variables to take into account for an IEEE 802.11
interface that the routing subsystem is not aware of. In essence, there is a whole different
kind of interface that the kernel needs to expose to the userspace in order to support wireless
network management.

Traditionally, the WLANApplication Programming Interface (API) for Linux wasWireless
Extensions (WEs)1, developed by Jean Tourrilhes and sponsored by Hewlett Packard2. This
framework is still used, but it is based on ioctl calls, so it is being deprecated in light of the
advantages of Netlink. nl80211 operates on the Generic Netlink bus and since its beginning
in 2006, together with cfg80211, aims at replacing the WEs [41]. It is still a work in progress;
current IEEE 802.11 drivers still support the WEs, but it is already the recommended archi-
tecture for new applications being developed. Interpreting Figure 3.5, the real interface for
IEEE 802.11 drivers is cfg80211, and nl80211 are just different userspace endpoints for that
interface, both for Station and AP applications.

userspace

cfg80211

mac80211

nl80211 WEs

Figure 3.5: Linux Wireless layered interface.

Unlike the Route Netlink protocol, the interface fails to follow a strict model of categorized
messages, and instead relies on a series of disparate commands and parameters to carry out
a large array of operations, which can be roughly grouped in the categories of the following
sections.

1Wireless Extensions, http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
2Hewlett Packard, http://www.hp.com/

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://www.hp.com/

24 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

Wireless interface management

nl80211 allows getting and setting many interface attributes, and handling virtual interfaces.
There are four CMD_<OP>_WIPHY and CMD_<OP>_INTERFACE, where <OP> stands
for one of GET, SET, NEW or DEL.

WIPHY objects correspond to a physical wireless device in the system. Physical devices
are not created or deleted from userspace, this takes place at kernel level, according to sup-
ported devices and device drivers. The DEL_WIPHY command is used as a notification
that a physical IEEE 802.11 device was removed from the device model1; the NEW_WIPHY
command is used as a notification that a new physical device is available, as a notification
of a rename, or as a response to a GET_WIPHY request. With the GET_WIPHY request
one can retrieve a list of available devices, or a very extensive list of hardware attributes and
capabilities (supported frequency bands, authentication mechanisms, etc), as well as a list
of accepted commands and interface modes (Infrastructure, IBSS, etc). The SET_WIPHY
command allows the configuration of transmission power, transmission queue parameters,
antenna selection and some threshold and retry parameters.

Each WIPHY can hold many virtual interfaces, created with the NEW_INTERFACE
command. Virtual interfaces define roles for the underlying WIPHY (Station, AP, Mesh
Point, etc). Usually there is a single virtual interface on top of the physical hardware due to
the fact that not all devices are able to operate with virtual MAC addresses, and also because
concurrent operating modes may face a number of restrictions. Device drivers commonly
define a default INTERFACE for a WIPHY object and allow further modifications, if they
support other operation modes (but support for changing modes at runtime is not mandatory).
The NEW command may also be used to notify of newly created virtual interfaces, and as
a reply to GET_INTERFACE requests for, retrieving an interface’s configuration. Finally,
SET_INTERFACE is used to change the type of an existing interface.

Power management

Other than ON/OFF, the IEEE 802.11 interfaces implement power options described by the
standard, such as letting the device sleep between beacons from the AP. This behavior can
be enabled or disabled through the SET_POWER_SAVE command. Checking the current
configuration is done with the GET_POWER_SAVE command.

The Linux kernel also supports various enablers for the non-standard “Wake on WLAN”
feature. This feature is supported while connected to a network, based on triggers like the
reception of a user specified pattern, a magic packet [42], or disconnection from an AP.
While disconnected from a network, a trigger such as the discovery of a new network can
be used. The list of supported triggers for each device is available in the WIPHY properties
and through the GET_WOWLAN command. To activate a trigger, the SET_WOWLAN
command is used.

1This could be either because the network hardware is physically removed or simple because the driver
module was removed from the running kernel.

3.1. KERNEL/HARDWARE INTERFACING 25

Regulatory enforcement

Though IEEE 802.11 is a globally accepted standard for wireless connectivity, each govern-
ment claims the right to regulate the usage of the electromagnetic spectrum of their territory.
Wireless devices are sold throughout the planet and are usually hardware-enabled for global
operation. Some devices support programming of the regulatory permissions to an Electrically
Erasable Programmable Read-Only Memory (EEPROM), but the regulations must be en-
forced by software. The Linux developers respect this authority and provide the means to
prevent accidental defiance of regulations. Moreover, public sources of the Linux kernel will
never provide options to disable regulatory enforcement.

Linux relies on a regulatory database built and maintained by John Linville, which he signs
with his private RSA key [43]; this database is publicly available, along with the associated
public key. A userspace tool, by the name Central Regulatory Domain Agent (CRDA), checks
the signature against a list of public keys built into the execution binary or in a preconfigured
directory, and uploads the regulatory domains into the kernel.

The Linux desktop is responsible for determining the user location, through services like
GeoClue1, and make use of the SET_REG command to set the proper regulatory domain
for the specific machine. The GET_REG command gets the current configured domain. A
REG_CHANGE message informs the userspace processes that the domain has been changed,
providing details of the change request, such as the request author.

When CRDA is installed but no domain is configured, the kernel allows passive scanning
to occur in what is referred to as “world roam”. If, during a passive scan, the kernel detects
an AP on a channel that is not globally allowed, it will signal userspace programs with a
REG_BEACON_HINT message and will allow active scanning on that band. This does not
limit the behavior in channels 1 through 11 on the 2.4Ghz band, as they are always enabled
worldwide.

Scanning

nl80211 supports triggering scans at any moment as well as the configuration of scheduled
scans at regular intervals. With the TRIGGER_SCAN command a scan is immediately issued
on all channels, depending on the current regulatory domain. Optionally, a list of frequencies
may be given, as well as a list of SSIDs and extra Information Elements (IEs). Scans are
passive by default; active scans are performed when a list of SSIDs is given. If the user
application wants to request an active scan on all channels, but does not wish to specify an
SSID, an empty string must be used (acting as a wildcard). Scheduled scans are configured
with START_SCHED_SCAN, specifying the scan cycle interval, in milliseconds. Scan results
are returned either with a NEW_SCAN_RESULTS or SCHED_SCAN_RESULTS message,
depending on the type of scan performed. There is a SCHED_SCAN_STOPPED message to
inform of the cancellation of a configured scheduled scan, with the STOP_SCHED_SCAN

1GeoClue, http://www.freedesktop.org/wiki/Software/GeoClue

http://www.freedesktop.org/wiki/Software/GeoClue

26 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

command. A SCAN_ABORTED message may be issued if a scan is interruped, possibly
carrying partial scan results only.

Association and authentication actions

Joining a BSS consists on the authentication to the AP, followed by the association operation.
The Linux implementation of IEEE 802.11 supports the following authentication mechanisms:

• OPEN_SYSTEM: used for unprotected networks, and the first step of WPA/WPA2
protected networks. WEP also supports this authentication procedure.

• SHARED_KEY: used for WEP authentication only.

• NETWORK_EAP: for Lightweight Extensible Authentication Protocol (LEAP) pro-
tected networks.

• FT: for Fast BSS Transition, defined in the IEEE 802.11r [44] amendment for the Wi-Fi
standard, providing mechanisms that minimize losses during a BSS transition.

These authentication types are used with the AUTHENTICATE command. After suc-
cessful authentication, an association may be attempted with the ASSOCIATE command.
An additional command, CONNECT, merges the two steps in a single command. Once con-
nected, the DISASSOCIATE, DEAUTHENTICATE and DISCONNECT commands perform
the opposite operation. Upon completion, all of these commands generate events of the same
message type, carrying an attribute that indicates the success status of the corresponding
action.

Frame transmission and registration support is also in place, for userpace entities to in-
teract with frames not to be handled by the kernel. IEEE 802.1X userspace daemons are
implemented using this feature. The REGISTER_FRAME (or the REGISTER_ACTION
alias) command allows the registration for receiving frames based on a match attribute for
the first few bytes on the frame. Registrations are only dropped once the Netlink socket is
closed. FRAME messages are used as commands and notifications for frame transmission and
reception, respectively.

Notification groups

Most of the mentioned functionalities refer to direct control of the interface, but some event
messages are also available. Userspace processes that do not necessarily want to control an
interface may be interested in certain events. Most events were already mentioned, but a
complete overview is given here for the four available event notification groups:

• Config: this group is used for notifications of a WIPHY change, like a device rename.

• MLME: the group’s name stands for MAC Sublayer Management Entity. It refers to
authentication and association management, and other link layer aspects of the IEEE
802.11 wireless standard. The following list contains some events available in this group:

3.2. APPLICATION INTERFACING 27

– Connect, Disconnect: the list of of messages pertaining to authentication and
association are broadcasted in this group. Each message will contain an attribute
indicating a failure status, and a code indicating the cause for the event.

– Probe Status: every time a probe request frame is sent in search of another
station, the response is broadcasted to the userspace with the PROBE_CLIENT
message, containing the other station’s address, and whether it ACKnowledged the
probe request.

– Connection Quality Monitor (CQM) notification: users are able to config-
ure triggers to monitor signal strength levels and transmission rates. The NO-
TIFY_CQM message is used to notify that a certain threshold was triggered.

– PMKSA candidate: the PMKSA_CANDIDATE message is used to notify that
a given AP matches the Pairwise Master Key (PMK) that the station holds.

– Roam: a ROAM message indicates that the Station roamed to a new AP.

– Station add/delete: the NEW_STATION and DEL_STATION commands in-
dicate that a peer was removed from the known list.

• Regulatory: a regulatory change is announced through the REG_CHANGE event,
and the REG_BEACON_HINT message indicates that other 802.11 devices were de-
tected operating in frequencies outside the configured regulatory domain.

• Scan: the events in this group indicate a scan start (TRIGGER_SCAN), or a scan
interruption (SCAN_ABORTED). Regular scan completions are announced with the
NEW_SCAN_RESULTS message; scheduled scans with SCHED_SCAN_RESULTS.

Summary

Much of the described functionality is documented in the official Linux Wireless website1,
which includes the kernel source documentation of the nl80211 implementation. However,
certain mentioned aspects are not detailed in those documents, and are based on an analysis
of the current nl80211 source code. The documentation suffices for most uses, although more
advanced users will look into the kernel source code to be certain of some specific features,
and what commands will translate to. At the time of writing the interface is also under
development, and new features are still being added, so older kernel versions might affect user
applications.

3.2 Application interfacing

IPC need not always occur between vertical layers (i.e. multiple interfaces that translate
higher level operations to lower level hardware control, and vice versa). Higher level programs
communicate with each other at the same level (horizontally). In this context, take as an

1Linux Wireless, http://wireless.kernel.org/

http://wireless.kernel.org/

28 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

example the case of an application that needs network connectivity, like a Web Browser or
Instant Messenger: instead of blindly attempting to open a socket and connect to a server,
these applications could benefit from an interface that would allow them to known whether
the system is connected to the Internet. This kind of interface would not require kernel
communication, since the Network Manager itself is also a user application, and it takes
the burden of communicating with the kernel for network specific operations. As another
example, an Instant Messenger application alone would be able to notify the user of incoming
messages, but most systems contain specific software for user notifications; this notification
software needs to provide an interface so that other programs use it to present notifications
to the users.

According to the examples, the Instant Messenger is always a client of other programs,
but it could also play a serving role: for example, it could provide e-mail clients an interface
for checking whether a person is online before composing a message, and thus permitting it
to suggest a real-time conversation instead of e-mail exchanges.

Recalling the beginning of the chapter, userspace-kernel communication faces the problem
of different running privileges. In modern OSs, not only the kernel code runs in a separate
space from the users’, but also each user program is allocated its own virtual memory space.
This is a basic security measure that otherwise hinders communication between programs;
the kernel must then provide means to circumvent this restriction. One has already been
mentioned, which is Netlink. However, despite the flexibility of the protocol, it is a fact that
its usage is mostly for kernel-userspace communication.

Even before Netlink existed, there were other basic IPC solutions, which lost preference
over time as more complex applications appeared. Common IPC solutions include the follow-
ing list of concepts [37]:

• Shared Memory: based on requesting a kernel for a shared memory segment that can
be attached to multiple user processes transparently.

• Pipes: provide easy mechanisms to stream data from one process (producer) to another
(consumer).

• FIFOs: similar to Pipes, but allowing multiple producers and consumers.

• Message Queues: similar to the Pipe and FIFO concepts, but preserving data bound-
aries, and allowing setting priority parameters for data for extraction.

• Semaphores: a basic mechanism of synchronizing multiple programs, often needed for
controlling access by multiple processes to a common resource.

These concepts are only devised to solve the problem of program communication inside
the same host. However, it is common to use network sockets for communication in the same
host, enabling communication between different hosts with little or no modification to the
software.

3.2. APPLICATION INTERFACING 29

3.2.1 Networking Sockets

The first paragraphs of Section 3.1.3 explain the basics of the socket mechanism. Sockets
provide a far more flexible solution than shared memory, for example, especially considering
they allow communication among processes not only on the same machine, but also on different
machines, over the network. FIFOs are also not capable of communicating over the network
but even locally they are less performing than UNIX domain sockets [45].

Most complex application interfaces in GNU/Linux are built on top of sockets. Some
programs implement interfaces directly on top of sockets, while others use more complex
frameworks implementing higher-level interfaces based on the object-oriented paradigm, for
example. Many large projects implement their own framework; the Internet Systems Consor-
tium (ISC)1 DHCP server has a framework by the name OMAPI. The X Windows System
has its own socket based protocol. However, there are various frameworks that facilitate
Inter-Process Communication, such as CORBA and D-Bus.

3.2.2 CORBA

The Common Object Request Broker Architecture (CORBA)2 is a standard for communi-
cation between software components using object-oriented models. It allows developers to
seamlessly combine programs written in different languages or across different platforms by
mitigating low level communication and programming problems such as byte order, the pack-
ing and unpacking of complex structures, etc. It is widely supported across Operating Systems
and programming languages, with standard mappings for C, C++, Java, and others.

Version 1.0 of the CORBA specification was released in 1991. Currently, it is still subject
to various studies [46, 47] and use-case scenarios [48, 49, 50]. However it has lost popularity
in software deployment scenarios such as generic purpose OSs, due to its great complexity
and lack of security features, among other reasons [51]. The Gnome3 Desktop Environment,
is an example of a project that dropped its CORBA-based framework (Bonobo), in favour a
different solution; in this case, D-Bus.

3.2.3 D-Bus

Often regarded as an abbreviation of Desktop Bus, D-Bus4 is an IPC system built on top
of a one-to-one message passing framework. Its specification is currently defined by the
freedesktop.org5 project. The framework is intended for host-local communication, but there
are also plans to support crossing host boundaries, using the TCP/IP stack. There are
numerous D-Bus bindings for virtually every programming language (although some are still
in development), including Ada, C, C++, Haskell, Java, Objective-C, Perl, Python, Scheme

1Internet Systems Consortium, https://www.isc.org/
2Common Object Request Broker Architecture, http://www.omg.org/corba/
3Gnome, http://www.gnome.org/
4D-Bus, http://www.freedesktop.org/wiki/Software/dbus
5freedesktop.org, http://www.freedesktop.org/

https://www.isc.org/
http://www.omg.org/corba/
http://www.gnome.org/
http://www.freedesktop.org/wiki/Software/dbus
http://www.freedesktop.org/

30 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

and Tcl. The Glib1 and Qt2 frameworks, on which many projects rely, provide easier bindings
for D-Bus development.

Communication between applications can happen directly, with the D-Bus library, or
through a message bus daemon, which is required for many-to-many communication. The
daemon is a central server that: keeps track of applications that use the communication
buses; routes messages between them; and launches new applications, if their services are
requested. There are two bus types: session and system. One session bus is launched per
user login, or desktop session, and is used for communication between applications in the
user session. The system bus is intended for communication with applications common to
multiple desktop sessions. A D-Bus interface for a Network Manager application would have
to run on a system bus, since there is only one instance of networking hardware for multiple
potential user sessions. An Instant Messenger’s interface, however, would be contained in a
single login session, since it would contain personal user information. Moreover, D-Bus is
aware of user identities, and supports flexible authentication mechanisms and access controls
between applications.

3.2.3.1 Connection

When connecting to a bus, an application may register one or more names to the connection.
These are called bus names and are composed by keywords separated by dots, much like
an Internet domain name: org.freedesktop.NetworkManager. This name must be well-
known to the respective application interface, since it is used to address/discover the service.
It is possible to have different connections with the same name, but the name is not shared.
Instead, the D-Bus daemon stores a queue of connections that request the usage of each name.
The first connection to get the name is the primary owner. A second connection will acquire
the same name when the primary owner releases it, or terminates the connection. In addition
to the requested bus names, the central daemon assigns each connection an immutable unique
connection name starting with a colon (e.g. :235-34). This name is never reused on the same
bus, even when the corresponding connection is closed and others are created.

3.2.3.2 Interface

A connection on a bus exports its services in any number of interfaces, or contracts, in
the form of objects. An object is addressed by a Uniform Resource Locator (URL) path,
e.g. /org/freedesktop/NetworkManager/Devices/0, and the interfaces it implements are
identified similarly to a bus name: org.freedesktop.NetworkManager.Device. An object
path may be arbitrary, but the interface identifier must be well-known. An interface defines
the properties, signals and methods, that are available on an object, including their input and
output parameters.

1Glib libraries, http://www.gtk.org/
2Qt libraries, http://qt.nokia.com/

http://www.gtk.org/
http://qt.nokia.com/

3.2. APPLICATION INTERFACING 31

• Methods are similar to C++ or Java class methods. A method may take input or
output parameters, and return results. Output parameters are generally used when a
method generates more than one result. When invoking a method causes an error, the
requesting application receives an exception instead of the usual result.

• Signals can carry parameters, like methods, but are not invoked by clients. Instead,
they are generated by the server object. The bus daemon then delivers the signal to
every client of that object. This is similar to a multicast message, in that it is propagated
only to certain clients on a bus.

