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If you wish to understand the fragrance of the rose, or 

the tenacity of the oak; if you are not satisfied until you 

know the secret paths by which the sunshine and the air 

achieve these wonders; if you wish to see the pattern which 

underlies one large field of human experience and human 

measurement, then take up chemistry. 

 

— C. A. Coulson, 1973 
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resumo 

 

 

Esta dissertação explora o mundo nanoscópico de pequenos agregados onde 

as pontes de hidrogénio têm um papel preponderantes usando métodos 

quânticos ab-initio. No capítulo introdutório, a área da química computacional é 

apresentada e algumas noções teóricas referentes aos métodos ab-initio, 

discutidas. No Capítulo 2, o desempenho de vários níveis de teoria é avaliado 

através do estudo de pequenos agregados de água. O capítulo 3 discute a 

influência dos critérios de optimização no resultado deste processo, alertando 

para erros comuns. No Capítulo 4, hidratos gasosos de ácido trifluoroacético 

(TFA), nas formas dissociada e não-dissociada, são apresentados. Um 

número mínimo de 4 moléculas de água é necessário para induzir a 

transferência do protão do TFA para a rede de moléculas de água adjacente . 

No entanto, 5 moléculas de água são necessárias para que o agregado 

dissociado se torne mais estável que o seu análogo não dissociado. O 

Capítulo 5 propõe um novo esquema para o cálculo ab-initio de valores de 

pKa. Este esquema serve-se de hidratos de ácido microsolvatado, nas formas 

dissociada e não dissociada, em modelo de solvatação contínuo, para calcular 

a energia livre de dissociação em solução. Para o conjunto de espécies 

testadas, incluindo 10 ácidos carboxílicos, 1 amina e 2 aminoácidos, o erro 

médio absoluto é 1.11, o declive experimental 1.2 e o coeficiente de 

correlacção 0.92, o que indica um nível de exactidão aceitável. 
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abstract 

 

This dissertation concerns the study of small hydrogen bonded systems 

through the use of quantum mechanical ab-initio methods. In the introductory 

chapter, the field of computational chemistry is presented and some basic 

theoretical notions concerning ab-initio methods are discussed. In Chapter 2, 

the performance of various levels of theory is assessed through the study of 

small water clusters. Chapter 3 discusses the influence of optimization criteria 

in the outcome of the optimization procedure, warning against common pitfalls. 

In Chapter 4, gas-phase hydrates of trifluoroacetic acid (TFA), in both 

dissociated and undissociated forms, are presented. A minimum of 4 water 

molecules is necessary to induce proton transfer from TFA to the neighboring 

water molecule network. However, 5 water molecules are needed to render the 

dissociated hydrate more stable than its undissociated counterpart. Chapter 5 

proposes a new scheme for the ab-initio calculation of pKa values. It uses 

microsolvated acid hydrates, in both dissociated and undissociated forms, 

within a continuum solvation model, to calculate the dissociation free energy in 

solution. For the data set used, including 10 carboxylic acids, 1 amine and 2 

aminoacids, the mean usigned error (MUE) of calculated pKa values is 1.11, 

the experimental slope 1.2 and the correlation 0.92, which denotes a 

reasonable level of accuracy. 
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1. Computational chemistry – A Brave New 

World 

 

Up until the early XXth century, chemistry was dominated by a macroscopic, 

“bottom down” approach vision of research. As experiments produced new data, 

existing theories were adapted or reformulated in order to fit in the novel information. 

Following experiments were designed according to the rules expressed in those theories. 

This approach works reasonably well when dealing with bulk phenomena. However, 

when scientists started looking into ever smaller realms of matter those same theories 

neatly constructed upon experiment began to crumble like a house of cards.  

The ultraviolet catastrophe in the second half of the XIXth century hinted at a 

major flaw in classical mechanics: the assumption that energy is continuous. Max 

Planck proposed in 1900 that a blackbody emits radiation in packets of energy, called 

quanta, with discrete values. In accordance with Planck, Einstein suggested in 1905 that 

light was formed by quantum particles, later named photons. In 1913 Bohr explained 

the spectral lines of the hydrogen atom as arising from the existence of quantized 

energy levels for the electron. In 1924, Louis deBroglie claimed that, just as light also 

behaves as particles, so do particles exhibit wave behavior, such as electron beams 

which are able to create interference patterns similar to those produced by waves.  

 In the light of these facts, a new atomic model accounting for the wave-like 

nature of electrons was needed and delivered by two equivalent although conceptually 

different theories: Schrödinger’s wave mechanics and Heisenberg and Born’s matrix 

mechanics. The former will be discussed in greater detail in the methods section. 

Finally, it is important to mention the uncertainty principle formulated by Heisenberg in 

1927 which states that the position and momentum of a particle cannot be 

simultaneously known, since the observer inevitably alters the system through the act of 

measurement.  

The revolution of quantum mechanics is not only one of science but of 

consciousness itself. An honest and inquiring mind, when confronted with such facts as 
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the uncertainty principle and quantum entanglement, starts an irreversible process of 

deconstructing its rigid view of a solid and compartmentalized reality.  

“Some physicists would prefer to come back to the idea of an objective real 

world whose smallest parts exist objectively in the same sense as stones or trees exist 

independently of whether we observe them. This, however, is impossible.” 

— Werner Heisenberg 

The task that follows is as daunting as exciting: to build a new vision in 

which the reality accessible by the senses is the result of wavefunction collapse, a mere 

possibility lost in a sea of possibilities, a cosmic raffle at the same time witnessed and 

influenced by the observer. In the face of such an exquisite behavior of matter, old 

dogmas and prejudices are being dissolved at lightspeed. For example, the idea of 

parallel universes, once relegated to the realms of science fiction, is now discussed in 

scientific fora 
[1]

. 

Other than revolutionizing the way science is thought, quantum mechanics 

also led to dramatic changes in the way science is made 
[2]

. Schrödinger’s pioneering 

work 
[3]

 provided a mathematical description for the behavior of matter that, if only it 

could be solved exactly for atoms with more than one electron, would provide all the 

properties and predict the future behavior of any given physical system without the need 

for experiments. Well then, why is most of scientific progress still made through 

experimental work?  

Considering chemistry, specifically, what is the need to study the behavior of 

molecules in a lab when one has in hand such a neat equation capable of predicting said 

behavior? Common sense says that if anything sounds too good to be true, it generally 

is and such an adage fits like a glove here. The first problem is that the Schrödinger’s 

equation can not be solved analytically for other than hydrogenoid atoms. The 

alternative is to solve it numerically, a strategy which involves such a large number of 

calculation steps that it can only be efficiently performed by computers. And here we 

find the first hurdle in the way of quantum chemistry’s growth: in the 30’s there just 

wasn’t enough computing power to perform those calculations in a timely manner. As 

Dirac famously put it: 
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“The underlying physical laws necessary for the mathematical theory of a 

large part of physics and the whole of chemistry are thus completely known, and the 

difficulty is only that the exact application of these equations leads to equations much 

too complicated to be soluble. It therefore becomes desirable that approximate 

practical methods of applying quantum mechanics should be developed, which can lead 

to an explanation of the main features of complex atomic systems without too much 

computation 
[4]

.”  

As will be discussed in more detail in section 2, several “approximate practical 

methods”, or models, were indeed developed over the years allowing faster calculations 

albeit with less accuracy 
[5]

. But perhaps the greatest contribution to the advancement of 

applied quantum chemistry came from an external source: the advent of digital 

computers and the exponential rise in their capacity. Today, it is possible to study 

systems with more than 100 atoms by means of quantum mechanical (QM) methods 

while in the 70’s researchers were still confined to small molecules in the gas phase. 

Table 1 shows how the evolution in computing power exponentially (and the increasing 

use of parallel computing) decreased the time necessary to calculate the energy of a 

molecule with 24 atoms – an impossible task back in 1967 is now trivial. 

Table 1 The CPU time required to perform a single point energy calculation of a small molecule (represented 

on the right) has decreased exponentially in the last decades, as processers grew more powerful and software more 

efficient. 

 

 

* 

* estimate 
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In summary, the theory was all ready long ago but lacking both the necessary 

hardware and software for its widespread application. If quantum mechanics were a 

human being it would be called both a visionary, for presenting a view of reality ahead 

of its time, and a late-bloomer, since it only found generalized utility in the world of 

science many decades later. Although computational research is not yet as extensively 

used as its experimental counterpart and may never surpass it in importance, the former 

complements the latter. The best proof of this potential is the rising number of 

experimentalists interested in using computational tools in their research. Such endeavor 

is nowadays facilitated by the abundance of low-cost computers capable of doing the 

job and highly intuitive software packages with a graphical user interface. This 

“democratization” of computational tools, although conceptually stimulating, carries the 

risk of leading astray those users lacking the basic know-how. GIGO, a popular 

acronym used as a word of caution against this pitfall, stands for Garbage In Garbage 

Out, thus warning the software user that computers cannot tell the difference between 

good and nonsensical input data. Nevertheless, except if blatant errors cause the 

calculation to abort, the program will always produce output, albeit one devoid of 

meaningful information. A minimum amount of homework is necessary if one wants to 

ask the right questions and be able to interpret the answers.  

The importance of computation in chemistry has grown so large that 

computational chemistry became a field in its own right. According to IUPAC 
[6]

, 

“Computational chemistry is a discipline using mathematical methods for the 

calculation of molecular properties or for the simulation of molecular behavior. It also 

includes, e.g., synthesis planning, database searching, combinatorial library 

manipulation.” It must be stated here that, although the history of computational 

chemistry has its roots on quantum mechanics, the branches have grown long and tall to 

embrace other methods of calculation which are radically different in their nature.  

1.1 What is computational chemistry useful for? 

 

Before delving into the many ways of doing computational chemistry it is 

time to ask what can it do for us? Computational chemistry tools permit the 
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determination of the electronic structure and potential energy surface of any given 

system. These may be thought of as the DNA of the system, a code from which all 

chemically relevant information may be retrieved, once you find the means to translate 

it. The first question computational chemists ask is usually: what is the lowest energy 

structure of this molecule? The various conformations corresponding to local and global 

energy minima, as well as to transition states, are found by performing geometry 

optimizations. Other commonly calculated observables include vibrational and 

rotational spectra, kinetic and thermodynamic properties, dipole moments and atomic 

charge distributions. 

But what are all those calculations useful for, other than pure scientific 

interest? In short, understanding data at an atomistic level and using the derived 

knowledge to design experiments in more efficient and rational ways. This approach is 

now applied in a variety of fields such as genetics, analytical chemistry, drug design, 

materials research, nanotechnology, synthesis, biochemistry… and the list goes on 
[7]

. 

The following lines provide a few examples of the vast applicability of computational 

chemistry. 

1.1.1 Spectroscopy 

 

One of the great successes of computational chemistry has been its alliance 

with spectroscopy. By using QM methods, one can predict with great accuracy the 

vibrations of a chemical system and actually observe the corresponding molecular 

movements using visualization software. Presently, any serious study involving FTIR or 

Raman spectroscopy compares experimental with calculated data. In most cases, the 

calculated vibrations are used to validate or elucidate the experimental spectra. 

Vibrational analysis is also important in geometry optimizations since it permits to 

distinguish between equilibrium and transition structures. QM also allows the study of 

chemical systems under the influence of an external magnetic field. Thus, chemical 

shifts may be computed and NMR spectra predicted. The study of excited states is 

possible as well and, consequently, the possibility for an electronic transition to take 

place may be estimated, a valuable tool for electronic spectroscopy. 
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1.1.2 Drug design 

 

The pharmaceutical industry saves a great deal of money and time by 

screening and scoring potential pharmacological agents through computational means 

before testing those in vivo. This preliminary stage performed by computers is now so 

crucial that it was named in silico. An example shall illustrate the concept better: 

suppose that a new drug is being designed and one wishes it to bind to a known receptor 

X 
[8]

. A key requirement for a candidate drug is, other than exhibiting bioactivity of 

course, that it fits into receptor X’s binding cavity. The first step is then to screen a 

database of potential drugs and select those whose active sites have the right size and 

shape to fit into the receptor’s binding cavity. The top rated compounds are thus 

selected and, in a subsequent phase, the strength of their interaction with the receptor is 

evaluated. At this stage shape is no longer the determining factor but rather the strength 

of intermolecular interactions established between the ligand and the binding site. The 

stronger this interaction is the higher score the pharmacological compound will receive 

and only those with the highest scores will then be tested in animal models. Thus, large 

sums of money, laboratory work hours and animal lives can be saved, benefiting all. 

Some even believe that computational methods are the most reliable replacement for 

animal experimentation and are developing software tools to fasten the process.  

1.1.3 Nanotechnology 

 

Nanotechnology and computational chemistry are growing together, and for 

good reason 
[9]

. The behavior of matter changes dramatically when one goes from the 

bulk to the nano dimension and when designing materials at the nano-level a deep 

understanding of how and why such changes occur is crucial. When it comes, for 

example, to self-assembly, a processed governed by intermolecular interactions, 

computational chemistry stands out as the most appropriate tool, capable of offering 

more meaningful answers than existing characterization techniques. Furthermore, the 

size of the systems interesting to nanotechnology is inherently small, posing no 

computer capacity problems for most calculations. 
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1.1.4 Proteins in solution 

 

Last but not least comes the study 

of proteins in solution 
[10]

, in particular the 

riddle of protein folding. It is not difficult, 

after decoding the DNA, to predict the 

aminoacid sequences that form different 

proteins. The real puzzle is finding a way to 

fold that long string of aminoacids into a 3D 

shape that minimizes the energy of the 

macromolecule. The possible configurations are immense, yet a freshly synthesized 

protein “chooses” a correct folding pattern in tens of μs. In order to simulate the entire 

folding pathway, even a supercomputer would take years! What is normally done is 

crystallizing the protein, obtaining the structural data through X-Ray diffraction and 

then “relaxing” its structure by simulating a water bath containing the protein. The 

lowest energy conformation thus found is much more likely to resemble the protein in 

solution than the crystallized structure. Currently, methods that do not require previous 

knowledge of the crystal structure, but solely of the aminoacid sequence, are being 

developed. 

In summary, what advantages has computational chemistry to offer? 

- Validation/interpretation of experimental results 

- Better experimental design 

- Money and time-saving (in some cases) 

- Environmentally-friendly  

- Determination of properties that can’t be measured experimentally and/or 

lack atomistic detail 

- Visualization of ultrafast dynamic processes  

- Ability to study any system, even if it can not be synthesized with current 

technology 

Fig. 1 3D representation of a protein. Taken 

from http://fold.it/portal/info/science 

http://fold.it/portal/info/science
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- A safe way to investigate toxic, mutagenic or otherwise dangerous 

compounds and/or conditions 

- An introspective attitude that requires deep knowledge of chemical nature 

and is eager to question its own assumptions 

 

1.2 The workings of Computational Chemistry 

The planning of any study in computational chemistry must begin by 

choosing the appropriate method of calculation to be employed. In general, the more 

detailed and accurate the method, the more computer resources will be needed. This 

limitation sometimes leads to the sacrifice of accuracy in benefit of time-saving. For 

example biological systems, such as lipid bilayers, containing thousands of atoms, are 

so computationally demanding that the calculation method must necessarily be one of 

the cheapest: non-quantum, classical mechanics force field methods. 

Molecular mechanics (MM), Molecular dynamics (MD) and Monte Carlo 

simulations all employ force fields which describe how the energy of a system changes 

as bond lengths, bond angles and torsional angles deviate from their equilibrium values, 

which are determined experimentally. In this approach, molecules are treated as balls on 

springs whose vibrations may be described as those of an harmonic oscillator. The 

electrons are not explicitly included in the calculations which, while saving time, 

impedes the simulation of bond breaking although Car-Parrinello Molecular Dynamics 

(CPMD) allows the study of electronic transitions to excited states. 

While molecular mechanics enables the calculation of the energy of a 

molecule and to find its equilibrium structure through geometry optimization, molecular 

dynamics is able to describe how the system changes through time by assuming that 

atoms move according to Newtonian mechanics. Monte Carlo simulations achieve the 

same as MD through a different procedure. Instead of integrating equations of motion, 

random configurations are chosen and their energies measured. If a certain 

configuration has a higher energy than its predecessor, it is rejected, and the contrary if 

the energy is lower. 
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Quantum mechanical (QM) methods treat the electrons explicitly, that is, both 

the nuclear and electronic coordinates are calculated in each iteration. In fact, while 

force-field methods require the assumption that molecules are formed by atoms 

interconnected by covalent bonds, QM merely “sees” atomic nuclei floating in a sea of 

electrons. The available QM methods differ in the amount of approximations made. As 

more approximations are introduced the calculation time decreases, but so does 

accuracy and, consequently, agreement with experimental results. The most accurate 

methods are those termed ab initio, meaning “from the beginning” since these only 

require the electronic and nuclear coordinates, as well as the total charge and spin 

multiplicity, in order to perform the calculations. In contrast, semi-empirical methods 

employ parameters derived from experimental data, that is, apply correction factors 

which promote the convergence between calculated and experimental results for a set of 

molecular properties of extensively studied molecular systems. Naturally the ab initio 

methods are preferred whenever possible since they are independent from experiment, 

however in most cases it is not feasible to study systems with more than 100 atoms from 

first principles while semi-empirical methods are adequate for a few hundreds of atoms. 

