
 
 Universidade de Aveiro 

2003 
Departamento de Biologia 

Daniela Rebelo de 
Figueiredo 
 

Produção de cianotoxinas em meio limitado em 
nutrientes e acção alelopática em organismos de 
dois níveis tróficos 
 

  
 
 
 
 
 
 
 
 

 
 

 



 Universidade de Aveiro 
2003 

Departamento de Biologia 

Daniela Rebelo de 
Figueiredo 
 

Produção de cianotoxinas em meio limitado em 
nutrientes e acção alelopática em organismos de 
dois níveis tróficos 
 

 Dissertação apresentada à Universidade de Aveiro para cumprimento dos 
requisitos necessários à obtenção do grau de Mestre em Microbiologia 
Molecular, realizada sob a orientação científica do Prof. Doutor Mário Jorge 
Pereira, Professor Auxiliar do Departamento de Biologia da Universidade de 
Aveiro 
 

 
 
 



 
  

 
 
 
 
 
 
 
 
 

 
 
 

 
 
 
 

o júri   
 

presidente Prof. Doutor Fernando J. M. Gonçalves 
 professor associado da Universidade de Aveiro 

  
 Prof. Doutor Ulisses M. M. Azeiteiro 
 professor auxiliar da Universidade Aberta 
  
 Prof. Doutor António C. M. Correia 
 professor auxiliar da Universidade de Aveiro 
  
 Prof. Doutor Mário Jorge V. Pereira 
 professor auxiliar da Universidade de Aveiro 

  
  
 
 
 



 
  

 
 
 
 
 
 
 
 
 

  
 

agradecimentos 
 

Inicialmente, o meu agradecimento ao Prof. Mário pelo acolhimento para 
trabalhar num tema do meu interesse e pela contribuição a diferentes níveis.  
 
Seguidamente, o meu enorme obrigado para o amigo Abel, assim como para 
os amigos Sara e Bruno, Alex e ainda João, pela forma gratuita com que todos 
deram as suas contribuições para este trabalho.  
 
Não esqueço também a empatia com a malta dos laboratórios em que os 
amigos acima referidos trabalham e com as habituées do “laboratório-base” (D. 
Hélia e restantes meninas: Paula, Sofias, Cristina e Cidália).  
 
Ainda o meu reconhecimento pelas contribuições dadas por Viviana, Sofia e 
Nelson. 
 
 
E, por último (“last, but definitely not least”), todos os que me acompanham, 
aguentam e confortam diariamente lá em casa!  
 
 
 
Agradecida, beijinhos para todos e até sempre! 

 

 



 
  

 
 
 
 
 
 
 
 
 

  
 
 
 

resumo 
 
 

O aumento da eutrofização nos sistemas hídricos superficiais devido à 
intensificação das actividades antropogénicas e às alterações climáticas 
(aumento da temperatura e luminosidade) tem favorecido o aparecimento de 
blooms (ou florescências) superficiais de cianobactérias. Estes blooms são 
potencialmente perigosos devido à capacidade de várias estirpes 
cianobacterianas produzirem toxinas nocivas para diversos grupos de 
organismos, desde bactérias até humanos. A microcistina, em particular, é 
uma hepatotoxina que coloca sérios riscos para a Saúde Pública devido à sua 
capacidade de promover cancro por ingestão crónica de pequenas 
quantidades na água para consumo humano. As estirpes produtoras de 
microcistina pertencem essencialmente aos géneros Microcystis, Anabaena, 
Oscillatoria (Planktothrix), Nostoc, Anabaenopsis e Aphanizomenon, sendo a 
sua toxicidade determinada primariamente pela diversidade genotípica entre 
estirpes, embora possa haver também influência de factores ambientais. O 
estudo laboratorial da ecologia de estirpes potencialmente produtoras de 
microcistina pode permitir o aperfeiçoamento de estratégias de gestão dos 
sistemas aquáticos, de forma a controlar, ou mesmo evitar, a ocorrência deste 
tipo de fenómenos. Uma primeira parte do presente trabalho consistiu numa 
pesquisa bibliográfica relativamente exaustiva acerca da investigação 
realizada nos domínios da ocorrência, toxicidade e síntese de cianotoxinas, 
com especial relevância para a microcistina. Uma segunda fase incluiu o 
estudo da dinâmica fitoplanctónica num sistema aquático eutrofizado 
(integrando os resultados com dados físico-químicos), em que ocorreu um 
grande bloom dominado pela cianobactéria Aphanizomenon flos-aquae, 
potencialmente produtora de microcistina. Uma terceira parte pretendeu 
estudar, em laboratório, a estirpe de A. flos-aquae isolada do bloom, 
relativamente ao crescimento em diferentes concentrações de nitratos e 
fosfatos. A parte final do trabalho referiu-se ao estudo dos efeitos desta estirpe 
no crescimento de microalgas (Chlorella vulgaris e Pseudokirchneriella 
subcapitata) e na sobrevivência e reprodução de cladóceros (Dapnhia magna 
e D. longispina). O desenvolvimento do bloom de A. flos-aquae foi relacionado 
com os valores mais baixos de nitratos, nitritos e amónia. Dos estudos 
laboratoriais de nutrição pôde concluir-se que o crescimento desta estirpe 
cianobacteriana depende da disponibilidade de fosfatos, mas não da de 
nitratos, provavelmente devido à sua capacidade de fixação de azoto. O 
crescimento das espécies fitoplanctónicas testadas parece ser afectado pelos 
exudatos de A. flos-aquae. Quando sujeitos a uma alimentação exclusiva com 
esta estirpe, os cladóceros mostraram ser afectados na sua sobrevivência e 
reprodução, principalmente com A. flos-aquae cultivada em concentrações 
superiores de fosfatos. A partir dos resultados obtidos neste estudo, pode 
sugerir-se que o desenvolvimento de blooms desta estirpe cianobacteriana é 
independente da indisponibilidade em nitratos, mas favorecido por elevadas 
concentrações em fosfatos. Assim, o controlo das entradas de fosfatos 
(provenientes de efluentes agro-pecuários, por exemplo) para os sistemas 
aquáticos seria um importante factor para evitar o desenvolvimento de blooms 
potencialmente tóxicos desta estirpe e suas consequências nos diversos níveis
tróficos, nomeadamente aos níveis do fitoplâncton e do zooplâncton. 

 



 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
 
 
 

 
 
 
 

abstract 
 

The increasing eutrophication of superficial water bodies, due to the 
intensification of anthropogenic activities, along with climate changes towards 
higher temperature and light conditions, enhance the massive development of 
cyanobacteria in water bodies leading to formation of blooms frequently 
accumulating as surface scum. Some cyanobacterial blooms may become 
dangerous because there are many strains of cyanobacteria capable of 
producing toxins that affect many organisms from bacteria to humans. 
Microcystin, in particular, is a hepatotoxin that poses a serious Public Health 
risk due to its potential of promoting cancer through chronic ingestion of small 
quantities in drinking water. The microcystin producing strains mainly belong to 
the genera Microcystis, Anabaena, Oscillatoria (Planktothrix), Nostoc, 
Anabaenopsis and Aphanizomenon, and its toxigenicity seems to be primarily 
determined by genotype diversity among strains, although some environmental 
factors are known to influence microcystin biosynthesis. The ecological 
laboratory studies of potentially microcystin producing cyanobacterial strains 
may allow the improvement of water management strategies to control or even 
avoid the occurrence of this kind of phenomena. The first step of the present 
work consisted in an exhaustive compilation of the investigation recently made 
on the occurrence, toxicity and synthesis of cyanotoxins, with special regard to 
microcystin. A second part of the work included the study of the phytoplankton 
dynamics in an eutrophied water body (integrating biological and physico-
chemical data) where a bloom of the potentially microcystin producer 
Aphanizomenon flos-aquae occurred. On a third phase, in laboratory, the A. 
flos-aquae strain was isolated from the bloom and grown in different nitrate and 
phosphate concentrations. The final part of the study aimed to assess the 
effects of this strain on the growth of other microalgae (Chlorella vulgaris and 
Pseukirchneriella subcapitata) and on survival and reproduction of cladocerans 
(Dapnhia magna and D. longispina).The A. flos-aquae bloom development was 
related to the lowest values of nitrogen sources: nitrate, nitrite and ammonium. 
From the laboratory nutritional experiments it could be concluded that this 
cyanobacterial strain growth depends on the availability of phosphate but not 
nitrate, probably due to its nitrogen fixing capability. The growth of the 
microalgae tested showed to be affected by the exudates of A. flos-aquae. 
When this strain was given as an exclusive food source, the tested cladocerans 
showed to be affected in their survival and reproduction, particularly with A. 
flos-aquae grown with higher phosphate concentrations. After the results 
obtained in this work, it can be suggested that the bloom development of this 
cyanobacterial strain is independent of nitrate unavailability but favoured by 
high phosphate concentrations. Thus, the control of the phosphate inflow (from 
the agriculture and animal farming effluents, for example) into the superficial 
water bodies would be an important factor to avoid the development of 
potentially toxic blooms of this strain and its consequences at different trophic 
levels, namely at phytoplankton and zooplankton levels. 

 



 
  

 
 
 
 
 
 
 
 
 

  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Aos que adoçam o meu lar... 

 



ÍNDICE 
 

Capítulo I  
Introdução geral          8 

1. Eutrofização, blooms de cianobactérias e cianotoxinas     9 

2. Microcistina 

2.1. Caracterização estrutural                  10 

2.2. Síntese – via de produção, espécies produtoras, factores influentes           11 

2.3. Toxicidade em organismos e perigo para a Saúde Pública             12 

3. Objectivos                    14 

4. Estrutura da dissertação                  15 

 

Capítulo II  
Toxic cyanobacterial blooms – occurrence, consequences and control strategies           16 
 

Capítulo III  
Microcystin producing blooms – a serious global Public Health issue            48 

 

Capítulo IV  
Seasonal dynamics of phytoplankton community in Vela Lake (Portugal)            76 
 
Capítulo V 
Aphanizomenon flos-aquae grown under different nutrient concentrations and its  
effects over two green algae                100 
 
Capítulo VI  
Chronic effects of Aphanizomenon flos-aquae on the survival and reproduction of 
dapnhids – a preliminary study                   122 
 
Capítulo VII  
Discussão geral                 140 
Referências                  144 



 

 

  

  
 

  
 
 
 
 
 
 
 

Capítulo I
Introdução geral

 

 



Capítulo I – Introdução geral  

9 

Introdução geral 

1. Eutrofização, blooms de cianobactérias e cianotoxinas 

Actualmente, o crescimento da população mundial e a consequente intensificação 

das actividades industrial e agrícola (Cooperband and Good, 2002; de Jonge et al., 2002; 

Withers and Lord, 2002), juntamente com uma gestão ineficiente dos sistemas hídricos 

(Codd, 2000), têm sido os principais responsáveis pelo aumento da eutrofização nos 

sistemas aquáticos superficiais (muitos destes utilizados para fins recreativos ou como 

reservatórios de água para abastecimento público). Mas, além da poluição orgânica (com 

o enriquecimento em nutrientes), outros factores como valores elevados de temperatura e 

pH, luminosidade intensa e pouca turbulência, que coincidem com os meses mais 

quentes do ano, estimulam o desenvolvimento de microalgas planctónicas, 

nomeadamente cianobactérias (Hadas et al., 1999; Jacoby et al., 2000; Oliver and Ganf, 

2000). Adicionalmente, muitas cianobactérias possuem algumas características como a 

fixação de azoto (Flores and Herrero, 1994), a regulação da flutuação (Brookes and Ganf, 

2001; Porat et al., 2001) e uma reduzida taxa de predação pelo zooplâncton (Kurmayer 

and Jüttner, 1999; Henning et al., 2001), que lhes permitem ter sucesso sobre os outros 

grupos de microalgas, em condições menos favoráveis. Assim, estas microalgas 

multiplicam-se até formar blooms (ou florescências) que se acumulam à superfície da 

água numa espessa camada de material celular cianobacteriano de cor azul esverdeada. 