• Properties resemble C++ or Java class attributes. However, they bear a simpler access
restriction scheme: a property ha either read, write or readwrite permissions.

To access these members of an object, a client of an interface first acquires a proxy of that
object. A proxy is a client-local representation of the object on the server that is really accessed
through the bus. Most D-Bus bindings hide the details and coding of message marshalling.
In fact, many languages make the manipulation of proxies, much like if the object was local
to the same program. Multiple requests on a proxy are guaranteed to be carried out in the
same order in the original object. The same is true for multiple replies to the same client.
However, no ordering is guaranteed for multiple requests from different clients (or proxies on
the same program, but using different connections). D-Bus also guarantees message delivery
and no requests are dropped, unless ill-formed.

3.2.3.3 Type system

Data is passed among the processes in messages. Messages have a header and a body. The
composition of the body payload is defined in the header, along with the sender, the destina-
tion, and other information. D-Bus has a type system that regulates how values of various
data types can be serialized into a sequence of bytes for the message payload. Each data type
has a type signature in the ASCII format. The 32-bit integer type is identified by the ASCII
character “i”. A body holding two integers has the “ii” header signature. There are more
signature codes that allow encoding arrays, structs, strings, object paths, and even variants,
which can hold any of the other types (for this data type, the signature is included in the
payload). For example, a signature such as “ybnqiuxtdsoa(vh)” represents a block composed
by the following sequence: BYTE, BOOLEAN, INT16, UINT16, INT32, UINT32, INT64, UINT64,

DOUBLE, STRING, OBJECT_PATH, ARRAY of STRUCT of (VARIANT, UNIX_FILE_DESCRIPTOR).

3.2.3.4 Summary

K Desktop Environment (KDE)1 had its own IPC framework, named Desktop Communication
Protocol (DCOP), and Gnome also focused on their own communication framework (Bonobo).
D-Bus does not have any Desktop Environment (DE) dependency; it was designed from

1KDE, http://www.kde.org/

http://www.kde.org/

32 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

scratch, albeit influenced by KDE’s DCOP system [52]. KDE is currently using D-Bus, and
Gnome has also abandoned its own bus messaging system in favor of the new framework.
D-Bus is part of the cross-desktop project freedesktop.org, to which Red Hat1 is the primary
contributor, and it has become the desktop-agnostic IPC mechanism of choice [52].

3.3 Individual network management tools

Having covered the requirements for kernel and process communication, this section focuses
on the analysis of various simple tools for managing the Linux network subsystem. All of them
are typically developed for command line usage, but some expose programming interfaces and
are suitable for usage by other programs.

3.3.1 Core tools

Although iproute2 2 exists since 2.2 Linux kernel, the latest major release of net-tools3 (1.60)
dates back to 2001, and is still available in most (if not all) distributions. net-tools is an ancient
package, and many systems and administrators depended on it for a long time. Surprisingly,
some still do. net-tools was mostly based on ioctl calls, and provided a series of executable
commands for different tasks:

• ifconfig: configuration of layer 2 and 3 addresses and links, including power up/down.

• route: manipulation routing tables of the IP protocol.

• arp: manipulation of the kernel’s IP network neighbour cache.

• iptunnel: management of IP encapsulation tunnels.

• ipmaddr: multicast address management.

• netstat: various network metrics and statistics.

One additional tool, vconfig, was not really part of the net-tools collection. It contained
the code for the IEEE 802.1Q Virtual Local Area Network (VLAN) protocol implementation
on Linux, but it was later added to the kernel, and its functions are now part of iproute2.

iproute2 provides the same features of the net-tools toolkit, the biggest difference to the
user being the syntax. Internally, it uses the Netlink protocol instead of ioctl calls. Table 3.1
shows the iproute2 commands that replace the old net-tools utilities.

Individually, these tools allow a user to power an interface on/up or off/down (e.g.:
ip link set dev eth0 down), add an IP address to it (e.g.: ip addr 10.10.10.9/30 dev

eth0), change the MAC address (e.g.: ip link set dev eth0 address 00:11:22:33:45:55),
etc. Neither of these tools offers a programming interface of any sort; the software is just a

1Red Hat, http://www.redhat.com/
2iproute2, http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
3net-tools, http://sourceforge.net/projects/net-tools/

http://www.redhat.com/
http://www.linuxfoundation.org/collaborate/workgroups/networking/iproute2
http://sourceforge.net/projects/net-tools/

3.3. INDIVIDUAL NETWORK MANAGEMENT TOOLS 33

net-tools iproute2

ifconfig
ip addr

ip link
vconfig
route ip route
arp ip neigh
iptunnel ip tunnel
ipmaddr ip maddr
netstat ss

Table 3.1: net-tools replacement by iproute2.

group of isolated executables that act on command line invocation, which limits usage for
manual calls or scripted invocation. Also, the programs make no decision on their own; it is
up to their user to do the right thing at the right time.

3.3.2 Wireless tools

An analogy of the net-tools/iproute2 affinity can be made for the specific case of wireless device
tools for GNU/Linux. The wireless-tools1 project is part of the sponsorship from Hewlett
Packard for the Wireless Extensions development (mentioned in Section 3.1.3.2). Sitting on
top of the WEs, the wireless-tools depend on older ioctl calls, and only in certain cases benefits
from the new Netlink protocol. Essentially, wireless-tools are marked for deprecation on the
GNU/Linux ecosystem in a similar fashion to net-tools. iw2 replaces the wireless-tools while
also serving as a use-case for most of the nl80211 protocol features.

Just as with the net-tools/iproute2, both packages provide only command line interfaces
for tasks specific to wireless devices. Table 3.2 contains a listing of those tasks and the
difference between the wireless solutions. An additional tool, ifrename, is included in the
wireless-tools package. It allows renaming network interfaces and, since it is not specific to
wireless devices, it is not listed in the comparison table.

wireless-tools iw description
iwconfig iw get/set Manipulate basic wireless parameters
iwevent iw event Display wireless events
iwgetid iw link Get current network information
iwlist iw scan Initiate scanning
iwspy iw station Get node information
iwpriv -- Allows setting driver-specific settings

Table 3.2: Comparison between wireless-tools and iw tools.

1wireless-tools, http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
2iw, http://wireless.kernel.org/en/users/Documentation/iw

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://wireless.kernel.org/en/users/Documentation/iw

34 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

3.3.3 Authentication supplicants

Open1X 1 is an attempt at the development of an open-source supplicant implementation for
the IEEE 802.1X protocol. The latest update on the project was in January 2011, with an
updated development version of the XSupplicant tool. It supports both Linux and Microsoft
Windows Operating Systems, but many GNU/Linux distributions stopped providing support
for the package.

wpa_supplicant2 stemmed as an overlay for XSupplicant, providing WPA/WPA2 features
that the former implementation lacked. Over time it separated completely from XSupplicant,
and is currently actively developed for an increasing number of 802.1X EAP methods, with
support for Ethernet networks (EAP over LAN (EAPoL)). Wi-Fi Protected Setup support is
also in the feature list.

wpa_supplicant offers an autonomous daemon that accepts network configurations, based
on which it will try to authenticate and associate to a network. It uses more than one means
to communicate with the kernel by implementing various interface drivers. It usually relied on
the Wireless Extensions API, but some Qualcomm Atheros3 chipsets, for example, required
a dedicated interface for the madwifi driver. More recently, the standard nl80211 interface
unifies the access to all device driver functions.

The supplicant accepts a configuration file providing a series of blocks containing network
parameters, similar to the following example:

network ={
ssid="eduroam"
scan_ssid =1
key_mgmt=WPA -EAP
pairwise=CCMP TKIP
group=CCMP TKIP
eap=PEAP
phase2="auth=MSCHAPV2"
ca_cert="/etc/ssl/certs/ca-certificates.crt"
identity="user@ua.pt"
password="secret"

}

When running by itself, wpa_supplicant regularly scans for new networks, and automati-
cally joins networks based on the order of the network blocks in the configuration file, network
security level, and signal strength. However, it offers two interfaces for run-time configuration:
a proprietary control library and a D-Bus interface.

The proprietary control library is developed with the C language, and requires linking
with the provided objects; this restricts usage to C and C++ software, although other pro-
gramming languages offer solutions for linkage with C libraries. It communicates with the
daemon through Unix or UDP sockets, and even Pipes. This library provides an extensive list

1Open1X, http://open1x.sourceforge.net/
2wpa_supplicant, http://hostap.epitest.fi/wpa_supplicant/
3Qualcomm Atheros, http://www.qca.qualcomm.com/

http://open1x.sourceforge.net/
http://hostap.epitest.fi/wpa_supplicant/
http://www.qca.qualcomm.com/

3.3. INDIVIDUAL NETWORK MANAGEMENT TOOLS 35

of predefined commands accessible through a wpa_ctrl_request method, available for invo-
cation after a wpa_ctrl_attach where the user specifies the interface to be managed. The
commands are specified in text format, and replies are also text strings; for example, check-
ing if the daemon is accessible requires sending the “PING” command and successfully parse
a “PONG” response, otherwise wpa_supplicant is not available (the wpa_crtl_attach com-
mand is actually equivalent to a wpa_ctrl_request with the “ATTACH” command). Further
commands include:

• INTERFACES: get the list of available interfaces.

• ADD_NETWORK and REMOVE_NETWORK: add a network configuration block, equivalent to
the file configuration blocks.

• SELECT_NETWORK: attempt authentication and association to a configured network.

• MIB: get a listing of IEEE 802.11 (dot11*) and 802.1X (dot1x*) Management Informa-
tion Base (MIB) attributes regarding various authentication state parameters.

• STATUS and STATUS-VERBOSE: request current WPA/EAPoL/EAP status information.

The same control socket is used for unsolicited event messages from the supplicant. Events
may be received on the socket between command requests/responses. To avoid request/re-
sponse pair breaking, the documentation suggests either one of two options: using two different
control socket connections, one for commands/responses and another for unsolicited events; or
multiplexing both in the same connection, supplying a different callback handler for each re-
quest command. Unsolicited event messages obviate the need to poll variables for occurrences
such as EAP success or failure events. Some events are mere translations of kernel networking
events, which render wpa_supplicant a viable option as a slightly higher level interface for
wireless device control.

The D-Bus interface for wpa_supplicant was developed as a Google Summer of Code
project in 20091. As usual with D-Bus, it offers an object-oriented view of the wpa_supplicant
software. There are basically five interfaces to the wpa_supplicant D-Bus API:

• fi.w1.wpa_supplicant1: offers methods to add, remove or list network devices to
further control.

• fi.w1.wpa_supplicant1.Interface: represents a network device. Network configura-
tion blocks are added or handled through this interface. This also allows requesting an
interface to connect, disconnect or scan for available networks. As a result, this is also
where most relevant signals are generated, like BSS detection following scans.

• fi.w1.wpa_supplicant1.Interface.WPS: used to handle WPS procedures.

1Google Summer of Code wpa_supplicant proposal, http://google-melange.appspot.com/gsoc/
project/google/gsoc2009/wsowa/2001

http://google-melange.appspot.com/gsoc/project/google/gsoc2009/wsowa/2001
http://google-melange.appspot.com/gsoc/project/google/gsoc2009/wsowa/2001

36 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

• fi.w1.wpa_supplicant1.BSS: interface for scanned BSS objects. Attributes of an AP
such as the frequency, signal strength and supported authentication and encryption
methods are available in this interface.

• fi.w1.wpa_supplicant1.Network: implements a network configuration block. This is
just a key-value map of strings containing the same information as the network blocks
in the configuration file.

wpa_supplicant is a sub-project of HostAP1, which is basically a driver plus a user space
daemon (hostapd) for access point hardware. The daemon controls Station authentication
and supports the same methods as wpa_supplicant. Both are inter-operable, but they are
independently tested as well. This is currently the most supported authentication supplicant
for GNU/Linux based devices, including the Android OS.

3.3.4 DNS

In GNU/Linux, there is no specific tool to handle DNS servers. The list of known servers is
configured directly in a file usually located at /etc/resolv.conf, which the resolver library
parses in order to know where to send DNS queries. There is a framework, openresolv2,
to manage the resolv.conf file from multiple sources such as DHCP clients. It provides a
program that can be invoked through the command line and add DNS configurations for each
interface, which will then update the resolv.conf file as it thinks best. This tool is mostly
unused because it requires a greater effort than simply writing the configurations directly to
the file. Also, since most network configuration setups are either manual, or relying on tools
that handle all the interfaces, it is easy to keep track of multiple DNS configurations for each
network without additional tools.

3.3.5 DHCP clients

When it comes to automatic network layer configuration, GNU/Linux machines mostly rely
on two options: dhclient3 and dhcpcd4. The first one is part of a client-server software bundle
provided by the ISC. The project’s website claims it “the most widely used open source DHCP
implementation on the Internet”. The bundle is regarded as a reference implementation of
the protocol, and quoted as a “production-grade software, suitable for use in high-volume and
high-reliability applications”. It is actively maintained, and the ISC provides paid support
for the software. dhcpcd is a lightweight alternative that is supported by most, if not all
GNU/Linux distributions. It uses the Netlink kernel interface for configuration, while the
dhclient software remains dependant on ioctl calls.

1HostAP, http://hostap.epitest.fi/
2openresolv, http://roy.marples.name/projects/openresolv
3dhclient, https://www.isc.org/software/dhcp
4dhcpcd, http://roy.marples.name/projects/dhcpcd

http://hostap.epitest.fi/
http://roy.marples.name/projects/openresolv
https://www.isc.org/software/dhcp
http://roy.marples.name/projects/dhcpcd

3.4. FULL-FEATURED NETWORK MANAGEMENT SOLUTIONS 37

The major difference between both clients refer to the supported standards. dhcpcd sup-
ports IPv6 stateless autoconfiguration, but it does not implement the DHCPv6 protocol, while
dhclient does. Command line usage of both applications is similar. By default, both work as
daemons and automatically take care of lease acquisition and renewal. Configuration can be
based on text-files or through command line options.

There are differences regarding programming interfaces as well; the dhclient manual pages
mention controlling the daemon through their OMAPI framework, but the framework docu-
mentation refers only to communication with the DHCP server. The dhcpcd daemon, however,
offers two interfaces: a UNIX domain socket and a D-Bus interface. The socket interface is
undocumented, and the D-Bus interface is a merely a proxy for it. The D-Bus interface
receives events from the socket and propagates them as D-Bus signals to its listeners, and
also supports several operations: retrieving lease information and current status, renew and
release leases, and more.

There are other DHCP implementations for GNU/Linux, but not as common, and lacking
advanced features.

3.4 Full-featured network management Solutions

By combining the tools described in the previous section it is possible to build a complete
solution that handles all the steps for network configuration. Some GNU/Linux distributions
like Debian1 or Fedora2 offer a set scripts to automatically attempt to configure a network
once an interface is powered up. This is easy to maintain for stationary hosts, but laptop
users, that usually attach to several different networks throughout the day or week, require
more interactivity and ease of use. This is often achieved with graphical user interfaces, and
integration with the DE through applets. Two of the most popular solutions for network
management are presented in the following sections.

3.4.1 wicd

wicd3 aims to provide a simple interface for a wide variety of network configuration settings.
Its first version was developed in 2006 under the name “Connection Manager” using the Python
programming language. It is split into two major parts: a daemon and a user interface.
The daemon is responsible for handling the configuration and log files, as well as effectively
managing the connections. The user interface is composed by a tray icon and a GUI window
(Figure 3.6). The graphical configuration interface is built with the GIMP Toolkit (GTK+)
and there are no Desktop Environment dependencies, which makes it usable wherever GTK+
is available. There are also two console interfaces: a regular command line version, and
a curses variant that displays a visual interface on character cell terminals. All of these
interfaces connect to the daemon through a D-Bus interface, which is not documented.

1Debian, http://www.debian.org/
2Fedora, http://fedoraproject.org/
3wicd, http://wicd.sourceforge.net/

http://www.debian.org/
http://fedoraproject.org/
http://wicd.sourceforge.net/

38 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

Figure 3.6: wicd ’s graphical user interface window.

The daemon does not talk directly to the kernel to handle network configuration. Instead,
it depends on other tools for network management, mostly in a scripted manner. The depen-
dencies include the following list: ethtool or mii-tool, net-tools, dhcpcd or dhclient, inetutils
or iputils, wpa_supplicant and wireless_tools. ethtool and mii-tool have not been mentioned
before. They offer commands for modifying various low level network device parameters such
as speed, duplex, flow control, and even perform firmware upgrades on the devices. wicd
uses them simply to check if there are cables attached on Ethernet interfaces. inetutils and
iputils have also not been mentioned before. They are a collection of network programs that
provide the ping utility. wicd tries to ping the default gateway after completing a connection,
to determine the success of the operation. wpa_supplicant is used for authentication, while
net-tools and either DHCP client referred in section 3.3.5 are used for static and dynamic IP
configuration, respectively.

wicd has many users, but it is built upon a collection of tools that were long deemed unfit
to the current GNU/Linux infrastructure. This should not presently affect the end user, but
is a shortcoming for future development and support.

3.4.2 NetworkManager

NetworkManager1 is an even more complete solution for GNU/Linux network managing.
Compared to wicd, it supports the same authentication and IP configuration features, but
it also adds extra features like Virtual Private Network (VPN) configuration support. It of-

1NetworkManager, http://projects.gnome.org/NetworkManager/

http://projects.gnome.org/NetworkManager/

3.4. FULL-FEATURED NETWORK MANAGEMENT SOLUTIONS 39

fers an architecture of separate daemon and user front-ends for configuration as well. There
are various available front-ends including graphical interfaces (Figure 3.7), tray applets (Fig-
ure 3.8) and command line interfaces. The daemon offers a D-Bus self-documented program-
ming interface that is used by the various front-ends. This view of the architecture shows
a great similarity between NetworkManager and wicd, but there are very important differ-
ences. While wicd supports only Ethernet and Wi-Fi devices, NetworkManager also supports
WIMAX, Modems (GPRS, UMTS, etc) and Bluetooth. Moreover, it avoids depending on
command line tools when feasible.