Molecular mechanics is computationally cheaper than either of the former, being 

applicable to systems with thousands of atoms. A visual summary of the distinctive 

features of molecular mechanics, semi-empirical and ab initio methods is provided in 

Fig. 2. 
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Fig. 2 Conceptual diagram representing the main characteristics of theoretical models. Ab initio methods, in 

most cases, are wavefunction-based and aim to provide approximate solutions to the Schrödinger equation; due to their 

high cost these methods are only applicable to small molecules. Semi-empirical methods employ parameters derived 

from experimental data or high-level predictions and are adequate for systems with up to a few hundreds of atoms. 

Molecular mechanics relies on classical physics and assumes atoms in molecules to behave as balls on springs; being the 

cheapest method, molecular mechanics allows the study of very large systems, with thousands of atoms. 

 

It is also possible to combine quantum and molecular mechanics methods, a hybrid 

methodology which is particularly appealing for biological systems. When studying 

enzymes, for example, it is necessary to employ QM methods in order to assess bond 

breaking and formation at the active site. However, treating a whole enzyme plus the 

surrounding water moleculesfrom first principles is not feasible at present.  

QM/MM methods 
[11]

 offer an elegant solution by allowing the QM treatment 

of a small region located on the active site of the enzyme, where interesting events 

happen, while applying MM to describe the surrounding protein and solvent, thereby 

tremendously reducing the computational cost while still producing meaningful results. 
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Since the calculation methods used along the course of this project belong to 

the ab-initio category, the following section will attempt to describe how these work, 

starting by analyzing the equation that sits at the root of every one of them. The 

following discussion is, for the sake of brevity, largely incomplete and superficial. The 

interested reader should consult the following references for further information 
[12-17]

 

1.2.1 Foundations of ab-initio methods 

 

1.2.1.1 The Schrödinger equation 

 

Intrigued by the mystery of wave-particle duality, the Austrian physicist 

Erwin Schrödinger took refuge in the swiss alps, using pearls as earplugs, with his mind 

set on finding a mathematical description for the wave nature of electrons. And so 

wave-mechanics was born 
[3]

. 

The fundamental postulate of wave mechanics is embodied in Schrödinger’s 

time-independent equation 

 ̂       

which may be translated as “ a wavefunction Ψ exists for every chemical 

system so that when an Hamiltonian operator  ̂ acts upon Ψ, the result is the product of 

Ψ and the energy of the system, E.”  

An operator  ̂ is a mathematical tool that, when applied to a function f(x)  

gives a new function g(x). In some exceptional cases, g(x) is proportional to f(x), that is 

 ̂ ( )      ( ) where a is a proportionality constant. f(x) is thus an eigenfunction of 

 ̂, and the constant a is its eigenvalue. Likewise, Ψ is an eigenfuction which describes 

the quantum state of a particle as a function of space and time and E is the eigenvalue of 

Ψ when operated by  ̂. The Hamiltonian operator may be written as 
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Where i and j run over all electrons, k and l run over nuclei, ћ is Planck’s 

constant divided by 2π, me is the mass of the electron, mk is the mass of nucleus k,  2
 is 

the Laplacian operator, e is the charge of the electron, Z is the atomic number, and rij is 

the distance between particles i and j. The Laplacian operator may be written as  

  
   

  

   
   

  

   
   

  

   
  

 

and allows the application of Schrödinger’s equation over the 3 spatial 

dimensions. Thus, in order to solve the equation, one needs to find a function which, 

when differentiated twice with respect to the position vectors, returns to its original 

form. For example, exponential, sine and cosine functions exhibit this behavior. 

The first and second terms of the Hamiltonian concern the kinetic energy of 

electrons and nuclei, respectively, while the remaining terms account for the potential 

energy arising from Coulombic interactions. The third term accounts for the attraction 

between electrons and nuclei, the fourth adds interelectronic repulsion and the last one 

corresponds to internuclear repulsion. 

The most baffling aspect of Schrödinger’s discovery is that his equation is not 

derived from any other but rather “inspired”: an intuitive guess which proved to be 

accurate. But what is Ψ? It is difficult to pin-point the physical meaning of Ψ since its 

units are complex numbers, but it represents the probability amplitude of finding a 

particle in any spatial point, at a given time. Christopher Cramer 
[12]

 compares the 

wavefunction with “an oracle - when queried with questions by an operator, it returns 
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answers.” It may seem, so far, that the only answer the wavefunction is able to provide 

concerns the energy of the system but that applies only when the Hamiltonian operator 

is used. By employing different operators one calculates different properties. In 

principle, all information pertaining a particle may be retrieved from its wavefunction. 

While Ψ is devoid of concrete physical meaning, at least at our current level 

of understanding, the modulus of its square, |Ψ
2
|, has real units, thus being more 

amenable to interpretation, and represents the probability of finding a particle between x 

and x+dx at time t. Hence, if |Ψ
2
| is integrated over all space the result must be 1, since 

the particle has to exist somewhere. This probabilistic view is in stark contrast with 

Bohr’s deterministic picture of electrons orbiting around the nucleus in well-defined 

trajectories. In quantum mechanics, orbits give way to orbitals, which may be thought 

of as probability clouds, that is, regions in space where the probability of finding the 

electron is high. For the sake of simplicity, orbitals are usually represented by 

isosurfaces, that is, solid contour maps whose spatial coordinates delimit a volume 

within which there is x probability (usually 90%) of finding the electron. Fig. 3a) 

displays 1s orbital isosurface for the hydrogen atom while Fig. 3b) shows the 

corresponding electron probability distribution, where a higher density of dots denotes a 

region with higher probability of finding the electron. 

The size, shape and orientation of atomic orbitals are thus determined by the 

solutions to Schrödinger’s equation, that is, the wavefunctions. Since only discrete, 

quantized, energy states are allowed for the electron, only a correspondent number of 

wavefunctions are acceptable solutions to the Schrödinger equation. In order to be an 

acceptable solution, the wavefunction must approach zero when reaching infinity (since 

the probability of finding an electron infinitely distant from the nucleus is close, 

although not equal, to zero) and both the wavefunction and its first derivative must be 

continuous.  
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1.2.1.2 Solving the Schrödinger equation for the H atom 

 

As said earlier, it is possible to find analytical solutions to Schrödinger’s 

eigenvalue problem as long as the system at hand has only one nucleus and one 

electron. In this case, neither the internuclear nor the interelectronic repulsion terms 

exist in the Hamiltonian, which is left with the kinetic energy terms and the potential 

energy term arising from the attraction between the nucleus and the electron. It is 

mainly due to the interelectronic repulsion term, which accounts for the interactions of 

each electron with every one of the remainder, that the same analytical approach is not 

possible for polyelectronic systems. In the latter case, only approximate solutions can be 

obtained and these result from the product of one-electron wavefunctions. This method, 

named Hartree-Fock in homage to its developers, will be explained in greater detail 

later. Before delving into those matters, a few points regarding the analytical resolution 

of Schrödinger’s equation need to be addressed.  

The first step to solve this “eigen riddle” is to switch from Cartesian (x,y,z) to 

polar coordinates (r, θ, φ) where r is the radial distance between the nucleus and the 

electron, while θ and φ define the angular orientation of the latter. The use of polar 

coordinates simplifies the calculation since it takes advantage of the hydrogen atom’s 

spherical symmetry, that is, since the electrostatic potential arising from the electron’s 

attraction to the nucleus is spherical, the properties of the system will only depend on 

the electron’s radial and angular motion with respect to the nucleus.  

Furthermore, the radial and angular contributions may then be treated 

separately, so that instead of attempting to solve a complex equation which depends on 

three variables one may solve three simpler equations, each dependent on only one 

variable. The resolution of each of these equations gives rise to the three quantum 

numbers n (from r), l (from θ) and m (from φ), which define, respectively, the size, 

shape and orientation of the orbital. 
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Fig. 3 Different forms of describing the hydrogenic 1s orbital are shown. (a) isosurface of the 1s orbital, where 

the darker shaded areas correspond to the regions where the probability of finding an electron is highest (b) conveys the 

same information as the isosurface (a) by using dots instead of a color gradient (c) radial probability distribution (d) 

radial probability density. Image taken from http://www.kentchemistry.com/links/AtomicStructure/Schrödinger.htm) 

 

The s orbitals have no angular momentum, that is, their corresponding 

wavefunctions only depend on the radial distance since the electron cloud is spherically 

symmetric. The radial wavefunctions for hydrogenic orbitals are mathematically 

represented by associated Laguerre polynomials. In the case of the 1s orbital, the radial 

wavefunction assumes the form 

     ( )   (
 

  
)
   
 
   

   , where r stands for the distance between 

electron and nucleus, Z is the nuclear charge and a0 the Bohr radius. 

In Fig. 3 c) the radial probability function for the 1s orbital is shown. It can be 

observed that the highest probability of finding the electron is near the nucleus and such 

probability decays exponentially.  

In p, d and f orbitals the electron tries to avoid the nucleus and the probability 

of finding it at r=0 is also 0. Such happens because when electrons inhabit an orbital 

with l > 0, a centrifugal force acts on them, pushing them away from the nucleus, near 

which the repulsive effect surpasses the coulombic attraction. S orbitals, having no 

angular momentum, are subject to the coulombic attraction only, so that their preferred 

site is close to the nucleus.  

Fig. 3 d) shows the probability density of finding an electron enclosed within 

a volume defined by two concentric spheres of radii r and r+δr. Given the behavior of 

the radial probability distribution it may seem odd that the probability density is 0 near 

the nucleus. This arises because the squared wavefunction is multiplied by the sphere 

http://www.kentchemistry.com/links/AtomicStructure/schrodinger.htm
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volume which, at the nucleus, is 0. But what does it really mean, in a physical sense? 

The radial probability distribution provides information on which points in space does 

the electron pass by more often. But the probability density measures the probability of 

finding an electron in an infinitesimal volume with a certain radius or, in other words, 

the most probable distance of the electron from the nucleus. Remarkably, the most 

probable radial distance as predicted by wave mechanics coincides with the atomic 

radius Bohr had previously calculated. 

Schrödinger tested the validity of his equation by calculating the energy 

levels for the hydrogen atom and verifying a total agreement with experimental spectral 

lines. This initial success stirred so much interest from the scientific community that 

soon after its publication approximate methods were devised for the treatment of bigger 

atoms and such development continues to this day, with no signs of slowing down. 

1.2.2 Calculation methods for polyelectronic 

systems 

 

In the impossibility of finding analytical solutions to the Schrödinger 

equation for polyelectronic systems, one is reduced to find approximate solutions 

through numerical methods, that is, use a simpler function that mimics the behavior of 

the real wavefunction as closely as the available computational power and system size 

allow. The various ab initio calculation methods employ different sets of 

approximations but there is at least one that lays at the foundation of all: the Born-

Oppenheimer approximation. 

 

 

1.2.2.1 The Born-Oppenheimer approximation 

 

The fundamental idea of this approximation is that the electronic and nuclear 

contributions to the wave function may be separated. Protons are 1836 times heavier 

and consequently much slower than electrons. From the viewpoint of a fast travelling 
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electron, the nucleus hardly moves. It is thus assumed that nuclear motion is essentially 

dependent on electronic motion so that nuclear coordinates remain fixed in each 

calculation step and only the motion of electrons is explicitly taken into account. After 

determining the electron distribution, the nuclei adjust to the electronic cloud by slightly 

changing their positions.  

The Born-Oppenheimer approximation allows the neglect of nuclear kinetic 

energy, the substitution of the nuclear-nuclear repulsive term by a constant value for a 

given geometry and the elimination of correlation in the electron-nuclear attraction 

contribution.  

The most important aspect of Born-Oppenheimer’s approximation is a 

conceptual one. If we attempted to describe a molecular system using a wavefunction 

which is dependent on both nuclear and electronic positions, as well as spin states, all 

the familiar concepts of bonds, rotations, vibrations and potential energy surfaces would 

have to be redefined in quantum mechanical terms of probability clouds. Although more 

truthful, the pure quantum mechanical model is still far too impractical and esoteric for 

our classically trained brains to use it in an everyday basis. As for the numerical utility, 

this approximation does indeed simplify the calculation while introducing a minor error, 

but still the much more troublesome  many-electron problem remains.  

The motion of an electron is affected by the instantaneous repulsion caused 

by each and every one of the remainder electrons, a phenomenon named correlation. 

The calculation of the other terms in the Hamiltonian is straightforward, but the 

interelectronic repulsion term requires accounting for each interacting electron pair. 

Hence, every electron added to the calculation brings along the burden of 3 additional 

degrees of freedom, rendering the analytical resolution not merely impractical but, so 

far, impossible. However incorrectly, further simplification requires the assumption that 

electrons behave independently of each other.  

1.2.2.2 The independent electron approximation 

 

If we assume that the probability of finding an electron in the orbital i at the 

position ri is independent of the position of the other electrons, then the electronic 

wavefunction may be written as  
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 (             )   ∏  

 

   

(  ) 

Accordingly, the electronic Hamiltonian (and consequently the total 

electronic energy) results from the summation of the one-electron Hamiltonians and the 

energies of the individually occupied molecular orbitals, respectively. The product of 

one-electron wavefunctions written above is known as the Hartree product. Within this 

model, each electron feels the attraction exerted by the nucleus and an effective uniform 

potential dependent on the surrounding electronic density, an attempt to take into 

account interelectronic repulsion in an average way. However elegant it may be, this 

solution does not respect the Pauli Exclusion Principle, since it fails to account for spin. 

Electrons have half-integer spin, hence according to this principle the wavefunction 

must be antisymmetric, that is, if two electrons are interchanged the the wavefunction 

changes sign. By expressing the wavefunction as a Slater determinant of spin-orbital 

products, the Pauli Exclusion principle is respected. 

1.2.2.3 The LCAO approach 

 

The Linear Combination of Atomic Orbitals (LCAO) approach states that, 

just as many-electron wavefunctions may be obtained as the product of one-electron 

wavefunctions, so may the molecular wavefunctions Ψ be constructed as linear 

combinations of atomic orbitals   centered on individual atoms, where the coefficients 

ci indicate how much an individual one-electron wavefunction contributes to the final 

wavefunction. 

   ∑ (      ) 

Hence, if we wish to determine the molecular wavefunctions for the H2 

molecule, at least two atomic 1s wavefunctions must be combined yielding the bonding 

and anti-bonding molecular wavefunctions. Although, from the chemical point of view, 

adding two 1s orbitals seems to suffice, we must remember that what we are actually 

doing is adding up mathematical functions in order to obtain a new function which 

closely reproduces chemical behavior, and the more functions are combined the better 



20 

 

our approximate wavefunction will fit the real wavefunction. This matter will be further 

addressed in the “Basis sets” section. 

At this point dramatic approximations have been introduced in the calculation 

scheme, so much so that the exact and tidy Schrödinger equation starts to seem more 

and more like a mirage. How can we be sure that the guess wavefunctions constructed 

through the LCAO approach have any physical meaning, that is, resemble the real 

wavefunctions enough to correctly describe chemical behavior? The next section shall 

bring the answer. 

1.2.2.4 The Variational Principle 

 

The variational principle is of great importance in computational chemistry. It 

fundamentally states that any approximate wavefunction resulting from a LCAO is 

always higher in energy than the exact ground state of the system.  

  
∫   ̂     

∫      
  
∫(∑       ) ̂(∑       )  

∫(∑       )(∑       )  
          

Where Ψ*Ψ is the product of the trial wavefunction and its complex 

conjugate,  ̂ is the one-electron Hamiltonian and d  integrates the former over all 

space.  

Hence, there is a simple criteria to judge the quality of a trial wavefunction: 

the lower its energy, the better. A trial wavefunction may be constructed in any way we 

please as long as its energy can be minimized. The energy of a HF wavefunction 

depends on the coefficients employed in the LCAO. Consequently, minimizing the 

wavefunction energy requires finding an optimal set of coefficients. From calculus we 

know that the minima of any function is found where its first derivative is zero. In this 

case we write 

  

   
   

The various minima of E correspond to the allowed energy levels of the trial 

wavefunction. Thus, for the ground state, the global energy minimum is of interest. 
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Once this energy in quantified, its associated coefficients can be retrieved and, with 

these, an optimal wavefunction is built. 