Estes blooms planctónicos resultam geralmente na redução da diversidade específica a 

diversos níveis tróficos devido à depleção do oxigénio dissolvido na água, à deterioração 

do habitat pelo aumento dos sólidos em suspensão, à produção de substâncias que dão 

mau gosto e odor à água e/ou ainda à produção de compostos tóxicos por certas estirpes 

cianobacterianas. São conhecidas mais de 40 espécies de cianobactérias que possuem 

estirpes produtoras de toxinas (Dow and Swoboda, 2000) e uma elevada percentagem 

dos blooms de cianobactérias que ocorrem nos sistemas de água superficiais em todo o 

mundo é tóxica (Codd et al., 1995; WHO, 1998b; Codd, 2000; Dow and Swoboda, 2000). 

As cianotoxinas já provaram ser nocivas para muitos organismos, incluindo humanos 

(Gorham and Carmichael, 1988; Codd et al., 1995; Pouria et al., 1998; Codd, 2000). São 

normalmente classificadas em dermatotoxinas, neurotoxinas e hepatotoxinas (Kaebernick 

and Neilan, 2001), segundo o efeito que provocam em animais. Do ponto de vista 

químico, as dermatotoxinas podem ser lipopolissacáridos ou alcalóides (lingbiatoxina-a e 

aplisiatoxinas); as neurotoxinas incluem alcalóides (anatoxina-a, homoanatoxina-a, 

saxitoxinas e neo-saxitoxinas) e o organofosfato anatoxina-a(s); e, por fim, as 

hepatotoxinas, mais frequentes e perigosas, podem ser alcalóides (cilindrospermopsina) 
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ou péptidos cíclicos (nodularina ou microcistina) (Codd, 2000; Dow and Swoboda, 2000; 

Kaebernick and Neilan, 2001; Nicholson and Burch, 2001). Existem ainda outras 

cianotoxinas já conhecidas (Dow and Swoboda, 2000) mas, provavelmente, muitas outras 

haverá por conhecer.  

A ocorrência de blooms de cianobactérias nos reservatórios de água utilizados para 

abastecimento público, em particular, acarreta consequências económicas significativas 

devidas à deterioração da qualidade da água (mau sabor e odor (Park, 2001)), bloqueio 

dos filtros utilizados no tratamento da água e necessidade de processos de tratamento da 

água mais eficientes (Rositano et al., 2001; Maatouk et al., 2002) para remover as 

cianotoxinas que possam colocar em perigo a saúde dos consumidores. Em águas 

utilizadas para fins recreativos, a ocorrência de blooms de cianobactérias conduz 

geralmente a um decréscimo do turismo nesses locais devido à perda da qualidade da 

água e ao perigo de intoxicações provocadas pelas cianobactérias se houver contacto 

directo com a água contaminada, pelo banho ou pela prática de desportos náuticos 

(WHO, 1998a). Existe ainda o perigo da bioacumulação de toxinas pelos produtos 

agrícolas utilizados para consumo humano (Codd et al., 1999), quando a irrigação é feita 

com água proveniente de um sistema aquático em que ocorra um bloom de 

cianobactérias. Assim, torna-se essencial a monitorização regular das águas para prever 

e prevenir este tipo de fenómenos. 

 

2. Microcistina 

2.1. Caracterização estrutural 

A microcistina é uma substância muito estável em água destilada ou esterilizada, 

resistindo à irradiação solar (Dawson, 1998), a valores extremos de pH e a temperaturas 

muito elevadas (>300ºC) (WHO, 1998b). É um heptapéptido cíclico cuja estrutura geral é 

cyclo(-D-Ala-L-X-erythro-β-methyl-D-Adda-D-isoGlu-N-methyldehydro-ala), sendo X e Z 

L-aminoácidos variáveis e Adda (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-

dienoic acid) o aminoácido considerado responsável pela hepatotoxicidade da molécula 

(Dawson, 1998). São conhecidas mais de 60 isoformas da microcistina (Codd, 2000; Dow 

and Swoboda, 2000), em parte devido aos L-aminoácidos variáveis, sendo a microcistina-

LR (MC-LR) a variante de microcistina mais frequente e estudada, com os aminoácidos 

leucina (L) e arginina (R).  
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2.2. Síntese – via de produção, espécies produtoras, factores influentes 

A microcistina é um metabolito secundário produzido via não ribossomal e a sua 

síntese parece ser um processo dependente de energia (ATP) (Bickel and Lyck, 2001). O 

complexo enzimático da sintetase da microcistina é codificado por um cluster de genes 

mcy composto por dois operões (mcyA-C e mcyD-J) (Kaebernick and Neilan, 2001). Este 

cluster está presente nas estirpes tóxicas pertencentes ao género Microcystis, mas 

também em estirpes produtoras de microcistina dos géneros Anabaena, Nostoc (Neilan et 

al., 1999) e Planktothrix (Christiansen et al., 2003), permitindo o desenvolvimento de 

métodos rápidos e sensíveis, baseados na PCR (Polymerase Chain Reaction), para a 

sua detecção directamente a partir das amostras ambientais (Tillet et al., 2001; Pan et al., 

2002).  

Relativamente à função desta cianotoxina, ainda existe pouca informação 

publicada, mas alguns resultados indicam que possa actuar como uma defesa química 

contra a predação pelo zooplâncton (Laurén-Määttä et al., 1997; Kurmayer and Jüttner, 

1999; Henning et al., 2001) ou ter efeito alelopático sobre outras microalgas competidoras 

(Kearns and Hunter, 2001), podendo ainda funcionar como regulador endógeno das 

fosfatases ou utilizada como reserva de azoto. 

As estirpes produtoras de variantes de microcistina ocorrem nos sistemas hídricos à 

escala global e pertencem geralmente aos taxa Microcystis spp., Anabaena spp., 

Planktothrix/Oscillatoria (P. agardhii e P. rubescens), Anabaenopsis, Nostoc (N. rivulare) 

e Aphanizomenon (A. flos-aquae), embora possam ser também produzidas por estirpes 

do género terrestre Hapalosiphon (Codd et al., 1995; Dow and Swoboda, 2000; 

Kaebernick and Neilan, 2001).  

Apesar dos resultados contraditórios obtidos por diferentes estudos, a síntese de 

microcistina parece ser influenciada por diversos factores ambientais como 

macronutrientes (Lee et al., 2000; Kotac et al., 2000; Long et al., 2001; Vézie et al., 2002), 

micronutrientes (Utkilen and Gjφlme, 1995), temperatura (Rapala and Sivonen, 1998) e 

luminosidade (Kaebernick et al., 2000; Wiedner et al., 2003), embora a diversidade 

genotípica entre estirpes seja o factor mais determinante na distinção da toxicidade entre 

blooms da mesma espécie (Hesse and Kohl, 2001; Rohrlack et al., 2001; Kurmayer et al., 

2002; Mikalsen et al., 2003). Relativamente aos macronutrientes, em M. aeruginosa 

(espécie não fixadora de azoto), o conteúdo em MC parece aumentar para razões de N:P 

mais elevadas (Utkilen and Gjφlme, 1995; Lee et al., 2000), embora Long et al. (2001) 

tenham obtido resultados que mostram que, em condições de limitação em azoto, as 

células de M. aeruginosa atingem um tamanho menor, mas aumentam 
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consequentemente os valores de conteúdo celular em MC. Ainda para M. aeruginosa, o 

conteúdo em MC aumenta com concentrações de fósforo mais elevadas (Kotak et al., 

2000; Jacoby et al., 2000), apesar dos resultados de um estudo efectuado por Oh et al. 

(2000) mostrarem que os valores mais elevados para o conteúdo em MC ocorriam em 

condições de limitação de fósforo. Embora existam resultados controversos, a síntese de 

microcistina em estirpes de M. aeruginosa tem mostrado ser influenciada pela variação 

das concentrações de ambos estes nutrientes, mas com diferentes respostas para cada 

estirpe (Vézie et al., 2002). Para as espécies fixadoras de azoto pertencentes ao género 

Anabaena, o azoto sob a forma de nitratos parece aumentar a produção de MC (Rapala 

et al., 1997), embora em meio com indisponibilidade de azoto estas espécies sejam 

capazes de continuar a produzir microcistina. No entanto, para Anabaena spp., o 

conteúdo em MC parece estar mais dependente da concentração de fósforo, aumentando 

com concentrações crescentes deste nutriente (Rapala et al., 1997).  

 

2.3. Toxicidade em organismos e perigo para a Saúde Pública 

As variantes de microcistina podem ser tóxicas para muitos organismos (Hiripiri et 

al., 1998; Fischer and Dietrich, 2000; McElhiney et al., 2001; Liu et al., 2002; 

Romanowska-Duda and Tarczynska, 2002; Hamvas et al., 2003) e ser bioacumuladas por 

outros (Amorim and Vasconcelos, 1999; Codd et al., 1999; Magalhães et al., 2001; 

Pflugmacher et al., 2001; Vasconcelos et al., 2001; Wiegand and Pflugmacher, 2001; 

Mohamed et al., 2003), sugerindo a possibilidade de transferência pela cadeia trófica e o 

risco de exposição humana à toxina por consumo de alimentos contaminados. 

Particularmente relevantes para o presente trabalho são os efeitos da microcistina 

sobre os organismos fitoplanctónicos e zooplanctónicos, pertencentes a dois níveis 

tróficos distintos. Certas microalgas parecem sofrer um efeito alelopático por algumas 

estirpes produtoras de microcistina (Kearns and Hunter, 2001), embora não haja muitas 

publicações recentes acerca deste assunto. A clorófita Chlamydomonas reinhadtii é 

paralisada na presença de MC-LR, que favorece a sua sedimentação, permitindo às 

estirpes cianobacterianas produtoras desta variante de microcistina criar no sistema 

aquático uma zona livre de algas competidoras (Kearns and Hunter, 2001). 

Relativamente ao zooplâncton, existem diversos grupos que são afectados pela 

ocorrência de blooms de estirpes cianobacterianas produtoras de microcistina, seja pelas 

condições nutritivas desfavoráveis devidas à falta de alimento alternativo (outras 

microalgas), aquando da sua dominância (Kurmayer and Jüttner, 1999), e ao seu baixo 

valor nutritivo (Brett and Müller-Navarra, 1997; Brett et al., 2000), ou à dificuldade de 
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ingestão pelo zooplâncton (devida ao tamanho dos filamentos ou colónias e/ou à 

produção de mucilagem (Rohrlack et al., 1999; Henning et al., 2001)) ou ainda à 

produção de toxinas (Laurén-Määttä et al., 1997; Kurmayer and Jüttner, 1999; Lotocka, 

2001). No entanto, os cladóceros mostraram ser capazes de ingerir estirpes tóxicas e não 

tóxicas de Microcystis (Rohrlack et al., 1999), na ausência de alimento alternativo 

(clorófitas e diatomáceas), podendo acumular a microcistina (Mohamed, 2001) e 

potencialmente transferi-la para níveis tróficos superiores através da cadeia alimentar. 