The core of NetworkManager implements direct control of network interfaces through the
kernel mechanisms, and follows a very structured approach regarding those interfaces. It is
developed in the C language, but follows an object-oriented solution with the help of the GLib
libraries. The D-Bus interface is managed by the GLib bindings, so the internal architecture
of the data structures is directly reflected to the D-Bus interface. The most relevant structures
of the API are described in the following sections.

Figure 3.7: NetworkManager ’s configuration GUI.

3.4.2.1 org.freedesktop.NetworkManager

A main central object offers an interface for overall management tasks. This object holds
the network device structure, the overall machine state and connection states. The following
mechanisms are available:

• Add or Get a list of devices for network management.

• Add, Activate or Deactivate network connections.

40 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

Figure 3.8: Gnome’s NetworkManager applet.

• Enable or Disable networking, with the ability to specify individual technologies (i.e.,
only Wi-Fi, WIMAX or Modem).

• Check the overall network state.

The network state can vary between one of the following: unknown, asleep, disconnected,
disconnecting, connecting, connected_local, connected_site and connected_global. Although
the interface distinguishes the connectivity scope, the current version of NetworkManager
actually always assumes that, when there is connectivity, it is global. The main object will
emit signal for any property or state changes that occur, and any time a device is added or
removed.

Internally, this object is mainly responsible for maintaining the global state machine that
controls the connection procedures and the remaining data structures.

3.4.2.2 org.freedesktop.NetworkManager.Device

This is an abstract interface to represent common attributes of a network device. An object
implementing this interface is related to a unique network device in the system. Every net-
work device has a device type, a current state, a list of capabilities, etc. The device type
is self-explanatory, and identifies which of the supported device types this object refers to.
The following list of states is defined by the Device interface: unknown, unmanaged, unavail-
able, disconnected, prepare, config, need_auth, ip_config, ip_check, secondaries, activated,
deactivating and failed. The interface and defines signals to indicate Device changes state.

Despite the object-oriented architecture of the program, a user does not “ask a device to
connect to a certain network”. Instead, a user requests the NetworkManager to “connect this
device to a specific network”. The difference is that, instead of requesting a connection through
the device object, a request is made to the central object indicating both the connection details

3.4. FULL-FEATURED NETWORK MANAGEMENT SOLUTIONS 41

and the device to be used. However, requests to Disconnect are made directly to the Device
interface.

Most operations regarding the physical device manipulation are handled through the ker-
nel’s Route Netlink interface. Bringing interfaces up and down, configuring IP addresses,
routes, etc, is common code to all device types.

3.4.2.3 org.freedesktop.NetworkManager.Device.Wired

The specific Wired interface is very basic and, on top of the abstract Device interface, it only
adds attributes such as the MAC address, the design data rate of the device and whether a
cable is plugged in or not. This data structure supports the distinction between a permanent
hardware address and a software hardware address that may be configured on the device.
Both will always match if the driver does not support address changes. Any property change
will be signalled (including changes in properties inherited from the Device interface).

Getting or setting a network interface’s data rate is not available through the Netlink
protocol. NetworkManager depends on ethtool or mii-tool for this task. They are also used
for carrier detection whenever a specific driver does not implement the flag through the Route
Netlink protocol.

3.4.2.4 org.freedesktop.NetworkManager.Device.Wireless

Other than the MAC address attributes, similar to the Wired interface, this interface has
specific methods to handle AccessPoint objects. It is possible to request a wireless device to
scan for APs through the D-Bus interface and fetch the known AccessPoint list. Any Ac-
cessPoint removal or addition is announced by a signal, alongside any other Device property
changes. Other specific attributes include the current device bitrate, the Active AccessPoint,
and wireless capabilities of the device. The capabilities field indicates the supported encryp-
tion mechanisms such as WEP, TKIP, CCMP, WPA and WPA2.

NetworkManager uses three different mechanisms for kernel interfacing: WEs, nl80211,
and wpa_supplicant. WEs is only used as a fallback if nl80211 is not supported. The
nl80211/WEs duo is used for getting current link attributes such as SSID, frequency, data
rate, link quality, etc. In this context, the wpa_supplicant API is used to trigger scans and
handle scan results.

3.4.2.5 org.freedesktop.NetworkManager.AccessPoint

The AccessPoint object originates from WirelessDevice objects. An AccessPoint object ex-
poses properties to identify networks and determine how to properly prepare the association
to the Basic Service Set, according to the following list:

• SSID: the Service Set Identifier of the Access Point.

• Frequency: the operating frequency of the AP.

• Hardware Address: the MAC address of the AP.

42 CHAPTER 3. GNU/LINUX NETWORK MANAGEMENT

• Strength: the current signal quality of the AP, in percentage. NetworkManager cal-
culates this from the hardware-reported dBm value, blindly normalizing it to a scale
between −40dBm (best, 100%) and −100dBm (worst, 0%), and linearly adjusting the
intermediate values to a percentage.

• Maximum Bitrate: the maximum supported bitrate of the AP.

• Mode: this is usually “infrastructure”, but could be “ad-hoc” if the object actually
represents an IBSS node.

• Security and Privacy flags: these indicate whether the AP supports security and
privacy mechanisms and, if so, which.

Property changes are also signalled to D-Bus clients; the only dynamic attribute for the
AccessPoint objects should be signal Strength.

3.4.2.6 org.freedesktop.NetworkManager.Settings

The Settings interface does not handle global NetworkManager settings per se. The Settings
interface actually deals with network connection settings. There is only one object implement-
ing this interface, and it may be regarded as the system-global repository for the different
configured networks. As such, it exposes methods to add and retrieve connection objects,
and signalling new additions to every client. This interface does not offer methods to remove
connection objects from the repository; instead, the method is available in each connection
object itself.

The Settings manager stores the network configurations in plaintext files, one for each
connection. These files are only accessible by the system administrator. The passwords are
stored along with the other settings, but NetworkManager also supports letting the user store
them on a keyring, as long as it provides a pre-defined D-Bus interface for retrieving the
secrets. Alternatively, secrets can be requested to the user whenever they are required.

3.4.2.7 org.freedesktop.NetworkManager.Settings.Connection

This interface is implemented by objects that contain the necessary information on how to
connect to a given network. The complete specification of the possible settings is a very
extensive list of key-value pairs divided in groups. Some of those groups follow:

• connection: this setting is required. Here the key-value pairs help identify the connec-
tion in the overall listing, by assigning a name and unique ID to the configuration.

• 802-3-ethernet: this setting holds specific ethernet configurations for the network,
including the desired data rate, software MAC address, and MTU size.

• 802-11-wireless: for IEEE 802.11 wireless networks, the network SSID is specified
here. It also allows indicating specific MTU size, cloned MAC address, data rate, and
additionally restricting association to a specific AP by providing its MAC address.

3.5. CONCLUSION 43

• 802-11-wireless-security: when an IEEE 802.11 network employs security mecha-
nisms, this setting stores the configuration for those mechanisms.

• 802-1x: if the security mechanisms of a connection require the IEEE 802.1X standard,
the authentication elements such as identities, passwords, keys and certificates are con-
figured here.

• ipv4: IP configuration can be dynamic, by choosing DHCP, or static, in which case it
is possible to indicate a list of desired IP addresses, DNS servers, and static routes.

• ipv6: this setting is similar to ipv4, except the parameters are parsed differently because
of the different address representations.

Dynamic IP configuration, is not handled by NetworkManager directly; it relies on either
dhcpcd or dhclient, whichever is available. DHCPv6 will not be supported if only dhcpcd is
available. The authentication and security configurations are translated to the wpa_supplicant
network block format of key-value pairs, which is mostly equivalent to NetworkManager ’s own
format.

3.4.3 Acceptance

NetworkManager is a project maintained by Gnome. However, given its maturity and sta-
bility, it is the default network management solution for many GNU/Linux distributions.
While many Desktop Environment attempt to provide their own software implementations
for text editors, console terminals, etc, NetworkManager is a common choice among many
other projects including KDE, Xfce1, and Lightweight X11 Desktop Environment (LXDE)2.

3.5 Conclusion

This chapter covered most of the frameworks and tools that are used for network manage-
ment. This analysis focused on the tools and frameworks that are currently recommended
for software development in GNU/Linux. In summary, networking tools should use Route
Netlink for interface state and IP layer management, and nl80211 for Wi-Fi specific opera-
tions. DE integration requires usage of the D-Bus IPC framework. The NetworkManager ’s
D-Bus API is sufficiently generic for any Network Manager to implement, and would enable
reuse of many applets and programs that use the API.

1Xfce, http://www.xfce.org/
2LXDE, http://www.lxde.org/

http://www.xfce.org/
http://www.lxde.org/

Chapter 4

IEEE 802.21

The IEEE 802.21 group stemmed from a discussion in the IEEE 802.16 group regarding
network handoffs, aiming at a common layer 2 handover interface between IEEE 802 as well as
non-802 systems, thus a Media Independent Handover (MIH) framework. This chapter gives
an overview of the standard, and a major open-source implementation, Open Dot Twenty
ONE (ODTONE)1. The chapter concludes with proposed extensions in order to effectively
support network management operations.

4.1 Motivation

Handovers between points of access of the same technology are largely discussed in each
standard. These are called horizontal handovers, because the link layer does not change.
The handover decision is usually handled by the Mobile Node (MN), in regard to timing
and target selection. Access Point selection in IEEE 802.11 networks, for example, is usually
based on received signal strength and/or interference parameters. This is true for both when
initially joining the network as well as for link loss or degradation events. More often than
not, the AP with the seemingly best signal qualities is serving a greater number of users, thus
causing congestion and ending up providing the least appropriate service when compared to
an hypothetical AP with weaker signal, but less users. Since the network takes no part in
preparing the handovers, it is common that existing connections face a great number of lost
packets before the terminal establishes the new link and requests new connections.

The problem of network handoffs increases when the transition happens between different
technologies. In order to accommodate the growing number of users and greater bandwidth
requirements for wireless Internet access, cell radius tends to decrease, while the coexistence
of heterogeneous networks enables better service provision, for example by combining the
higher bandwidth and lower cost of Wi-Fi with the better mobility and larger coverage of
cellular networks [53]. In these cases, handovers are not limited to a link layer change in the
point of access, but possibly the whole network infrastructure, depending on the technology
and the service providers. Such is usually the case of transitioning from home or office

1ODTONE, http://atnog.av.it.pt/projects/odtone

45

http://atnog.av.it.pt/projects/odtone

46 CHAPTER 4. IEEE 802.21

IEEE 802.11 networks to cellular networks. These are called vertical handovers, because
the transition occurs between different link layers, and connectivity must be reestablished at
the network and/or transport layers. Again, it is usually the MN that decides the timing
and target network, based on user configuration or perceived signal quality metrics. 3GPP
supports network initiated handover processes, but does not include handing over to different
technologies.

The IEEE 802.21 protocol defines a common sublayer directly on top of the link layer,
for adoption among 802 and non-802 network technologies, for both horizontal and vertical
network handovers. This protocol aims to provide handover operation at layer 2 between
any number of technologies, while addressing factors that condition handover decisions such
as service continuity, QoS, application specific tolerances, network discovery and selection,
and power management. Furthermore, the technology defines procedures for MN-initiated,
MN-controlled, Network-initiated and Network-controlled handovers.

4.2 Architecture

The IEEE 802.21 standard enables cooperation on both the mobile node and the network
by providing a framework for information exchanges between both parts. There are several
network entities taking part in this framework, represented by Figure 4.1. Apart from the
Mobile Node itself, the following entities are identified in the network:

• MIH Point of Attachment (PoA): the endpoint to which the MN attaches when
joining the network.

• MIH Point of Service (PoS): a network entity that exchanges MIH messages with
the Mobile Node. It helps the MN perform handovers by providing target network
information as well as preparing networks for attachment.

• MIH non-PoS: a network entity (usually database servers) that does not exchange
messages with the Mobile Node. Usually contain geographical and administrative net-
work information.

Every MIH capable device implements a Media Independent Handover Function (MIHF);
it is the main point of interaction between the upper and lower layers, and coordinates the
exchange of commands and information between the different MIH entities, as indicated by
Figure 4.2. Communication between entities and the MIHF is defined by Service Access Points
(SAPs). Entities in higher layers are called MIH Users, and communicate with the MIHF using
the MIH_SAP interface. Lower layer entities are called MIH Links and communicate with
the MIHF via the MIHF_LINK_SAP interface. MIH Users and Links can only communicate
with the MIHF local to the device where they are present; remote communication is achieved
by interconnecting multiple MIHFs, via the MIH_NET_SAP interface.

The MIHF entities in MN and Network entities communicate with each other using specific
messages, composing the MIH protocol. These messages correspond to primitives of the MIH

4.2. ARCHITECTURE 47

Candidate access network

IEEE 802.11 PoA

Candidate

operator core

Candidate

PoS

operator core

Serving non−PoS

information database

Serving

PoS

Internet

Serving

PoA

MN

Figure 4.1: IEEE 802.21 Reference Model

MIH

Users

802

interface

3GPP

interface

MIH

Users

MIH

Users

MIH Function MIH Function MIH Function

802 interface

Mobile Node 802 Network 3GPP Network

MIH_SAPMIH_SAP

MIH_LINK_SAP

MIH_SAP

MIH_LINK_SAP

M
IH

_
N

E
T

_
S
A

P

L
in

k
 t

ra
n
sp

o
rt

MIH_NET_SAP Network transport

Figure 4.2: IEEE 802.21 General Architecture.

Services, and always contain two identifiers: an MIHF ID and a Transaction ID. The payload
for messages is encoded in the TLV format defined in the standard.

The standard does not define policies and algorithms for handover decisions. MIH Users
are responsible for this task, by making use of the MIHF in order to communicate with the
available entities and obtain relevant information on which to act. MIH communications
available on each SAP fall into three different service categories, explained in the following
sections.

48 CHAPTER 4. IEEE 802.21

4.2.1 Media Independent Event Service

In general, handovers can be initiated either by the MN or by the network. Events relevant
to handover originate from Links at the MN, or from the entities in the network. Hence, the
source of these events is either a local or remote entity. Multiple higher layer entities can
be interested in these events at the same time. The MIHF tracks event subscriptions from
higher layers and dispatches the events to the correct destinations. Events generated by the
MN Links are called Link Events, and delivered to the MIHF through the MIH_LINK_SAP.
Once received at the MIHF, they are translated into MIH Events for delivery to MIH Users
through the MIH_SAP. The following Link events are available:

• Link_Detected: indicates the presence of a new PoA, which implies the MN entered
its coverage area. This event is not generated for additional PoAs of the same network.

• Link_Up: delivered when a layer 2 connection is established on the specified link
interface.

• Link_Down: generated when a layer 2 connection is no longer available for sending
frames. Roaming between PoAs of the same network does not generate this event.

• Link_Parameters_Report: indicates changes in link conditions that have crossed
specified threshold levels. It may also be generated at specified intervals for various
parameters.

• Link_Going_Down: issued when a Layer 2 connection is predicted to go down
(Link_Down) within a certain time interval.

• Link_Handover_Imminent: generated when a native link layer handover or switch
decision has been made and its execution is imminent.

• Link_Handover_Complete: indicates that a native link layer handover/switch has
just been completed.

• Link_PDU_Transmission_Status: indicates the transmission status of a higher
layer Protocol Data Unit (PDU) by the link layer.

4.2.2 Media Independent Command Service

The Media Independent Command Service (MICS) refers to the commands sent from the
higher layers to the lower layers in order to control or determine the status of links, or to
initiate handover procedures. Commands on the MIH_SAP interface are called MIH Com-
mands; commands on the MIH_LINK_SAP are called Link Commands. Link Commands
are just a translation of MIH Commands that the MIHF sends to the lower layers on behalf
of the MIH Users. Link commands are local only, MIH commands may be issued remotely
for handover initiation. A brief overview of the various Link Commands follows:

4.2. ARCHITECTURE 49

• Link_Capability_Discover: query the list of supported link layer events and com-
mands.

• Link_Event_Subscribe: subscribe one or more events from a specific link layer
technology.

• Link_Event_Unsubscribe: unsubscribe from a set of previously subscribed link-
layer events.

• Link_Get_Parameters: obtain the current value of a set of link parameters from a
specific link.

• Link_Configure_Thresholds: configure thresholds and/or specify the time interval
between periodic reports for the Link_Parameters_Report event.

• Link_Action: order the link layer to shut down, to remain active, to perform a scan,
or to come up active and remain in stand-by mode. An execution delay time can also
be specified.

MIH Commands include the specified Link commands, with the addition of the following
remote commands, where the “MN” prefix refers to commands from the MN to the Network;
the “Net” prefix for Network to MN commands; and “N2N” Network to Network commands:

• MIH_Net_HO_Candidate_Query: initiate handover and send a list of suggested
networks and associated points of attachment.

• MIH_MN_HO_Candidate_Query: query and obtain handover related informa-
tion about possible candidate networks.

• MIH_N2N_HO_Query_Resources: used by an MIHF on the serving network to
communicate with its peer MIHF on the candidate network.

• MIH_MN_HO_Commit: notify the serving network of the decided target network
information.

• MIH_Net_HO_Commit: request the MIH user to perform a Network-controlled or
Network-assisted handover based on selected choices for candidate networks and specific
PoAs.

• MIH_N2N_HO_Commit: inform a selected target network that an MN is about
to move to the target network.

• MIH_MN_HO_Complete: indicate the completion of MIH level handover aiding
procedure.

• MIH_N2N_HO_Complete: used by an MIH user in the network to communicate
with a peer network MIH entity about the completion of handover operation.

50 CHAPTER 4. IEEE 802.21

4.2.3 Media Independent Information Service

The Media Independent Information Service (MIIS) provides a framework by which an MIHF,
residing in the MN or in the network, discovers and obtains network information within a
geographical area to facilitate network selection and handovers. MIIS is based on IEs which
provide information that is essential for a network selector to perform “intelligent” handover
decisions. This information can be related to neighbor maps, coverage zones, availability of
Internet connectivity or specific services, etc. This information can be used for the discovery
of available networks in a geographic area, for example, without the need to power additional
interfaces and perform scans. Dynamic information should be obtained through the previously
described Event and Command services.