1.2.2.5 The HF-Self Consistent Field procedure 

 

The HF method is inspired in the independent electron approximation and, as 

such, the interelectronic term in the Hamiltonian is substituted by an average interaction 

potential – effective potential - which depends on the local probability density. Thus, 

each electron “feels” a uniform electric field produced by all the other electrons. The 

obvious problem herein is that we need the probability density distribution in order to 

calculate the effective potential and then determine the orbital coefficients. But without 

knowing the coefficients a priori, the probability density can not be retrieved. Hence an 

iterative process is followed, starting with the construction of a guess wavefunction, 

from which the probability density distribution is calculated, now allowing the 

determination of the effective potential. New orbital coefficients which minimize the 

wavefunction energy are generated, a new wavefunction constructed and the process 

repeats itself until there is no significant change in the energies and density distributions 

of two consecutive wavefunctions.  

At this point we say the calculation has converged. Scheme 1 displays a flow 

chart outlining the HF-SCF cycle (in blue) and the geometry optimization process (in 

salmon). 

1.2.3 Basis sets 

 

According to the HF-SCF method, the guess wavefunction may be 

constructed with any set of appropriate mathematical functions, also called basis 

functions.  
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Scheme 1 Flow-chart depicting the Self-Consistent Field cycle (in blue) and the geometry optimization 

procedure (in salmon) 
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Which characteristics should a mathematical function have in order to be an 

eligible basis function? 

 It must behave in a way that has chemical meaning, that is, should have 

large amplitude in regions of space where the probability of finding the electron is high 

and vice-versa; 

 Must allow for a computationally efficient calculation of the integrals 

appearing in HF equations. 

 

In a world with unlimited computer power, only the first condition listed above 

would be observed and hydrogenic wavefunctions would be used since, for one electron 

atoms, these are exact. In the real world, a small degree of accuracy must be sacrificed for 

a great increase in speed. Thus hydrogenic wavefunctions, which are very computationally 

demanding, were put aside in favour of Slater-Type orbitals, whose behavior closely 

resembles that of the former while being much easier to compute.  

Slater-Type Orbitals have the following form: 

           (     )       (   ) 
        

Where N is a normalization constant, Ylm are the spherical harmonics which 

determine the shape and orientation of the STO, depending on the quantum numbers l 

and m, α is an exponent that depends on the atomic number (since it defines the orbital 

size) and r is the radial distance. 

Further improvement in efficiency may be achieved by using Gaussian-Type 

Orbitals (GTOs), introduced by Boys as cheaper alternatives to STOs. GTOs can be 

written as: 

              (     )     
            

 
 

Here ζ determines the size of the orbital (as α in STOs) while the exponents 

lx, ly and lz determine the type (s, p, d…). GTOs are easier to integrate than STOs, since 

their radial decay is dictated by    
 
and the integrals formed from these functions have 
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relatively simple analytical solutions, while those formed from STOs, which depend on 

   require a much more fastidious numerical resolution. 

Unfortunately, GTOs do not mimic hydrogenic radial wavefunctions as well 

as STOs, especially near and far from the nucleus. The accuracy offered by STOs and 

efficiency characteristic of GTOs may be simultaneously achieved by using linear 

combinations of GTOs. The more GTOs are linearly combined, the better the resulting 

basis function mimics the STO behavior while still allowing the analytical resolution of 

the associated integrals, which nevertheless become increasingly more complicated as 

more GTOs are added. An ideal balance between computational cost and accuracy is 

found when 3 Gaussians, also called primitives, are linearly combined giving rise to a 

contracted basis function. This constitutes the minimal basis set, STO-3G, which stands 

for “a Slater-Type Orbital approximated by 3 Gaussians”. Fig. 4 shows how the radial 

behavior of STO-3G closely resembles that of an STO. 

 

Fig. 4 Radial behaviour of different basis functions for the hydrogenic 1s orbital in atom-centered coordinates. 

The bold solid line is a STO while the dashed lines are contracted GTOs. The GTO found nearest to the STO is STO-3G 

(from Cramer).  
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1.2.3.1 Single, double and triple zeta basis sets  

 

STO-3G is said to be minimal since it is the cheapest basis set able to provide 

meaningful results. It is also classified as single-zeta, since there is only one basis 

function describing each type of orbital, from core to valence. For example, when 

describing Li at least 5 orbitals are needed: 1s, 2s, 2px, 2py, 2pz. If a STO-3G basis set is 

used, then 5 contracted Gaussians will be used in the LCAO, one for each of the atomic 

orbitals in Li.  

Double and triple zeta basis sets represent the next step in accuracy. These 

basis sets use, respectively, two and three contracted Gaussian functions, with different 

zeta values, to describe each atomic orbital. The use of GTOs with different ζs is 

analogous to combining two atomic orbitals of different sizes, thus allowing more 

flexibility for the description of the molecular orbital. 

 

1.2.3.2 Split-valence basis sets 

 

Double and triple zeta basis sets are especially relevant within the split-

valence framework. The rationale behind this approach is that when two atoms come 

together to form a covalent bond, their core orbitals are not very much affected, as 

opposed to the valence orbitals which undergo major changes. Hence, there is no need 

to describe core orbitals with the same thoroughness and flexibility as valence orbitals 

require. Split-valence basis sets use a single contracted basis function to describe the 

core orbitals while more than one contracted GTO is used to describe each valence 

orbital. For example, the 6-311G basis set describes core orbitals using solely one 

contracted GTO, resulting from the linear combination of 6 primitives while the valence 

orbitals are described using three different GTOs (since there are three numbers after 

the hifen), one of which is the contraction of 3 primitives while the remainder arise 

from a single primitive. 
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1.2.3.3 Polarized basis sets 

 

Even split-valence basis sets fail to account for polarization effects. A 6-311G 

basis would describe an oxygen atom in a given molecule by including in the LCAO 

only the basis functions representing the 1s, 2s and 2p orbitals. However, when there is 

an unequal electron distribution between two atoms due to polarization effects, these 

basis sets lack the ability to properly describe it. This can be achieved by adding to the 

basis set orbitals with a higher angular momentum than the occupied orbitals. 

Therefore, p functions are added to hydrogen atoms, d functions to second-row atoms, f 

functions to transition metals and so on. Polarized basis sets are identified by the use of 

an asterisk * or the letter d, p, f in parentheses. For instance, the 6-311G* (or 6-

311G(d)) basis set employs polarization functions on non-hydrogen atoms while 6-

311G** (or 6-311G(d,p)) also includes polarization functions on hydrogen atoms. 

1.2.3.4 Diffuse basis sets 

 

Normally electron density is significant only at distances which are relatively 

close to the nucleus. Basis functions plot the electron distribution from the nucleus to 

infinity. Clearly, it is not advantageous to extend the calculation to regions far from the 

nucleus, so a cut-off in the radial distance is used. 

In certain cases, such as anions and excited states, the former approach is not 

able to reproduce chemical reality, since the probability of finding the electron far from 

the nucleus is considerably higher. In order to account for this effect, diffuse basis 

function are added to the basis set. These functions have small ζ exponents which 

causes them to decay slowly with distance, thus still retaining a significant electron 

density at the cut-off distance. Diffuse functions are indicated by a plus (+) sign in the 

basis set nomenclature. In an analogy to polarized functions, a single + denotes the 

addition of diffuse orbitals for non-hydrogen atoms and ++ for all atoms. 

As a final note on basis set nomenclature, the notation HF/6-

311G++(d,p)//HF/6-311G+(d) means that a geometry optimization was performed with 

the smaller basis set and the energy (or other observable) of the optimized geometry 

was measured with the larger basis set. Although time-saving, this strategy is unreliable, 
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since the minimum energy structures may not be exactly the same for different basis 

sets. 

1.2.3.5 Approaching the HF limit 

 

The limit of accuracy a HF calculation is able to provide may be approached 

by using larger and larger basis sets. As computational power increases, some of the 

smaller basis sets become obsolete (STO-3G is an example) while larger ones grow 

increasingly common. Examples of the latter are the aug-cc-pVXZ (X=D,T,Q) basis 

sets of Dunning and co-workers. Here “aug” stands for augmented, referring to the use 

of diffuse functions on all atoms, “cc” is correlation-consistent, meaning that the 

exponents and contraction coefficients were optimized for calculation methods which 

account for electron correlation and pVXZ stands for polarized valence double-, triple- 

or quadrupole-zeta.  

Large basis sets such as those of the Dunning family were created with the 

aim of extrapolating their results to the HF-limit using a curve fitted over the values of 

some property computed with increasingly larger basis sets. 

1.2.4 Weaknesses of HF theory 

 

The central weakness of HF theory stems from its roots: even at the HF-limit 

the calculated energy will always be higher than the exact energy because HF fails to 

account for the total energetic contribution of electron correlation. As a result, bond 

lengths estimated at the HF level are shorter than reality. Consequently, vibrational 

frequencies are ~10% larger than experimental figures. 

By obeying the Pauli Exclusion Principle and thus forbidding two electrons 

of the same spin to occupy the same point in space, HF does account for exchange 

interaction, a component of the correlation energy. However, the instantaneous effects 

each electron has on the motion of all others were neglected by the independent electron 

approximation. 
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The explicit treatment of electron correlation requires the use of post-HF 

methods. Among these are Configuration Interaction (CI), Møller-Plesset Perturbation 

Theory (MPPT) and the Coupled Cluster (CC) method. 

Another hurdle HF presents is that depending on the wavefunction to provide 

information about the system requires previously building that same function, which 

depends on 4N coordinates (N being the number of electrons). It would be simpler to 

use an observable depending on only 3 coordinates and able to provide the same 

information as the wavefunction. The electron density fits the former criteria and this 

rationale is the basis of Density Functional Theory (DFT). The obvious advantage of 

DFT is that while wavefunctions become increasingly more complex for larger system 

sizes, the electron density will always depend on 3 coordinates. Thus DFT is cheaper 

than HF and consequently applicable to large systems. 

 For the sake of brevity and relevance to the present work, only MPPT and 

DFT shall be addressed, and even those, in a rather brief manner. 

1.2.5 Density Functional Theory 

 

The great departure between HF and DFT is that the first optimizes 

wavefunctions while the latter optimizes electron probability densities. The framework 

of both theories is otherwise similar and proceeds through the iterative SCF cycle. HF 

and DFT also differ in the way they treat electron exchange and correlation. While HF 

employs an effective potential to approximate correlation effects and calculates 

exchange exactly, DFT uses an exchange-correlation functional. A functional is a 

function of another function, and the exchange-correlation energy (EXC) is a function of 

the probability density (ρ). There are many available DFT functionals and three main 

functional “architectures”: LDA, GGA and Hybrid functionals. 

The Local Density Approximation (LDA) assumes that the exchange-

correlation energy is a function of the local value of ρ. It further states that the EXC 

density of a molecular system, at some point in space where the probability density is ρ, 

equals the EXC of a uniform electron-gas with the same value of ρ. Even for a uniform 

electron gas, the correlation component of EXC does not have analytical solution, hence 
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LDA functionals are approximate expressions designed to reproduce a large set of 

theoretical and experimental data. Because of this parametrization, DFT is categorized 

by some as a semi-empirical method. Still, LDA is not a good approximation since it 

assumes the local density to be uniform which, in a molecule, is not true.  

The Generalized Gradient Approximation (GGA) takes one step further by 

adding to LDA a gradient-correction term which causes the EXC to depend both on the 

local density and its gradient, that is, its first derivative. 

The most popular GGA exchange energy functional is the one developed by 

Becke, usually abbreviated “B”, followed by that of Perdew, Burke and Wang, PW. 

Among correlation functionals, those finding more widespread use are P86 (Perdew 

1986), PW91 (Perdew, Wang 1992) and LYP (Lee, Young and Parr 1988). The chosen 

combination of exchange and correlation functionals is indicated in the literature by 

joining the respective abbreviations, as in BLYP. 

Hybrid density functionals result from merging DFT and HF methods in 

order to promote the cancelation of errors. For example, barrier heights to chemical 

reactions are underestimated by DFT calculations using GGA functionals and 

overestimated by HF methods. These differences arise due to the different way of 

treating exchange and correlation. Hence, hybrid functionals include an exchange 

energy term which is calculated exactly, using HF, and added to a LDA or GGA 

functional. The extent to which the HF term contributes to the final EXC is determined 

using a set of parameters, which are optimized to promote the best fit between 

calculated and experimental data (alternatively, the reference values may be those 

calculated with high-level methods such as CCSD(T)). Hybrid functionals usually 

perform better than gradient-corrected or LDA functionals. 

The total number of available functionals, arising from all possible 

combinations, is immense. Finding the most suitable one requires previous knowledge 

of its performance for the system of interest. B3LYP, the hybrid version of BLYP, 

performs quite decently in a wide range of systems and is presently the most popular 

functional among the three categories. However, it is not universally suitable. For 

example, when studying systems where London dispersion interactions play an 
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important role, B3LYP is a poor choice since it fails to account for them. In these cases, 

specific functionals with dispersion corrections should be used instead. 

DFT presently has major importance in computational chemistry. By offering 

an attractive combination of speed (faster than HF) and accuracy (sometimes as accurate 

as MP2), DFT permits studying large systems on a quantum level and is the method of 

choice whenever quantum calculations are performed on biomolecules. 

 

1.2.6 Møller-Plesset Perturbation Theory 

 

Both HF and DFT methods follow a variational approach to find the correct 

description of the system. An alternative to variational methods is offered by 

perturbation theory. The latter states that the real Hamiltonian may be approximated 

through a simpler Hamiltonian, for which the solution to Schrödinger’s equation is 

known, plus a perturbing factor. In Møller-Plesset theory the electron-electron repulsion 

is treated as a perturbation on the one-electron Hamiltonian, formally 

    ( )      

where H
(0)

 is the one-electron Hamiltonian, V is the perturbation operator and 

λ is a constant assuming values between 0 and 1 which determines the amount of 

perturbation induced. The goal here consists in determining Ψ using the simple H
(0)

. 

When the perturbation is small (λ<<1), Ψ may be written as a power series 

    ( )     ( )      ( )     

where Ψ
(0)

 is the uncorrected wavefunction. By adding the first order 

correction, Ψ
(1)

 , the Hartree-Fock solution is obtained. Applying higher-order 

corrections yields wavefunctions which incorporate electron correlation with increasing 

accuracy, but the complexity of calculations also grows with each correction order. The 

most usual MP methods are MP2, a second-order correction which is not absurdly 

expensive and provides reasonably accurate results, and MP4, the fourth order 

correction, which represents a significant step up in accuracy but still finds less 

applicability than MP2 due to its prohibitive cost even for medium systems. 
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1.3 Intermolecular Interactions and their 

importance 

 

Chemistry, in the last century, was primarily concerned with covalent 

interactions, given that their formation and breaking determine how chemical reactions 

occur. In the past few decades, chemists realized that many important phenomena can 

only be properly rationalized if intermolecular interactions, also deemed noncovalent 

interactions, are accounted for
[18]

. The broad term “intermolecular interactions” includes 

hydrogen bonding, π-π stacking, electrostatic and van der Waals interactions.   

Life as we know it would not be possible without the concerted action of 

intermolecular interactions. Liquids, for example, would not exist without them. 

Biological systems rely largely on the “intelligent” design of intermolecular interaction 

networks, in which hydrogen bonds and π-π stacking play especially important roles
[19]

. 

Base-pairing in DNA, protein folding, receptor-ligand binding and membrane 

permeation are but a few in a myriad of processes governed by intermolecular 

interactions. As mentioned earlier, drug design relies heavily on the optimization of 

noncovalent interactions between the pharmacological compound and its target 

receptor. Understanding the nature of the interactions at play is crucial for successful 

planning. For example, one may take advantage of the highly directional nature of 

hydrogen bonds, which become weaker as their geometry deviates from linearity, in 

order to design highly selective pharmacophores.  

In the emergent field of nanotechnology noncovalent interactions also play a 

pivotal role, especially in self-assembly, a process during which molecular sub-units 

“recognize” one another and come into contact in order to maximize intermolecular 

interactions, thus building supramolecular structures. This strategy is especially useful 

for the mass production of molecular electronic devices 
[20]

. 
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1.3.1 The challenge of modeling intermolecular 

interactions 

 

Molecular mechanics offers a fast although limited prescription to describe 

intermolecular interactions: empirical potential energy functions, such as the Lennard-

Jones potential. One of the many limitations of this approach is that atomic charges are 

assigned at the beginning of the calculation and remain constant. Thus, charge-transfer 

interactions cannot be properly studied without ab initio methods, a task which still 

faces some challenges
[21-22]

. 