Mas além de bioacumulada, a microcistina pode provocar efeitos tóxicos sobre várias 

espécies de Daphnia após a ingestão de cianobactérias com microcistinas (Lauren-Määtä 

et al., 1997; Rohrlack et al., 1999; Rohrlack et al., 2001). 

A investigação acerca da microcistina, no que respeita à sua ocorrência, à ecologia 

das estirpes produtoras e aos processos e genes responsáveis pela sua síntese, torna-se 

cada vez mais pertinente para permitir o desenvolvimento de estratégias de 

monitorização, prevenção e controlo da sua produção. A relevância deste tema surge 

essencialmente devida ao potencial perigo que esta hepatotoxina representa para a 

Saúde Pública. Com base em alguns estudos epidemiológicos em humanos, mas 

principalmente nos muitos estudos laboratoriais efectuados em mamíferos, sabe-se que a 

microcistina é uma toxina selectiva para as células hepáticas, inibindo irreversivelmente 

as fosfatases PP1 e PP2A (Dawson, 1998), provocando, por exposição aguda, a 

desintegração da estrutura hepática, apoptose, necrose do fígado e hemorragia interna 

hepática, podendo levar à morte por choque hemorrágico (Dow and Swoboda, 2000). Os 

sintomas incluem fraqueza, anorexia, extremidades frias, palidez, apatia, dificuldades 

respiratórias, gastroenterite, vómitos e diarreia (Codd et al., 1995; Codd, 2000; Dow and 

Swoboda, 2000). Em 1996, no Brasil, muitas pessoas morreram num centro de 

hemodiálise devido à exposição directa do sangue, durante o tratamento, a água 

contaminada por microcistina (Pouria et al., 1998). A toxicidade por inalação da toxina 

parece ser quase tão elevada quanto a intoxicação por contacto directo com o sangue, 

mas a toxicidade é muito menor por ingestão oral de água ou de alimentos contaminados 

(WHO, 1998b). No entanto, a microcistina já provou ser também promotora do 

desenvolvimento de cancros em humanos, por exposição crónica prolongada das 

pessoas a baixas concentrações desta toxina, nomeadamente através da água que 

ingerem diariamente (Ueno et al., 1996; Zhou et al., 2002). Daí, a preocupação da OMS 

(Organização Mundial de Saúde) em estabelecer 1 µg MC-LR.L-1 como o valor 

recomendado para o nível desta cianotoxina nas águas utilizadas para consumo humano 

(WHO, 1998b). 
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Até ao momento, não há ainda tratamentos eficazes comprovados contra as 

intoxicações provocadas pelas variantes de microcistina, apesar de já existirem alguns 

resultados interessantes (Dawson, 1998; Fitzgerald, 2001). Assim, apesar do 

aperfeiçoamento dos métodos de tratamento da água (Morris et al., 2000; Gajdek et al., 

2001; Pendleton et al., 2001; Shephard et al., 2002; Yuan et al., 2002), o melhor será 

ainda evitar a ocorrência de blooms de estirpes produtoras de microcistina, de forma a 

afastar a possibilidade de potenciais intoxicações. 

Neste momento, torna-se necessária uma gestão adequada dos sistemas hídricos 

no que respeita à entrada de nutrientes (especialmente fosfatos e nitratos) e, 

adicionalmente, o desenvolvimento de uma sensibilização integrada do público, 

agricultores e industriais relativamente aos potenciais efeitos perigosos para a Saúde 

Pública, resultantes da introdução excessiva desses nutrientes no meio aquático. 

 

3. Objectivos 

Além da monitorização das águas superficiais (especialmente os reservatórios de 

água para consumo humano) relativamente à formação de blooms potencialmente 

tóxicos, torna-se também necessário desenvolver, em simultâneo, estudos laboratoriais 

de ecologia, de forma a compreender os processos que conduzem ao desenvolvimento 

de blooms de uma determinada estirpe cianobacteriana e seus efeitos em organismos de 

diferentes níveis tróficos. Deste modo, poder-se-á contribuir para uma melhor avaliação 

dos potenciais riscos ecológicos associados a blooms dessa estirpe, assim como para 

uma previsão atempada da sua ocorrência e o desenvolvimento de melhores estratégias 

de prevenção do seu aparecimento e para o seu controle. 

E é neste contexto que se inserem os objectivos do presente trabalho: 

• pesquisar bibliografia referente à investigação de blooms tóxicos de 

cianobactérias, no que respeita à sua ocorrência, toxicidade e produção de 

cianotoxinas, com especial relevo para a microcistina; 

• estudar a dinâmica da comunidade fitoplanctónica de uma lagoa eutrofizada 

(Lagoa da Vela), ao longo de um ciclo anual, relacionando parâmetros físico-

químicos com a ocorrência de blooms de cianobactérias; 

• analisar o crescimento de uma estirpe de Aphanizomenon flos-aquae, 

isolada a partir de um bloom de uma lagoa eutrofizada (Lagoa da Vela), 

quando sujeita a condições de limitação em azoto e fósforo; 

• estudar o efeito da mesma estirpe referida acima sobre o crescimento de 

espécies fitoplanctónicas (Pseudokirchneriella subcapitata e Chlorella 
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vulgaris), quando sujeitas a exudatos de culturas da cianobactéria, e a 

sobrevivência e a reprodução de cladóceros (Daphnia magna e D. 

longispina), quando a cianobactéria em estudo é fornecida como fonte de 

alimento exclusiva. 

 

Em suma, espera-se obter informação adicional que possa auxiliar na previsão e 

prevenção deste tipo de fenómenos e avaliação de riscos ecológicos inerentes. 

 

4. Estrutura da dissertação 

A presente dissertação apresenta sete secções. O capítulo I pretende contextualizar 

a ocorrência de blooms de cianobactérias nos sistemas hídricos superficiais e a produção 

de cianotoxinas, com especial relevância para a hepatotoxina microcistina, sendo 

referidos alguns aspectos relativos à sua síntese e à sua toxicidade em organismos, com 

destaque para o risco que representa para a Saúde Pública. Ainda nesta secção, são 

apresentados os objectivos do trabalho de investigação conducente à elaboração desta 

dissertação. Nos capítulos II e III são revistos muitos dos estudos efectuados acerca da 

temática da ocorrência de blooms tóxicos de cianobactérias e a produção de 

cianotoxinas, em especial a microcistina. O capítulo II é um artigo publicado na revista 

Discursos, da Universidade Aberta, e o capítulo III constitui um artigo submetido a uma 

revista internacional. O capítulo IV descreve o estudo efectuado sobre o ciclo anual da 

comunidade fitoplanctónica de uma lagoa eutrofizada (Lagoa da Vela), com particular 

relevo para as cianobactérias, e é um artigo em preparação para submissão. O capítulo V 

apresenta os resultados obtidos para a estirpe de Aphanizomenon flos-aquae (isolada de 

um bloom na Lagoa da Vela) em ensaios de nutrição, sob limitação de azoto e fósforo, e 

ainda o efeito dos seus exudatos sobre duas clorófitas (Pseudokirchneriella subcapitata e 

Chlorella vulgaris). No capítulo VI são apresentados os resultados relativos aos ensaios 

de toxicidade da estirpe cianobacteriana acima referida sobre os cladóceros Daphnia 

magna e D. longispina. Este capítulo e o anterior pretendem ser esboços de artigos para 

submeter a revistas da especialidade. No capítulo final, VII, é realizada uma discussão 

geral dos resultados que foram obtidos na totalidade do trabalho, integrando os 

resultados físico-químicos e biológicos (fitoplâncton) obtidos para as amostras 

ambientais, aquando do bloom de A. flos-aquae na Lagoa da Vela, com os resultados 

obtidos nos estudos laboratoriais com esta estirpe, relativamente ao crescimento sob 

limitação em nutrientes (azoto e fósforo) e à toxicidade sobre microalgas e cladóceros. 
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Toxic cyanobacterial blooms – occurrence, consequences and 
control strategies 

 
 

Abstract – Cyanoprokaryota, in spite of being a small part of the natural plankton 

community, play a very important role in the maintenance of a balanced aquatic 

ecosystem. The intensification of anthropogenic activities such as nutrient loading 

(enriching the water, in particular with phosphorus and nitrogen from agriculture soil 

drainage, urban run-off and industrial wastes) and construction of dams (reducing the 

water flow and leading to temperature increase), along with other factors, have led to the 

quick increase of cyanobacterial blooms, particularly in warmer months. The biosynthesis 

of secondary metabolites is current in bacteria but can also occur in cyanobacteria. Many 

of these metabolites are toxins that have been considered to work as chemical defences 

(providing competitive advantage over other species and discouraging predation by higher 

trophic level organisms) in spite the purposes of their synthesis are not yet clear. These 

cyanotoxins are known to affect many organisms including humans, livestock, cattle, 

wildlife, food chain for wildlife and fish, and crustaceans and shellfish grown for 

commercial purposes. Cyanotoxins are complex organic compounds sub classified 

according to the effects in animals as: dermatotoxins, hepatotoxins and neurotoxins, being 

these last two more dangerous because the toxic effects are more serious. Hepatotoxins 

are produced by species of Anabaena, Microcystis, Aphanizomenon, Cylindrospermopsis 

and Nodularia, and are rarely fatal in spite of producing liver damage, general long term 

debility and promoting liver tumours. Neurotoxins are mainly produced by Anabaena, 

Planktothrix/Oscillatoria, Microcystis, Aphanizomenon, Lyngbya and Cylindrospermopsis, 

and these toxins affect the nervous and respiratory systems and death may occur within a 

short period of time by respiratory arrest. Harmless strains look the same as deadly ones 

under a microscope, becoming necessary the use of other methods (usually bioassays, 

using experimental laboratory animals) to assess the toxicity of these organisms. Water 

management strategies such as reduction of eutrophication must urgently be applied in 

order to control the occurrence of these toxic blooms in water bodies. 

Keywords: pollution, cyanobacterial blooms, cyanotoxins, effects. 
 

Introduction 

Cyanoprokaryota organisms are considered an evolutionary link between bacteria 

and algae because they are prokaryotes but in natural environments they behave like 
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algae, producing chlorophyll a and performing oxygenic photosynthesis, using water as 

the most common electron donor (Wilmotte, 1994). Besides chlorophyll a, they synthesize 

accessory pigments (Hirschberg and Chamovitz, 1994) with special regard to phycobilins 

which are responsible for the typical blue-green colour of cyanobacteria (Sidler, 1994). 

The most ancient cyanobacterial fossil records are from 3.5 billion years ago (Schopf, 

2000). Cyanobacterial capabilities like tolerance to low oxygen concentrations, to sulphur 

and UV radiation, adaptation to large thermal amplitudes and low light and nutrient 

conditions, have allowed them to survive with success during all the evolution process and 

to still be found in hot springs at 74º C (Ward and Castenholz, 2000), deserts and polar 

lakes from Antarctica (Hitzfeld et al., 2000; Vincent, 2000), among many other adverse 

habitats. There are many cases of symbiosis between cyanobacteria and diverse 

organisms (Adams, 2000). Cyanobacteria group has an enormous morphological diversity 

and more than 2000 species have been established until now. They may develop as 

solitary cells or grouped in colonies or filaments. Presently, five orders are recognized: 

Chroococcales, Pleurocapsales, Oscillatoriales, Nostocales e Stigonematales (Komárek 

and Anagnostidis, 1999). These organisms can have multiple applications for 

economically relevant human purposes such as food supplements (Spirulina/Arthrospira 

(Jassby, 1988) and Aphanizomenon (Carmichael, 2000)), fertilizers (Anabaena azollae in 

symbiosis with Azolla) for rice crops (Metting et al., 1988; Kannaiyan, 1997), waste-water 

treatment (Tang et al., 1997), synthesis of active metabolites against virus (herpes virus, 

flu virus or HIV) or antitumoral and antibiotic substances (Ostensvik et al., 1998; Mundt et 

al., 2001). Nevertheless, in spite of all these and others advantages for humans, some 

cyanobacteria produce toxins and they may become dangerous by developing massively 

in water bodies, forming blooms that cause serious ecological and human health problems 

(Gorham and Carmichael, 1988; Codd et al., 1995; Codd, 2000). Eutrophication is an 

important cause of the increasing occurrence of toxic cyanobacterial blooms worldwide. 