There are basically two actions associated with the MIIS:

• MIH_Get_Information: request information from an MIH information server.

• MIH_Push_Information: used by an MIIS Server to push information to the MN.

4.2.4 Media Specific Mappings for SAPs

The MIHF aggregates disparate interfaces with respective media dependent lower layer in-
stances into a single interface with the MIH Users, reducing the inter-media differences to the
extent possible. For the most part, existing primitives and functionality provided by different
access technology standards are used. Amendments to existing standards are proposed where
necessary to fulfill the MIHF capabilities.

The Link Service Access Point (LSAP), defined in the IEEE 802.2 standard, provides the
interface between the MIHF and the Logical Link Control (LLC) sublayer across both IEEE
802.3 and 802.11 networks. The MIH_LINK_SAP set of primitives requires additional sup-
port that maps to 802.11 through an enhancement proposal defined by IEEE 802.11u [54].
This means that most currently available 802.11 hardware does not yet implement the neces-
sary primitives for full MIH compatibility.

4.3 Open Dot Twenty ONE

Open Dot Twenty ONE, or ODTONE, is an open source implementation of the IEEE 802.21
Media Independent Handover framework. ODTONE supplies an implementation of the MIHF,
supporting the whole range of MIH services. It also provides a set of APIs, enabling the
development of custom MIH Users and Links to interface with the provided MIHF. ODTONE
is implemented in C++, aided by the boost libraries1, but the modules are decoupled and
communicate with each other using network sockets.

Data transport between remote MIH entities is based on the TLVs defined in the standard,
but communication for local entities is not defined, since the standard allows monolithic
implementations. For this, ODTONE reuses the existing TLVs where possible, defining new

1Boost libraries, http://www.boost.org/

http://www.boost.org/

4.4. EXTENDING 802.21 TOWARDS MEDIA INDEPENDENT NETWORK
MANAGEMENT 51

Link layer
(e.g., 802.3, 802.11, 802.16)

Event service

Command service

Information service

L3

Transport

L2

Transport

Media independent

handover function

(MIHF)

M
IH

_
L

IN
K

_
S

A
P

M
IH

_
N

E
T

_
S

A
P

M
IH

_
N

E
T

_
S

A
P

Remote MIHF

LLC_SAP

MIH Users

M
IH

_
S

A
P

Figure 4.3: General MIHF reference.

ones where necessary. This decoupled nature means that it is possible to deploy the same
MIHF implementation in multiple Operating Systems, while only the Link SAPs would depend
on different OS mechanisms. The same is true for MIH Users, in the case that they interact
with other desktop applications. The core of the ODTONE framework is compiled and tested
in Microsoft Windows and GNU/Linux Operating System, including the Linux-based Android
OS.

4.4 Extending 802.21 towards Media Independent Network
Management

The IEEE 802.21 provides a link layer abstraction for control and information gathering from
various access interface technologies. This enables the implementation of a network manage-
ment application agnostic to interface technologies. However, the general MIHF Reference
Model and SAPs definition, illustrated in Figure 4.3, does not supply a complete abstraction
between the higher and lower layers. In fact, the MIH framework does not offer primitives
for MIH Users to initiate authentication or association to a certain network, for example.
Leaving such procedures out of scope requires the ability for higher layers to bypass the MIH
layer even for handover-specific procedures. Moreover, there is no support for network layer
configuration.

The MIHF qualifies as higher layer component, since it uses transport layer mechanisms
for communication. In fact, ODTONE is a userspace implementation of the framework, and
can be extended to provide an abstraction for the Operating System’s network configuration
subsystem. Figure 4.4 presents a perspective of the extended 802.21 standard as a framework
for network management using ODTONE.

Since ODTONE provides only an MIHF implementation, the remaining Link SAPs and
MIH Users have to be implemented as well. The standard is unclear as to where the com-
ponents are positioned in relation to the OS kernel. In fact, the positioning of mechanisms
such as IP addressing and authentication is not important, although in terms of performance

52 CHAPTER 4. IEEE 802.21

it would be ideal that the Link SAPs were as close as possible to the hardware and OS
mechanisms. Given the nature of the IPC mechanisms for the ODTONE framework, and
looking to provide greater flexibility and support, the whole architecture can be implemented
at userspace, interfacing with the kernel mechanisms where necessary.

The additional MIH primitives for network management operations are described next.

UMTS 802.3 802.11

... ...

...

Network Manager

MIHF (ODTONE)

Authentication

IP Addressing

Figure 4.4: IEEE 802.21 architecture for network management.

4.4.1 IEEE 802.21 extensions

The proposed extension refers to operation within the Mobile Node only. Association and
security procedures require link layer communication from supplicant software. IP configu-
ration requires adding IP addresses to interfaces, as well as default gateways, custom routes,
and DNS servers. IEEE 802.21 does not provide such a direct control. As such, two additional
Command Service primitives are proposed for these tasks, allowing for Network Management
application scenarios and providing the following functionality:

• Link_Conf : attach to a given network, providing the necessary authentication, asso-
ciation and security information.

• L3_Conf : configure a set of networking properties on an interface, such as IP address,
static routes and list of DNS servers.

While it is possible to use these commands for the referred tasks, handling network security
mechanisms is not so straightforward. Network authentication protocols such as EAP provide
many authentication mechanisms, some requiring an indefinite number of exchanges between
the supplicant and the authentication server, and possibly demanding user input. This can
be interpreted as a network request for the user, and can be implemented through the 802.21
Event Service. The following primitive is proposed:

• Link_Conf : indicates a network request for authentication material from the suppli-
cant.

4.4. EXTENDING 802.21 TOWARDS MEDIA INDEPENDENT NETWORK
MANAGEMENT 53

UMTS 802.3 802.11 ...

Network Manager

MIHF (ODTONE)

DHCP Auth

IP Addressing

Authentication

(a) MIH User centered.

UMTS 802.3 802.11

... ...

...

Network Manager

MIHF (ODTONE)

DHCP, DHCPv6, stateless autoconfig, ...

WEP, WPA, 802.1X, ...

(b) Link SAP centered.

Figure 4.5: Architectures for 802.21 based Network Manager.

Once again, there is no indication as to where certain software components should be
placed, this time in relation to the MIH architecture. For example, the authentication suppli-
cant could be an MIH User using Link_Conf commands to trigger communications with the
EAP authentication server; or it could be tightly coupled with the Link SAP and receive the
required authentication parameters through the Link_Conf command. The same question
affects components such as DHCP clients. A DHCP client could implement an MIH User
and provide the Link SAP with just the resulting information, or the Link SAP itself could
implement these protocols and perform the operations. Figure 4.5 clarifies the two scenarios,
where 4.5a shows the option where both authentication supplicant and DHCP applications
are MIH Users, and 4.5b shows these components at the Link SAPs level.

Interpreting Figure 4.5a leads to conclusion that having DHCP clients or authentication
supplicants as MIH Users requires synchronization between the Users themselves. For exam-
ple, a Network Manager initiates a connection, and it must tell the authentication supplicant
to handle authentication. Also the DHCP client could run after the Link SAP informs of layer
2 connectivity completion, but not all networks provide/require DHCP configuration. This
must be triggered by the network management software. This type of synchronism requires
additional MIH service extensions, out of band communication, or a monolithic Network
Manager with DHCP and security support.

Figure 4.5b, on the other hand, would only require that the Link_Conf and L3_Conf
messages indicate whatever actions need to be carried out, and let each Link handle the
tasks. Overall, a Link centered solution would require less effort or modification to the MIH
standard. Support for each protocol need not be implemented per-Link, it is still possible to
have separate components that the Link SAP can use when necessary. This scenario favors
the fact that existing applications are already tailored for use as a service. For example, it
is easy to grab an authentication supplicant software and use it for authentication, but it is
much harder to change that software to use the MIH infrastructure.

54 CHAPTER 4. IEEE 802.21

As such, the message format for each primitive is proposed as follows:

• Link_Conf : due to the high number of available authentication mechanisms, it is
counterproductive to define data structures for each and every possible combination.
As such, the Link_Conf message structure consists of the following:

– A LINK_TUPLE_ID: this is only for the MIH_SAP interface, and allows the
MIHF and MIH Users to identify the Link the message is intended to.

– A LINK_ADDR: this data type is defined by the 802.21 standard, and helps
identify a network via the link layer address of its PoA.

– A list of CONFIGURATION elements: the CONFIGURATION data type is
proposed in light of this message, and consists of a pair of two OCTET_STRING
elements. The first element is intended as a “key”, whereas the second element
holds a “value” for that key. This type of structure is commonly referred to as a
map, dictionary, or associative array. This mechanisms allows passing all kinds of
information, whether textual, numeric, or binary, as long as the MIH Users and
Links agree on the interpretation of each key.

• L3_Conf : this message format is easier to define with stricter data types:

– LINK_TUPLE_ID: similarly to the Link_Conf message, this parameter is only
included for messages exchanged via the MIH_SAP interface.

– IP_CFG_MTHDS: this data type is defined in the 802.21 standard. It consists
of a bitmap that allows choosing one or more network layer configuration methods,
including static, stateless and dynamic configuration, as well as using mobility
mechanisms. Dynamic configuration is interpreted as DHCP, and it is possible to
indicate the desired version separately.

– Optional IP_MOB_MGMT: if mobility mechanisms are requested, this param-
eter identifies the specific method that is desired. This is also defined by the 802.21
standard.

– Optional list of IP_INFO, for device addresses: the IP_INFO data type is pro-
posed for these new messages, and is composed by three elements:

∗ IP_ADDR: the IP desired address for the interface.

∗ IP_PREFIX_LEN: the network prefix length for the subnet.

∗ IP_ADDR: the default gateway for the subnet.

– Optional list of IP_INFO, for routes: in this context, the IP_INFO elements
take the following meaning:

∗ IP_ADDR: the address of the target network.

∗ IP_PREFIX_LEN: the prefix length for the address of the target network.

∗ IP_ADDR: the gateway for that network.

4.5. CONCLUSION 55

– Optional list of IP_ADDR, for DNS servers.

– Optional list of FQDN: an FQDN is basically an OCTET_STRING that repre-
sents a domain name. This field indicates the domain names to which the terminal
belongs.

• Link_Conf_Required: this message presents similarities with the Link_Conf prim-
itive, since it refers to the same context. The following elements are present:

– LINK_TUPLE_ID: used to identify the link in question.

– List of CONFIGURATION: the same concept of “key-value” pairs is applied to
the network requests for authentication information.

The proposed parameters for each message support all of today’s usual connection man-
agement settings for computers and other types of internet clients.

4.5 Conclusion

With the proposed extensions, the MIH infrastructure can be effectively used by network
management applications to fully control interfaces and make network selection decisions
based on multiple parameters provided by the 802.21 framework. This includes the usual
terminal-based selection mechanisms that rely on network conditions such as the signal to noise
ratio, but also the network information that allows selection based on user and application
requirements ranging from cost, latency and bandwidth limits, supported services, etc.

The following chapter presents an implementation of a framework that integrates the
Media Independent mechanisms provided by 802.21 with the current desktop design for Net-
work Manager applications, which is a first step towards an Enhanced Media Independent
COnnection Manager: EMICOM.

Chapter 5

EMICOM Implementation

The tools and technologies for integration in this network management architecture were
introduced in the previous chapters. This chapter describes the implementation of such an
architecture, based on those tools. The aim of this solution is to completely replace the
NetworkManager program transparently to the remaining desktop applications that make use
of it, as is the case of the tray applets and the nm-connection-editor tool. This objective
requires the implementation of a D-Bus interface with the same methods, properties and
signals of the original NetworkManager program. This task is for the higher level component
of the framework, described in section 5.6.

Concealed in this similar interface, however, is a very different solution, proposed in the
previous chapter, and represented in Figure 5.1. The gray components were developed from
scratch, except for the MIHF, which was only modified in order to support some extensions.
In the lower layer of this solution are the Link SAPs, built on top of the standard Linux kernel
interfaces and the most widely used core tools for network management. Section 5.4 describes
the implementation of GNU/Linux Link SAPs for Wi-Fi and Ethernet interfaces.

The various components are developed using the C++ language; the ODTONE APIs,
together with boost, already provide tools for marshalling MIH messages in the C++ language.
Also, C++ programs can deliver a great performance and permit low level operations, while
maintaining higher level features such as automatic memory management and the object-
oriented paradigm (although it supports others).

Each component of this framework is effectively a separate process. Section 5.3 describes
the interactions of some basic connection management procedures. These interactions rely
on the Netlink protocol, for kernel operations, and on D-Bus, for receiving management
instructions from the user and for controlling the wpa_supplicant daemon. The use of the
Netlink protocol is explained in section 5.2. The integration of the D-Bus messaging framework
is described in section 5.1.

Although dhclient does not offer any programmable interface, its support for a wider range
of protocols makes it a better choice for a DHCP client. Its use is managed by scripted calls
concealed in a C++ class, explained in the L3 Conf command description subsection (5.4.18).

57

58 CHAPTER 5. EMICOM IMPLEMENTATION

Linux Kernel

wpa_supplicant dhclient

Link SAP

MIHF (ODTONE)

Network Manager Desktop Apps.

N
et

li
n

k

R
o

u
te

n
l8

0
2

1
1

Figure 5.1: EMICOM architecture.

5.1 D-Bus integration

Both the MIH User and Link SAPs make use of the D-Bus framework: the MIH User, to
export the NetworkManager interface, and the Link SAPs to make use of the wpa_supplicant
program. There are two public C++ D-Bus binding implementations available: dbus-cxx 1

and dbus-c++2. Both are wrappers for the C library, but dbus-cxx aims at exposing the C
API for direct manipulation ans uses sigc++3 to provide an object-oriented interface for the
framework. However, it does not implement mechanisms for mapping C++ class members into
D-Bus interface properties, for example. dbus-c++, on the other hand, attempts to provide
a complete object-oriented abstraction for the framework, including support for methods,
signals, properties, and all D-Bus supported data types.

The D-Bus framework specifies an Extensible Markup Language (XML) data format for
defining (and documenting) interfaces4. dbus-c++ offers a tool for converting XML-defined
interfaces into C++ classes for both server and proxy objects. Methods and Signals are
mapped into class member functions, and Properties translate to class member variables.
The inner working of each object may be implemented at these classes themselves, or by
extending the class and implementing the respective methods. The wrapper code automati-
cally created by the tool takes care of the message handling, and using D-Bus through these
classes is transparent for the programmer. Messages from D-Bus, and ODTONE, are handled
asynchronously, using the io_service dispatcher from the boost Asio libraries.

Despite dbus-c++ being the obvious choice, it later presented some issues that had to
be resolved. The current implementation did not support all the methods from the D-Bus

1dbus-cxx, http://dbus-cxx.sourceforge.net/
2dbus-c++, https://gitorious.org/dbus-cplusplus
3sigc++, http://libsigc.sourceforge.net/
4D-Bus introspection format, http://dbus.freedesktop.org/doc/dbus-specification.html#

introspection-format

http://dbus-cxx.sourceforge.net/
https://gitorious.org/dbus-cplusplus
http://libsigc.sourceforge.net/
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format
http://dbus.freedesktop.org/doc/dbus-specification.html#introspection-format

5.2. ROUTE NETLINK AND NL80211 WRAPPERS 59

introspection interface, which would not allow third party developers to correctly introspect
software using dbus-c++. It also failed to compile properly with recent versions of the GNU
Compiler Collection (GCC)1, and also performed incorrect message parsing in a specific case.
These fixes were transmitted to the developer of the original library, and made available at
the Code.UA2 repository.

5.2 Route Netlink and nl80211 wrappers

Implementing a userspace MIH Link SAP means providing a mapping between each primitive
of the MIH service and the kernel interface for the link layers. The Route Netlink and nl80211
interfaces are used for kernel communication, but the Netlink message handling is aided by the
libnl3 library. This library is developed in the C language and offers wrappers for the various
Netlink protocols. The Route Netlink protocol is wrapped by the libnl-route component, and
nl80211 can be accessed through the libnl-genl component. libnl-route provides a complete
set of methods for Route Netlink object management, such that the NEWADDR message for
adding an IP address to an interface can be handled in the following way:

1 struct rtnl_addr *addr = rtnl_addr_alloc (); // allocate message

2 rtnl_addr_set_ifindex(addr , ifindex); // set interface

3 rtnl_addr_set_local(addr , local_addr); // set address

4 rtnl_addr_set_family(addr , fam); // set addr. family

5 rtnl_addr_add(socket , addr , flags); // send message

6 rtnl_addr_put(addr); // deallocate message

These methods automatically create the message headers and the correct payload TLVs;
lines 1 and 6 refer to explicit memory management.

The Generic Netlink support, though, does not provide an extensive set of methods to
handle each message attribute. Instead, it provides methods that aid parsing and iterating
over Generic Netlink payload values.

This library can be used directly in C++, given the compatibility with the C language.
However, explicit memory management can be very problematic if not handled correctly.
When returning or throwing from a method, all the explicitly allocated objects must be
discarded. If many objects are allocated and the method has several points where it could
return, the program becomes visually polluted with memory management procedures. Two
solutions for easily writing safer code are described in Annex A. The Resource Acquisition
Is Initialization (RAII) principle proved the simplest and the overall best approach, so every
object or resource of the libnl library that was included in the project was wrapped in RAII
containers to a component called nlwrap.

nlwrap provides a safer way to use the libnl library, but also takes care of message parsing
for the required subset of the nl80211 protocol.

1GNU Compiler Collection, http://gcc.gnu.org/
2Code.UA software repository, http://code.ua.pt/
3libnl, http://www.infradead.org/~tgr/libnl/

http://gcc.gnu.org/
http://code.ua.pt/
http://www.infradead.org/~tgr/libnl/

60 CHAPTER 5. EMICOM IMPLEMENTATION

5.3 Management Processes

Instead of the monolithic process that the NetworkManager program employs (apart from the
integration with the authentication and dynamic IP configuration tools), EMICOM adopts a
layered approach; this decoupled nature enables the desired OS and technology independence.
This section is dedicated to the illustration of a few interactions between the various compo-
nents, which could nonetheless represent the flows that are commonly concealed in monolithic
solutions.