Intermolecular interactions are one or two orders of magnitude weaker than 

covalent bonds thus the correct quantification of the former requires the use of methods 

of higher accuracy and diffuse basis sets. Accurate results (with error < 1 kcal/mol) can 

only be provided by coupled-cluster methods, such as CCSD(T), with very large basis 

sets (or even extrapolated to the CBS limit) . Presently, such calculations are only 

applicable to systems of medium dimension (max. 30-50 atoms). The majority of 

interesting systems, such as those referred in the previous section, largely exceed this 

limit. Hence, cheaper methods must be employed in their study. MP2 has been a very 

popular choice since it is not outrageously expensive while still accounting for electron 

correlation, although it overestimates London dispersion. Still, MP2 is prohibitive for 

systems with more than 100 atoms. DFT is obviously alluring for this purpose, and 

shows a satisfactory performance in the description of hydrogen bonds and charge 

transfer. The Achilles heel of most “cheap” methods lies in their inability to describe 

dispersion interactions, which are predominant in π-π stacking and hydrophobic 

interactions. Dispersion interactions arise from the attractive component of electron 

correlation. All the DFT functionals described so far calculate an approximate electron 

correlation energy based on the local properties of the density. However, the very nature 

of dispersion interactions require a non-local treatment of correlation. The simplest way 

of minimizing this fault is to apply an empirical dispersion terms to common 

functionals. This method, named DFT-D, performs better than MP2 when dispersion 

interactions are dominant. Another approach is to parametrize functionals in way that 
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accounts for dispersion interactions, as is the case with the M05 and M06 series, 

developed by Zhao and Truhlar. 
[23-24]

. 

Another big puzzle for computational chemists is how to account for 

solvation effects while modeling intermolecular interactions. Clearly, the solvent 

medium is radically different from the gas-phase and a host-guest interaction may be 

quite favorable in vacuum but not as favorable as their individual interactions with the 

solvent which would, were this the case, keep host and guest apart. Quantifying the 

interaction energy for a system in solution requires estimating solvation free energies. 

This may be accomplished by explicitly including the solvent, the accurate-but-

expensive approach or, including it implicitly by considering the solvent to be a 

continuum with a characteristic dielectric constant. 

Still regarding the interaction energy, an additional problem arises due to 

incomplete basis sets – the basis set superposition error (BSSE) 
[25]

. The interaction 

energy between two systems A and B may be calculated as the energy of the AB 

complex minus the individual energies of A and B. The error arises since the fragment 

A in the AB dimer uses its own basis functions along with those of B in order to 

describe its molecular orbitals, and the same happens for B. The energy of the dimer is 

thus artificially lowered with respect to the individual monomers, which had a smaller 

set of available basis functions. Two strategies are possible to correct for BSSE:  

 Using larger basis sets significantly reduces this error, which vanishes at the 

basis set limit. Computational cost is a downside. 

 The counterpoise correction (CP), proposed by Boys and Bernardi 
[26]

, 

attempts to mitigate BSSE by calculating the energies of the monomers using the total 

set of basis functions available to the dimer. 

The total interaction energy may be decomposed into its components 
[27]

 in 

order to determine the nature of the intermolecular interactions at play. Sometimes, this 

task is not straightforward since there are two or more components which contribute 

similarly to the final energy. The nature of the hydrogen bond, for example, is still a 

subject for debate. 
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1.3.2 The elusive nature of the hydrogen bond 

 

The current definition of “hydrogen bond”, as recommended by the IUPAC 

[28]
, is “an attractive interaction between a hydrogen atom from a molecule or a 

molecular fragment X–H in which X is more electronegative than H, and an atom or a 

group of atoms in the same or a different molecule, in which there is evidence of bond 

formation.” An hydrogen bond is depicted as X-H…Y-Z where the dots indicate the 

bond. X is the hydrogen bond donor and Y the acceptor. A few criteria must be met 

before evidence of bond formation is confirmed, among them: 

 The linear bond angle corresponds to the maximum strength and shortest 

bond length 

 The hydrogen bond must be a sum of electrostatic, charge-transfer and 

dispersion interactions. 

Contrary to the contemporary view, the hydrogen bond was once regarded as 

entirely electrostatic in nature. It is so, but only at relatively large intermolecular 

distances (> 2,5 Ǻ). As the hydrogen atom approaches the acceptor, charge transfer and 

dispersion interactions become stronger, resulting in an overall stronger hydrogen bond 

[29-30]
. However, the true nature of the hydrogen bond is still a matter of debate among 

scholars. 

The vastness of our ignorance concerning the hydrogen bond becomes clear 

once we realize how little is known about the most ubiquitous hydrogen-bonded 

network on earth: water. 

Water, contrary to other compounds with similar molecular weight (H2S, CO, 

CH4…), is liquid at room temperature. Such anomaly arises due to the strong nature of 

hydrogen bonds, which hold water molecules tightly together. 

In addition, the behavior of water is radically divergent from other liquids: 

given the low molecular weight of the water molecule the density of liquid water is 

higher than other liquids in the same weight range; ice is less dense than liquid water; 
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water diffuses more easily when under high pressure; at very low temperatures, the heat 

capacity increases dramatically; when in contact with a hydrophobic solute, water forms 

a cage-like structure (clathrate hydrates) on the solute surface in a geometry that allows 

for the maximum number of hydrogen bonds to be established. 

Due to its mysterious behavior, the structure of water is yet to be completely 

understood and different models have been proposed for its rationalization 
[31]

. While 

some assume that there are constant bond breaking and formation events between water 

molecules (mixture models) others assume that the hydrogen bond network is 

continuous and hydrogen bonds are never broken but rather distorted from their 

optimum geometries 
[32]

. 

Tapping into the elusive nature of water is one of the motivations for the 

study of water clusters 
[33]

. A water cluster is an aggregate of two or more water 

molecules. In the limit, bulk water is simply a gigantic cluster. Thus, scientists hope 

smaller clusters will provide some cues about the structure of the bulk 
[34]

. 

 

Numerous studies on water clusters, in some cases containing up to 280 water 

molecules but most of them concerning small clusters, have been performed 
[32, 35-37]

. 

Thus, for (H2O)n with n<10 the minimum energy structures have been determined, 

binding energies calculated and vibrational analysis performed, at various levels of 

theory and different basis sets. The minimum energy structures for the first 10 clusters, 

optimized at the MP2/6-31G(d) level 
[38]

, are shown in Fig. 5.     

Up to the pentamer, the cyclic conformation is preferred and the water 

molecules are arranged in the (D-A) pattern, that is, each of them is simultaneously a 

donor and an acceptor. The hexamer is a special case for which several low-lying 

isomers, with small energy differences, have been identified. The hexamer marks the 

transition from 2D to 3D clusters, and the latter dominate for n>6.  

The (D-A) pattern of hydrogen bonds is not the only possibility, since each 

water molecule can be a double donor, a double acceptor or different combinations of 

these. The D-A configuration is advantageous because it maximizes cooperativity 

effects 
[39]

. 
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Fig. 5 Minimum energy structures of small (H2O)n clusters with n=1-10, optimized at the MP2/6-31G(d) level. 

Four low-lying isomers are shown for the water hexamer, the prism being the lowest energy structure at the calculated 

level. 

  

Cooperativity is another curious feature of hydrogen bonds: when a bond is 

established, the hydrogen-bond acceptor becomes polarized and, consequently, its 

strength as a donor increases. Hence, the difference in energy between the water trimer 

and 3 isolated water molecules is greater than the sum of the 3 newly established 

hydrogen bonds. A further stabilization in energy is due to cooperativity and occurs 

through progressive charge transfer between H and the acceptor sites 
[32]

.  

When water clusters are confined in apolar environments
[40-41]

, such as 

nanotubes or protein cavities, their minimum energy conformations are quite different, 

as are those of ionic water clusters 
[42-43]

. 

prism cage 

book ring 
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The issue of proton dissociation is intimately connected with hydrogen bonds. The pKa 

of an hydrogen bond donor (the acid) depends largely on the strength of the hydrogen 

bond formed with its acceptor (in this case, water). Most computational studies on acid 

dissociation focus on the determination of dissociation constants through the use of 

thermodynamic cycles 
[44]

, an approach which necessarily concerns bulk systems. A 

smaller number, however, has ventured into the realms of hydrated acid clusters 
[45-46]

. 

The basic question these studies aimed to answer is “How many water molecules are 

necessary to cause proton dissociation?” A digest of results concerning some simple 

acids is provided in Table 2. 

Table 2 Calculated number of water molecules needed to ionize a few simple acids. nL and nG denote the 

number of water molecules present in the ionized clusters. nL corresponds to local minima and nG to global minima. The 

references from which the data present in this table was taken can be found by consulting the review by Leopold [45] 

 

 

In general, 3 to 5 water molecules are needed for proton dissociation to occur 

among the studied systems. For the weak acid trifluoroacetate (TFA) the “magic 

number” of hydration water molecules necessary to abstract a proton has not yet been 

determined neither by theory nor experiment. Thus, the hydrated TFA clusters are a 

case study of the present project, discussed in Chapter 4.  

The estimation of pKa values through ab-initio methods has also attracted our 

attention, even more so given the recent trends of using hydrates of the solute to 
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explicitly represent its first solvation shell. In Chapter 5, we propose a novel scheme for 

the estimation of pKa values using the hybrid implicit-explicit approach. 

The aforementioned “case studies”, which explore the theme of acid 

dissociation in microsolvated environments from two different perspectives, constitute 

the bulk of the present work.  

Additionally, two mini-projects are presented in Chapters 2 and 3.  

In Chapter 2 the performance of different levels of theory on the calculation 

of the global minimum structures of small water clusters is assessed.  

Chapter 3 discusses a popular article regarding linear water chains. One of the 

structures presented as a local minimum is in fact an artifact, unsuspected by the author. 

The discussion serves as a cautionary tale against the all too common pitfall of 

overlooking optimization criteria, leading to false minima which appear as legitimate.   

 

1.4. Tools of the trade 

Just as an experimentalist does nothing without laboratory equipment, so a 

computational chemist needs his software to perform calculations. For the present work, 

the Gaussian09 
[47]

 program will be used. It is a powerful and complete commercial 

software package, widely used for ab initio calculations.  

At the end of a calculation, Gaussian randomly selects a quote, which may 

be wise, funny or downright demotivational but always seems to fit the occasion. Since 

the inspiration necessary to write a meaningful, one-paragraph conclusion to this long 

introduction is lacking, I relied on software for help and ran a random job hoping to get 

a fitting quote. Once again, Gaussian does not disappoint and simply points out 

‘“I could have done it in a much more complicated way” – said the Red 

Queen, immensely proud. ’ Lewis Carroll, Alice in Wonderland 
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Chapter 2 

 

 

Mini-project: exploring ab-initio methods through water clusters 
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2. Mini-project: Exploring ab-initio methods through 

water clusters 

 

2.1 Introduction 

 

Water clusters were among the first cluster systems to be studied through ab-initio 

methods. In the 90’s, Sotiris Xantheas published a number of studies in the Journal of 

Chemical Physics 
[37, 48-50]

 regarding small water clusters which became almost mandatory 

literature items and constitute an excellent first case study for those who are only 

beginning to learn the art of computational chemistry. My first practical task as an 

apprentice was indeed to replicate the results of Xantheas using different levels of theory. 

This project allowed me to get acquainted with the Gaussian09 software, use GaussView, 

prepare input files, learn where to find information in output files and get a basic intuitive 

sense of how well each level of theory performs and how much computational resources it 

requires.  

2.2 Computational methods 

The starting geometries of (H2O)n=2-4 clusters were built according to the topologies 

reported in the literature to be the global minima for each cluster size. These were further 

optimized at the following levels of theory and indicated basis-sets: 

HF/6-31G 

HF/6-31++G(d,p) 

B3LYP/6-311++G(d,p) 

X3LYP/6-311++G(d,p) 

MP2/aug-cc-pvdz 

Vibrational analysis was performed to ensure that all optimized structures 

correspond to true minima on the PES, as indicated by the absence of imaginary 

frequencies.  
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The binding energy of each cluster was calculated by subtracting the electronic 

energy of the individual water molecules, in their isolated geometries, from the electronic 

energy of the complex.  

The geometries optimized at the MP2/aug-cc-pvdz were further corrected for the 

BSSE using the Counterpoise (CP) scheme proposed by Boys and Bernardi 
[26]

. 

As mentioned in the introduction, the calculation of the interaction energy with 

modest basis sets is subject to the basis set superposition error, that is, an aggregate of 

molecules is artificially stabilized as each monomer utilizes the nearby basis functions of 

its neighbors in order to better describe its own wavefunction.  

The energy differences resulting from the BSSE error for a dimer AB can be 

written as 

)()()(

)()()(

BEBEBE

AEAEAE

DCBS

AB

MCBS

ABBSSE

DCBS

AB

MCBS

ABBSSE




 

Where the superscript denotes the basis used, the subscript the geometry of the 

monomer and the monomer is indicated inside parentheses. This may be read as “The 

BSSE arising from monomer A is calculated by subtracting the energy of A, calculated 

with a dimer centered basis set (DCBS) in the dimer geometry, from the energy of A, 

calculated with a monomer centered basis set (MCBS) in the dimer geometry (AB)”. 

Since E
DCBS

 < E
MCBS

 (due to the discussed artificial stabilization effect) then ΔEBSSE 

> 0 and the counterpoise corrected energy of the complex is given by  

)()()()( BEAEABEABE BSSEBSSE

DCBS

AB

CP   

The calculation of the counterpoise corrected binding energy is a more complex 

matter than its uncorrected counterpart and requires further discussion. Let the uncorrected 

binding energy be written as  

)()()()( BEAEABEABE MCBS

B

MCBS

A

DCBS

ABbind   

The corrected binding energy is computed by adding the BSSE to Ebind(AB) 

yielding  
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Note that the corrected binding energy is a sum of the interaction energy, 

DCBS

AB

DCBS

AB

DCBS

AB

CP EAEABEE  )()(int  and the monomer deformation energies,

)()( AEAE MCBS

A

MCBS

AB   and )()( BEBE MCBS

B

MCBS

AB  . 

 

2.3 Results and discussion 

 

The optimized geometries of (H2O)2-4 clusters, corresponding to global minima on 

their respective PES, are displayed in Fig. 6. Their features are well known and have been 

amply discussed, therefore we shall skip the classic detailed geometric analysis and 

proceed with the method performance comparison.  

Some relevant geometric parameters, namely oxygen-oxygen distance (R(O...O)), 

hydrogen bond length (r(O…H-O)), O-H bond lengths (R(O-Hd) and R(O-Hf) where d denotes 

donor hydrogen and f indicates a free hydrogen), dihedral angles (δ (O...H-O)) and bond 

angles (Φ (H-O-H)) of all water clusters have been measured and their binding energies 

calculated. The average value for each descriptor was plotted against the number of water 

molecules in the cluster. The resulting Plot 1(I-VII) allow a visual performance assessment 

of the various levels of theory. The data reported by Xantheas 
[48]

 concerning the same 

group of clusters and computed at the MP2/aug-cc-pvdz level is also included.  

 

 

 

 

 

 

   )()()()()()()( BEBEAEAEBEAEABEE DCBS
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AB
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AB
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MCBS

B

MCBS

A

DCBS

AB

CP

bind 
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Fig. 6 Minimum energy structures of the water dimer, trimer and tetramer.  

 

 

 

 

R (O-H)d 

R (O-H)f 

Φ (H-O-H) 

δ (O...H-O) 
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The main conclusions one draws from this visual assessment are the following: 

 

 Our results obtained at the MP2/aug-cc-pvdz level successfully replicate 

those of Xantheas. Since this was the most accurate method and largest 

basis set used in the current study, it serves as benchmark for assessing the 

performance of the other methods; 

 The HF method delivers the worst results, even using a basis set with 

diffuse and polarization functions. As discussed in the introduction, this bad 

performance is due to the inability of HF methods to properly account for 

electron correlation. 

 B3LYP and X3LYP functionals perform almost identically; 

 B3LYP results are very similar to those obtained at the MP2 level. 

Interatomic distances and dihedral angles computed at these two levels of 

theory are practically identical, while B3LYP consistently overestimates 

bond angles by 1º and slightly overestimates the binding energy.  

 As expected, the counterpoise correction lengthens the intermolecular 

distances while not affecting neither covalent bonds nor angles. 

Accordingly, the counterpoise corrected binding energy is lower, denoting a 

weaker complex than that predicted without correcting for BSSE.  

 

Since the B3LYP/6-311++G(d,p) combination performs very well while being 

computationally efficient, it was selected as the “working method”, to be used in 

subsequent projects involving larger systems, such as the acid hydrates. 
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Plot 1 Geometric and energetic parameters of the water dimer, trimer and tetramer optimized at different levels 

of theory. R(O...O) is the oxygen-oxygen distance, r(O…H-O) the hydrogen bond length, R(O-Hd) and R(O-Hf) are the O-H bond 

lengths where d denotes donor hydrogen and f indicates a free hydrogen, δ (O...H-O) stands for dihedral angle  and Φ (H-O-H) 

for bond angle. 
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Chapter 3 

 

 

“GIGO” - Garbage In, Garbage Out: the case of linear water chains  
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“GIGO” - Garbage In, Garbage Out: the case of 

linear water chains  

 

As in any other field of chemistry, there are numerous pitfalls along the 

computational chemist's path. One of these pitfalls is the blind reliance on software 

packages without previous thorough knowledge of their inner workings.  