Therefore, it is becoming essential a proper water management regarding the nutrient 

inputs to water systems but also a development of an integrated awareness of public, 

farmers and industrial owners towards the potentially dangerous effects of those inputs. 

This is a major Public Health issue to which more attention should be given at a local 

scale. The present study reviews some recent work made on cyanobacterial blooms and 

cyanotoxins, regarding its occurrence, control and toxicity on diverse organisms with 

special regard to humans. 
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Cyanobacterial blooms  

Causes 

Water quality depends on a variety of biotic and abiotic factors (Codd, 2000), 

seasonality (Codd et al., 1995) but also anthropogenic activities such as deviation of water 

courses, water extraction, drainage, dams construction, human wastes such as sewage 

and detergents, industrial and intensive farming effluents (Cooperband and Good, 2002), 

increased soil erosion and run-off of fertilizers and pesticides from agricultural land 

(Withers and Lord, 2002; Codd, 2000). As a result, eutrophication in water bodies occurs 

frequently. The development of a bloom is based on the assumption that a species or a 

species assembling becomes dominant in density by possessing mechanisms that allow a 

competitive advantage in relation to the other species present in the water body. 

Cyanobacteria, particularly, have some characteristics that may explain its success under 

certain conditions. It is known that cyanobacterial growth is affected by many 

environmental factors such as light (Grossman et al., 1994; Lee and Rhee, 1999), 

macronutrients (particularly N and P) (Flores and Herrero, 1994; Grossman et al., 1994; 

Oliver and Ganf, 2000; Bhaya et al., 2000; Reynolds et al., 2000) and micronutrients (as 

Fe and Cu) (Grossman et al., 1994), among others (temperature and pH). In summer and 

early autumn months, water retention and low turbulence (with no vertical mixing) may 

lead to a thermal stratification state in deep reservoirs and lakes, with formation of an 

Epilimnion with light and a dark Hypolimnion, resulting in a nutrient unavailability at 

surface due to algae development and nutrient settlement (Oliver and Ganf, 2000). Some 

characteristics allow cyanobacteria to develop successfully under these low nutrient 

concentrations such as the capability of some cyanobacteria (e.g. Anabaena and 

Aphanizomenon) to fix nitrogen (Flores and Herrero, 1994; Wolk, 1994) in specialized 

cells or in alternation with photosynthesis since nitrogenase is sensitive to oxygen. 

Planktonic cyanobacteria can also regulate their buoyancy allowing vertical movement in 

the water column in a way to optimize nutrient availability and light conditions, but this 

buoyancy regulation depends on environmental conditions (N and C availability, light and 

water turbulence) (Oliver and Ganf, 2000; Brookes and Ganf, 2001) involving production 

and collapse of small intracellular cylindrical structures – gas vesicles. Calm conditions 

may lead to rapid and unexpected development of surface blooms due to massive 

migration to surface of pre-existing cyanobacteria dispersed in water and not to a rapid 

population growth. Probably due to the loss of buoyancy regulation (by photo-oxidation, 

for example) (Oliver and Ganf, 2000; Codd et al., 1995) cells may be densely 

accumulated at surface forming scum. Hence, cyanobacteria that produce gas-vesicles 
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are the main responsible for surface blooms or scum. They can be filamentous 

(Anabaena, Aphanizomenon, Anabaenopsis, Nodularia, Cylindrospermopsis, Gloeotrichia, 

Oscillatoria/ Planktothrix, Spirulina) or not, forming globular colonies (Microcystis, 

Gomphosphaeria, Coelosphaerium) (Oliver and Ganf, 2000). Other characteristics that 

can present competitive advantage of cyanobacteria over the other algae are the low 

grazing rate by zooplankton (Kurmayer and Jüttner, 1999; Henning et al., 2001; Laurén-

Määttä et al., 1997) or selective rejection in pseudofeces by predators such as mussels 

(Vanderploeg et al., 2001). Surface blooms are more common in stable waters but can 

also occur in rivers with high flow rates and turbulence (Codd et al., 1995). In spite 

planktonic surface blooms with scum formation being the most concerning in terms of 

animal and human health, some benthic cyanobacteria can homogeneously develop in 

oligotrophic waters with sunlight reaching the bottom of the lake or reservoir (Oliver and 

Ganf, 2000). 

Consequences 

The primary consequence of blooms occurrence is the water quality reduction with 

economical, ecological and Public Health implications (Codd, 2000). From an ecological 

point of view, specific biodiversity decreases at all trophic levels and there is a habitat 

deterioration, with increased turbidity, a decrease in oxygen concentration and production of 

substances that give a bad taste and odor to water, or toxins noxious to a great variety of 

organisms (Gorham and Carmichael, 1988; Codd et al., 1995). Cyanobacterial blooms 

occurrence in drinking water reservoirs have significant economical consequences resulting 

from deterioration of water quality (with bad taste and odour (Park, 2001)), water treatment 

filter blockage and requirement for additional and more effective water treatment processes 

(Rositano et al., 2001; Bláha and Marsálek, 2001; Kruschwitz et al., 2001; Maatouk et al., 

2002) to remove cyanotoxins that may endanger consumers health. In recreational waters, 

surface scum occurrence causes a decrease in local tourism economy due to the loss of 

water quality and cyanotoxins hazard, hindering the water sports practice and bath contact 

due to potential outcome of animal and human illness (WHO, 1998a). Cyanobacterial 

blooms have been recorded in marine, brackish and freshwaters worldwide and a great 

percentage (50 a 90 %) of them has been considered toxic (Codd et al., 1995; WHO, 

1998b; Codd, 2000; Dow and Swoboda, 2000). 
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Cyanotoxins 

Types and structure  

Cyanobacterial toxins differ in its chemical structure and toxicity. Generally they are 

classified as dermatotoxins, neurotoxins and hepatotoxins, according to the toxic effects in 

animals (Kaebernick and Neilan, 2001). Chemically, dermatotoxins can be 

lipopolysacharides or alkaloids (lyngbyatoxin-a and aplysiatoxins) and neurotoxins include 

alkaloids (anatoxin-a, homoanatoxin-a, saxitoxins and neosaxitoxins) and the 

organophosphate anatoxin-a(s) (Codd, 2000; Dow and Swoboda, 2000; Nicholson and 

Burch, 2001). Hepatotoxins, the most frequent and dangerous cyanotoxins, include 

alkaloids (cylindrospermopsin) or cyclic peptides (nodularin and microcystin) (Kaebernick 

and Neilan, 2001). Nodularin (cyclic pentapeptide) and microcystin (cyclic heptapeptide) 

both possess the amino acid Adda (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-

4,6-dienoic acid), considered responsible for the hepatotoxicity. There are more than 60 

variants of the microcystin toxin (Codd, 2000; Dow and Swoboda, 2000) and microcystin-

LR is the most common and studied variant. Many cyanotoxins not referred in this review 

are known (Dow and Swoboda, 2000) and much more are to be found but its frequency 

and toxic effects have not been yet found as relevant for human Public Health. 

Producer species 

Lyngbyatoxins are mainly produced by marine cyanobacteria belonging to the 

genera Lyngbya (Lyngbya majuscula), Schizothrix and Oscillatoria (Kaebernick and 

Neilan, 2001; Codd, 2000) and lipopolysacharides are synthesized by many brackish and 

freshwater species of the genera Anabaena, Aphanizomenon, Nodularia, Oscillatoria, 

Gloeotrichia (WHO, 1998a; Codd, 2000; Gorham and Carmichael, 1988).  

Anatoxin-a is mainly produced by Anabaena flos-aquae, but it can be also 

synthesized by Anabaena circinalis, Aphanizomenon flos-aquae and some species of 

Oscillatoria/Planktothrix, Cylindrospermum, Microcystis and Phormidium (Codd et al., 

1995; Codd, 2000). Homoanatoxin-a has been identified in Oscillatoria formosa (Dow and 

Swoboda, 2000) and Anabaena flos-aquae is the main producer of anatoxin-a(s) (Codd et 

al., 1995; Dow and Swoboda, 2000; Kaebernick and Neilan, 2001). Saxitoxins are usually 

produced by marine dinoflagellates (Daranas et al., 2001) but can also occur in freshwater 

cyanobacteria such as Anabaena circinalis, Anabaena lemmermanni and Aphanizomenon 

flos-aquae, as well as in species from the genera Lyngbya, Cylindrospermopsis and 
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Planktothrix (Codd et al., 1995; Kaebernick and Neilan, 2001; Codd, 2000; Dow and 

Swoboda, 2000; Nicholson and Burch, 2001). 

The brackish species Nodularia spumigena is responsible for nodularins production 

(Kaebernick and Neilan, 2001; Codd, 2000; Dow and Swoboda, 2000). The main 

microcystin variants (or microcystins) synthesizers include Microcystis spp., Anabaena 

spp., Planktothrix (or Oscillatoria) agardhii and P. rubescens, and species of 

Anabaenopsis and Nostoc, but microcystins were also found in Aphanizomenon flos-

aquae and terrestrial Hapalosiphon (Hitzfeld et al., 2000; Codd et al., 1995; Dow and 

Swoboda, 2000; Kaebernick and Neilan, 2001) and the synthesis of these toxins seems to 

be regulated by several factors (Kaebernick and Neilan, 2001). Cylindrospermopsin is 

mainly produced by Cylindrospermopsis raciborskii, a cyanobacterium that has been 

increasingly found in tropical and temperate regions (Neilan et al., 2003), but also by 

Aphanizomenon ovalisporum and Umezakia natans (Kaebernick and Neilan, 2001; Codd, 

2000; Dow and Swoboda, 2000). 

Toxicity in mammals 

Lyngbyatoxin-a and aplysiotoxins can cause, by direct contact with bloom containing 

water, eye and skin irritation, rush, sneezing and sore throat and/or gastrointestinal 

problems if accidentally ingested, but they can also promote cancer (Gorham and 

Carmichael, 1988; Codd, 2000). Lipopolysacharides are endotoxins that, in spite of not 

very toxic, contribute to inflammation and fever situations after skin contact with water or 

gastroenteritis after ingestion (Gorham and Carmichael, 1988; Codd et al., 1995; Codd, 

2000). 