5.3.1 Startup

The execution of each component at the appropriate timing is aided by a shell script. In a
correct startup, wpa_supplicant must be running before the Links are launched; however, if
it is not running yet, the D-Bus daemon should launch it when its interface is requested. If,
at this point, the MIHF is not running yet, the discovery process fails, but the Link SAP
is not terminated, as the MIHF can be statically configured with the address and port on
which the Link SAP are listening. The MIH User, however, must only be launched once the
MIHF has either statically or dynamically discovered the Links, so they will be detected via
the Capability Discover message. A scenario with the dynamic discovery mechanism is shown
in Figure 5.2. The available command line parameters for each component is available in
Appendix B.

Link_Register.indication

ID: wlan0

CreateInterface

name: wlan0

Link_Register.indication

ID: wlan0

Capability_Discover.confirm

Links: wlan0, ...

LinksMIHF wpa_supplicant

Capability_Discover.confirm

Capability_Discover.request

Capability_Discover.request

Network Manager

Figure 5.2: Message signalling for framework startup.

5.3. MANAGEMENT PROCESSES 61

5.3.2 Connect

A successful connection to a network usually takes the steps depicted in Figure 5.3. It should
be noted that usually, after a Link Up indication, it would be sensible to initiate the IP
configuration procedure. However, this is not carried out until the Link Conf request is
confirmed as successful. The reason for this is that, although a Link Up indication occurs
right after the authentication and association steps, this does not mean the security procedures
are completed, and data other than EAP frames, for example, could be blocked if the network
requires 802.1X authentication.

Network: eduroam

Device: wlan0

Connect

Network: eduroam

Get Network Configs

StateChange

State: config

Link: wlan0

SSID: eduroam

...

identity: username

Link_Conf.request

SSID: eduroam

...

identity: username

Link_Conf.request
AddNetwork

SSID: eduroam

identity: username

...

SelectNetwork

network: eduroam Authenticate,

Associate

Link_Up.indication

Link: wlan0

StateChange

State: completed
StateChange

State: IP config

Link: wlan0

L3_Conf.request

Method: DHCPv4
Method: DHCPv4

L3_Conf.request

dhclient wlan0

L3_Conf.request

StateChange

State: activated

LinkMIHFNetwork ManagerD−Bus App wpa_supplicant /

dhclient / kernel

Connect
Link_Up.indication

Link_Conf.confirm

return 0

L3_Conf.confirm

L3_Conf.confirm
L3_Conf.confirm

Link_Conf.confirm

Figure 5.3: Message signalling for a connection request.

62 CHAPTER 5. EMICOM IMPLEMENTATION

5.3.3 Disconnect

Network disconnection, from the MIH User’s perspective, occurs in a single step, shown in
Figure 5.4. The MIH Link Actions disconnect command in this framework takes the meaning
of not only disassociating the current L2 link, but also clear the configured network layer
attributes of the interface.

Disconnect

Device: wlan0

Link: wlan0

Action: disconnect

Link_Actions.request

Link_Actions.request

Action: disconnect kill dhclient

delete addresses

disconnect

StateChange

State: disconnected

LinkMIHFNetwork ManagerD−Bus App wpa_supplicant /

dhclient / kernel

Link_Actions.confirm
Link_Actions.confirm

Figure 5.4: Message signalling for a disconnection request.

5.4 Link SAPs implementation

The main structuring of the Link SAP implementations for GNU/Linux is represented in
Figure 5.5. For the most part, an 802.3 Link SAP is a subset of the implementation for the
802.11 counterpart. The following sections cover the initial setup procedures for the Link
SAPs, and the mappings for each primitive of the 802.11 Link, referencing differences for the
802.3 implementation where appropriate.

5.4.1 Initial Setup

The Link SAPs are launched from command line, at userspace, but require super user priv-
ileges. Upon launch, a privilege check is performed first. If no super user privileges are
granted, a warning message is issued, but the process continues, as event functionality is still
supported without these privileges.

After the initial privilege check, the configuration parameters are parsed from the config-
uration file and the command line switches, using the Program Options library from boost.
Command line switches have precedence over options indicated by the configuration file.

Once the configurations are parsed, the services are initialized:

• The supported command and event list are set;

• The Link SAP registers with the MIHF;

5.4. LINK SAPs IMPLEMENTATION 63

D−Bus shellnlwrap

wpa_supplicant dhclient

Event

Handler

Command

Handler

ODTONE

MIH_LINK_SAP

Link SAP

Linux Kernel

N
et

li
n
k

R
o
u
te

n
l8

0
2
1
1

Figure 5.5: Link SAP implementation diagram.

• Several nl80211 and Route Netlink multicast groups are subscribed, for event notifica-
tions;

• The D-Bus client proxies are started, and the respective interface is configured in the
wpa_supplicant daemon;

• The program enters an infinite loop, dispatching D-Bus and MIH tasks.

When a message is received at the Link SAP, from either the MIHF (Commands) or the
kernel (Events), the appropriate procedures are handled as explained in the following sections.

5.4.2 Link Detected event

This primitive is generated by the Link SAP every time a new PoA of an access network is
detected, and provides information with a LINK_DET_INFO payload. This primitive does
not apply to the 802.3 standard. For the 802.11 technology, it is generated whenever a scan
detects new APs. This occurs when one of NEW_SCAN_RESULTS, SCAN_ABORTED
or SCHED_SCAN_RESULTS messages is propagated on the nl80211 scan multicast group.
These messages only inform of the scan completion; after these events, detailed scan results
are obtained by sending a GET_SCAN command to the kernel. This response contains some
basic TLVs, the most relevant being the BSS_INFORMATION_ELEMENTS TLV, which
contains the beacon IEs encoded as defined in the 802.11 [10] and 802.11u [54] standards. The
fields for the Link_Detected message are mapped according to the following list:

• Link Tuple ID: this field identifies the detected PoA via its link layer address. The
AP’s MAC address is contained in the BSS_BSSID TLV of the GET_SCAN response.

• Network ID: for 802.11 networks, this is the SSID, which is the first defined IE.

64 CHAPTER 5. EMICOM IMPLEMENTATION

• Network Auxiliar ID: this is the Homogeneous ESS Identifier (HESSID), contained
in the “interworking” beacon IE, only defined in the 802.11u draft.

• Signal Strength: the BSS_SIGNAL_MBM TLV contains the beacon energy in 100×
dBm units.

• Signal over Interference plus Noise Ratio (SINR): this field cannot be set, as
nl80211 does not report interference or noise information.

• Data Rate: the maximum data rate for an AP is the highest value reported in either
the “supported rates” or “extended supported rates” IE.

• MIH Capability Flags: this field indicates which MIH services are supported by
the PoA. The advertisement protocol IE contains this information. The IE has one
identifier for the information services support, and another identifier for both command
and event service.

• Network Capabilities: this is a collection of flags indicating whether the PoA supports
any security features, the available QoS classes, if it provides internet access, emergency
services, and MIH capability. These fields are extracted from specific IEs, most defined
in the new 802.11u draft.

Scans must be initiated by applications, as the kernel takes no action in this regard (but
specific drivers might). The MIH Users are able to request scans through the MIHF, but
this would cause unnecessary recurring message exchanges. The developed Link SAP can be
configured to perform periodic scans, by indicating a trigger period in ms. Instead of using
the scheduled scan feature of the kernel, the Link SAP will control the timer internally, which
yields greater control over concurrent operations.

The MIH standard specifies that only the first detected PoA of a network should be
announced. If more than one AP of the same network is detected in the same scan result, the
Link SAP will assume the one with the stronger signal is the one to announce, as it is most
likely the first encountered.

The event will be propagated to the MIHF if it was not previously subscribed.

5.4.3 Link Up event

The Link SAP will generate this event every time the interface acquires link layer connectivity.
This occurs after the authentication and association steps, and indicates the ability to send
link layer frames, so it occurs before the setup of security features by supplicant daemons.
The nl80211 mlme multicast group informs the association event in the form of CONNECT
commands, which translate to the following Link_Up message fields:

• Link Tuple ID: this field identifies the local link type and address, both configured
when the Link SAP is launched, and includes the newly attached AP’s MAC address as
well, which is provided by the BSS_BSSID TLV.

5.4. LINK SAPs IMPLEMENTATION 65

• Old Access Router address (optional): the old access router is not indicated.

• New Access Router address (optional): the new access router is indicated as being
the AP’s MAC address.

• IP Renewal Flag: indicating this field is not supported, as the CONNECT event does
not provide layer 3 parameters.

• IP Mobility Management: this field is not indicated, for the same reason as the
Renewal Flag.

The CONNECT command does not always indicate a connection success. The same
command is used following a failed association attempt. The STATUS_CODE TLV indicates
the success of the operation; the Link_Up event is only generated when this code indicates a
successful operation.

For IEEE 802.3 devices, the link layer status can be determined via the operational state
object from the Interfaces Group MIB [55]. Changes to the operational state of an Ethernet
device are propagated in the Route Netlink protocol, and the operational state “up” indicates
that link layer frames may be transmitted. The Link_Up event for Ethernet devices includes
only the Link Tuple ID, with local interface information.

5.4.4 Link Down event

The nl80211 mlme multicast group propagates a DISCONNECT command whenever link
layer connectivity is lost. The loss of link layer connectivity for wireless devices can only be
detected if explicitly requested, otherwise it is based on metrics such as the consecutive failure
in transmission or reception from a PoA. This mechanism is handled at the kernel, by the
drivers themselves. A Link_Down message is generated for every DISCONNECT command,
as follows:

• Link Tuple ID: obtained similarly to the previous messages.

• Old Access Router address: not supported.

• Link Down Reason: converted from the REASON_CODE TLV in the DISCON-
NECT message.

Similarly to the Link_Up command, the indication for 802.3 devices is done via LINK
messages indicating a change to the operational state object.

5.4.5 Link Parameters Report event

This message is used by the event service to send various metrics periodically, or if they cross
a given value. The following metrics are described in the protocol:

66 CHAPTER 5. EMICOM IMPLEMENTATION

• RSSI (802.11): no nl82011 command reports the RSSI per se, and Linux interprets
this value as the current measured signal energy, in dBm. In reality, the 802.21 also
means this interpretation, as it does not require a mechanism of retrieving the device’s
RSSI_Maximum, thus rendering an arbitrary RSSI value meaningless. The nl80211
interface offers one method for retrieving various connection parameters against a given
802.11 network device: the GET_STATION command. The response contains informa-
tion and statistics about an associated station which, in the infrastructure mode, cor-
responds to the Access Point. The INFO_SIGNAL attribute from a GET_STATION
response always corresponds to the perceived strength of the last received PDU from
the AP. This value has a great variability; an INFO_SIGNAL_AVG attribute provides
an average of the signal, but is not used in this case.

• Multicast Packet Loss Rate (802.11): this metric is not available, as there is no
specific statistic for multicast traffic.

• Data Rate: the data rate for 802.11 devices is also obtained via the GET_STATION
command. The Route Netlink protocol does no offer data rate information for any
devices. For Ethernet devices, this is only available via ioctl call or by reading the
speed attribute from the network device object in the kernel, via sysfs. The ioctl call
is used for this parameter, due to uncertainties regarding the sysfs path stability across
systems for this file.

• Packet Error Rate: using Route Netlink, it is possible to retrieve an extensive count
of sent and received packets, including error counts. The combination of these statistics
is used to calculate the packet error rate at a given time.

• Signal Strength: this parameter is interpreted similarly to the Wi-Fi RSSI parameter.

• SINR: as explained in the Link Detected message (5.4.2), this parameter is not sup-
ported.

• Throughput: the statistics used to calculate the Packet Error Rate feature can also
be used to track interface-global transmission throughput.

Currently, there are no configurable thresholds for the Ethernet link type. An additional
class of parameters are available in the 802.21 standard, for retrieving QoS statistics per Class
of Service (CoS), such as the minimum, maximum and average packet delay. However, the
Linux kernel does not provide this kind of statistics. Supporting them would require changing
kernel code for the packet schedulers, for example.

5.4.6 Link Going Down event

According to the 802.21 standard, this event can be triggered by well known procedures, or by
heuristic approaches to varying conditions, to indicate that link layer connectivity is expected
to be lost in a given time frame.In Linux, whether the kernel or a userspace routine causes an

5.4. LINK SAPs IMPLEMENTATION 67

interface to disconnect, there is no standardized indication of the occurrence until it effectively
occurs. Hence, this event cannot be directly supported.

An heuristic approach requires monitoring various link parameters, and there is no single
solution for the problem of determining the connectivity loss, as there is no way of determining
the time frame for occurrence of a connectivity loss event. Most algorithms are based on
metrics that are available to the userspace via the MIH event and command services, so the
prediction of connectivity loss events can still be supported by MIH Users.

As such, this event is not supported in the developed Link SAPs. This event should reflect
kernel or network-side management operations advertised to the connected peers, which are
not yet supported in the standards.

5.4.7 Link Handover Imminent event

This event is not implemented. Supporting this event faces a problem similar to the one
described for the Link Going Down (5.4.6). That is, when a link layer decision of handing
over a connection is made, there is no indication of the occurrence to userspace applications
until the operation is completed, so there is no way of telling that a link layer handover is
about to occur.

5.4.8 Link Handover Complete event

The Link Handover Complete event indicates a link layer handover completion. Unlike the
Link Handover Imminent event described previously, it can be detected via the features pro-
vided by nl80211. The kernel uses the ROAM message to indicate that a link layer han-
dover was performed between BSSs. However, this is not the most commonly seen behav-
ior, and it is more common to see a DISCONNECT followed by a CONNECT event se-
quence. Since the DISCONNECT message will immediately generate a Link_Down event,
the Link_Handover_Complete is only generated if the ROAM message is used.

5.4.9 Link PDU Transmit Status event

This mechanism, as explained in the 802.21 standard, requires implementing a layer that
mediates the transmission of all network packets, and further requires higher layers to indicate
a unique identifier per packet. The developed Link SAP runs at userspace; intercepting packets
would imply a great overhead, and this feature would not be useful for the time being, so it
was not implemented.

5.4.10 Link Conf Required event

This message follows an attempt at associating to a network, which requires further elements in
order to complete the setup procedures for link layer connectivity. This message is generated
whenever wpa_supplicant issues a NetworkRequest D-Bus signal. Each signal contains a

68 CHAPTER 5. EMICOM IMPLEMENTATION

pair of strings, indicating the field type and description for the requested parameters. Both
parameters are propagated in the Event to the MIHF.

5.4.11 Link Capability Discover command

The set of supported events and commands for each Link SAP is statically known for each
implementation. Currently, the response from this command is also static.

The nl80211 interface supports querying links in order to determine their supported com-
mands and events as well. However, has all hardware seemingly supports the necessary
features, the supported services are not dynamically discovered. If it is the case that some
hardware does not support certain required features, the dynamic discovery method must be
implemented, following an algorithm such as this, to be executed during the setup phase:

1. Start with a complete list of 802.21 primitives, and the required nl80211 commands and
events for each.

2. Query the device capabilities via nl80211.

3. For each 802.21 primitive, see if the required nl80211 messages are supported. If at least
one command or event is missing, remove the primitive from the capability list.

Newer Linux kernel versions might also provide additional support for certain features
that cannot be implemented in the Link AP yet. However, until those features are released,
there is no way of knowing whether or not they are supported without actually programming
the support for them.

5.4.12 Link Event Subscribe command

The MIHF delivers event subscription commands on behalf of MIH Users. The ODTONE
implementation in particular takes action in order to reduce message exchanges between
entities: if an MIH User requests a list of events that has already been subscribed for that
Link SAP, the request is not forwarded to the destination and the MIH User immediately
receives a success response. If the request contains at least one event that has not been
subscribed, the MIHF redirects the request to the intended Link SAP. This redirected request
contains the complete list of subscribed events; from the perspective of the MIHF, and resource
management, there is no benefit in stripping the list before sending it to the Link SAP, as
the list of events is a fixed-size bitmap.

The list of subscribed events is stored in each Link SAP, in the form of flags. During
startup, the flags indicate that no event is subscribed. Over time, with the reception of Link
Event Subscribe commands, the requested list is first stripped against the list of supported
events, to remove unsupported events, and then it is added to the list of subscribed events.

The response to a Link Event Subscribe command will always include the list of requested
events that are supported as successfully subscribed, even if they have been previously sub-
scribed. Similarly, the MIHF will redirect the complete response to the source MIH User, so

5.4. LINK SAPs IMPLEMENTATION 69

it will never get an error response for subscribing the same events twice (which would result
in uncertainty about whether the subscription went wrong or the subscription just would not
make sense).

5.4.13 Link Event Unsubscribe command

Unsubscribing events comprises a series of operations very similar to the event subscription
counterpart, described in the previous command: a received list of events for subscription is
first stripped to remove the unsupported events, then the list of subscribed events is updated.
No errors will arise from unsubscribing already unsubscribed events.

5.4.14 Link Get Parameters command

The response to a Link Get Parameters command is very similar to the Link Parameters
Report event, the greatest difference being in respect to how the parameters report are con-
figured. A Parameters Report may be issued periodically or when a threshold is crossed,
whilst a Get Parameter command will retrieve the given value immediately. The list for
supported parameters is the same as for the Parameters Report event (see 5.4.5).

Additionally, the Get Parameters command can be used to get the current device op-
erational mode and the channel in use, for wireless links. Determining whether a link is
powered on or off is done via the Route Netlink GET_LINK message and checking the re-
spective flags. Wi-Fi devices can also be queried for their power saving status via the nl80211
GET_POWER_SAVE command. The frequency channel for a link can be obtained via the
GET_STATION nl80211 command but requesting this parameter when there is no active
connection will cause a failure response.