Sometimes, what seems like a minor detail dramatically impacts computational 

results. With enough luck, erroneous conclusions drawn from faulty output are detected 

and corrected before reaching publication. However, some stray examples manage to make 

their way through the long peer-reviewed quality control system, thus inducing the reader 

in error. In some unfortunate cases, the error is taken as truth and propagates through 

subsequent work thus wasting precious intellectual and  material resources. Having fallen 

prey to this situation, I've decided to expose the unfortunate mistake that led me astray thus 

warning fellow researchers against similar traps in their own work.  

As discussed in the introduction of the present dissertation, the available literature 

on water clusters is quite extensive. While in the beginning most efforts were directed at 

finding the minimum energy structures of small water clusters in the gas-phase, lately the 

spotlight has been on the arrangement of water molecules in biological media, crystal 

matrices and nanoporous organic or inorganic hosts. While in the gas phase the most stable 

structures are invariably planar rings or built of fused rings of water molecules, when 

trapped in confined environments water molecules tend to adopt radically different 

topologies, including linear and helical arrangements.  

Recently, a few authors endeavored to explore the stability of such 1D water 

clusters in the gas-phase. Parthasarathi, Elango, Subramanian and Sathyamurthy 
[51]

 

performed geometry optimization of wire-like helical water clusters with 5 to 20 water 

molecules, in the gas phase, at the HF/6-311++G** and B3LYP/6-311++G** levels of 

theory without using any constraints.  
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Fig. 7 Linear helical water chains minimum energy structures, as reported in [51]  

 

The helical structures displayed in Fig. 7 were reported to be minima in the PES. 

The authors state that “these water clusters form a linear helical chain motif even in the 

absence of host molecules/scaffolds” and “cyclization or formation of cage/prism 

structures was not observed at the HF and B3LYP(DFT)/6-311++G** levels of theory (…) 

However, MP2/6-311++G** calculations for (H2O)5-7 clusters led to the formation of open 

faced prism-like structures and a combination of trigonal cyclic and square planar 

arrangements and also spiro-cyclic assemblies.” This obvious dissonance should have 

alerted the authors for the possibility of the HF/DFT results being defective. On the 

contrary, this fact was merely reported without discussion. The first impression I got after 

reading this article was favorable, as I also did not notice the aforementioned dissonance.  

On the contrary, I was inspired to check whether TFA would form stable clusters 

with these water helices. In order to so, I first built a water helical wire with 5 water 

molecules, the smallest size reported by Parthasarathi and his team, and performed a 

geometry optimization at the B3LYP/6-311++G** level of theory. To my dismay, the 

optimization procedure led the initial helical configuration to morph into a spiro-cyclic 
[52]

 

one, although the optimization did not converge. A second optimization attempt led to the 

well known planar ring structure. 

At this point, I put the TFA hydrate search aside and dedicated my time to solving 

this mystery. Since the initial structure I used was as similar as possible to the “stable” 

wire reported by the authors and the level of theory was the same, something else had to 
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account for the different result. Briefly re-reading the “Computational Details” of the 

article in discussion sufficed to identify the major difference: the authors used the G98W 

version of Gaussian while I used the G09W version.  

 The default parameters of these versions differ significantly. Assuming that the 

authors have, as I did, ran the program using the default parameters, these differences 

could lead to diverging results. This hypothesis turned out to be correct.  

Firstly, I optimized the same initial structure with G03W, which is more similar to 

G98W than G09W (G98W is no longer available for testing).   

 As shown in Table 3, the optimization in G03W with default parameters yielded a 

minimum with a linear helical structure. G09W and G03W differ in the default 

convergence criteria for the scf procedure, which is stricter in G09W (scf=tight). 

  A second batch of optimizations were thus ran in both programs with verytight 

convergence criteria for the scf procedure. As the label indicates, the verytight criteria 

requests full accuracy for the scf procedure and should be used whenever doubt arises as to 

the legitimacy of a given minimum energy structure. The output, for both versions of the 

program, was a fully converged minimum energy structure with a spirocyclic 

configuration. A third batch of optimizations was yet executed using a finer DFT 

integration grid (int=ultrafine), yielding the same result as in the previous case. A finer 

DFT grid calculates more density points and is thus more accurate.  

It is then safe to conclude that the linear chain with five water molecules reported 

by Parthasarathi is an artifact generated by an insufficiently accurate optimization 

procedure. The other linear helical structures, with 6 and more water molecules, also 

reported by the author, have also been tested and proved to be true minima within the 

G09W stricter conditions. It is easy then to understand how easily the author was deceived 

into thinking the same applied to the linear cluster with 5 water molecules. Let this 

example be a gentle reminder not to blindly trust our output, especially when using default 

convergence criteria. 
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Table 3  Results of the optimization procedures performed with different parameters in G09W and G03W 

 

 

  

INPUT JOB PARAMETERS OUTPUT 

 

G03 with default 

parameters 

helical, minimum 

 

G03 with 

scf=verytight 

spirocyclic, minimum 

 

G03 with  

int=ultrafine 

G09 with default 

parameters 

Ring or spirocyclic, not converged 

 

G09 with 

scf=verytight 

spirocyclic, minimum 

 

G09 with  

int=ultrafine 
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Chapter 4 

 

Stepwise solvation of trifluoroacetic acid: chasing the onset of proton dissociation 
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4. Stepwise solvation of trifluoroacetic acid: 

chasing the onset of proton dissociation 

 

4.1 Introduction 

 

 

“Nature uses only the longest threads to weave her patterns, so that each small 

piece of her fabric reveals the organization of the entire tapestry.” 

— Richard P. Feynman, The Character of Physical Law (1965) 

 

As Feynmann beautifully states, the fundamental nature of chemical interactions 

between species may be probed by studying a small system, which serves as a model for a 

larger reality. With this view in mind, scientists eagerly study water clusters of various 

sizes, hoping to gain insight on the interplay of intermolecular interactions governing the 

behaviour of water, from the gaseous to the condensed state 
[53-54]

 . Clusters, therefore, do 

not belong to neither the gaseous nor the condensed realms but, instead, span the 

intermediate worlds between them. 

One of the fundamental processes now being probed through cluster chemistry is 

the dissociation of acid and basic solutes in aqueous media. Acid-base chemistry sits at the 

foundation of life as we know it and is important in a wide range of fields. Regardless of 

its widespread importance, fundamental knowledge of these systems is still in its infancy. 

Theoretical investigations on the issue of acid dissociation in microsolvated 

environments are usually of a quantum mechanical nature and concern gaseous acid 

hydrates of varying sizes 
[45]

. Of great interest are the structures and energetics of these 

hydrates in both their neutral and zwitterionic forms. For every species, there is a minimum 

number of hydration water molecules required to provoke dissociation. These may be 

modeled in the gas phase or in a continuum solvation model.  
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The first acids to be studied in this fashion were the halogenated species HF, HCl, 

HBr and HI 
[55]

, attractive due to their high acidity and small size. Nowadays, the scientific 

community is leaning towards the solvation and dissociation of organic acids, especially 

carboxylic acids 
[46, 56-64]

, which are ubiquitous in biological environments. Besides, 

carboxylic acids often have an amphiphilic nature, experiencing hydrophillic hydration 

around the COOH head group and hydrophobic hydration of the alkyl chain. 

 

Trifluoroacetic acid (TFA) is one of the strongest organic acids known so far, with 

an experimentally measured pKa of ~0,5. It plays an important role in atmospheric 

chemistry, being the most abundant halogenated acid in the environment, a product of the 

oxidation of hydrochloroflurocarbons. Since TFA does not react with OH· radicals, its 

primary route of removal from the atmosphere is through wet deposition. TFA hydrates 

thus serve as nucleation sites for cloud condensation in the rainout process. Computational 

studies permit the evaluation of how this system evolves (up to a certain limiting size) and 

the retrieval of spectroscopic data which is of crucial importance for the monitoring of 

TFA hydrates in the environment. 

 

Fig. 8 3D representation of trifluoroacetic acid 

 

 

Although carboxylic acids, especially acetic acid, have received widespread 

attention from the theoretical chemistry community, the literature on TFA is relatively 
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scarce. The following paragraphs provide the most relevant conclusions from studies 

concerning TFA hydrates and solvation. These stem from an atmospheric chemistry 

perspective and thus focus in small TFA hydrates, with 1 to 4 water molecules, which are 

expected to be the dominant forms in the atmosphere. 

Ito 
[65]

 and Ouyang, Starkey and Howard 
[66]

 performed experimental 

measurements on small TFA hydrates and compared those with calculated data. 

Although using different characterization techniques – the former, infrared; the latter, 

microwave spectroscopy – the authors reached convergent conclusions regarding the 

structure of TFA clusters.  

Ito prepared TFA clusters by mixing TFA and vapor in an Ar matrix and 

measured their infrared spectra. Using DFT and MP2, he performed geometry 

optimizations of TFA clusters with 1-4 water molecules and found the corresponding 

minimum energy structures, shown in Fig. 9, as well as transition states. A striking 

similarity may be found between the arrangement of water in TFA clusters with up to 4 

water molecules and pure water clusters. Like the former, small TFA clusters are the 

most stable in the ring conformation, in a donor-acceptor pattern that maximizes 

cooperativity. Hydration water molecules establish side-on hydrogen bonds with the 

carboxyl moiety, which acts as an hydrogen bond donor through the –OH and an 

acceptor, through the =O. As the cluster size increases, the distance between the acidic 

proton and the bonded acceptor decreases, but not to the point of dissociation. 

 

A vibrational analysis of the minimum energy structures was performed and 

the calculated spectra confirmed the assignments based on experimental results. 

However, three experimental peaks, between 1720 cm
 -1 

and 1740 cm 
-1

, could not be 

identified. The authors hypothesize that these peaks either correspond to a dissociated 

TFA cluster or to a neutral cage-like structure with n>4. Due to the large amount of 

structural candidates for dissociated clusters, the authors did not attempt to measure the 

vibrational spectra of dissociated species.  
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Fig. 9 Minimum energy structures of TFA(H2O)n clusters for n=1-4 obtained at the B971/6-311++G(3df,3pd) 

level. Hydrogen bond distances are espressed in angstrom. Distances within parentheses and brackets were obtained at 

the MP2/6-311++G(3df,3pd) and B3LYP/6-311++G(3df,3pd) levels, respectively. 

 

 

Thomas 
[67]

 and co-workers provided spectroscopic evidence, supported by an ab-

initio MD study, pointing out that the bulk dissociation process of TFA involves the 

formation of a contact ion-pair intermediate, where the carboxylate moiety is in direct 

contact with the hydronium cation, before transitioning into a solvent separated form, in 

which the hydronium cation is in the second solvation shell. In a diluted aqueous TFA 

solution both forms were shown to exist in dynamic equilibrium.  

Clearly, the uncharted territory of TFA hydration and dissociation is vast. The 

general goal of this case study is to explore such unventured realms and, hopefully, cast 

some light on the subject.  

The aforementioned studies did not determine the required number of water 

molecules for TFA dissociation to happen. Such is the task of the present work. We found 

minimum energy structures of TFA hydrates with 4 to 9 water molecules in their 

dissociated and undissociated states. The topologies and energetics of these clusters have 

been analyzed in an attempt to illustrate the dissociation phenomena in growing clusters. 
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4.2 Computational methods 

 

The systems at study consist of TFA hydrates in the undissociated – HTFA.(H2O)n 

– and zwitterionic, or dissociated state – TFA
-
(H3O

+
)(H2O)n-1 – with n=[4-9]. The 

minimum energy structures presented herein were optimized at the B3LYP/6-311++G** 

level of theory using the Gaussian 09 
[47]

 electronic structure program. Vibrational analysis 

confirmed the latter to be local minima due to the absence of imaginary frequencies. A re-

optimization of all structures, using the VeryTight SCF convergence criterion, UltraFine 

grid and counterpoise correction was carried out. Transition state structures connecting 

dissociated and unidssociated minima were calculated using the QTS2 scheme. The 

presence of a single imaginary frequency confirmed these structures are first-order saddle 

points. 

 

The total interaction energy (Eint) may be calculated as the difference between the 

energy of a complex AB in its optimized geometry and the sum of the energies of the 

individual subsystems A and B with the same geometries as those adopted in the complex 

AB, which may be written as 

       (  )     ( )     ( )    

The interaction energy was corrected for the basis set superposition error (BSSE) 

using the counterpoise scheme.  

The Gibbs free energy of all hydrates was calculated at 298K and 1 atm. For the 

calculation of the Gibbs free energy Gaussian09 computes assumes the system behaves as 

an ideal gas and that its first and higher excited states are inaccessible. The software uses 

standard statistical thermodynamic formulae in order to obtain the 

electronic, translational, rotational and vibrational contributions to entropy and enthalpy 

and then retrieves the Gibbs free energy through the equation G=H-TS (for detailed 

information please consult ref 
[68]

). 

The energy of each individual hydrogen bond was estimated using a correlation 

function suggested by Wendler and co-workers 
[69]

. Wendler evaluated the interaction 



58 

 

energies of more than 250 hydrogen bonded dimers and correlated these with physical 

descriptors, such as hydrogen bond length, by fitting functions. For the present analysis we 

took the energy-bond length fitting function and re-parametrized it to better describe the 

particular case of TFA hydrates, yielding the optimized fit displayed in the following 

equation, where Eint is the interaction energy in kJ/mol and rHb the hydrogen bond length 

(H.....O) in pm.  

 

Eint = (1,19x10
10

 )/(rHb
3.816

) 

 

4.3 Results and discussion 

 

4.3.1 What is the minimum number of water molecules required for TFA 

dissociation? 

 

 

Plot 2 Variation of the free energy difference, ΔG, between the dissociated and undissociated hydrates with 

cluster size 
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Plot 2 displays the relative Gibbs free energy at 298K of TFA hydrates in the 

dissociated and undissociated forms. 

Hydrates with 1,2 and 3 water molecules were not included since, in this size range, 

no dissociated minima were found.  

With 4 water molecules, dissociation becomes possible, although clearly 

unfavourable, since the dissociated hydrate is ~30 kJ/mol higher in free energy than its 

undissociated counterpart. Note that the undissociated analog is not the global minimum at 

n=4, which is a planar ring, but rather a tent-like structure similar to the dissociated form. 

We have decided to compare structural analogues instead of the lowest possible minima in 

order to understand how proton transfer alone affects the overall energetics of the system 

by itself. If structures with radically different topologies were compared, we would have to 

account for larger differences in strain and number of hydrogen bonds between dissociated 

and undissociated clusters. Within the chosen strategy, the main difference between the 

former analogs is the placement of the acidic proton.  

 

With 5 water molecules, the undissociated and dissociated clusters are practically 

isoenergetic, although the dissociated form is marginally more stable. Hence, formally, the 

minimum number of H2O molecules required to cause TFA dissociation is 5. In this size 

range, the interconversion between dissociated and undissociated forms is barrierless, as 

proven by the inexistence of a transition state linking the two. This barrierless transfer is 

maintained at n=6 although in this case the dissociation process is somewhat more 

favorable.  

 

As more water molecules are added, dissociation becomes increasingly 

advantageous. The steepness of the plot decreases from n=8 to n=9 which may indicate 

that the chemical environment of this cluster size approaches that of the bulk.  
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4.3.2 Geometries of TFA hydrates 

 

The optimized geometries of dissociated and undissociated TFA hydrates are 

displayed in Table 4. 

The dissociated local minimum found at n=4 displays a tent-like structure, with the 

hydronium ion sitting on top, forming 3 hydrogen bonds with 3 water molecules, which in 

turn act as hydrogen bond donors towards the carboxylate headgroup. Tent-like structures 

have been found for a variety of dissociated acids in clusters with 4 water molecules, 

including formic acid 
[57]

, the halogenated HX series (X=F, Cl, Br, I) 
[55]

, H2SOx and HS 

[70]
 . The data thus suggests that, in order for the aggregate to be stable, even as a local 

minimum, the hydronium ion must be tri-coordinated.  

A dramatic structural transition takes place from n=4 to n=5 and curved topologies 

formed by planar fused rings become dominant. These topologies are similar to those 

found in hydrates of other carboxylic acids. Although our limited PES search does not 

allow us to determine if these are local or global minima, the striking similarity between 

the topology of these clusters and those of protonated water clusters 
[71]

, protonated 

carbonic acid hydrates 
[72]

 and the aqueous hydration shell of carboxylate anions 
[73-74]

 are 

good indicators that the minimum energy structures found herein for TFA hydrates are, at 

least, realistic candidates for global minima.  

The dissociated hydrates with n=5 and n=6 have a contact ion-pair formed by the 

carboxylate unit and the hydronium ion. As the cluster grows, from n=7 onwards, 

topologies where the hydronium ion is located in the second solvation shell of TFA
-
 

become more favourable. From these observations one concludes that the force driving the 

proton away from the acid and towards the water molecule network grows stronger as the 

latter grows larger.  