Neurotoxins are less frequent than hepatotoxins but they act faster. Anatoxin-a and 

homoanatoxin-a mimic the neurotransmitter acetylcholine, maintaining the sodium 

channels open and thus blocking the neuromuscular system. Symptoms include 

staggering, gasping, dizziness, muscle fasciculation (involuntary contractions), abnormal 

breathing, cyanosis and convulsions, and death may occur by paralysis of respiratory 

muscles (Gorham and Carmichael, 1988; Fawell et al., 1999b; Codd, 2000; Dow and 

Swoboda, 2000). In mice, LD50 value (dose that results in death of 50% of animals) with 

intraperitoneal injection (i.p.) is 250 µg.kg-1 for homoanatoxin-a and 200-250 µg.kg-1 for 

anatoxin-a, with death occurring in a few minutes by respiratory arrest (Gorham and 

Carmichael, 1988; Codd et al., 1995; Dow and Swoboda, 2000). Oral toxicity by LD50 is 

superior to 5000 µg.kg-1 for anatoxin-a and there is no evidence for chronic toxicity (Fawell 

et al., 1999b; USEPA, 2001). Anatoxin-a(s) blocks neurotransmission by inhibition of 



Capítulo II – Toxic cyanobacterial blooms  

24 

acetylcholinesterase activity, preventing acetylcholine degradation and so maintaining 

sodium channels open. Symptoms felt are similar to those for anatoxin-a, adding other 

symptoms like hipersalivation, ataxia, cramps, diarrhoea, vomiting and tremors. In mice, 

LD50 (i.p.) is only of 20-50 µg.kg-1 killing in minutes (Gorham and Carmichael, 1988; Codd 

et al., 1995; Dow and Swoboda, 2000). Saxitoxins and neosaxitoxins are potent sodium 

channel blockers. Symptoms caused are nausea, vomiting, weakness, twitching, 

dizziness, irregular breathing and death may occur by cardio-respiratory failure. Using 

mice, the LD50 (i.p.) was 10-30 µg.kg-1 and death occurred in two minutes (Gorham and 

Carmichael, 1988; Codd et al., 1995; Dow and Swoboda, 2000; WHO, 1998a).  

Both nodularin and microcystin variants are selective for hepatic cells, irreversibly 

inhibiting protein phosphatases 1 and 2A (Honkanen et al., 1990) leading to disintegration 

of hepatocytes structure (Jochimsen et al., 1998) or promoting cancer in mammals (Ueno 

et al., 1996; Ito et al., 1997; Zhou et al., 2002). A recent study indicates that microcystins, 

chronically administrated, may also induce kidney damage on rats (Milutinovi et al., 2002). 

Some of the symptoms are weakness, cold extremities, pallor, apathy, respiratory 

problems, vomiting and diarrhoea (Codd et al., 1995; Codd, 2000). There is necrosis of 

the liver that may lead to death by hemorrhagic shock or liver failure after some hours or 

days (Gorham and Carmichael, 1988). LD50 (i.p.) value in mice for nodularin ranges 

between 30 and 50 µg.kg-1 (WHO, 1998a; Dow and Swoboda, 2000). MC-LR has a value 

of 50 µg.kg-1 for LD50 (i.p., in mice) (Dow and Swoboda, 2000). In mice, MC-LR is 30-100 

times less toxic by oral ingestion than through intraperitoneal injection (Fawell et al., 

1999a). Cylindrospermopsin inhibits the protein synthesis and glutathione synthesis, 

causing cumulative hepatotoxicity by regular ingestion of contaminated drinking water but 

also damage in kidneys (Falconer et al., 1999), heart, intestine, spleen and thymus (Codd, 

2000). Nevertheless, a recent in vitro study shows no inhibition of PP2A and considers it 

unlikely to be a tumour promoter (Chong et al., 2002). LD50 values (i.p., in mice) are 200 

µg.kg-1 and 2 mg.kg-1, with death occurring in a few days (5-6) or in 24 h, respectively 

(WHO, 1998a). 

Ecological effects (toxicity in organisms other than mammals) 

Cyanotoxins ingested along with cyanobacterial toxin-containing cells or dissolved in 

water after released by cell lysis can be accumulated and/or can cause adverse effects on 

many aquatic organisms such as bacteria (Ostensvik et al., 1998), phytoplankton (Kearns 

and Hunter, 2001), macrophytes (Wiegand and Pflugmacher, 2001; Pflugmacher et al., 

2001), zooplankton (Metcalf et al., 2002; Claska and Gilbert, 1998; Kurmayer, 2001; 
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Laurén-Määttä et al.,1997; Mohamed, 2001; Henning et al., 2001; Kurmayer and Jüttner, 

1999; Rohrlack et al., 2001), mussels (Amorim and Vasconcelos, 1999; Williams et al., 

1997), shrimps (Engström et al., 2001), crabs (Monserrat et al., 2001), fish (Oberemm, 

2001; Baganz et al., 2001; Kopp and Hetesa, 2000; Fischer et al., 2000.a; Fischer et al., 

2000.b; Liu et al., 2002) and amphibians (Prati et al., 2002), but also terrestrial plants 

(McElhiney et al., 200; Codd et al., 1999) and birds (Matsunaga et al., 1999). 

Hazards to Public Health (toxicity in humans) 

The symptoms observed for laboratory mammals are thought to be similar to those 

felt by humans, in spite of the lack of studies in this area. The epidemiological studies are 

the basis for human poisoning assessment and from the many worldwide cases reported 

until now, it is proven that cyanotoxins (dissolved in water and in cyanobacterial cells) 

cause acute and chronic effects on humans (Ueno et al., 1996; Zhou et al., 2002) and 

even death (Pouria et al., 1998; Jochimsen et al., 1998). The lethal dose of contaminated 

water depends on factors such as toxin type and its content in cyanobacterial cells, toxin 

producing cyanobacterial biomass, exposure route and victims’ susceptibility to the toxins 

(age, sex, weight and species) (Dow and Swoboda, 2000). There are also more sensitive 

groups that require special attention. If microcystins attack the liver, B-hepatitis patients 

are more susceptible to these cyanotoxins effects. In the same way, a hypersensitive 

person is more predisposed to an allergenic response by contact with dermatotoxins in 

recreational waters (Fitzgerald, 2001). Children are another sensitive group to 

cyanobacterial toxins since the ingested water per body weight is higher and 17 mL of 

toxic cyanobacterial material is sufficiently lethal for a small child (Chorus and Fastner, 

2001). Moreover, the places that children choose to play are shallow waters near the 

shore were the scum usually accumulates. Presently, there are some experimental 

studies about attenuation of human intoxication by microcystins (Dawson, 1998; 

Gehringer et al., 2003) but for neurotoxins that is difficult due to his rapid action, and only 

procedures such as artificial respiration, lavage and activated carbon are applied to 

reduce the toxin absorption when dose is not lethal (Fitzgerald, 2001). 

 

Human exposure routes to cyanotoxins 

Human intoxications by cyanobacteria can occur through a direct or an indirect 

route. 
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Direct exposure 

Drinking water 

This is the main route for direct human exposure to cyanobacterial toxins and the 

hazards come from the acute but also chronic effects that they can cause on water 

consumers. Acute intoxication (with hepatotoxicity and gastroenteritis) usually occurs after 

bloom degradation or after cyanobacterial lysis by treatment processes (e.g. copper 

sulphate) when the toxins are released from the cells (Dow and Swoboda, 2000). The 

long exposure to low levels of the toxins poses great concern due to cancer promotion 

potential of some cyanotoxins such as microcystins (Ueno et al., 1996; Ito et al., 1997; 

Zhou et al., 2002). Nodularins are not very common in drinking water, but shouldn’t be 

forgotten because they are also tumour liver promoters. Cylindrospermopsin has already 

shown to be dangerous through drinking water exposure (Fitzgerald, 2001). Neurotoxins 

are not very common in drinking water and chronic effects are not sufficiently studied. 

Recreational water 

Activities like taking a bath, swimming or playing water sports in or on recreational 

water suffering a cyanobacterial bloom lead to direct exposure of skin, eyes and ears to 

the water but can also lead to accidental water ingestion, aspiration or inhalation of 

cyanobacterial cells. There has never been reported a human fatal case due to 

recreational exposure but usually it results in allergies and irritation of external and 

internal revestment tissues (gastrointestinal and respiratory organs, eyes, ears, mouth 

and throat) due to dermatotoxins, in spite hepatotoxic and neurotoxic situations may also 

occur. The main symptoms felt include headache, nausea, muscular pain, painful 

diarrhoea, vomiting, flu symptoms, central abdominal pain, fever, mouth ulcers, sore 

throat, asthma, skin, ear and eye irritation, and even pneumonia (Fitzgerald, 2001; Chorus 

and Fastner, 2001; Dow and Swoboda, 2000). The chronic effects due to recreational 

exposure should be also considered because long periods of exposure can occur during 

summer vacancies with regular swimming in an eutrophic water body with a hepatotoxic 

bloom, for example. 

Haemodialysis 

This is an uncommon contamination route in which cyanotoxins come directly in 

contact with blood. Yet, in 1996 in a haemodialysis unit in Caruaru, Pernambuco, Brazil, 

the death of 60 patients were associated to microcystins occurrence in the water used in 

the haemodialysis (Pouria et al., 1998; Jochimsen et al., 1998). The contaminated water 
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was taken from a reservoir with a toxic bloom and treatment was insufficient to eliminate 

microcystins. All patients suffered acute symptoms of neurotoxicity and hepatotoxicity 

(Pouria et al., 1998). 

Indirect exposure 

Food 

Food supplements made from natural cyanobacterial blooms can have high 

microcystin levels (Schaeffer et al., 1999) and many organisms accumulate cyanotoxins, 

endangering the safety of its consumption by humans (Saker and Eaglesham, 1999; 

Magalhães et al., 2001; Codd et al., 1999; McElhiney et al., 2001; Amorim and 

Vasconcelos, 1999; Williams et al., 1997; Van Buynder et al., 2001). Yet, there are studies 

such as the one made by Orr et al. (2001).that showed no detectable amounts of this toxin 

in the milk obtained from lactating dairy cattle exposed to sub-lethal doses of MC-LR. 

 

Guideline values for cyanotoxins 

The lethal dose of cyanotoxins contaminated water depends on toxin type, its 

cellular content, cyanobacterial biomass concentration, exposure route and victim 

susceptibility (varies with age, sex, weight and species) (Dow and Swoboda, 2000). The 

existing guidelines are based on bioassays for chronic effects because there are no 

sufficient and conclusive human studies and for that sensitive differences between 

laboratory animals and humans should be kept in mind. 

Drinking water 

With the increasing occurrence of these phenomena all over the world and the cases 

reported of cyanobacterial poisoning on animals and humans cyanotoxins are already 

considered part of the emerging pathogens in drinking water (Szewzyk et al., 2000) and 

international measures are being taken such as definition of guideline values for 

cyanotoxins as well as monitoring programs implementation in drinking water (Fitzgerald, 

2001; WHO, 1998b) but also in recreational waters (WHO, 1998a; Codd, 2000; 

Nancarrow and Wood, 2000). Presently, there are diverse available methods for detection 

and quantification of cyanotoxins (Nicholson and Burch, 2001). Other measures include a 

proper management of water bodies to prevent phytoplankton growth (monitoring and 

pollution decrease) and adequate treatment processes and for cyanobacteria removal and 

toxin elimination (Codd, 2000). 
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As already discussed, microcystin variants are the most common and hazardous 

cyanotoxins for Public Health due to its hepatotoxicity and tumour promoter potential. 