5.4.15 Link Configure Thresholds command

The threshold configuration is processed according to the following sequence, also described
in Figure 5.6:

1. For each requested parameter:

a) check whether it is supported. If not, set a failure status for the specific parameter
and move to the next parameter.

b) If the parameter is supported, the attributes of the threshold configuration request
are interpreted:

i. If the “cancel” action is requested and no list of threshold values are given,
all previously configured thresholds for that type are removed. If threshold
values are indicated, only thresholds with the specified values are canceled. If
a cancel is requested for a threshold that was not configured, no error message
is generated.

70 CHAPTER 5. EMICOM IMPLEMENTATION

ii. If a “period” is indicated, it is regarded as a request for a periodic report for a
given value. This is attributed it’s own thread, that wakes up at the requested
interval to report that value.

iii. If the “one shot” attribute is set, the threshold values are inserted in a list, with
an indication that the specific threshold is to be removed once it is crossed.

iv. The “normal” action is similar to the “one shot”, except the given threshold
will be continually verified until it is explicitly canceled.

2. After finishing the configuration of the thresholds, the threads for verifying the thresh-
olds are stopped/started, depending on the resulting configuration.

Start

(configure thresholds)

Parameter

supported?

Parse threshold

type "cancel"?

has "period"?

"one−shot"?

end of list?

End

report
Insert periodic

threshold
Insert one−shot

thresholds
remove matching

yes

no

no

threshold list
advance in

update threads

Insert threshold
no

yes

yes

yes

no

no yes

Figure 5.6: Threshold configuration command handling.

The nl80211 interface supports configuring thresholds at the kernel level for variables such
as signal strength and packet error rates. However, this mechanism only allows configuring
one value. The 802.21 standard allows configuring various thresholds on the same parameter
so, for example, it should possible to subscribe notifications for both when the signal strength
goes below −80dBm and above −20dBm. The need to support this flexibility (and the fact
that it does not support as many parameters or even Ethernet devices) led to ignoring the
threshold configuration feature of the nl80211, and performing all threshold checks by periodic

5.4. LINK SAPs IMPLEMENTATION 71

polling. A configuration parameter for the Link SAP allows defining the default period for
threshold checking, in milliseconds.

The parameter reporting features apply only to connected links. When there is no connec-
tivity (on Link Down event), or the device is powered off, the threads for threshold verification
and parameter reporting are deactivated until the link comes back up (on Link Up event).

5.4.16 Link Actions command

The Link Actions command is used to control the operational state of the device. Powering
the interface up and down is done via the Route Netlink protocol by respectively setting
or unsetting the IFF_UP flag in a LINK message. The request to disconnect an Ethernet
interface is equivalent to powering down the device. Wi-Fi devices are disconnected by issuing
a DISCONNECT command on nl80211. Setting the device to low power is translated into
enabled the power saving feature via the SET_POWER_SAVE command (not supported in
Route Netlink, for Ethernet devices).

The Link Actions messages also allow requesting a device to scan. If a scan is requested
and the device is powered down, an error message will occur. It is also common that a scan
request will be only partially completed if a connection is active, in which case the result
will contain an error indication. The process of obtaining the scan results is similar to the
Link Detected event generation (5.4.2), although a response for the scan request contains less
information than a Link Detected message (although completing a scan will separately trigger
Link Detected messages).

The response to a Link Action message with a scan request may be generated only after a
few seconds, depending on the time the device takes to complete the scan operation. Further-
more, the command may indicate a delay time, in milliseconds, for execution of the action,
which is enforced before any action is performed.

Another parameter of the Link Actions primitive can request the Link to retain resources
on disconnecting, so that a later link connection can be more efficient, as well as requesting
the serving PoA to forward buffered data to the new target PoA, preceding a handover
attempt. These features refer to handover management in mobility scenarios, which are not
yet considered, and thus not implemented.

5.4.17 Link Conf command

The Link Conf command is meant as a request to authenticate/associate to a network, includ-
ing the setup of required security procedures. Since this command was developed with the
integration with wpa_supplicant in mind, the provided configuration elements are directly re-
lated to the wpa_supplicant key-value pairs for network configuration. Although the message
format for the Link Conf message is based on a list of OCTET_STRING pairs, some param-
eters have to be converted to different types before communication with the wpa_supplicant
daemon. Thus, receiving this command automatically translates to the following requests on
the D-Bus Interface object of the wpa_supplicant daemon:

72 CHAPTER 5. EMICOM IMPLEMENTATION

1. AddNetwork: this method accepts a wpa_supplicant network configuration block that
is added to the list of the daemon’s known networks. This step takes place even if there
are no security procedures, in which case the network configuration contains only the
desired SSID and other wpa_supplicant-specific configurations

2. SelectNetwork: this is used to effectively request the wpa_supplicant to initiate the
authentication, association and security procedures for the configured network.

wpa_supplicant propagates D-Bus signals announcing device state changes. A change to
the “completed” state indicates that the configuration procedures were successfully completed,
whereas the “disconnected” mode indicates a failure in setting up a connection. The Link SAP
waits for these signals in order to include the status information in the response message.

The D-Bus interface will also signal network requests for missing security tokens that the
supplicant must provide. Receiving this signal while attempting to configure a network means
that the particular operation was not successful, but does not imply that the connection failed.
It could mean that further steps are required from the Mobile Node or the user. This special
case will issue an “authorization failure” (as opposed to a simple “failure”) MIH response,
followed by an MIH Link Conf Required event.

5.4.18 L3 Conf command

Several mechanisms are employed for IP and DNS configuration. It is possible to request the
Link SAP to perform dynamic IP configuration, using DHCP, and, at the same time, provide
additional addresses, routes or DNS servers, without conflict.

DHCP configuration is accomplished using dhclient, referred in 3.3.5. It was selected over
dhcpcd for being developed by ISC and providing DHCPv6 support. However, as it does
not expose an API, a wrapper was developed for scripted invocation of the daemon. This
wrapper provides methods for forking the process with various options, and saves its PID,
for future cancellation when a DHCP release is required. Via command line options, the
dhclient program can be requested to perform DHCPv4 and DHCPv6, as well as stateless
IPv6 autoconfiguration (by performing Information requests for neighbor discovery).

After dynamic configurations, if the request contains IP addresses or routes to configure,
they are associated to the network interface via the Route Netlink protocol using ADDR and
ROUTE messages.

Manual DNS configuration is achieved by directly writing to the DNS configuration file
for GNU/Linux systems. This file has support for many options such as request timeouts,
number of attempts and server list sorting, but currently only name server entries are added.

A new L3 Conf request will always clear the previous network address configurations, as
will the Link Actions “disconnect” or “power down” request commands.

5.5. MIHF EXTENSION 73

5.5 MIHF Extension

The ODTONE library implements the original 802.21 primitives. The additional Link Conf,
L3 Conf and Link Conf Required detailed in the previous section are implemented in the
Command and Event service similarly to the existing primitives.

First, a Message ID code is assigned to each primitive, which is used in the message head-
ers. The attribution follows the guidelines from the 802.21 standard, and does not cause
inconsistencies with the existing messages, although identifiers for other existing extensions
might collide with the attributed codes. Additional message attributes for network identifica-
tion and security parameters interchangeable with the wpa_supplicant and NetworkManager
formats are also proposed, and the respective TLV encodings are defined once again following
the reserved codes for extensions.

The handlers that process each message to and from the Links and MIH Users are im-
plemented in the command and event service ODTONE components, alongside the existing
handlers and code structure.

There is an ODTONE parameter for specifying the response timeout for MIH commands.
This value is to be made small enough that entities can perceive failures quickly. However,
tasks such as security setup and IP negotiation can potentially take several seconds. As such,
the timeout handlers for the Link_Conf and L3_Conf primitives are made to be triggered
after their own timeouts, independently configured before launch.

All the code affecting the ODTONE library is enclosed in a specific pre-processor macro
that helps users compiling it without support for the primitives.

5.6 Network Manager implementation

The mechanisms described in this section further evidence the need for various commands
and mechanisms implemented in the Link SAP, including the proposed MIH extensions.

The main goal of the MIH User was to expose the functionality provided by the existing
GNU/Linux NetworkManager, by implementing the same D-Bus API. Desktop applications
use the API for enabling and disabling network devices and connections, and giving visual
feedback about the current network state. Hence, in its current state, EMICOM does not
employ automatic decision algorithms, and implements only functionality to respond to user
inputs via the D-Bus API and the various tools that use it. In this way, the framework does
not enforce a specific method for conectivity management.

This section also highlights certain NetworkManager features that are not supported,
mostly due to missing support from the MIH primitives. Extensions to support those features
are not implemented, since they were deemed not crucial for network managing operations.

D-Bus, and the NetworkManager API in particular, promotes object-oriented program
designs. The implemented architecture is represented in Figure 5.7, with five major compo-
nents following the D-Bus architecture for the NetworkManager interface. Each component
is explained in the following sections.

74 CHAPTER 5. EMICOM IMPLEMENTATION

NM Applet NM Configuration Editor

D−Bus

...

MIH_SAP

ODTONE

Wi−Fi Ethernet Device Settings
Network
Manager

Figure 5.7: Network Manager MIH User components.

5.6.1 Network Manager

The Network Manager component is the central object that manages the other entities, and
provides the basic interface with both the desktop applications and the MIH services. Upon
launch, this object initiates the discovery process via the MIH Command Service by registering
itself as an MIH entity and requesting information about existing Links and their capabilities.
Currently, all available Links have to be registered with the MIHF before the MIH User is
launched; hotplug support would require the MIHF to announce newly registered Links, via
the Event Service, or that the MIH User kept polling for new Links via the Command Service.

After the discovery process, a Device object is created for each discovered Link, according
to its specific link-type field (for example, an 802.11 Link will trigger the creation of a Device
Wireless object). Some events are also immediately subscribed, which will enable monitoring
the Link’s state (signal strength and data rate). Events pertaining to device states are not
delivered directly from the Event Service to the Device object. Instead, they are first processed
by the Network Manager object in order to control connectivity and status update operations.

This interface allows globally enabling or disabling network management, as well as ini-
tiating or terminating connections on specific devices. Initiating a connection via the D-Bus
interface implies indicating the required network configuration, stored in the Settings compo-
nent, and the device on which to initiate the connection. It is possible to initiate a connection
without referring the configuration object, in which case the user provides a reference to an
element that will help create the network configuration on demand (for example, a reference
to the desired AccessPoint object helps filling the network configuration parameters for an
802.11 network).

5.6.2 Settings

A single Settings object is launched for the lifetime of the MIH User. The interface exposed
by this object supports the same Ethernet and Wireless network configuration use-cases as
the original NetworkManager program, using the nm-connection-editor tool previously shown

5.6. NETWORK MANAGER IMPLEMENTATION 75

in Figure 3.7.

Each network configuration is associated with a unique Connection object, which uses
an internal data structure for conversion both to the NetworkManager settings map format,
used by the nm-connection-editor tool, and to the 802.21 format for interaction with the
Command Service. The Connection object class also provides a marshalling and unmarshalling
method for data persistence. Configurations are stored in a directory, where a file will be
created for each Connection object. The boost PropertyTree library allows storing and parsing
information from configuration files in the INFO, JSON, XML and INI formats. However,
since there is no intention of having users directly editing the files, as the nm-connection-editor
tool provides access to all variables, persistence is accomplished using object serialization using
the boost Serialization library. Not only this method provides greater space-efficiency, it is
also easier and more efficient to parse than other human-readable formats.

Currently, there is no support for VPN, mobile broadband, Digital Subscriber Line (DSL)
modems or Bluetooth features of the nm-connection-editor tool.

5.6.3 Device

The Device class is the base data type for all device types. Each Device object holds a reference
to the MIH Command Service that it uses to perform control on the underlying Link. This
includes the methods to Enable, Disable or Disconnect the device, which are translated to
Link Action MIH messages, but also the link and network layer configuration.

The Device interface emits D-Bus notifications on device state changes, signalled by Link
Up and Link DownMIH messages. However, as mentioned earlier in 5.6.1, MIH event messages
are not subscribed directly by Device objects; they are first processed and multiplexed by the
NetworkManager component, which then indicates each Device of the occurrence. Other than
Link Up and Down, the NetworkManager also updates the Device for the various states of
the connection process, as described in the Device D-Bus interface (3.4.2.2).

5.6.4 DeviceWired (Ethernet)

The DeviceWired interface extends the base Device class to provide additional properties and
functions, as described in 3.4.2.3. The boolean Carrier attribute, which indicates whether or
not a cable is attached to the interface, is not supported, as there is no MIH mapping for the
parameter. The lack of support for this attribute causes no malfunction, but interfaces might
rely on it to prevent users from requesting a connection on an Ethernet interface that has no
cable attached, and will inevitably fail. Figure 5.8 evidences this type of feedback.

76 CHAPTER 5. EMICOM IMPLEMENTATION

Figure 5.8: Example of carrier detection feedback.

Another unsupported feature is the virtual HardwareAddress. It is always equal to the
PermanentHardwareAddress, and there is no support for changing the HardwareAddress of
an interface through the EMICOM framework. In case such a feature would be required, it
could be implemented via an additional parameter in the Link Conf command.

The DeviceWired interface generates D-Bus signals whenever there is an attribute change,
which are used mostly by the desktop applets and notification systems.

5.6.5 DeviceWireless (Wi-Fi)

Similarly to the DeviceWired interface the DeviceWireless interface does not support the
virtual HardwareAddress attribute. Attribute changes will trigger D-Bus signals as well.
DeviceWireless interfaces implement an additional method, for requesting radio scans.

This object also exposes a list of available APs, which is maintained using the information
from the Link Detected events. If the Device stops receiving updates from certain previously
added AccessPoint instances, they are removed after a given timeout. This means that until
a timeout occurs for one AccessPoint object, it may be the case that the particular AP is
actually no longer reachable if a user requests connection to it. Applications should minimize
this risk (also present in any other Network Manager) by requesting scans immediately before
requesting a network connection, for example.

5.6.5.1 AccessPoint

The AccessPoint interface expects many scan results information for each object. Most of
it is supported. However, certain attributes are also missing due to lacking MIH primitive
attributes.

The missing attributes refer to the security capabilities of each AP, namely whether it
supports WEP, WPA, Counter Cipher Mode with Block Chaining Message Authentication
Code Protocol (CCMP), TKIP, 802.1X, etc. These features are available at the kernel in-
terfaces; however, the MIH the Link Detected event message only indicates whether or not
security is supported, ignoring individual mechanisms.

The lack of this parameter results in difficulty for the user in setting up the configuration
for unknown networks. Nonetheless, when the user attempts a connection to a network with

5.7. SUMMARY 77

all the required information, the Link Conf Required message will indicate the missing fields
for authentication, which may then be introduced.

5.7 Summary

The developed framework implements the basic functionality for connection management.
The existing NetworkManager applets and configuration tools can be used transparently to
the user. Some parameters of the old D-Bus are not supported, but they were not implemented
since they do not limit basic network management.

This architecture supports the common tasks offered by most connection management
solutions. The deployment of a 802.21 infrastructure in the networks will effectively enable
advanced connection management, encompassing policies traditionally not available for net-
work selection algorithms. The available GUIs, and the D-Bus interface, should be updated
to reflect these new capabilities.

Chapter 6

Evaluation

The success of the developed architecture is analyzed in terms of impact over the existing
NetworkManager solution. Since the developed framework consists of a multi-process solution
that relies on IPC mechanisms, there is an obvious overhead in communication. In the
following sections the EMICOM framework is evaluated in terms of system footprint, and
compared with the existing GNU/Linux NetworkManager in aspects such as the amount of
code, memory consumption and battery drainage, which are important in mobile devices.

The benefit of enhanced network management comes from the IEEE 802.21 standard.
Section 6.5 gives a view of various different scenarios that distinguish the EMICOM framework
from common network management solutions, made possible by the mechanisms introduced
with the MIH architecture.

6.1 Test Setup

The tests were run in a laptop computer with the specifications defined in Table 6.1. The
testbed for network experiments contains two wireless Linksys1 WRT54G AP with the DD-
WRT 2 firmware, connected by Ethernet to a video server machine, as depicted in Figure 6.1.

Component Value
Operating System Archlinux
Kernel version 3.5.4

Processor Intel Core i7 M620 (2× 2.67GHz)
Memory 4GB at 1333MHz

Ethernet card Intel PRO/1000 CT
Wi-Fi card #1 Intel Centrino Advanced-N 6200
Wi-Fi card #2 ASUSTeK WL-167g

Table 6.1: Computer attributes.

1Linksys, http://home.cisco.com/
2DD-WRT firmware, http://www.dd-wrt.com/

79

http://home.cisco.com/
http://www.dd-wrt.com/

80 CHAPTER 6. EVALUATION

PoA#2

PoA#1

Media ServerEthernet
Mobile Node

Figure 6.1: Testbed architecture.

6.2 Inter process overhead

In practice, the proposed solution adds a layer to the existing kernel interfaces for network
management, which abstracts the media dependent control. Communicating through this
layer introduces an overhead that causes delays between operations, and implies data trans-
mission between processes, at a cost.

The 802.21 standard defines data transmission between remote entities via transport proto-
cols such as UDP and TCP, encoding the necessary information in the TLV format. ODTONE
uses this format for local transmission over transport sockets as well, allowing it to achieve
the ability of being OS-independent, but at an obvious cost. Communication between the
higher and lower layers require transmitting from the MIH User to the MIHF, then from the
MIHF to the Links; answers traverse the inverse path. Messages from the event service travel
only from the Link SAP to the MIH User, via the MIHF as well. Communication with re-
mote entities is a necessary overhead and does not account for IPC analysis. Table 6.2 shows
the number of MIH messages exchanged for various situations, including the total payload of
transmitted data.

Operation # of Messages Total payload (bytes)
Power DOWN 4 162
Power UP 4 164
L2 Connect (simple) 4 197
L2 Connect (WPA + EAP) 4 508
L3 Configure (DHCP) 4 193
Disconnect 4 162
Link Detected event 2 144
Link Down event 2 80
Link Up event 2 102

Table 6.2: MIH message sizes.