The prevalence of pentameric and, to a lesser extent, tetrameric units, is also found 

in protonated water clusters of this size range 
[71]

 and this “preference” is usually attributed 

to the reduced conformational strain of this geometry.  
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As expected, even in the larger cluster studied herein, the solvation shell is located 

around the carboxylate/carboxyl moiety while the CF3 backbone remains desolvated. Such 

is expected since the carboxyl(ate) end is capable of forming 4 hydrogen bonds with the 

water molecule network, while the CF3 group is superhydrophobic, repelling both 

hydrophyllic and hydrophobic molecules. 

 

 

Table 4 Geometries of the dissociated and undissociated TFA hydrates. The indicated values denote hydrogen 

bond lengths.  

 

n HTFA(H2O)n TFA
-
(H3O

+
)(H2O)n-1 

4 
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5 

 

 

6 
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7 

 

 

8 
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9 

 

 

 

 

 

 

 

4.3.3 Evolution of energy of interaction with cluster size 

 

The energy of interaction, Eint, of all studied hydrates is negative, ensuring that 

their formation from the corresponding monomers is favorable.  

For both dissociated and undissociated hydrates, the Eint increases fairly regularly 

with each added water molecule, as shown by the high correlation coefficients of the 

respective linear regression lines displayed in Plot 3 and Plot 5. The stabilizing effect of 

adding one water molecule is approx. 36 kJ/mol for undissociated clusters and 45 kJ/mol 

for dissociated clusters (based on the slope of linear regressions). The energetic gain is 

higher in dissociated clusters since with each additional water molecule the network 
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becomes more efficient at charge delocalization, an effect which is not as dramatic in 

undissociated clusters due to the absence of charged species in the latter. 

The stepwise interaction energy shown in Plot 4 and Plot 6. The most striking 

features of these plots concern the first and last transitions. In both dissociated and 

undissociated hydrates, the highest stepwise interaction energy occurs at the n=4 to n=5 

transition, reiterating that the tent like structure found at n=4 is unfavorable, leading to 

weaker intermolecular interactions when compared with the slightly curved topology 

adopted thereafter. The plot concerning the n=7 to n=9 transitions is almost flat, meaning 

that the increment in Eint remains truthfully constant in this size range, hinting that this 

size range is a “good enough” model for the bulk solvation of TFA and TFA-.  

The Eint of dissociated clusters is systematically higher than that of the 

undissociated forms. This occurs not because the dissociated clusters are systematically 

more stable (Plot 2 shows this is not true until n=7) but, instead, because the monomeric 

units that form dissociated clusters include charged species which, in isolation, are much 

less stable than neutral species. Consequently, cluster formation is more favorable for an 

ensemble which includes charged species than for another in which all monomers are 

neutral. This fact bears no relation to the relative stabilities of dissociated and 

undissociated clusters.  

 

Plot 3 Variation of the energy of interaction Eint of undissociated TFA hydrates with cluster size 
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Plot 4 Stepwise increment of the energy of interaction Eint of undissociated TFA hydrates with each added 

water molecule 

 

 

Plot 5 Variation of the energy of interaction Eint of dissociated TFA hydrates with cluster size 
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Plot 6 Stepwise increment of the energy of interaction Eint of dissociated TFA hydrates with each added water 

molecule 

 

 

 

4.3.4 Hydrogen bond energy 

 

The correlation function described above was used to ascribe bond energies to each 

of the hydrogen bonds present in the studied TFA hydrates. Shorter bonds are stronger, 

thus higher in energy than longer hydrogen bonds.  

The results from the hydrogen bond energetic analysis were quite baffling to us as 

we expected clusters with overall stronger hydrogen bonding interactions to be the most 

stable. In fact, as Plot 7 shows, all dissociated clusters have stronger hydrogen bonds than 

their undissociated counterparts despite the fact that at n=4 the undissociated cluster is far 

more stable. There are two possible reasons for this seeming dissonance:  

a) the fitting function employed is improper to describe the system at hand; 
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b) there are other factors at play – for example, conformational strain – which 

considerably affect the overall cluster stability but do not reflect on the overall hydrogen 

bond strength; 

 

Plot 7 Sum of the hydrogen bond energies for each dissociated and undissociated hydrate, calculated according 

to the aforementioned correlation function, plotted against the number of H2O in the cluster 

Plot 8 shows the total hydrogen bond energies of the various cluster systems 

studied herein plotted against the respective interaction energies. The first feature to catch 

our attention is the large value of the y intercept in the linear regression for dissociated 

hydrates – almost 575 kJ/mol. The chemical meaning of this constant is the average 

amount of interaction energy not attributed to hydrogen bonds. In contrast, the y intercept 

for undissociated hydrates is less than 20 kJ/mol. This small amount is easily attributable 

to London dispersion energy. In dissociated hydrates, the “excess” energy may be 

attributable to the isotropic coulombic attraction, that is, the non-directional coulombic 

attraction which does not strengthen hydrogen bonds. Such a strong contribution from 

coulombic forces arises from the uneven charge distribution in dissociated clusters.  
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Plot 8 Sum of the hydrogen bond energies for each dissociated and undissociated hydrate, calculated according 

to the aforementioned correlation function, plotted against the corresponding energy of interaction Eint 

 

4.3.5 Chemical Hardness and stability 

 

Chemical hardness can be estimated as half the HOMO-LUMO gap of a given 

chemical system. According to the principle of maximum hardness 
[75]

, the greater the gap, 

the more stable is the system, since it is harder to polarize its electron cloud. Plot 9 

displays the difference in chemical hardness of dissociated and undissociated hydrates as a 

function of cluster size. As more water molecules are added, this difference increases, 

meaning that dissociated clusters become increasingly more stable than their undissociated 

counterparts, which is in total accordance with the information provided by the difference 

of free energies for both systems, displayed in Plot 2. 
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Plot 9 Variation of the difference in chemical hardness between dissociated and undissociated clusters with 

cluster size 

 

 

4.3.6 Eigen vs. Zundel structures 

 

The structure and behavior of the hydrated proton is still a matter of intense debate. 

The old notion of a H3O
+
 cation weakly solvated by water molecules has been discarded in 

favor of more realistic representations: the Eigen (H9O4
+
) and Zundel (H5O2

+
) cations 

[76]
.  

In the Eigen cation, 3 water molecules are strongly hydrogen bonded to a central 

H3O
+
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equidistant to each of them, as displayed in Fig. 10. 
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.  

Fig. 10 Topologies of the Eigen and Zundel complexes. (Image taken from 

http://www.science.uva.nl/research/molphot/trvs/liq.html) 

In the minimum energy structures of protonated water clusters, as well as acid 

hydrates, both Eigen and Zundel forms may be found, depending on the size and geometry 

of the cluster and nature of the solute. The interconversion between Eigen and Zundel 

cations is thought to be the basis of the Grothuss proton diffusion mechanism, an 

hypothesis supported by the existence of intermediate structures deemed "deformed Eigen" 

and "deformed Zundel" cations. The structures and vibrational frequencies of both 

conformations are well documented 
[77-78]

.  

In the TFA hydrates studied herein, the hydrated cation is of the deformed Eigen 

type, as illustrated in Fig. 11. An assymetric H3O
+
 core is coordinated with either 3 water 

molecules (n=4 and n=7-9) or with 2 water molecules and the carboxylate moiety of 

trifuoroacetate. The O...O distance between H3O
+
 and the H2O molecules or COO- 

moieties directly hydrogen bonded to it in TFA hydrates are close to those found in the 

undistorted Eigen complex, which typically vary between 2.50 and 2.55 Å. The H9O4
+
 

cation is highly symmetrical since hydronium is solvated by 3 water molecules. On the 

contrary, the eigen complex present in TFA hydrates is uneven, since one of its O…O 

lengths is consistently 0,1 Ȧ shorter than the other two. Unsurprisingly, the shorter distance 

is that between H3O
+
 and COO

-
, in those clusters where a contact ion-pair is formed, or 

between H3O
+
 and the H2O that is directly bonded to COO

-
. Thus, the electrostatic pull of 

the carboxyl group affects the eigen complex even when hydronium resides in the second 

solvation shell.  

http://www.science.uva.nl/research/molphot/trvs/liq.html
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Fig. 11 Structure of TFA-(H3O
+)(H2O)6. The values shown correspond to the O...O distances of the Eigen 

complex 

 

There is no evidence for Zundel-type structures in minimum energy structures of 

TFA hydrates. However, metastable conformers corresponding to transition states (TS) 

display distorted Zundel complexes. The latter are characterized by O...O distances very 

similar to those found in undistorted Zundel ions. However, the shared proton is not 

equidistant to the solvation water molecules but rather prefers to sit ~0,1 Ang closer to the 

water molecule that becomes an hydrogen bond acceptor in the corresponding minimum. 

The sequence undissociated TFA : TS : dissociated TFA provides a visual representation 

of the Grothuss mechanism, as shown in Fig. 12. 
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Fig. 12 Proton transfer pathway for the n=4 TFA hydrate, from the undissociated energy minimum, up to the 

transition state which forms a distorted Zundel complex and downhill again unto the dissociated hydrate in which an 

Eigen complex is found 

 

4.3.7 Bridging the gap between micro- and bulk solvation  

 

Do gas-phase hydrates really provide clues for understanding bulk dissociation or 

are they an entirely separate world?  

Although the study of cluster systems is often pointed out as a useful probe for 

understanding the bulk state, one may argue that those are two entirely different worlds. 

The geometry of the TFA solvation shell in gas-phase clusters, for example, is likely to be 

quite different from its equivalent in the bulk since the chemical environment is completely 

changed. However, some fundamental features do remain constant. In the specific case of 

TFA hydration, for example, a few links connecting the nano- and macro- dissociation 

phenomena can be found. As pointed out in the introduction, TFA dissociation involves the 

formation of a contact ion-pair intermediate. The hydrates with n=5 and n=6 presented 

herein may thus represent the gas-phase counterparts of the contact ion-pair intermediates 

found in bulk, while the larger hydrates, in which hydronium occupies the second solvation 

shell, illustrate a possible solvent separated structure. Furthermore, according to a large 

angle x-ray scattering (LAXS) study by Takamuku et. Al 
[79]

, the first solvation shell of 

trifluoroacetate in bulk water is estimated to contain 4 water molecules, on average. Such 

 

Undissociated Transition state 

Zundel cation 

Dissociated 

Eigen cation 
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is the condition of the dissociated hydrates with n=8 and n=9. This information confirms 

our conclusion that this size range is the minimum required to fairly represent the bulk 

picture. In a nutshell, gas-phase hydrates can never be regarded as small scale replicas of 

the bulk, nevertheless they do provide insightful clues as to the nature of the latter. 

 

4.4 Conclusion 

 

The most important findings of this study are, in a nutshell 

 A minimum number of 4 water molecules in necessary to abstract a proton 

from TFA although at this cluster size dissociation is energetically 

unfavorable; 

 5 water molecules are needed to render the dissociated TFA hydrate more 

stable than its undissociated counterpart; 

 The hydronium ion, in all dissociated TFA hydrates, is found in the Eigen 

complex form; 

 In TFA hydrates with 5 to 9 water molecules, the predominant geometric 

motifs are fused pentagonal rings; 

 In large dissociated TFA hydrates (n=8,9), the solvation shell exhibits 

characteristics which coincide with those found for aqueous dissociation, 

namely, the hydronium cation is located in the second solvation shell and 

the carboxylate moiety is tetracoordinated with 4 H2O molecules. Smaller 

hydrates (n=5,6) form contact ion-pairs, reported to be intermediate 

structures in TFA dissociation 
[67]

.  

The major weakness of this study lies in the absence of a thorough PES search. Due 

to limited time and computational resources, a narrow conformational search was 

performed. Thus, there is no way to ascertain if the local minima herein found are 

anywhere close to the global minima in the PES.  

Additionally, the perspective of TFA dissociation presented is a static one. It 

compares two possible configurations, one in the dissociated and another in the dissociated 
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state. A dynamic simulation would be necessary to determine the dissociation time scale 

and more effectively identify metastable states involved in the process. 

Thus, my recommendations for those interested in further studying TFA hydrates is 

to perform ab-initio MD simulations, which simultaneously allow a more thorough 

conformational search and probing the time scale of proton transfer events.  
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Chapter 5 

 

 

Calculation of the pKa of organic acids using a hybrid explicit-implicit scheme 
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5. Calculation of the pKa of organic acids using a 

hybrid explicit-implicit scheme 

 

5.1 Introduction 

 

Acid-base phenomena are ubiquitous in both natural and industrial processes. The 

rate determining step in many chemical reactions involves proton transfer, hence their 

efficiency is correlated with ease of protonation. The pharmacological properties of 

bioactive compounds depend largely on whether the former are in their neutral or 

protonated/deprotonated states. Hence, when screening drug candidates, the ease of proton 

dissociation is usually the first parameter to account for 
[80]

.  

Although there are several experimental techniques for measuring acidity, such as 

spectroscopy, potentiometry, conductimetry and titrimetry there is an urgent need for 

reliable computational methods for acidity prediction. Theoretical prediction is especially 

important in drug design, which demands a fast screening of drug candidates, in the 

assessment of specific acidic sites in large biomolecules, such as enzymes, and for those  

species for whom experimental pKa measurement is not feasible such as metastable 

intermediates or very strong and very weak acids 
[59]

.  

This section briefly reviews current theoretical methods for acidity prediction, 

starting with the basic definitions and equations they employ. 

5.1.1 Equations and definitions 

 

The aqueous acidity constant, Ka, is defined as the equillibrium constant for the 

dissociation of an acid species HA into its conjugate base A
-
 and a proton H

+ 
in water. For 

the sake of illustrating the concept, the proton is usually represented as H
+
 although in 

reality it is transferred to a nearby water molecule. 

                                     HA(aq) → H
+

(aq) + A
-
(aq) 
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Ka is usually expressed in the logarithmic scale as pKa. 

            

pKa may be predicted using ab-initio methods either directly, using thermodynamic 

cycles to calculate the Gibbs free energy of dissociation in aqueous solution (ΔG*aq) or 

indirectly, using parameterized models relating the pKa of a given class of compounds 

with molecular descriptors such as bond lengths and energies. The former strategy is, in 

our perspective, more interesting since pKa is truly calculated ab-initio, not requiring a 

parametrized model built with experimental data.  

We do acknowledge that, at this time, correlation models offer a better performance 

at a typically lower computational cost than ab-initio methods. The latter are interesting to 

us not due to greater performance, since the contrary is the case, but rather due to the core 

idea behind them: if ab-initio methods are capable of accurately predicting ΔG*aq then the 

calculated pKa must converge with the experimental one. A perfect and universal 

convergence between theory and experiment, preferably at moderate computational 

expense, would be the ultimate triumph of computational chemistry. The current scenario 

is a far bleaker one, however the shortcomings of ab-initio methods in pKa prediction are 

valuable symptoms of the underlying sources of error, be they intrinsic calculation errors 

or unrealistic dissociation frameworks. Thus, only ab-initio methods of pKa prediction 

shall be further discussed, as correlation models fall out of the scope of the present work.  

5.1.2 Thermodynamic cycles or how to obtain ΔG* (aq) 

 

The acidity constant Ka may be calculated from the standard state free energy 

change of the dissociation reaction according to  

    
           

which may be rearranged to directly yield pKa as  
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The quantity ΔG*aq is the free energy difference between products and reactants in 

aqueous solution at 298K.  

Unfortunately, the calculation of free energies in solution is still difficult. Typically, 

continuum solvation models such as the Polarizable Continuum Model (PCM) or the 

recently proposed Solvation Model D (SMD) 
[81]

, are used to implicitly model the solvent, 

since the explicit alternative would be computationally inefficient.  

Continuum solvation models 
[82]

, also named implicit solvation models, provide a 

way to efficiently describe how a given solute responds to a solvent by substituting the 

latter with a dielectric continuum whose dielectric constant is that of the solvent of interest. 

Thus, the solute is treated with atomic detail while confined in a molecule-sized cavity 

which is surrounded by the dielectric medium. Both PCM and SMD belong to a popular 

class of implicit solvation models in which the dielectric medium responds to the charge 

distribution of the solute by undergoing polarization.  

Although time-efficient and practical, continuum solvation models are not able to 

predict free energies in solution with enough accuracy. This is problematic, since an error 

of merely 5.7 kJ/mol in the estimation of the free energy of dissociation gives an error of 1 

pKa unit. In order to promote accurate results, ΔG*aq may be calculated through a 

thermodynamic cycle. There are many possible thermodynamic cycles, the simplest being 

the “direct method”, displayed in Scheme 2. 

 

 

Scheme 2 Direct thermodynamic cycle 

Firstly, the geometries of reactants and products are optimized in the gas phase and, 

subsequently, their free energies in solution are computed. For best results, a re-
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optimization in the solvent model should be performed. The free energy differences 

between solutes in the gas and solution phase provides the solvation free energy ΔG*s. The 

advantage of using a thermodynamic cycle instead of simply calculating the free energy 

difference in solution is that the gas-phase calculation, being less time consuming, is 

performed at a higher level of theory than the calculations in a dielectric continuum. It is 

expected that the high accuracy of the ΔGº value somehow compensates for the inherent 

error of the solvation free energies.  