Thus, they were the first cyanotoxins to which a guideline was proposed. WHO (World 

Health Organization) has a guideline value of 1 µg.L-1 for MC-LR (Fitzgerald, 2001; WHO, 

1998b) considered as a life time consumption safe level. While many countries (Brazil, 

New Zealand, United Kingdom) have adopted this value as guideline for drinking water 

there are some variations for Canada which proposed 1.5 µg.L-1 and Australia that 

proposes 1.3 to 10 µg.L-1 (USEPA, 2001; Fitzgerald et al., 1999). In Canada, there was 

also proposed a value 10 µg.L-1 for short-termed exposure (Fitzgerald, 2001). In spite of 

rare in drinking waters, a life-time drinking-water guideline of 1.0 µg.L-1 was also proposed 

for nodularin in Canada (Fitzgerald, 2001) due to its cancer promotion potential and 10 

µg.L-1 as a short-term acute exposure health alert in Canada and Australia (Fitzgerald, 

2001; Fitzgerald et al., 1999). There are no international guidelines for cylindrospermopsin 

in drinking water, in spite of its world distribution and acute toxicity, but Australia has 

proposed a drinking water guideline value ranging from 1 to 15 µg.L-1 (USEPA, 2001).  

Due to the lack of studies on potential chronic effects of neurotoxins on animals, 

there is no drinking water guideline value proposed for anatoxin-a and saxitoxins, but 

there is a health alert of 3 µg.L-1 (Fitzgerald et al., 1999; Fitzgerald, 2001; USEPA, 2001). 

There are also guideline values for cyanobacterial density in drinking waters and 

they are usually based on water taste and odour. In Australia, 2000 cyanobacterial cells 

per mL (or 1µg.L-1 Chl a) is the proposed guideline value for drinking water (Fitzgerald, 

2001).  

Recreational water 

WHO has established 3 levels of risk for recreational water with cyanobacterial 

blooms: 1) mild and/or low adverse health effects to expect (with 20000 cyanobacterial 

cells per mL (or 10 µg.L-1 Chl a under cyanobacterial dominance conditions)); 2) moderate 

adverse health effects are likely to occur (with 100000 cells per mL (or 50 µg.L-1 Chl a 

under cyanobacterial dominance conditions)); and 3) high risk of severe adverse health 

effects to occur (scum formation or more than 150 µg.L-1 Chl a under cyanobacterial 

dominance conditions) (WHO, 1998a; Fitzgerald, 2001). Germany adopted these WHO 

health hazard alert levels but added that sites with microcystin levels superior to 100 µg.L-

1 should be closed until the bloom reduces (Chorus and Fastner, 2001). Specific cell 

densities for Microcystis aeruginosa (50000 cells.mL-1), Nodularia spumigena (50000 

cells.mL-1) and Anabaena circinalis (20000 cells.mL-1) (Fitzgerald et al., 1999) are 
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provided as health alert indicators to anticipate possible cyanotoxins outbreaks in 

Australia. 

Food 

There is a proposed guideline of 10 µg of MC-LR per g of cyanobacterial food 

supplement (Schaeffer et al., 1999). In Oregon, U.S.A., there has been established a 

maximum value of 1 µg.g-1 for food (USEPA, 2001).  

 

Other measures 

Public alert and water management 

For recreational waters, depending on risk level (WHO, 1998a), some short-term 

measures include the use of informative material (Henriksen, 2001) for visitors in the bath 

sites, alerting for possible skin irritations due to the cyanobacterial material accumulation 

and lysis in bathing thermal suits or gastrointestinal illness due to accidental water 

ingestion. Regular monitoring of toxic bloom forming species should be made everyday for 

taking preventive measures on time or even prohibit people contact with the scum (WHO, 

1998a; Fitzgerald, 2001). Long-term measures include eutrophication reduction and water 

management measures such as maintenance of transparency (2m by Secchi disc) and 

low total phosphorus levels (<0,01 µg.L-1) (WHO, 1998a) in a way that massive 

cyanobacterial growth in recreational waters should be prevented. 

Cyanobacterial growth control 

Artificial mixing of water seems to be a good management measure (van der Veer et 

al., 1995), due to its effect on cell buoyancy regulation and phytoplanktonic species 

composition. The reduction of phosphate levels by reducing agricultural effluents and 

fertilizers as well as protecting soils from erosion is very important for reduction of 

phytoplanktonic biomass and influences species composition (Oliver and Ganf, 2000). 

Grazing by copepods, cladocerans and nanoflagellates (Saito et al., 2003) has shown to be 

another effective mean to control cyanobacterial growth directly by consumption or indirectly 

by altering light and nutrient conditions, increasing the transparency and nutrient 

recirculation and reducing primary productivity and pH (Oliver and Ganf, 2000). Another 

possibility is gas-vesicles collapse by ultrasonic irradiation (Lee et al., 2001; Lee et al., 

2002) or UV-radiation (Alam et al., 2001) but the enhancement of cell lysis and toxins 

release must be considered. Cyanobacterial growth control has been experimentally 

achieved by plant growth retardants (Romanowska-Duda et al., 2001) but lysis is still a 
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problem for the immediate use of water due to the release of toxins. Barley straw extract 

has shown inhibiting effects on growth of Microcystis sp. (Ball et al., 2001) and some 

bacteria (Imamura et al., 2001) such as Alcaligenes denitrificans (Manage et al., 2000) and 

Vibrio sp. (Yoshikawa et al., 2000) have algicidal effects on Microcystis spp., contributing to 

bloom control of this genus in freshwater bodies.  

Drinking-water treatment processes 

This should be the final step and not considered the only one. Conventional water 

treatment processes like flocculation (Chow et al., 1998) and filtration (Gupta et al., 2001) 

are effective in removing cyanobacterial cells and cell-bound cyanotoxins but not released 

cyanotoxins, endangering drinking water consumers due to chronic exposure to low levels 

of microcystins. Chemicals that lead to cell lysis (like copper sulphate) must thus be 

avoided, in order to prevent the cyanotoxins release from the cells, which take more than 

3 weeks to completely disappear from the water (Gupta et al., 2001). Chlorination appears 

to be unsuccessful in reducing microcystin levels in water (Gupta et al., 2001; Chorus et 

al., 2001b), but it seems to degrade effectively cylindrospermopsin (Senogles et al., 

2000). To eliminate dissolved cyanotoxins like microcystins additional treatment 

processes are required such as ozonation and activated carbon filtration (Rositano et al., 

2001; Bláha and Marsálek, 2001; Chorus et al., 2001b; Kruschwitz et al., 2001; Maatouk 

et al., 2002). 

 

Worldwide toxic cyanobacterial blooms occurrence 

Since the 19th century that scientific records have been relating the occurrence of 

toxic blooms of cyanobacteria to animal deaths concerning sheep, horses, pigs, dogs, 

birds and many others, including humans, in many countries all over the world, as shown 

in several reviews (Gorham and Carmichael, 1988; Codd, 2000; WHO, 1998a).  

Europe 

Portugal 

In the last 50 years many potentially toxic cyanobacteria have been recorded in 

portuguese waters with relevance to Anabaena circinalis and Anabaena flos-aquae, 

Aphanizomenon flos-aquae, Lyngbya majuscula, Microcystis aeruginosa, M. viridis, M. 

wesenbergii and M flos-aquae, Planktothrix/Oscillatoria agardhii, P. rubescens, 

Phormidium mucicola, Oscillatoria formosa and Nostoc sp. (Vasconcelos, 2001). Some 

blooms of these species are related to fish kills and also to human intoxications 
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(Vasconcelos et al., 1996; Vasconcelos, 2001). From 1989 to 1992, various portuguese 

water bodies used for recreation and as drinking water supplies were found to have 

hepatotoxic blooms of Microcystis aeruginosa, M. wesenbergii, Anabaena flos-aquae and 

Nostoc sp. with microcystins production (Vasconcelos et al., 1996). In 1996, 

Aphanizomenon flos-aquae was recorded in Crestuma-Lever reservoir, northern Portugal, 

and Montargil reservoir, centre of Portugal, with PSP toxins production (Ferreira et al., 

2001; Pereira et al., 2000). In Montargil reservoir, in late summer of that year, a 

hepatotoxic Microcystis aeruginosa bloom was established (Pereira et al., 2000). 

Rodrigues et al. (2002) reported that in 2001, Bravura Lake, Algarve, observed high 

cyanobacterial densities of Microcystis aeruginosa during all year with high microcystin 

contents (10-56 µg.L-1). In the last decade Crestuma reservoir has also suffered toxic 

blooms of M. aeruginosa (Vasconcelos, 2001). After Saker et al. (2002), Torrão reservoir 

suffers regular Microcystis spp. blooms. In 1999, a study made on a Wastewater 

Treatment Plant, in Esmoriz, north Portugal, concluded that cyanobacteria were frequently 

dominant with Planktothrix mougeotii, Pseudanabaena mucicola and particularly 

Microcystis aeruginosa as the most common species achieving high levels of total MC-LR 

equivalents in the WWTP outflow, indicating its cyanotoxins contamination potential to 

receptor water bodies (Vasconcelos and Pereira, 2001). 

France 

In summer 1994, Lake Grand-Lieu suffered a bloom that included Microcystis 

aeruginosa strains capable of producing microcystins (Vézie et al., 1998). Saint-Caprais 

reservoir suffers annually, in autumn, an Aphanizomenon flos-aquae bloom with 

microcystins production (Maatouk et al., 2002). 

Belgium 

In 1995, near Liège, three adjacent ponds suffered a Microcystis aeruginosa bloom 

and bird deaths were related with microcystins produced in the bloom (Wirsing et al., 

1998). 

Finland 

In 1997 and 1998, a monitoring study in several bank filtration plants and surface 

waterworks recorded microcystins in only some of the raw water samples with dominance 

of Planktothrix agardhii and there were no significant amounts of microcystins in treated 

water meaning the processes used in the water treatment plant were effective in 

microcystin removal (Lahti et al., 2001). 
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Italy 

In the summer of 1997, Lake Varese, Italy, suffered a toxic bloom of Planktothrix sp. 

with the deaths of fish and shellfish by a saxitoxin (Prati et al., 2002). 

Germany 

In a study of Wiedner et al. (2001), 133 german water bodies (used for recreational 

or drinking water purposes) were in their majority dominated by cyanobacteria from 

genera Planktothrix, Microcystis, Anabaena and Aphanizomenon, with microcystins and 

anatoxin-a production (Chorus et al., 2001). In 1998 and 1999, the Bleiloch reservoir, in 

Thuringia, formerly used as drinking water source (supply), showed the presence of 

diverse microcystins in water (Hummert et al., 2001). Lake Ammersee, southern 

Germany, has frequently Planktothrix sp. blooms and this occurrence has been 

associated with growth problems of the whitefish Coregonus lavaretus from the lake, due 

to the bloom production of microcystin (Ernst et al., 2001). In 1999, many recreational 

lakes in Baden-Würtemberg, southwestern Germany, were found to have cyanobacteria 

dominating the phytoplankton and microcystins production (Frank, 2002). 

Ireland 

Between 1992 and 1994, several dogs died after drinking water from Caragh Lake, 

County Kerry, exhibiting respiratory problems and convulsions due to the presence of 

anatoxin-a, produced by a benthic Oscillatoria (James et al., 1997). During summer 

months of 1994 and 1995, in three irish lakes anatoxin-a was detected and associated 

with planktonic Anabaena and benthic Oscillatoria species (James et al., 1997). 

Homoanatoxin-a is rare but has been detected in four (Lough Sillan, Inniscarra Reservoir, 

Lough Key and Caragh Lake) of twenty Irish lakes studied (Furey et al., 2003). 