From these values it is visible that Link events take the fewest amount of bytes required

6.2. INTER PROCESS OVERHEAD 81

(between 80 and 144 bytes). Link commands demand more information (between 162 and 197

bytes), but it is the new more complex commands, where the DHCP and security association
and capabilities have been added to the standard 802.21 behaviour, that require the most
amount of information (between 193 and 508 bytes, respectively).

The delay for the transmission of these messages is not analyzed, since the performance is
internal and highly dependent on the load and capacity of each system. However, [56] shows
that, for message sizes of up to 512 bytes, a low end (by today’s standards) Linux machine
delivers a rate of over 70 000 messages per second, translating to just 14µs per message.
Furthermore, [45] shows a great performance improvement in transfer rates for Linux IPC
by using UNIX domain sockets instead of UDP. ODTONE does not support UNIX sockets
yet but, given its open source nature and the message-oriented IPC mechanism, the support
should be implemented with little effort.

Table 6.3 shows a comparison of connection timings between the Mobile Node and PoA#1,
which is running a Wi-Fi network protected with WPA2 and running a DHCP version 4
(DHCPv4) server. Both connections are started from a clean state, with the Wi-Fi device
powered off. The first time interval is measured from the point each solution begins the
association procedure and until the link layer setup is completed (i.e., immediately before
the IP configuration step). The second interval corresponds to the start of the network layer
configuration procedures, and until the connection is fully completed. These steps are timed
via the reception of D-Bus signals for the Device state changes. The test was repeated 50

times for NetworkManager and EMICOM, and the error is indicated for a confidence interval
of 99%.

NetworkManager EMICOM
WPA Association 3.428± 0.020 3.353± 0.026

DHCP 1.233± 0.022 1.136± 0.012

Total 4.661± 0.028 4.490± 0.030

Table 6.3: Network configuration timings, in seconds.

Despite the additional overhead of the EMICOM solution, a slight improvement can be
observed in both in the link and network layer setups. Several factors contribute to this
result. wpa_supplicant is the link layer and security configuration daemon for both solutions,
although NetworkManager uses the socket interface, and EMICOM the D-Bus mechanism. In
principle, given the fact that D-Bus messages are routed via an additional daemon, this should
account to worse performance from the EMICOM solution. As for DHCP, dhclient is used
in both cases, and the interaction is done via scripted invocation by both network managers.
Thus, the external factors do not contribute to the increased performance, which can only be
explained via the internal routines of each solution. In fact, following the connection request
by the user, before the link layer association step, NetworkManager spends even more time
with an additional preparation phase not considered in these timings.

82 CHAPTER 6. EVALUATION

6.3 Code base

When compared to a native solution, the extra layer for media abstraction requires a greater
amount of code for translating operations. However, the higher layers require less code for
controlling individual interfaces, since the procedures are are reused across device technologies.

Table 6.4 offers a direct comparison between the provided framework and the GNU/Linux
NetworkManager (version 0.9.6.0) solution, using the SLOCCount1 tool. Despite being devel-
oped in different programming languages (C vs. C++), the number of code lines is nonetheless
an acceptable measure of development effort. It should be noted that not the entire code-
base of NetworkManager is considered; the counting excludes NetworkManager components
not yet included in the EMICOM framework such as automatic VPN setup, Bluetooth and
WIMAX support, etc.

NetworkManager EMICOM

Total: 70 815

MIHF (ODTONE) 11 606

Total: 21 960

MIH User 5 277
802.11 Link SAP 1 610
802.3 Link SAP 897
libnl wrapper 1 347

dhclient wrapper 77
wpa_supplicant wrapper 1 146

Table 6.4: Code base comparison, in number of source code lines.

It is clear that the whole EMICOM framework, providing the same features as the consid-
ered for the NetworkManager software, requires less than a third of the source code. Several
reasons contribute to this fact, the most prominent being the different programming languages.
Other factors include the used libraries. ODTONE and EMICOM are highly dependent on
the Boost libraries2 for data manipulation, which could also be a relevant contribution to the
decrease in code size.

6.4 Memory usage

Process memory usage is a common limiting factor in some deployment scenarios. Embedded
systems usually have limited memory. Even in desktop computers, it is desirable that resident
applications account for a small impact on the overall system capacity.

Measuring process memory usage in modern OSs is a complex task. Processes commonly
make use of system libraries that, once loaded into memory, can be reused several times by
several processes, and thus the system does not allocate multiple instances of the library.
These libraries can be considered components of a program, but the program may not be the
sole responsible for loading the library into the memory.

1SLOCCount tool, http://www.dwheeler.com/sloccount/
2Boost Libraries, http://www.boost.org

http://www.dwheeler.com/sloccount/
http://www.boost.org

6.5. BENEFITS 83

The Valgrind1 utilities allow developers to track memory allocations of individual pro-
cesses. This utility can accurately report the memory that each process allocates both in the
Heap and Stack memory segments. Table 6.5 shows the size of a snapshot of the combined
Heap and Stack memory allocated by each solution, captured after an initial launch, after the
attachment to both an 802.3 and 802.11 network (for this specific test, the computer is also
attached by Ethernet, not represented in Figure 6.1).

NetworkManager EMICOM

Total: 967 064

MIHF (ODTONE) 35 688

Total: 553 496MIH User 401 192
802.11 Link SAP 52 200
802.3 Link SAP 64 416

Table 6.5: Memory allocated by each solution, in bytes.

Again, comparing similar situations for both solutions, the EMICOM framework shows a
great benefit, compared to the NetworkManager software. NetworkManager is openly devel-
oped, and has existed for a long time. Apart from the base ODTONE library, the EMICOM
software has not been reviewed by external developers, and has not been submitted to opti-
mization procedures, which means there could still be improvements in this area. It should be
noted that the boost libraries do not directly contribute to this factor, since they are mostly
header-only, thus not loaded as shared system libraries.

6.5 Benefits

The real world benefit for this framework is the plethora of scenarios where it may be consid-
ered for network selection and handover optimization. One of the main aspects that benefit
a system with an 802.21-based networking solution is the Information Service, that will al-
low obtaining information about neighboring networks without powering additional radios.
This service also allows the exchange of many network configurations and policies that will
allow decision algorithms to take into account variables such as the cost for each network, the
throughput or delay requirements for each application, and much more.

6.5.1 Battery life

This aspect is increasingly relevant, as more and more mobile devices provide multiple radios
for multiple network technologies. Figure 6.2 shows two different test runs, where a single
laptop computer is retrieving a video stream via a Wi-Fi interface at a fixed rate of 500KB/s.
In one test run, the laptop is running the GNU/Linux NetworkManager, and the second is
using the EMICOM framework. Both have one Ethernet interface and two Wi-Fi interfaces.
This need not be the case, as there should be little benefit in having two similar radio in-
terfaces, but it serves to compare the impact of having more than one wireless device in the

1Valgrind utilities, http://valgrind.org/

http://valgrind.org/

84 CHAPTER 6. EVALUATION

0 0.2 0.4 0.6 0.8 1 1.2

·104

0

2,000

4,000

Time (s)

C
ar
gh

e
(m

A
)

Unoptimized Management
EMICOM-enabled Management

Figure 6.2: Battery drain comparison.

same system. Moreover, due to EMICOM’s usage of 802.21 abstraction mechanisms, the same
events and commands used in this scenario would still be valid in scenarios featuring other
technologies such as 802.16 and 3GPP links.

A regular Network Manager typically employs very basic and static connectivity strate-
gies, which implies having all the devices active at all times. In this specific scenario, we
enhanced the base behaviour by allowing the second device to not be active at all times, but
instead waking up at regular intervals of 30 seconds (halving in frequency every half hour) and
performing a scan. A 802.21 solution, however, does not need to power the secondary device
for learning about neighbouring networks, because it can rely on the Information service for
the task of finding neighbouring networks, so in this scenario the MIH User always keeps the
second device off, only activating it when an optimized handover opportunity occurs.

In the collected results, it is clear that the EMICOM run starts with higher initial capacity.
This is common, as batteries often report different maximum capacity values at each charge
cycle. The impact of powering an additional interface and performing scans is nonetheless
noticeable and very significant, reducing the total autonomy of the device by a factor of 30%.
Interestingly, though, the chart does not portray the increase in scan intervals after each 30

minute period. The initial interval of 30 seconds is perhaps a low initial value, resulting in
maximum scan interval of 8 minutes in the experiment, although this would be an acceptable
value for connectivity in a high mobility scenario.

This test does not effectively consider the real life context where network handovers would
be performed, as the mobile node is always connected to the same PoA. The data exclusively
highlights the potential impact on overall power consumption of the device by not having to
periodically activate multiple network interfaces.

6.5.2 Optimal selection

Figure 6.3 provides a 60 second test scenario where the EMICOM tool benefits from informa-
tion from an MIH User in the Network, assisting with the handover decision. In this specific
test, two Wi-Fi APs offer access to the same network. The computer is trying to maximize its

6.5. BENEFITS 85

0 10 20 30 40 50 60

0

10

20

Time (s)

T
hr
ou

gh
pu

t
(M

bi
t/
s)

Connection to PoA with greater RSSI
Connection to PoA with best RTT to source

Figure 6.3: Optimal AP selection for throughput.

TCP throughput by retrieving an on-demand video from the server. One AP has a stronger
signal than the other (−23dBm versus −39dBm), but it offers a lower throughput. This could
be because the stronger AP is serving a greater amount of users, or has a low downlink, or
any other reasons. In the specific test case, the rate was throttled at the AP on purpose. The
GNU/Linux NetworkManager always stays connected to the strongest AP, since it only bases
its connectivity decision on signal level. EMICOM however, using 802.21, receives information
pushed by the network (e.g., via a MIH Net Handover Commit request command) to the User
after 30 seconds, suggesting a handover to the other AP. This enables better load balancing
on the network, while directly benefiting the user service.

A period with total loss of connectivity is noticeable. This is the occurrence of the hard
handover, since the integration with AP mobility management engines achieving seamless
mobility are out of scope from this dissertation. However, EMICOM, is able to leverage
from mobility management primitives provided by 802.21, when such IP mobility schemes are
employed.

Nonetheless, via the stimuli provided by the 802.21-enabled Network Manager, the EMI-
COM framework was able to enhance the throughput of the video reception by performing a
link switch to an AP with better downlink connectivity.

Chapter 7

Conclusions and Future Work

Network Manager applications are becoming standard in different Operating Systems, but lack
the flexible capabilities for abstract access technology interfacing as well as disseminating and
receiving handover optimization information from other sources, both local to the node or
remotely available in network controlling entities.

The proposed framework, more than just integrating 802.21 with Network Manager func-
tionality, extended the first with the support for security association and address negotiation
procedures, which are invaluable in today’s connectivity procedures in mobile networks. Apart
from the proposed extensions to the standard, this project also produced standard Link SAP
implementations on top of current hardware and Linux kernel facilities, to the extent possible,
in integration with the ODTONE project.

The implementation of EMICOM also allowed the realization of an extensive evaluation
effort, providing insight on the benefits of using Media Independent information and con-
trol capabilities to assist optimized handover and interface selection. The obtained results,
in seamlessly replacing the popular NetworkManager from the GNU/Linux Operating Sys-
tem, showed a reduced code base, better battery consumption and support for opportunistic
network attachment and optimized handover procedures.

Personally, this work enriched the author’s skills with a greater understanding of network
management procedures, as well as the specific case of GNU/Linux network programming.
The privilege of working with state of the art standards for future networks also constituted
an important chance for developing autonomous and effective work methods.

7.1 Contributions

Network management in mobile networks is currently an important topic of discussion in the
telecommunications fora. This work presents yet another contribution to this discussion, by
providing a proof of concept architecture and preliminary results for ubiquitous network man-
agement. The obtained results were presented at Conferência sobre Redes de Computadores1

in November of 2012.

1Conferência sobre Redes de Computadores, http://crc2012.av.it.pt/

87

http://crc2012.av.it.pt/

88 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

The MultiMEDia transport for mobilE Video AppLications (MEDIEVAL)1 project of the
FP7 program, by the European Commission, is researching the architecture and inherent
mechanisms for evolving today’s Internet towards the efficient support of video services over
wireless access networks with mobility support, commercially deployable by operators. It re-
lies on the IEEE 802.21 standard, also via ODTONE, as an enabler of interactions between
the different access technologies and high-level decision modules. This dissertation, developed
in the same research group as the ODTONE framework, contributed to a broad test of the
library’s features and capabilities, as well as source code fixes and suggestions to the project;
this included direct support given to different partners of the project’s consortium, belonging
to different international research institutions and industry. Also, the practical use of the
library allowed for a vast contribution to other users in the form of documentation and assis-
tance in the mailing lists, regarding a variety of issues and technical difficulties. The results
were also included in a technical report

Furthermore, the developed 802.11 Link SAP was adopted by the MEDIEVAL project,
increasing the derived project with media independent control to Wi-Fi interfaces, as well
as providing a complex testing environment for the work presented here. Finally, it was
also deployed on the demonstration testbed which showcased several demonstrations for the
project’s second year audit, where an evaluation mark of EXCELENT was given. A project’s
technical report includes the description of the developed Link SAP, as well as the results
from this dissertation.

Portions of the software were also included in an Alcatel-Lucent Bell Labs2 open day
demonstration for seamless connectivity handover between Wi-Fi and cellular technologies.

The software will be publicly available at https://github.com/ATNoG/EMICOM.

7.2 Future work

In its current state, the EMICOM framework does not fulfill the OS-independence requisite
for Network Managers. This can only be achieved by the reimplementation of the Link SAP
functionality for different platforms. Also, at the moment, the MIH User is tightly coupled
with the D-Bus IPC framework which, although ported and tested in various Operating
Systems, is mainly focused on GNU/Linux.

The current NetworkManager interface is not equipped with appropriate mechanisms for
gathering application requirements and user preferences for network selection. First, the
D-Bus interface needs to be expanded with the methods for applications to request certain
parameters, and for the users to be able to specify advanced requirements such as network
cost per duration or per bit. This then has to be put together in the decision algorithms for
network selection, following some prioritization criteria.

Support for mobility protocols should also be integrated in the network setup procedures,
for seamless handover capabilities. The work presented in [6] is a success case for a network-

1MEDIEVAL, http://www.ict-medieval.eu/
2Alcatel-Lucent Bell Labs, http://www.alcatel-lucent.com/wps/portal/belllabs

https://github.com/ATNoG/EMICOM
http://www.ict-medieval.eu/
http://www.alcatel-lucent.com/wps/portal/belllabs

7.2. FUTURE WORK 89

controlled mobility scenario using 802.21, specifically the ODTONE implementation.
Finally, the 802.21 architecture depends on the configuration of MIH nodes to discover

each other. The dynamic procedures proposed for this discovery, based on DHCP and DNS,
have been tested in [57], using ODTONE as the base framework as well.

Bibliography

[1] “The World in 2011: ICT Facts and Figures,” 2012. 1

[2] Abid, M. and Yahiya, T.A. and Pujolle, G., “A Utility-based Handover Decision Scheme
for Heterogeneous Wireless Networks,” in Consumer Communications and Networking
Conference (CCNC), 2012 IEEE, vol. , pp. 650 –654, jan. 2012. 1.1

[3] Gustafsson, E. and Jonsson, A., “Always best connected,” Wireless Communications,
IEEE, vol. 10, pp. 49 – 55, feb. 2003. 1.1

[4] Kassar, M. and Achour, A. and Kervella, B., “A mobile-controlled handover management
scheme in a loosely-coupled 3G-WLAN interworking architecture,” in Wireless Days,
2008. WD ’08. 1st IFIP, vol. , pp. 1 –5, nov. 2008. 1.1

[5] Bertin, P. and Guillouard, K. and Rault, J.-C., “IP based network controlled handover
management in WLAN access networks,” in Communications, 2004 IEEE International
Conference on, vol. 7, pp. 3906 – 3910 Vol.7, june 2004. 1.1

[6] Corujo, D. and Guimaraes, C. and Santos, B. and Aguiar, R.L., “Using an open-source
IEEE 802.21 implementation for network-based localized mobility management,” Com-
munications Magazine, IEEE, vol. 49, pp. 114 –123, September 2011. 1.1, 7.2

[7] “IEEE Standard for Local and Metropolitan Area Networks- Part 21: Media Independent
Handover,” IEEE Std 802.21-2008, pp. c1 –301, 21 2009. 1.1

[8] R. Braden, “Requirements for Internet Hosts - Communication Layers.” RFC 1122 (Stan-
dard), Oct. 1989. Updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633. 2

[9] “IEEE Standard for Local and Metropolitan Area Networks Part 3: Carrier Sense Mul-
tiple Access With Collision Detection (CSMA/CD) Access Method and Physical Layer
Specifications - Section One,” IEEE Std 802.3-2008 (Revision of IEEE Std 802.3-2005),
pp. c1 –597, 26 2008. 2.1.1

[10] “IEEE Standard for Local and Metropolitan Area Networks Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std
802.11-2007 (Revision of IEEE Std 802.11-1999), pp. 1 –1076, 12 2007. 2.1.2, 5.4.2

91

92 BIBLIOGRAPHY

[11] Eklund, C. and Marks, R.B. and Stanwood, K.L. and Wang, S., “IEEE standard 802.16:
a technical overview of the WirelessMAN air interface for broadband wireless access,”
Communications Magazine, IEEE, vol. 40, pp. 98 –107, june 2002. 2.1.3

[12] 3GPP, “General Packet Radio Service (GPRS); Service description; Stage 2,” TS 03.60,
3rd Generation Partnership Project (3GPP), Oct. 2002. 2.1.4

[13] 3GPP, “UMTS Phase 1,” TS 22.100, 3rd Generation Partnership Project (3GPP), Oct.
2001. 2.1.4

[14] 3GPP, “3GPP system architecture evolution (SAE): Report on technical options and
conclusions,” TR 23.882, 3rd Generation Partnership Project (3GPP), Sept. 2008. 2.1.4

[15] 3GPP, “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal
Terrestrial Radio Access (E-UTRAN); Overall description; Stage 2,” TS 36.300, 3rd
Generation Partnership Project (3GPP), Sept. 2008. 2.1.4