At this point, ΔG*(aq) would be easily calculated by following the thermodynamic 

cycle. But how to account for ΔG*s (H
+
)? A proton has no electrons, thus cannot be 

submitted to calculation. Instead, experimental values have been used. There is a large 

discrepancy between the several reports of experimentally determined ΔG*s (H
+
) 

[83-84]
 and 

that is an additional source of error when this basic thermodynamic cycle is used. The 

problem is avoided by adding one water molecule to the reactants and substituting H
+
 for 

H3O
+
 in the products.  

The basic thermodynamic cycle shown in Scheme 2, the direct model, is the most 

commonly encountered in the literature. It is fairly accurate at predicting relative pKa 

values, however fails at estimating absolute values. This indicates that the dissociation free 

energy calculated using this scheme is strongly correlated to pKa, however persistent 

systematic errors lead the calculated absolute values to deviate from the experimental ones.  

Many alternative thermodynamic cycles have been proposed as an attempt to 

surpass the aforementioned limitations 
[59, 80, 85-86]

. Out of the proposed models, the cluster-

continuum hybrid approach 
[59, 87-88]

 has caught our attention. It includes explicit solvation 

water molecules in order to better account for the interactions between solute and solvent, 

which are poorly estimated by continuum solvation models. The latter is especially true for 

ionic species, since their unbalanced charge distribution evokes a more “dramatic” 

electrostatic response from the bulk – for example, charge transfer phenomena – than 

neutral species. Aqueous solvation free energies calculated using continuum models have 

errors of up to 4 kJ/mol for typical neutral solutes and ~17 kJ/mol for ionic solutes 
[59]

. 

Consequently, ionic species frequently require a different parametrization of the continuum 

model than the one used for neutral species. This is quite bothersome and the explicit 

representation of solvent molecules is a more straightforward way to improve the 
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representation of ionic solutes.  In the latter case, the solute encased in the continuum 

solvent cavity is no longer the bare acid/base but rather its microsolvated version. The 

cluster-continuum thermodynamic cycle is presented in Scheme 3.  

 

 

Scheme 3 Cluster-continuum thermodynamic cycle 

 

Many variations of this cycle have been used. While some authors explicitly solvate 

both the acid and the conjugate base, others decide to do so only for ionic solutes. The 

explicit solvation of the hydronium ion to form, when in aqueous media, the Eigen 

complex, has also been tested. 

The cluster-continuum model may be applied in the direct way, as depicted in 

Scheme 3 or using other dissociation schemes, such as the proton-exchange model, in 

which proton transfer takes place between the acid of interest and the hydroxide ion, as 

follows 

                                     HA + OH
-
  A

-
 + H2O 

The advantage of the proton-exchange model is that ionic species are present on 

both sides of the equation promoting the cancellation of errors. 

The cluster-continuum method has been applied to carboxylic acids 
[89]

 yielding 

better results than those usually obtained through the direct method. A major drawback of 

the cluster-continuum method is that the calculated pKa depends on the number and 

location of water molecules of solvation. The number of water molecules that yields a 

better pKa estimate varies with each acidic compound. Hence it is difficult to determine a 

priori which number represents bulk solvation ideally. However, Cramer, Kelly and 
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Truhlar 
[90]

 have shown that adding a single water molecule significantly improves the pKa 

prediction for compounds which interact strongly with the solute. If the solute-solvent 

interaction is weak, the cluster-continuum method does not perform better than the direct 

method. Since TFA strongly interacts with water it is reasonable to include explicit solvent 

molecules in the pKa calculation. 

Despite the elegance of the method discussed above, one detail has spiked our 

curiosity: why are the anionic and cationic species resulting from dissociation always 

treated separately? The reason for this cognitive dissonance stems from our studies with 

TFA hydrates, in which aggregates of neutral TFA and water are compared with their 

analogs in the dissociated state. The free energy difference between undissociated and 

dissociated clusters of the same size is undoubtedly linked with pKa. With this notion in 

mind, we have built yet another thermodynamic cycle in which dissociation occurs within 

the cluster, as shown in Scheme 4. 

 

Here, ΔGº is free energy difference between the undissociated and dissociated 

clusters in the gas phase, 

     
       

 ((   )   (   
 )(  ))       

 ((   ) (  )) 

And  ΔG
*
aq is computed by adding or subtracting the solvation free energies ΔG

*
s. 

  (  )
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The use of this thermodynamic cycle only makes sense if one computes the gas-

phase dissociation free energy at a higher level of theory than the one used for the 

Scheme 4 Our proposed thermodynamic cycle 
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calculation of solution-phase energies. We decided to skip this step altogether and simply 

computed the solution-phase energies of both dissociated and undissociated clusters, so 

that ΔG*(aq) results directly from 

  (  )
    (  )

 ((   )   (   
 )(  ))    (  )

 ((   ) (  )) 

 

5.1.3 Comment on the nature of pKa 

 

As the results will demonstrate, our proposed thermodynamic cycle provides a very 

satisfying degree of accuracy. But is it more accurate because it is more realistic or because 

it promotes a better cancellation of errors? Is it a simple artifact? Only by applying the 

proposed method to a wide variety of acid compounds with known pKa may those 

questions be safely answered. It is however amusing to ponder on the nature of pKa at a 

fundamental level. How is dissociation defined? Is an acid species fully dissociated only if 

the resulting anion and cation are infinitely apart? What if they form a contact ion pair, 

does that count as dissociation? What if there is only one solvent shell separating them?  

Smiechowski et al 
[56]

 performed an analysis of carboxylic acid hydrates similar to 

our own and calculated the equillibrium constant for the process (H2O)nHA  (H2O)n-

1(H3O
+
)(A

-
) in aqueous solution but did not use it to calculate the pKa of the respective 

acids nor did they ever refer such equilibrium constant to be the acid dissociation constant. 

The latter is always treated in pKa calculation studies as the equilibrium constant for the 

process where the conjugate base and hydronium ion become fully separate and are thus 

computed separately. 

Obviously, in the bulk solution, the proton rapidly hops across the hydrogen bond 

network after dissociation and in a short period of time distances itself from the anion but 

the question is, in average, how distant? 

A good starting clue can be found in the recent work of Gu, Frigato, Straatsma and 

Helms 
[62]

 who performed an MD simulation of acetic acid dissociation in water. An acetic 

acid molecule was placed in a simulation box with explicit water molecules and the 
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trajectory of the acetic acid proton was then followed for 50 ns. During this time-window, 

several proton transfer (PT) events took place.  

In more than 90% of the PT events, the proton hopped to the closest water molecule 

but quickly returned to the acetate ion, protonating it again. In the remaining cases the 

proton managed to escape and travel through the hydrogen bond network but eventually 

hopped back to the acetate ion. As the radial distribution function the this simulation 

evidences, the preferred position of the proton is around 2 Ȧ from the carboxylate oxygen, 

corresponding to the case of fast proton swapping with the closest water molecule, and it 

goes no further away than 12 Ȧ upon escaping the pull of the acetate ion.  

Bearing in mind that many of the biologically interesting acids being studied today 

are as strong as, and in many cases weaker than, acetic acid, it does not seem at all 

reasonable to assume that upon dissociation the resulting hydronium and conjugated base 

are infinitely separated. Thus we believe than even though the proposed scheme may not 

capture the nature of pKa as it has been traditionally defined, it might actually provide a 

more realistic description of the chemical environment of conjugated bases after 

dissociation takes place. 

 

5.2 Computational methods 

 

The geometries of all studied hydrates and their dissociated counterparts were 

optimized at the SMD/B3LYP/6-311++G** level with default parameters using the 

Gaussian09 
[47]

 electronic structure calculation package. SMD is a universal solvation 

model – here the term “universal” denotes its applicability to all solvents – recently 

proposed by Marenich, Cramer and Truhlar 
[81]

 and recommended by the Gaussian09 

manual for the computation of free energies of solvation.  

Vibrational analysis confirmed, by the absence of imaginary frequencies, that all 

the considered structures correspond to local minima on the PES. 
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The Gibbs free energy of all hydrates was calculated at 298K and 1 atm. For the 

calculation of the Gibbs free energy Gaussian09 assumes the system behaves as an ideal 

gas and that its first and higher excited states are inaccessible. The software uses standard 

statistical thermodynamic formulae in order to obtain the 

electronic, translational, rotational and vibrational contributions to entropy and enthalpy 

and then retrieves the Gibbs free energy through the equation G=H-TS (for detailed 

information please consult ref 
[68]

).  

The greatest source of error in the calculation of thermodynamic quantities regards 

the vibrational contribution, which is the largest. Those “vibrations” whose frequency is 

lower than 625cm
-1

 may not be true vibrations but internal rotations and their treatment as 

vibrations induces error. When such low frequencies are present, as is the case of all 

clusters in our data set, it is recommended that one treats them separately. After doing so, 

we found that the newly estimated pKa values were less accurate than those obtained 

including the low frequencies. For this reason, the pKa values here reported were 

calculated using the Gibb’s free energies directly provided in the calculation output.  
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5.3 Results and discussion 

 

5.3.1 Global performance assessment 

 

Table 5 List of calculated and experimental pKa values, along with individual errors (ΔpKa), mean unsigned 

error (MUE) and mean signed error (MSE) 

  

  

Acid pKa (calc) pKa (exp) ΔpKa 

Acetic acid 4,67 4,76 -0,09 

Propanoic acid 7,53 4,86 2,67 

Trifluoroacetic acid 0,05 0,47 -0,42 

Difluoroacetic acid 1,55 1,34 0,21 

Fluoroacetic acid 0,52 2,60 -2,08 

Trichloroacetic acid -0,47 0,26 -0,73 

Dichloroacetic acid 1,24 1,30 -0,06 

Chloroacetic acid 4,01 2,85 1,16 

Acrylic acid 6,13 4,25 1,88 

Benzoic aicd 5,36 4,20 1,16 

Isopropylammonium 11,73 10,60 1,13 

Glycine pKa1 1,10 2,34 -1,24 

Glycine pKa2 10,24 9,60 0,64 

Alanine pKa1 0,67 2,34 -1,67 

Alanine pKa2 11,15 9,69 1,46 

  MUE 1,11 

  MSE 0,27 
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The pKa values of the tested set of 10 carboxylic acids, 1 amine and 2 aminoacids, 

estimated according to the proposed scheme are displayed in Table 5 along with the 

individual errors, mean unsigned error (MUE) and mean signed error (MSE). The greatest 

deviation for this group of carboxylic acids is 2.67 pKa units (propanoic acid) and the 

lowest merely 0.06 (dichloroacetic acid) while the MUE is 1.11, indicating reasonable 

accuracy. The last statement may sound quite extraordinary, as in practical terms, this error 

is one hundred times greater than that offered by any pH meter found in the laboratory. 

However, the art of estimating pKa values ab-initio, contrary to potentiometry, is still in its 

infancy, and the average MUE of the calculation schemes suggested in the literature is ~2 

pKa units.  

Although the MUE is a useful, quick measure of accuracy, some other indicators 

are important. It is customary to plot the calculated pKa’s against their experimental values 

and perform a linear regression analysis. The slope, y intercept and correlation of the 

regression line provide valuable information. The ideal slope is 1, however it is common to 

find slopes of 0.5 especially among direct continuum methods. The y intercept, when large, 

indicates the presence of systematic errors in the calculation method. Finally, the 

correlation factor measures the consistency of each method’s pKa predictions. If only 

systematic errors were present, the correlation would be close to 1 while the MUE could 

very well be large. 

The slope of the regression line, shown in Plot 10, for our proposed method is 1.2 

which is quite reasonable and the correlation 0.92, indicating there is significant but not 

strong correlation between the calculated and experimental results. 
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Plot 10 Plot of the estimated pKa values against the experimental ones 

 

When one proposes yet another route for first-principles pKa estimation, it is 

common practice to focus most of the discussion around the accuracy issue and how it 

compares with the accuracy of other schemes that have been used to test the same family 

of acids. More often than not, the discussion aims at promoting the proposed method to the 

detriment of the previously published ones instead of honestly attempting to discern which 

characteristics promote success in a calculation scheme. As a result, all sort of “smoke and 

mirrors” tricks are found in the literature that twist and cut calculated results, forcing them 

to adjust to experimental ones. Examples include using parametrization functions, 

“adjusting” the calculated solvated free energies by a fixed amount, using different 

experimental values for Gº(H
+
) and selecting the one that yields the best pKa estimates or, 

quite naively, declaring that the error is lower than 1 pKa unit without specifying that 

they’re referring to the Mean Signed Error, which is usually lower than the Mean Unsigned 

Error since the errors with opposite signs cancel each other out. 
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The suggested calculation scheme is reasonably accurate  
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It is thus quite frustrating to conduct a serious performance comparison, one of the 

reasons why the following one is kept short. 

Pliego and Riveros 
[87]

 used the cluster-continuum approach in conjunction with 

proton-exchange method to estimate the pKa’s of 17 species. Explicit water molecules 

were added on both the hydroxide anion (reagents) and the conjugate base anion (products) 

although the number of added water molecules varied for each solute, having been selected 

to maximize the stability of said molecule in solution. With a MUE of 1.77 and a slope of 

1.07, Pliego’s method performance is as good as ours. The author also estimated the pKa 

of the whole data set using pure continuum methods, which performed fairly worse than 

the cluster-continuum model. 

Klamt and Eckert 
[91]

 calculated the pKa of 94 acids using the COSMO solvation 

model. They made 3 distinct predictions for each acid: without explicit water molecules, 

adding one or two water molecules. Surprisingly, the MUE and correlation of explicitly 

solvated systems was worse than those in the purely continuum method. The mono- and 

disolvated systems lead to correlation coefficients of 0.94 and 0.89 and MUEs around 2 

pKa units while the purely continuum method yielded a MUE of 1.4 and correlation 

coefficient of 0.97. Conversely, the slope was improved by the addition of water 

molecules, lowering from 1.5 in the pure continuum case to close to 1 in the explicitly 

solvated case. The authors state that the cluster-continuum method is a promising way of 

solving the slope problem, however new problems are found. For example, the loss of 

overall correlation with each added water molecule. 

 

Sutton, Franks and da Silva 
[92]

, in a freshly published paper, present an extensive 

study on the performance of cluster-continuum schemes using the SMD solvation model. 

The testing set consists of 8 carboxylic acids whose solvation free energies are computed at 

the DFT level using different functional/basis sets combinations. 3 thermodynamic cycles 

are tested and 4 explicit hydration scenarios (including no explicit solvation, one water 

molecule on all species, one water molecule on all aqueous species and one water molecule 

solely on anions). All possible combinations were tested so that a total of 804 individual 

pKa values were computed. The MUEs varied from 0.6 to 7.08.  
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The combination yielding the most accurate results, with MUEs below 1 pKa unit, 

is the computation of solvation energies at the M05-2X/cc-pVTZ level (M05-2X is a 

density functional known for its improved treatment of medium-range correlation) using 

explicit water molecules on all solutes. The absence of explicit solvation consistently leads 

to worse estimates but its application solely on the anions and not on the neutral species 

results in ever worse performance than when the pure continuum model is used. 

A rare case of high accuracy must be here noted, even though it does not apply the 

cluster-continuum model. Liptak and Shields 
[93]

 used the direct method to estimate the 

pKas of 6 carboxylic acids. These were optimized in the gas-phase at the HF level of 

theory and their single-point energy calculated using complete basis set methods, while 

using the conductor-like polarizable continuum model (CPCM) to calculate the solvation 

free energies. The best results are obtained when using the CBS-QB3 energies and stand 

less than ½ a pKa unit from the experimental values.  

The estimation of the acidity constants of aminoacids has been receiving increasing 

attention in the past few years. These systems present a heavier burden due to their greater 

size and conformational freedom, thus requiring longer optimization steps.  

Kiani and his team 
[94]

 estimated the pKas of 3 aminoacids and 2 peptides using 0 to 

4 explicit water molecules. For each dissociation constant, the ensemble resulting in the 

best estimate was selected. The resulting MUE is 0.3, a quite outstanding feat, although it 

was accomplished at a high computational expense due to the high number of solvation 

ensembles tested. 

Vyas and Ojha 
[95]

 estimated the pKa of 4 aminoacids using the direct 

thermodynamic cycle, without adding explicit water molecules. The aminoacid structures 

were optimized in the gas-phase at the B3LYP and HF levels with the 6-311++G(d) basis 

set and then solvated in the PCM framework. The resulting MUE was 1.3 for the pKa 

values calculated at the B3LYP level and 2.3 for the HF values. It must however be noted 

that several sets of pKa estimates were calculated using values of ΔGsol (H
+
) between -262 

and -266 kcal/mol in order to choose the one which yielded the best pKa estimates for all 

aminoacids. 
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Mangold and his team 
[96]

 used density functional based molecular dynamics to 

estimate the pKa of 7 aminoacids. The novelty of this work is that it explicitly represents 

the bulk solvent (or at least a fraction of it) by simulating the aminoacid dissociation inside 

simulation cells with ~50 water molecules. Unfortunately, the uncertainty of the 

trajectories’ finite lengths, of ±1.1 pKa units, weighs heavily upon the overall MUE, which 

reaches 2.1 pKa units.  