Scotland 

Neurotoxin poisoning by anatoxin-a in dogs have been frequently reported in 

scottish lakes from Scottish Highlands that suffer benthonic blooms of Oscillatoria-

Phormidium, which accumulate in shores (Codd et al., 1995). Symptoms felt by dogs 

included convulsions, rigors, limb twitching, cyanosis and hypersalivation, and death 

occurred in 10-30 minutes. In 1998, anatoxin-a was related to a bloom of Anabaena flos-

aquae in a drinking water reservoir at Loch Muidhe and, for several years (1984, 1991 and 

1992), Loch Leven suffered from hepatotoxic blooms of Microcystis aeruginosa and 

Anabaena flos-aquae associated with more than 1000 dead fish that accumulated in the 
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shores and that showed liver necrosis probably due to microcystins released in Anabaena 

flos-aquae bloom senescence (Codd et al., 1995). 

United Kingdom 

In late summer of 1989, a Microcystis bloom in Rutland Water reservoir caused the 

deaths of 20 sheep and 15 dogs that had ingested scum from the reservoir, and caused 

also skin rushes, mouth blistering and thirst in wind surfers that contacted with the scum. 

At about the same time, in Rudyard Lake, during a canoeing training exercise soldiers 

contacted with Microcystis aeruginosa scum and suffered from sore throat, headaches, 

blistered mouth, diarrhoea, vomits and some reported also fever and pneumonia (Dow 

and Swoboda, 2000; WHO, 1998a). 

Norway 

Between 1978 and 1998, a study based on dozens of south Norwich water bodies 

revealed the occurrence of many microcystins producing blooms of Anabaena spp., 

Microcystis spp. and Oscillatoria (Planktothrix) spp., but also anatoxin producing 

Anabaena spp. blooms (Utkilen et al., 2001). 

Switzerland 

Dense mats of benthic cyanobacteria (mainly Oscillatoria and Phormidium) have 

been reported to occur in oligotrophic, cold and turbid alpine waters of south-eastern 

Switzerland, showing hepatotoxic (by microcystins) and neurotoxic effects in mice and this 

seems to have been the cause of many cattle deaths in this region during the last two 

decades (Mez et al., 1997). 

Denmark 

Between 1993 and 1995, an intensive study on hundreds of freshwater bodies 

reached the conclusions that the majority of blooms were hepatotoxic (with microcystins 

production by Microcystis spp., Anabaena spp., Planktothrix agardhii and Aphanizomenon 

flos-aquae) but some neurotoxic blooms also occurred (with synthesis of saxitoxins-like 

toxins and anatoxin-a by Anabaena lemmermannii) (Henriksen, 2001). During this period 

there have been recorded the deaths of 50000-100000 fish and a cow by hepatotoxic 

blooms of Anabaena flos-aquae and Planktothrix agardhii, respectively (Henriksen, 2001). 

A neurotoxic bloom of Anabaena lemmermannii was related to bird deaths (Henriksen, 

1997; Onodera et al., 1997). In 1994, in a study involving 96 freshwater ponds and lakes, 

anatoxin-a(s) and saxitoxins were found in three and eight, respectively, of the studied 

lakes and associated with the presence of Anabaena lemmermannii (Kaas and Henriksen, 
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2000). In summer of 1996, a small lake in North Sea coast suffered a benthic neurotoxic 

bloom of Oscillatoria causing the death of a dog and convulsion symptoms in another after 

water lake ingestion (Henriksen, 2001). 

Sweden 

In 1991, at Lake Vombsjön, South Sweden, there were detected significant MC-LR 

levels in water from a drinking water treatment plant (Codd et al., 1995). In 1994, there 

was a river contamination with microcystins produced by a Planktothrix agardhii bloom 

that caused intoxication of pets and 121 persons (WHO, 1998a). In late summer of 1997, 

Willén et al. (2000) studied three Swedish lakes (Lake Mälaren, Lake Lilla Ullfjärden and 

Lake Storsjön) finding the high microcystin levels associated with dominance of 

Microcystis aeruginosa, M. viridis and Planktothrix prolifica. In early summer neurotoxicity 

(not by anatoxin-a) had also been recorded in two of these lakes and coincided with 

abundance of Anabaena spp. and Aphanizomenon spp. (Willén et al., 2001). 

Czech Republic 

During 1993 to 1998, 90 % of samples from dozens of recreational and drinking 

water reservoirs and fish ponds were found to be hepatotoxic and dominated by 

Microcystis spp., Planktothrix agardhii and Aphanizomenon flos-aquae (Marsálek et al., 

2001). In 1999, a study on samples taken from raw and treated waters from selected 

Czech drinking-water treatment plants showed that the majority of raw waters and some 

treated drinking waters had dissolved microcystin contents seven times higher than the 

WHO guideline value posing possible risks of hepatotoxicity and liver tumour promotion to 

consumers (Bláha and Marsálek, 2001) 

Latvia 

During 1995 and 1996, three eutrophic lakes (Lakes Mazais, Lielais Balterzers and 

Sekitis) had summer blooms of potentially toxic Microcystis aeruginosa (with production of 

microcystins), Aphanizomenon flos-aquae and Anabaena flos-aquae, leading to a 

decrease in drinking water quality and health problems resulting from the recreational use 

of lakes water (Eynard et al., 2000). 

Slovenia 

In North-Eastern Slovene freshwaters there have been identified many hepatotoxic 

blooms, most frequently with M. aeruginosa dominance and microcystins production 

(Sedmak and Kosi, 1997). 
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North America 

Canada 

Microcystins are the most frequent cyanotoxins in Canada and drinking water is the 

main exposure route (Gupta et al., 2001). In the summer of 1990, in Alberta, some lakes 

used as drinking water sources showed the presence of MC-LR and in summer of 1993, 

at Shoal Lake, Manitoba, a bloom of Microcystis aeruginosa produced MC-LR at 

concentrations higher than WHO guideline, in both raw water and treated tap water 

(Gupta et al., 2001). In 1995, in southwestern Manitoba MC-LR was detected in the 

majority of 150 surface water supplies and also in many treated waters (Gupta et al., 

2001). 

U.S.A. 

The first human intoxication by drinking water was reported in 1931 due to the 

ineffective treatment (by precipitation, filtration and chlorination) of waters taken from Ohio 

and Potomac rivers that suffered from Microcystis blooms at the time, resulting in illness 

of thousands of people who drank deficiently treated water (WHO, 1998a). Since the 50s, 

many cases of dermatitis, skin rush, eye irritation and asthma have been connected with 

Anabaena, Oscillatoria and Microcystis blooms (Gorham and Carmichael, 1988) but also 

Lyngbya majuscula (Dow and Swoboda, 2000). In 1975, at a Sewickley reservoir, 

Pennsylvania, lipopolysacharides in high concentrations were detected and associated to 

an outbreak of gastroenteritis affecting about 5000 people (Gorham and Carmichael, 

1988). In 1979, in two lakes of Pennsylvania, 2 to 12 h after contact with water blooms of 

Anabaena several cases of gastroenteritis and eye irritation, sore throat, headaches and 

sneezing were reported (Gorham and Carmichael, 1988). Many intoxications cases by 

neurotoxins have been documented for dogs, farm animals and ducks with the typical 

hypersalivation (Codd et al., 1995). In 1977, at Hegben Reservoir, Montana, a neurotoxic 

bloom caused the deaths of 30 cows and 8 dogs and in 1985, at Richmond Lake, South 

Dakota, 5 dogs, 8 pups e 2 calves were killed after ingestion of water containing an 

Anabaena flos-aquae bloom (Gorham and Carmichael, 1988). Between 1991 and 1994, 

majority of samples collected from 10 locations at Guntersville Reservoir, on the 

Tennessee River, was found toxic with the presence of the mat-forming filamentous 

cyanobacterium Lyngbya wollei and saxitoxins production posing the risk of PSP 

(Carmichael et al., 1997). In 1994, a prolonged toxic bloom of Microcystis aeruginosa 

occurred in Steilacoom Lake, Washington (Jacoby et al., 2000). In southern Colorado, 24 

heifers died from hepatocyte degeneration and liver necrosis after drinking water with a 
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bloom of a microcystin producing Microcystis (Puschner et al., 1998). In Oregon, food 

supplements made on natural Aphanizomenon flos-aquae blooms had high levels of 

microcystin (Schaeffer et al., 1999). 

South America 

Brazil 

In 1996, Caruaru, Pernambuco state, the death of 60 patients from a haemodialysis 

unit was related to microcystins intoxication because the water used on the process came 

from a reservoir suffering a bloom of species belonging to the genera Anabaena and 

Microcystis, and the water treatment methods used were insufficient to eliminate the 

toxins (Pouria et al., 1998). The state of Paraná has frequent occurrence of microcystins 

producing Microcystis spp. blooms in freshwater lakes and reservoirs used for recreational 

and animal farming purposes but also in drinking water supplies, as shown in a study 

made between 1995 and 1996 (Hirooka et al., 1999). The Patos Lagoon estuary, Rio 

Grande do Sul, southern Brazil, suffers regular blooms of Microcystis and recent studies 

have found microcystins synthesis during its occurrence (Matthiensen et al., 1999; 

Matthiensen et al., 2000). 

Chile 

In February 1995 and 1996, Microcystis spp. blooms occurred in lake Rocuant, 

Conception, Chile, and microcystin was detected (Campos et al., 1999). In 1998, Lake 

Tres Pascualas, also in Conception, suffered a hepatotoxic Microcystis sp. bloom with 

different microcystins production (Neumann et al., 2000). 

Africa 

Egypt 

In July of 1995, in Egypt, River Nile (used as drinking water source but under 

pressures from agricultural, municipal and industrial effluents) suffered a hepatotoxic 

bloom of Oscillatoria tenuis (with production of microcystins) at Sohag province (Brittain et 

al., 2000). 

Israel 

In summer of 1994, in Lake Kinneret, Israel, a bloom of potentially toxic 

Aphanizomenon ovalisporum occurred and caused concern because the lake was a major 

national source of high-quality water (Hadas et al., 1999). 



Capítulo II – Toxic cyanobacterial blooms  

37 

Morocco 

During May-June 1999, Lake Oued Mellah suffered a Microcystis ichtyoblabe bloom 

and microcystins were detected (Sabour et al., 2002). Several cyanobacterial strains 

belonging to the genera Microcystis, Synechocystis, Pseudanabaena and Oscillatoria, that 

have isolated from ponds, lakes and reservoirs, and showed microcystin synthesis (Oudra 

et al., 2001; Oudra et al., 2002).  

South Africa 

Some cattle and sheep death cases were reported in western Cape Province, South 

Africa, and were related to drinking water contamination with cyanotoxins. The first two 

poisoning outbreaks were attributed to Nodularia spumigena and the third to Microcystis 

aeruginosa (with confirmed MC-LR synthesis) (Van Halderen et al., 1995). 

Oceania 

Australia 

In 1878, Lake Alexandrina, in South Australia was the first spot where a case on 

poisoning of livestock from drinking water contaminated with cyanobacteria (producing a 

nodularin) had been reported (Dawson, 1998). In Darling/Barwon River, Australia, in late 

autumn of 1991, there was an important record of a toxic bloom in a river, with 1000 Km of 

river suffering from a hepatotoxic and neurotoxic bloom of Anabaena circinalis, and more 

than 1600 sheep and 40 cattle animals died (Codd et al., 1995). At Swan-Canning 

estuary, Western Australia, in February 2000 there was a dense and severe Microcystis 

aeruginosa bloom (Atkins et al., 2001). In summer of 2001, a toxic bloom of Nodularia 

spumigena occurred in Gippsland Lakes, Southern Victoria, with nodularin production and 

accumulation of this toxin in mussels and prawns (Van Buynder et al., 2001). In 1979, 

Palm Island, north Queensland, an human intoxication occurred in an aboriginal 

community by ingestion of water from a reservoir that has been subjected to a copper 

sulphate treatment to eliminate a Cylindrospermopsis raciborskii bloom causing illness in 

139 children and 10 adults, who felt symptoms like headache, vomiting, painful liver 

enlargement, bloody diarrhoea, anorexia, with hepatoenteritis and renal damage 

(Fitzgerald, 2001). There are cases of cows and calves death after drinking water from a 

dam at McKinlay in northwest Queensland, containing a hepatotoxic Cylindrospermopsis 

raciborskii bloom (Saker et al., 1999). 
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New Zealand 

In 1999, Wellington region, New Zealand, the recreational Lake Waitawa suffered 

the development of an odoriferous scum with synthesis of cylindrospermopsin and 

microcystins, highlighting the risk of exposure to cyanotoxins by users of recreational 

lakes (Stirling and Quilliam, 2001). 