[16] 3GPP, “Specification of the Subscriber Identity Module - Mobile Equipment (SIM-ME)
Interface,” TS 11.11, 3rd Generation Partnership Project (3GPP), June 2007. 2.2

[17] “IEEE Standard for Local and Metropolitan Area Networks Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) Specifications,” IEEE Std
802.11-1997, pp. i –445, 1997. 2.2

[18] Mantin, Itsik, “A practical attack on the fixed RC4 in the WEP mode,” in Proceedings of
the 11th international conference on Theory and Application of Cryptology and Informa-
tion Security, ASIACRYPT’05, (Berlin, Heidelberg), pp. 395–411, Springer-Verlag, 2005.
2.2

[19] Rafik Chaabouni, “Break WEP Faster with Statistical Analysis,” tech. rep., EPFL,
LASEC, June 2006. 2.2

[20] Tews, Erik and Weinmann, Ralf-Philipp and Pyshkin, Andrei, “Breaking 104 Bit WEP in
less than 60 seconds,” in Proceedings of the 8th international conference on Information
security applications, WISA’07, (Berlin, Heidelberg), pp. 188–202, Springer-Verlag, 2007.
2.2

[21] “IEEE Standard for Local and Metropolitan Area Networks Part 11, Amendment 6:
Medium Access Control (MAC) Security Enhancements,” IEEE Std 802.11i-2004, pp. 1
–175, 2004. 2.2

[22] “IEEE Standard for Local and metropolitan area networks - Port-Based Network Access
Control,” IEEE Std 802.1X-2010 (Revision of IEEE Std 802.1X-2004), pp. C1 –205, 5
2010. 2.2

BIBLIOGRAPHY 93

[23] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, “Extensible Authenti-
cation Protocol (EAP).” RFC 3748 (Proposed Standard), June 2004. Updated by RFC
5247. 2.2

[24] J. Postel, “Internet Protocol.” RFC 791 (Standard), Sept. 1981. Updated by RFCs 1349,
2474. 2.3

[25] S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification.” RFC 2460
(Draft Standard), Dec. 1998. Updated by RFCs 5095, 5722, 5871, 6437, 6564. 2.3

[26] P. Srisuresh and K. Egevang, “Traditional IP Network Address Translator (Traditional
NAT).” RFC 3022 (Informational), Jan. 2001. 2.3

[27] J. Postel, “Internet Control Message Protocol.” RFC 792 (Standard), Sept. 1981. Updated
by RFCs 950, 4884, 6633. 2.3

[28] A. Conta, S. Deering, and M. Gupta, “Internet Control Message Protocol (ICMPv6) for
the Internet Protocol Version 6 (IPv6) Specification.” RFC 4443 (Draft Standard), Mar.
2006. Updated by RFC 4884. 2.3

[29] R. Droms, “Dynamic Host Configuration Protocol.” RFC 2131 (Draft Standard), Mar.
1997. Updated by RFCs 3396, 4361, 5494. 2.3

[30] R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney, “Dynamic Host
Configuration Protocol for IPv6 (DHCPv6).” RFC 3315 (Proposed Standard), July 2003.
Updated by RFCs 4361, 5494, 6221, 6422, 6644. 2.3

[31] S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address Autoconfiguration.” RFC
4862 (Draft Standard), Sept. 2007. 2.3

[32] P. Mockapetris, “Domain names - concepts and facilities.” RFC 1034 (Standard), Nov.
1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 2065, 2181, 2308, 2535, 4033,
4034, 4035, 4343, 4035, 4592, 5936. 2.3

[33] P. Mockapetris, “Domain names - implementation and specification.” RFC 1035 (Stan-
dard), Nov. 1987. Updated by RFCs 1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065,
2136, 2181, 2137, 2308, 2535, 2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966, 6604.
2.3

[34] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual - Vol-
ume 1: Basic Architecture, August 2007. 3

[35] R. Love, Linux Kernel Development. Addison-Wesley Professional, 3rd ed., 2010. 3.1.1,
3.1.2

[36] J. Corbet, A. Rubini, and G. Kroah-Hartman, Linux Device Drivers, 3rd Edition.
O’Reilly Media, Inc., 2005. 3.1.1

94 BIBLIOGRAPHY

[37] M. Kerrisk, The Linux Programming Interface: A Linux and UNIX System Programming
Handbook. San Francisco, CA, USA: No Starch Press, 1st ed., 2010. 3.1.3, 3.2

[38] J. Salim, H. Khosravi, A. Kleen, and A. Kuznetsov, “Linux Netlink as an IP Services
Protocol.” RFC 3549 (Informational), July 2003. 3.1.3

[39] P. Neira-Ayuso, R. M. Gasca, and L. Lefevre, “Communicating between the kernel and
user-space in linux using netlink sockets,” Softw. Pract. Exper., vol. 40, pp. 797–810, Aug.
2010. 3.1.3

[40] N. Horman, “Understanding and programming with netlink sockets.” http://people.

redhat.com/nhorman/papers/netlink.pdf. Online; accessed September 2012. 3.1.3.1

[41] “nl80211 documentation - linux wireless.” http://wireless.kernel.org/en/

developers/Documentation/nl80211. Online; accessed September 2012. 3.1.3.2

[42] “Magic Packet Technology,” tech. rep., Advanced Micro Devices (AMD), 1995. 3.1.3.2

[43] “Regulatory documentation - linux wireless.” http://wireless.kernel.org/en/

developers/Regulatory. Online; accessed September 2012. 3.1.3.2

[44] “IEEE Standard for Local and metropolitan area networks Part 11, Amendment 2: Fast
Basic Service Set (BSS) Transition,” IEEE Std 802.11r-2008 (Amendment to IEEE Std
802.11-2007 as amended by IEEE Std 802.11k-2008), pp. 1 –126, 15 2008. 3.1.3.2

[45] Wright, K. Gopalan, and H. Kang, “Performance analysis of various mechanisms for
inter-process communication,” 2007. 3.2.1, 6.2

[46] Artemio, S. and Leonardo, B. and Hugo, J. and Carlos, M.J. and Aceves-Fernandez, M.A.
and Carlos, P.J., “Evaluation of CORBA andWeb Services in distributed applications,” in
Electrical Communications and Computers (CONIELECOMP), 2012 22nd International
Conference on, pp. 97 –100, Feb 2012. 3.2.2

[47] Shang-Fu, Gong and Xiao-Li, Yang, “Study and Design of Integrated Transmission Net-
work Management System Based on CORBA and Web,” in Industrial Control and Elec-
tronics Engineering (ICICEE), 2012 International Conference on, pp. 600 –603, Aug.
2012. 3.2.2

[48] Ferenc, G. and Dimic, Z. and Lutovac, M. and Vidakovic, J. and Kvrgic, V., “Distributed
robot control system implemented on the client and server PCs based on the CORBA
protocol,” in Embedded Computing (MECO), 2012 Mediterranean Conference on, pp. 158
–161, June 2012. 3.2.2

[49] Zhang Haibo and Li Yang, “Research and development of distributed data integration
query system based on CORBA,” in Innovative Smart Grid Technologies - Asia (ISGT
Asia), 2012 IEEE, pp. 1 –4, May 2012. 3.2.2

http://people.redhat.com/nhorman/papers/netlink.pdf
http://people.redhat.com/nhorman/papers/netlink.pdf
http://wireless.kernel.org/en/developers/Documentation/nl80211
http://wireless.kernel.org/en/developers/Documentation/nl80211
http://wireless.kernel.org/en/developers/Regulatory
http://wireless.kernel.org/en/developers/Regulatory

BIBLIOGRAPHY 95

[50] Huang, Min and Zhu, Lizhe, “Research for Network Fault Real-time Alarm System Based
on Pushlet,” in Industrial Control and Electronics Engineering (ICICEE), 2012 Interna-
tional Conference on, pp. 212 –215, Aug. 2012. 3.2.2

[51] Henning, Michi, “The Rise and Fall of CORBA,” Queue, vol. 4, pp. 28–34, Jun 2006.
3.2.2

[52] K. Vervloesem, “Control your linux desktop with d-bus,” Linux J., vol. 2010, Nov. 2010.
3.2.3.4

[53] de la Oliva, A. and Bernardos, C.J. and Calderon, M. and Melia, T. and Zuniga, J.C.,
“IP flow mobility: smart traffic offload for future wireless networks,” Communications
Magazine, IEEE, vol. 49, pp. 124 –132, oct. 2011. 4.1

[54] “IEEE Draft Standard for Local and metropolitan area networks Part 11, Amendment
7: Interworking with External Networks,” IEEE Unapproved Draft Std P802.11u/D5.0,
Feb 2009, 2009. 4.2.4, 5.4.2

[55] K. McCloghrie and F. Kastenholz, “The Interfaces Group MIB.” RFC 2863 (Draft Stan-
dard), June 2000. 5.4.3

[56] B. F. G. Bidulock, “Streams vs. sockets performance comparison for udp,” OpenSS7,
2007. 6.2

[57] D. Corujo, C. Guimaraes, and R. Aguiar, “Evaluation of Discovery Mechanisms for Media
Independent Handover Services,” in Proc. IEEE International Conference on Communi-
cation 2012 Workshop on Convergence among Heterogeneous Wireless Systems in Future
Internet, June 2011. 7.2

[58] B. Stroustrup, The design and evolution of C++. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 1994. A

Appendix A

Memory Management

The boost libraries offer macros that facilitate memory management based on scope context.
The BOOST_SCOPE_EXIT macro, for example, can be used to define code that is to be executed
when leaving the scope where it is defined, either by common returns or due to exception
throwing. For example:

void function () {
struct rtnl_addr *addr = rtnl_addr_alloc ();
BOOST_SCOPE_EXIT((addr)) {

if (addr) rtnl_addr_put(addr);
} BOOST_SCOPE_EXIT_END

if (!rand())
throw "small chance exception "; // addr is deleted

return; // addr is deleted
}

Although the macro is very useful, the memory management code is still visible, and the
code defined in the macro itself cannot fail, or else it will cause memory leaks as well. Bjarne
Stroustrup invented a concept to avoid resource leaks in C++ programs, called RAII[58]. This
technique consists of creating wrappers for leveraging the automatic memory management of
C++ for resource management in this manner:

class Addr { |
public: | void function () {

Addr() { | Addr a;
addr = rtnl_addr_alloc (); | return;
if (!addr) throw "memory exception "; | // a is destroyed

} | }
~Addr() { |

rtnl_addr_put(addr); |
} |

private: |
rtnl_addr *addr; |

97

98 APPENDIX A. MEMORY MANAGEMENT

} |

This method provides a better solution than the previous one because the resulting code
is much cleaner, without explicit memory management procedures. Moreover, the memory
management code is concealed only once, for multiple usages, whilst scope macros would have
to be used for every scope.

It should be noted that a RAII wrapper also requires some caution regarding object
creation. If a class constructor does not terminate normally, the object is not constructed and
the destructor is not invoked. If the object inherits from another class, the destructors of the
base classes are invoked, though, because the base objects are always constructed first.

Appendix B

EMICOM Command Line Parameters

The following program listings show the command line parameters available to each EMICOM
component. Starting with the options for the MIHF, followed by the Link SAPs, and finally
the NetworkManager MIH User. In the case of the Link SAP options, all are available across
both the 802.11 and 802.3 Link SAPs, except for the “Scheduled scan interval” option, which
refers only to 802.11 options.
MIHF Configuration Options:

--help Display configuration options
--conf.file arg (= odtone.conf) Configuration file
--conf.recv_buff_len arg (=4096) Receive buffer length
--mihf.id arg (=mihf) MIHF ID
--mihf.ip arg (=127.0.0.1) MIHF IP
--mihf.remote_port arg (=4551) Remote MIHF communication port
--mihf.local_port arg (=1025) Local SAPs communications port
--mihf.peers arg List of peer MIHFs
--mihf.users arg List of local MIH -Users
--mihf.links arg List of local Links SAPs
--mihf.transport arg (=udp) List of supported transport protocols
--mihf.link_response_time arg (=3000) Link SAP response time (milliseconds)
--mihf.link_conf_response_time arg (=10000) Link Conf response time (milliseconds)
--mihf.l3_conf_response_time arg (=10000) L3 Conf response time (milliseconds)
--mihf.link_delete arg (=2) Link SAP response fails to forget
--mihf.discover arg MIHF Discovery Mechanisms Order
--enable_multicast Allows multicast messages
--enable_unsolicited Allows unsolicited discovery
--log arg (=1) Log level [0-4]

MIH Link SAP Configuration:
--help Display configuration options
--link.verbosity arg (=2) Log level [0-2]
--link.sched_scan_period arg (=0) Scheduled scan interval (millis)
--link.default_th_period arg (=1000) Threshold check interval (millis)
--link.link_addr arg Interface address
--link.port arg (=1235) Port
--conf.file arg (= sap_80211.conf) Configuration File
--conf.recv_buff_len arg (=4096) Receive Buffer Length
--mihf.ip arg (=127.0.0.1) Local MIHF Ip
--mihf.local_port arg (=1025) MIHF Local Communications Port
--mihf.id arg (=local -mihf) Local MIHF Id
--link.id arg (=link) Link SAP Id
--sys.resolv_conf_file arg (=/etc/resolv.conf) System ’s resolv.conf location

99

100 APPENDIX B. EMICOM COMMAND LINE PARAMETERS

MIH Usr Configuration:
--help Display configuration options
--conf.file arg (= networkmanager.conf) Configuration file
--conf.recv_buff_len arg (=4096) Receive buffer length
--conf.port arg (=1234) Listening port
--user.id arg (= mih_nm) MIH -User ID
--mihf.ip arg (=127.0.0.1) Local MIHF IP address
--mihf.local_port arg (=1025) Local MIHF communication port
--dest arg MIHF destination
--nm.settings_path arg (=./ settings) Path for NetworkManager settings persistence
--nm.version arg (=0.9.6.0) NetworkManager version to mimic
--nm.networking_enabled arg (=1) NetworkingEnabled property initial value
--nm.wireless_enabled arg (=1) WirelessEnabled property initial value
--nm.wimax_enabled arg (=1) WirelessEnabled property initial value
--nm.wwan_enabled arg (=1) WirelessEnabled property initial value

	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.1 Motivation and Goals
	1.2 Document outline

	2 Accessing the Internet
	2.1 Network Device Technologies
	2.1.1 IEEE 802.3
	2.1.2 IEEE 802.11
	2.1.3 IEEE 802.16
	2.1.4 Mobile Broadband

	2.2 Security Mechanisms
	2.3 Internet Protocol

	3 GNU/Linux Network Management
	3.1 Kernel/Hardware interfacing
	3.1.1 ioctl
	3.1.2 sysfs
	3.1.3 Netlink sockets
	3.1.3.1 Route Netlink
	3.1.3.2 nl80211

	3.2 Application interfacing
	3.2.1 Networking Sockets
	3.2.2 CORBA
	3.2.3 D-Bus
	3.2.3.1 Connection
	3.2.3.2 Interface
	3.2.3.3 Type system
	3.2.3.4 Summary

	3.3 Individual network management tools
	3.3.1 Core tools
	3.3.2 Wireless tools
	3.3.3 Authentication supplicants
	3.3.4 DNS
	3.3.5 DHCP clients

	3.4 Full-featured network management Solutions
	3.4.1 wicd
	3.4.2 NetworkManager
	3.4.2.1 org.freedesktop.NetworkManager
	3.4.2.2 org.freedesktop.NetworkManager.Device
	3.4.2.3 org.freedesktop.NetworkManager.Device.Wired
	3.4.2.4 org.freedesktop.NetworkManager.Device.Wireless
	3.4.2.5 org.freedesktop.NetworkManager.AccessPoint
	3.4.2.6 org.freedesktop.NetworkManager.Settings
	3.4.2.7 org.freedesktop.NetworkManager.Settings.Connection

	3.4.3 Acceptance

	3.5 Conclusion

	4 IEEE 802.21
	4.1 Motivation
	4.2 Architecture
	4.2.1 Media Independent Event Service
	4.2.2 Media Independent Command Service
	4.2.3 Media Independent Information Service
	4.2.4 Media Specific Mappings for SAPs

	4.3 Open Dot Twenty ONE
	4.4 Extending 802.21 towards Media Independent Network Management
	4.4.1 IEEE 802.21 extensions

	4.5 Conclusion

	5 EMICOM Implementation
	5.1 D-Bus integration
	5.2 Route Netlink and nl80211 wrappers
	5.3 Management Processes
	5.3.1 Startup
	5.3.2 Connect
	5.3.3 Disconnect

	5.4 Link SAPs implementation
	5.4.1 Initial Setup
	5.4.2 Link Detected event
	5.4.3 Link Up event
	5.4.4 Link Down event
	5.4.5 Link Parameters Report event
	5.4.6 Link Going Down event
	5.4.7 Link Handover Imminent event
	5.4.8 Link Handover Complete event
	5.4.9 Link PDU Transmit Status event
	5.4.10 Link Conf Required event
	5.4.11 Link Capability Discover command
	5.4.12 Link Event Subscribe command
	5.4.13 Link Event Unsubscribe command
	5.4.14 Link Get Parameters command
	5.4.15 Link Configure Thresholds command
	5.4.16 Link Actions command
	5.4.17 Link Conf command
	5.4.18 L3 Conf command

	5.5 MIHF Extension
	5.6 Network Manager implementation
	5.6.1 Network Manager
	5.6.2 Settings
	5.6.3 Device
	5.6.4 DeviceWired (Ethernet)
	5.6.5 DeviceWireless (Wi-Fi)
	5.6.5.1 AccessPoint

	5.7 Summary

	6 Evaluation
	6.1 Test Setup
	6.2 Inter process overhead
	6.3 Code base
	6.4 Memory usage
	6.5 Benefits
	6.5.1 Battery life
	6.5.2 Optimal selection

	7 Conclusions and Future Work
	7.1 Contributions
	7.2 Future work

	Bibliography
	A Memory Management
	B EMICOM Command Line Parameters