In this study only 2 aminoacids were studied, and the 4 resulting pKas were 

estimated with a MUE of 1.25 which is fairly reasonable given the current scenario.  

Overall, the scheme herein proposed does not deliver an outstanding performance 

but a quite reasonable and balanced one. Another important point is that our scheme 

dispenses the gas-phase calculation step. This step is usually performed using high-level 

methods and large basis sets.  

Our method bypasses the gas-phase calculation and simply takes the free energy 

difference of reactants and products in solution, calculated at a moderate level of theory. 

This “shortcut” is likely to be challenged, since  the thermodynamic cycle has been 

adopted as the norm for the calculation of pKas and its indispensability is never 

questioned. Sutton, Franks and da Silva 
[92]

 argue “As the solvent models have been 

parametrized on Gibbs energies of solvation, not solution phase reaction energies, more 

accurate results can be obtained when they are used to calculate the energy of solvation, in 

association with a gas basicity calculation performed at a higher level of theory” This 

statement reflects the whole “Weltanschauung” of the research community interested in 

pKa determination. It seems, apparently, that our work contradicts this assumption since 

even without using a thermodynamic cycle the herein proposed scheme performs with 

accuracy comparable to that of other methods, which are without exception based on 

thermodynamic cycles.  

The most important contribution of our method, however, is not an improvement in 

accuracy but a widening of perspectives, an opening of new pathways for pKa calculation 

and an additional exploration of the advantages and pitfalls of using explicit solvent water 

molecules. The latter issue is addressed in the following discussions, in which different 

solvation scenarios are compared and their effect on accuracy discussed. 
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5.3.2 On the optimum number of explicit water molecules  

 

Hydrogen bonds play a pivotal role in acid dissociation events taking place in 

aqueous media. Hence, a good description of the solvation shell of the solutes improves the 

accuracy of the pKa estimate. The polarizable continuum model cannot efficiently account 

for hydrogen bonds between solvent and solute. In order to compensate for this deficiency 

one may add a few explicit water molecules in the solvation shell of the acidic moiety 

responsible for proton transfer (in carboxylic acids, the carboxyl group). Although this 

method has been oftentimes successful it is not yet clear how many explicit water 

molecules, and in which configuration, yield the best description for each acid species.  

Kelly, Cramer and Truhlar 
[90]

 provide a short but illustrative example of this 

conundrum. They have calculated the pKa of the HCO3
-
 anion while adding 0 to 3 water 

molecules to the CO3
2-

 anion. Three continuum solvation methods have been used: 

solvation model 6 (SM6), solvation model 5.43R (SM5.43R) and the dielectric polarizable 

continuum model 98 (DPCM/98). For SM6, the results follow the intuitive notion that 

adding more explicit water molecules improves accuracy, as the latter increases in a 

stepwise fashion with each added solvent molecule. The other solvation models, however, 

behaved differently. For SM5.43R the best pKa estimate is given by the mono-solvated 

scheme while the best DPCM/98 result corresponds to the purely continuum scenario, and 

each explicit water molecule added progressively worsens the pKa estimate. Therefore, the 

optimum number of explicit water molecules for each particular case depends not only on 

the species but also on the continuum solvation model used and even, perhaps, on the level 

of theory. 

This unpredictable behavior has also been reported by Ho and Coote 
[59]

 who used 

the cluster-continuum method, via proton exchange, to estimate the pKas of 32 acids using 

various continuum solvent models and 0 to 3 explicit water molecules. Their results are 

summarized in Fig. 13, where the Mean Absolute Deviation (MAD, the same as MUE) for 

each solvation model is plotted against the number of water molecules. Once again, when 

using the SM6 model each additional explicit water molecule lowers the MUE, as also 
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happen to a much lesser degree for IPCM. For the other models, however, the optimum 

number of water molecules is two and the addition of a third one renders the pKa estimates 

as bad as when no explicit water molecules are used. This divergent behavior of continuum 

solvation models undoubtedly arises from their considerably different parametrization.  

 

Fig. 13 Mean Absolute Deviation (MAD, same as MUE) for pKa values calculated within different solvation 

models and using 0 to 3 explicit solvation water molecules. From [59] 

 

Zhang 
[88]

 estimated the pKa of a large number of species from different families, 

including carboxylic acids, alcohols and amines, using 0, 1 or 2 explicit solvation water 

molecules on ionic or both neutral and ionic species. His results suggest that, alongside 

with all the other variables the cluster-continuum method is subject to, the chemical class 

of the species in study also affects the effectiveness of the scheme. Adding explicit water 

molecules on both species improves the theoretical slope while not affecting the MUE and 

slightly decreasing R
2
 for carboxylic acids, improves the theoretical slope while also 

increasing the MUE and decreasing R
2
 in the group of alcohols and phenols and has no 

effect in the predicted pKa’s of amines and anilines.  

The following example from own our work illustrates a case in which the addition 

of a large number of explicit water molecules of solvation has a detrimental effect upon the 

pKa estimate. In the framework of our model, the explicit water molecules have the “task” 

not only of improving the description of the solvent but also of inducing proton transfer 

from the solute to the surrounding water molecule network.  
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As evidenced in the previous chapter, a minimum number of water molecules is 

needed to stabilize the hydronium ion in acid hydrates. As a general trend, the weaker the 

acid is, the higher the number of water molecules required to drive its dissociation.  

Isopropylammonium is a very weak acid, with a pKa of 10.6, which lead us to 

assume it would require a large number of water molecules in order to dissociate.  

A cluster with 8 water molecules, isopropylamine and an hydronium ion in the 

second solvation shell was then built and optimized in SMD. It proved to be a minimum 

and the pKa calculation was thus carried out according to our proposed method, yielding a 

pKa estimate which is 3,3 pKa units higher than the real value.  

Could this large error be caused by excessive noise introduced in the calculation by 

the large number of explicit water molecules? Remember that we are attempting to 

accurately measure very small energetic differences between the dissociated and 

undissociated state. The higher is the dimension of the system the harder it gets to 

accurately measure such small differences.  

Thus we started to exclude, one by one, the explicit water molecules that were not 

directly hydrogen bonded to either the hydronium ion or the amine/ammonium moiety in 

isopropylamine/ammonium. The result is displayed in Table 6 and Plot 11 which clearly 

show how the pKa estimate improves as the number of explicit water molecules decreases 

from 9 to 6.  

 

Table 6 pKa values of isopropylammonium calculated using microsolvated systems with 6 to 9 explicit water 

molecules 

 

 

Acid pKa (calc) pKa (exp) ΔpKa 

Isopropylammonium n=9 13,91 
 

10,60 

 

3,31 

Isopropylammonium n=8 12,34 1,74 

Isopropylammonium n=7 11,79 1,19 

Isopropylammonium n=6 11,73 1,13 



95 

 

 

 

Fig. 14 Pair of undissociated and dissociated isopropylammonium hydrates with 6 water molecules, the 

ensemble that yields the best pKa estimate 

 

 

Plot 11 Variation of ΔpKa with the number of explicitly added water molecules for isopropylammonium 

 

The balance is indeed delicate: an insufficient number of explicit water molecules 

does not accurately represent the solvent or allow proton transfer while a large number of 

water molecules increases the computational cost and introduces unnecessary noise into 

the calculation. 
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5.3.3 Conformation affects the pKa estimate: the case of acetic acid 

 

 

Table 7  Estimated pKa values of acetic acid for two solvation shells with the same size but different 

conformation 

 

 

 

 

Fig. 15 Acetic acid hydrates with solvation shell structures A and B   

Acid pKa (calc) pKa (exp) ΔpKa 

Acetic acid Struc. A 2,72 4,76 -2,04 

Acetic acid Struc. B 4,67 4,76 -0,09 

Undissociated Dissociated 

Structure A 

ΔpKa = -2,04 

Structure B 

ΔpKa = -0,09 

Geometry matters: given the same solvation shell size, some 

geometries yield a better pKa estimate than others 
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The determination of the optimum number of explicit water molecules is not the 

only puzzle one must solve when applying the proposed method. The conformation water 

molecules adopt in the solvation shell also affects the accuracy of the dissociation constant 

calculation. Consider the following illustrative case: acetic acid hydrates with 7 water 

molecules where built with 2 different conformations, as shown in Fig. 15. One of these, 

labeled as “Structure A”, closely mimics one of the conformations proposed by 

Smiechowski and his team 
[56]

. The authors analyzed the FTIR spectra of formic, acetic and 

propanoic acid in aqueous media containing isotopically diluted HDO. Through empirical 

correlations between stretching frequencies and hydrogen bond length, the oxygen radial 

distribution function for each system was determined. The vibrational analysis indicated 

the formation of a contact ion-pair between the hydronium cation and the carboxylate 

moiety and also that the latter forms a total of 4 hydrogen bonds with the solvent 

molecules. Several hydrates of the three carboxylic acids where then built and optimized at 

the B3LYP/6-311++G(d,p) level and the dissociated structure mimicked in the present 

work was chosen due to its close agreement with the aforementioned data. Recall the work 

of Gu and his team 
[62]

 mentioned in this chapter introduction which confirms that during 

proton hopping events in acetic acid dissociation, the hydronium cation is preferably 

located in the first solvation shell, forming a contact ion-pair with carboxylate moiety, and 

only occasionally hopping further to the second solvation shell. 

The solvation shell in structure B is the same as the one in the TFA hydrates with 

n=7 proposed in the previous chapter. This structure represents the scenario where the 

hydronium ion resides in the second solvation shell. It is seemingly a poor representative 

of the most likely conformation of acetic acid in solution since it does not form a contact 

ion pair and the carboxylate moiety only establishes 3 hydrogen bonds with the 

surrounding water molecules. 

One would easily assume, given all these considerations, that the pair of clusters 

with structure A, being supposedly a better representation of the first solvation shell of 

acetic acid in bulk media, would yield a better pKa estimate. Such is not the case, as this 

ensemble leads to a ΔpKa of -2,04 pKa units while the dissociation scheme B yields a very 

accurate estimate, with an error of 0,09 pKa units.  
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5.3.4 A lesson from glycine: the importance of explicitly solvating all 

hydrogen bonding sites 

 

When deciding which sites of a solute molecule should be explicitly solvated, one 

may be tempted to contemplate only the site that is directly involved in proton transfer 

events, in order to keep the number of explicit water molecules to a minimum and thus 

avoid large calculations. Although for simple molecules this is a fairly reasonable 

rationale, in some cases it may prove fruitful to consider the explicit solvation of all 

hydrogen bonding sites. This lesson is demonstrated by the example of glycine, one of the 

molecules in our data set. The first dissociation constant of glycine, which involves the 

carboxyl group, was first estimated using the ensemble show in Fig. 16, on the left.  

 

Fig. 16 Complete and partial microsolvation schemes for glycine and the consequent error in the pKa 

estimation  

 

Since the NH3
+
 group is not involved in proton transfer at this stage no explicit 

solvent molecules where added to it. The resulting error was quite large, which prompted 

us to test whether the explicit solvation of the amino terminal would improve the pKa 

estimate. This assumption proved to be correct and the calculated pKa1 error was reduced 

by 2 pKa units. Hence, whenever possible, all hydrogen bonding sites within a given solute 

  
ΔpKa1 = -3,28 ΔpKa1 = -1,24 

All hydrogen bonding sites should be explicitly solvated 
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should be explicitly solvated, as this will greatly improve the accuracy of the free energy 

calculation and, consequently, of the final pKa estimate.  

 

5.3.5 Calculating “pKa” using the electronic energy of dissociation instead 

of the Gibbs free energy of dissociation 

 

 

Table 8 List of experimental and calculated “pKa” values, estimated using the electronic dissociation energy, along with 

individual errors (ΔpKa), mean unsigned error (MUE) and mean signed error (MSE) 

Acid pKa (calc) pKa (exp)  ΔpKa 

Acetic acid 2,66 4,76 -2,10 

Propanoic acid 4,89 4,86 0,03 

Trifluoroacetic acid -1,52 0,47 -1,99 

Difluoroacetic acid 0,36 1,34 -0,98 

Fluoroacetic acid 0,53 2,60 -2,07 

Trichloroacetic acid -1,21 0,26 -1,47 

Dichloroacetic acid 0,19 1,30 -1,11 

Chloroacetic acid 2,45 2,85 -0,40 

Acrylic acid 4,10 4,25 -0,15 

Benzoic aicd 4,15 4,20 -0,05 

Isopropylammonium 13,76 10,60 3,16 

Glycine pKa1 -0,56 2,34 -2,90 

Glycine pKa2 10,36 9,60 0,76 

Alanine pKa1 -0,19 2,34 -2,53 

Alanine pKa2 10,73 9,69 1,04 

  MUE 1,38 

  MSE -0,72 
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Plot 12 “pKa” values calculated using the electronic dissociation energy plotted against the experimental ones 

 

Motivated by sheer curiosity we calculated the “pKa” of the whole data set using 

the difference in electronic energy instead of the free energy. Of course, the calculated 

descriptor is not a true pKa, but we thought it would be interesting to access how well this 

measure correlates with the experimental pKa values.  

The results are shown in Table 8 and Plot 12. Surprisingly, this route performs 

better at predicting relative pKa’s as evidenced by the high correlation (R
2
=0,96) between 

the experimental and calculated “pKa”. However, the absolute deviation between these 

quantities is increased, which is to be expected since the electronic energy as opposed to 

the free energy was used for the “pKa” estimation.  

The disturbing conclusion one may draw from this behavior is that the 

approximations made by Gaussian to estimate the free energy introduce a large amount of 

error in the calculation and this error is not systematic in nature. This situation is 

reminiscent of the typical scenario found for pKa estimation methods that use solely 

implicit solvation: the pKa ordering is fairly precise however the absolute calculated value 

falls short of the experimental one. Thus, the employed electronic structure calculations are 
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sensitive enough to qualitatively discriminate between solutes with different acidities but 

somehow fail to quantitatively predict the latter.  

An additional clue suggests the larger error probably lies in the free energy 

calculation itself and not on the deficiencies of the continuum solvation models. The 

geometries of bare TFA, DFA, FA and AA and their respective conjugate bases have been 

optimized at the B3LYP/6-311++G(d,p) level of theory, in vacuum. Plot 13 displays the 

energy differences between the conjugate base and the acid plotted against the pKa. One 

set of data was calculated using the electronic energy while the other using the Gibbs free 

energy at 298K and 1 atm. Both correlate fairly well with pKa although using the 

electronic energy difference leads to a significantly better correlation than provided by 

using the Gibbs free energy. It is thus quite possible that the free energy, as estimated by 

Gaussian, is one of the weak links contributing to poor results in the ab-initio estimation of 

pKa values.  

 

Plot 13 Gibbs free energy and electronic energy differences between the conjugate base and the acid, in 

vacuum, plotted against the experimental pKa of TFA, DFA, FA and AA. 
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5.4 Conclusion 

 

pKa determination using ab-initio methods is a growing field, having still much 

challenges to be overcome. The cluster-continuum approach, as well as the model herein 

proposed, lead to a partial and debatable improvement in accuracy although entailing 

computationally intensive calculations and being strongly dependent on the number and 

topology of water molecules in the microsolvated clusters. A summary of the strengths and 

weaknesses of our proposed method is provided in Table 9. 

The application of our method, which is moderately computationally intensive, has 

been limited by time and computational resources. Therefore, it was not possible to 

conduct a systematic study in which all acid hydrates are tested with the same of number of 

water molecules, in the same conformation, for many different cluster sizes and 

conformations. On the contrary, both cluster size and conformation were adapted to the 

characteristics of the solute (size, hydrogen bonding sites, ease of dissociation) and a 

systematic analysis is still lacking. Also, only one solvation model and level of theory was 

tested. Further explorations of the proposed method should seek to test these variables, as 

the literature suggests that the accuracy of cluster-continnum schemes is affected 

differently by each of them. 

Further research is necessary in order to decide whether hybrid explicit+implicit 

models really constitute a viable avenue for development or merely stand as a quirky 

secondary road with no way out. Hopefully, our contribution has helped confusing matters 

even further and shown how tricky can be the development of a new pKa prediction 

method.  
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Table 9 Strong and weak points of our proposed scheme 

 

 

 

 

 

 

 

 

 

 

 

 

 

Strengths Weaknesses 

No needed parametrization Computationally demanding due to large 

system size No use of experimental values 

No correction of energies Variability of results with number of water 

molecules in the cluster and their 

conformation 

No use of standard acid for relative pKa 

determination 

No replication of calculations (gas-phase, 

separately) although it might be argued that 

our scheme still takes longer 

  

No need for computationally expensive 

methods  

No need for thermodynamic cycle 
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