Asia 

South Korea 

Between 1992 and 1996, a study on various brackish and freshwater bodies in 

South Korea, including dams and lagoons used as drinking water sources, showed that 

every water body had cyanobacteria as dominant phytoplanktonic group with species 

mainly belonging to Microcystis genera, but also Anabaena e Planktothrix/Oscillatoria, 

with production of microcystins and anatoxin-a (Park, 2001). The Daechung reservoir was 

studied from spring to autumn 1999 and Microcystis spp. blooms occurred with production 

of microcystins (Oh et al., 2001). 

China  

In 1993, in Haimen city and Fusui county, there was found a significant correlation 

between microcystins producing bloom occurrence in the superficial drinking water 

sources (ponds and rivers) and primary liver cancer incidence (Ueno et al., 1996). 

Between 1995 and 1996, a study on Donghu Lake and a fish pond in Wuhan, China, 

revealed the presence of microcystins associated with the presence of species of 

Anabaena and Oscillatoria (Xu et al., 2000). 

Thailand 

Cylindrospermopsin produced by Cylindrospermopsis raciborskii has been recently 

isolated from a fishpond in Thailand (Li et al., 2001). 

Japan  

Between 1988 and 1992, microcystins were found in various naturally occurring 

blooms with dominance of cyanobacteria genera, namely Microcystis (Park et al., 1993). 

Between 1992 and 1995, microcystins could be detected in water during cyanobacterial 

blooms in Lakes Sagami and Tsukui, Kanagawa Prefecture, Japan, used for recreational 

purposes but also as drinking water sources (Tsuji et al., 1996). Between 1991 and 1994, 

the hypertrophic Lake Suwa, in central Honshu, suffered Microcystis spp. blooms with 

high production of microcystins (Park et al., 1998). In 1985, at Shin-ike pond, in 
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Nishinomiya, Hyogo Prefecture, Japan, the death of 20 ducks was related with the 

occurrence of a toxic Microcystis aeruginosa bloom with microcystins production 

(Matsunaga et al., 1999).  

Taiwan 

Microcystins have been found in several strains of Microcystis aeruginosa isolated 

from eutrophic aquaculture ponds and water reservoirs in Taiwan (Lee et al., 1998). 

Philippines 

During 1996, 1998 and 1999, Laguna de Bay suffered periodic blooms of Microcystis 

aeruginosa and many variants of microcystins were detected (Cuvin-Aralar et al., 2002). 

Antarctica 

In spite of cyanotoxins occurrence being more documented in temperate or tropical 

populated regions, toxic cyanobacteria also occur in polar regions. Between 1997 and 

1999, in a study using melt water ponds on the McMurdo Ice Shelf, Antarctica, 

cyanobacteria were dominant (Oscillatoriales, Nodularia sp., Anabaena sp. and Nostoc 

sp.) and toxin (nodularin and MC-LR) production was found to occur (Hitzfeld et al., 2000). 

 
Concluding remarks 

Cyanobacterial blooms occurrence is an increasing global problem affecting every 

country in general. Eutrophication and anthropogenic activities associated with it are 

difficult to control in a way that phytoplanktonic and particularly cyanobacterial growth 

continues to be enhanced. Thus, the consequences derived from known and yet unknown 

cyanotoxins production are here to persist. Many international and regional measures 

have been taken and applied but much more is needed for reaching a solution to control 

this environmental and Public Health problem. This should start by everyone’s awareness 

concerning causes and consequences of cyanobacterial blooms occurrence and the way 

to prevent it. 
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Microcystin producing blooms – a serious global  

Public Health issue 
 
 

Abstract - All over the world there has been an increasing occurrence of harmful algal 

blooms, in general due to the eutrophication of water bodies. Under appropriate conditions 

(especially high nutrient levels, high temperature and light conditions, no wind) some 

cyanobacteria may develop and form large masses of surface scum (blooms), particularly 

in freshwaters. Some of these cyanobacterial blooms may become dangerous because 

certain species are responsible for CTP (Cyanobacteria Toxin Poisoning) by producing 

toxins such as microcystins (hepatotoxins). The main genera capable of microcystin 

production are Microcystis, Anabaena, Oscillatoria (Planktothrix), Nostoc and 

Anabaenopsis and its biosynthesis seems to be controlled by several environmental 

factors like temperature, light, nutrients and trace metals, but also genotype diversity. 

Microcystins can cause serious damages at different trophic levels and it is considered a 

threat to human public health. The WHO (World Health Organization) has already 

established 1.0 µg.L-1 as the maximum level for microcystins in drinking water. In 

mammals, some symptoms of hepatotoxicity after ingestion of microcystin contaminated 

water include: weakness, respiratory problems, cold extremities, vomiting and diarrhoea. 

Microcystins have also been correlated to cancer promotion because they are protein 

phosphatases 1 and 2A inhibitors. The aims of this study is to review the recent 

investigations concerning microcystin production, toxicity and occurrence in the last two 

decades, and alert for the need of a proper local water management regarding the nutrient 

inputs but also a better understanding of the interactions between the factors influencing 

these toxins production in each local region in order to control it more efficiently. It would 

be important that in every country, investigation and higher education focused more on 

this major Public Health issue in order to understand and adapt control strategies to 

specific regional characteristics of these cyanobacterial blooms occurrence. 

Keywords: eutrophication, hepatotoxic blooms, microcystin synthesis, occurrence and 

consequences. 

 
 
Introduction 

The increase of human population and the consequent increase in agricultural and 

industrial activities along with a deficient water management led to eutrophication of 
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superficial freshwater bodies used for recreational purposes and as drinking water 

sources. Hence, phytoplanktonic blooms became also more frequent worldwide. More, 

environmental conditions such as higher temperatures (15-30ºC) and pH (6-9), low 

turbulence and high nutrient inputs enhance the development of planktonic cyanobacteria 

in lakes and reservoirs, leading to formation of surface blooms that may accumulate as 

scum. The dominance of certain cyanobacteria at surface is due to some advantageous 

characteristics such as less nutrient (particularly nitrogen) requirements and buoyancy 

regulation in water column for achieving better light and nutrient level conditions (Oliver 

and Ganf, 2000). The development of cyanobacterial blooms has become a concerning 

problem because some cyanobacterial species can produce toxins and studies from many 

countries have concluded that the majority of cyanobacterial blooms are indeed toxic 

(Codd et al., 1995; WHO, 1998a; Codd, 2000; Dow and Swoboda, 2000). The 

intoxications caused by cyanobacteria are named CTP (Cyanobacteria Toxin Poisoning) 

and there are many cases documenting the hazardous potential of cyanotoxins for many 

organisms and also for Public Health (Codd et al., 1995; Gorham and Carmichael, 1988; 

Codd, 2000). In humans, cyanobacteria may cause irritation of skin and/or mucous 

membranes or even gastroenteritis by recreational exposure (WHO, 1998a), 

hepatotoxicity or neurotoxicity by ingestion of contaminated drinking water (Gorham and 

Carmichael, 1988) or contaminated food (Codd et al., 1999; McElhiney et al., 2001), and 

even death may occur if blood is directly exposed to the toxins (Pouria et al., 1998). 

Presently, there are more than 40 known toxic cyanobacteria (Sivonen and Jones, 1998; 

Dow and Swoboda, 2000) and the most common include: Microcystis spp., 

Planktothrix/Oscillatoria rubescens and P. agardhii, Anabaena spp., Aphanizomenon spp., 

some Oscillatoria spp., Cylindrospermopsis raciborskii, Synechococcus spp., Gloeotrichia 

spp., Lyngbya spp., Nostoc spp., Schizothrix spp., Synechocystis spp. and Nodularia 

spumigena (WHO, 1998a). For each species considered toxic there may be toxic and 

non-toxic strains and in toxic ones toxicity may vary among them (Böttcher et al., 2001; 

Hesse and Kohl, 2001). Cyanotoxins are very diverse in their chemical structure and 

toxicity (Dow and Swoboda, 2000; Kaebernick and Neilan, 2001), being usually classified 

as dermatotoxins (lipopolyssacarides, lyngbyatoxin-a and aplysiatoxins), neurotoxins 

(anatoxin-a, homoanatoxin-a, anatoxin-a(s) and saxitoxins) and hepatotoxins 

(microcystins, nodularin and cylindrospermopsin), according to the toxic effects on 

animals. Hepatotoxins are the most frequent cyanotoxins (Codd, 2000) and main 

responsible for CTP in freshwater bodies (Gorham and Carmichael, 1988; Dow and 

Swoboda, 2000). As exposed above, eutrophication is an important cause of the 
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increasing occurrence of toxic cyanobacterial blooms worldwide and consequent animal 

and human illness or death. Therefore, it is becoming essential a proper water 

management regarding the nutrient inputs to water systems but also a better 

understanding of the interactions between the factors influencing these toxins production 

in order to control it. It would be important that in every country, investigation and higher 

education focused more on this major Public Health issue in order to understand and 

adapt control strategies to specific regional characteristics of these cyanobacterial blooms 

occurrence. The present study reviews some recent work made on the microcystin toxicity 

on diverse organisms (including humans), factors influencing microcystin production and 

processes to eliminate microcystins from drinking water, as well as the occurrence of 

microcystin producing blooms worldwide in the last two decades. 

 
Microcystins 

Structural characterization 

Microcystins are cyclic heptapeptides with the general structure cyclo(-D-Ala-L-X-

erythro-β-methyl-D-Adda-D-isoGlu-N-methyldehydro-ala). Of special interest are the 

variable L-aminoacids X and Z (X is usually leucine (L), arginine (R), tyrosine (Y) or 

phenylalanine (F), and Z is usually arginine (R), alanine (A) or methionine (M)) and the 

aminoacid Adda (3-amino-9-methoxy-2,6,8-trimethyl-10-phenyldeca-4,6-dienoic acid) 

considered the responsible for the molecule hepatotoxicity (Dawson, 1998). There are 

more than 60 microcystin isoforms (Codd, 2000; Dow and Swoboda, 2000) in part due to 

the variable L-aminoacids, but the most frequent and studied variant is microcystin-LR 

(MC-LR) with the variable aminoacids leucine (L) and arginine (R). Other variants that 

also occur more frequently are MC-RR, MC-YR and MC-LA. 

Function 

There are no conclusive studies about the purpose of microcystin (secondary 

metabolite) synthesis but some results indicate that it may act as a chemical defence 

against grazing (Laurén-Määttä et al., 1997; Kurmayer and Jüttner, 1999; Henning et al., 

2001) or have an allelopathic effect over algal competitors (Kearns and Hunter, 2001) 

besides regulating endogenous protein phosphatases or being used as nitrogen reserve. 

Producer species 

These toxins occur in freshwaters worldwide and are mainly produced by colonial 

Microcystis spp. and filamentous Anabaena spp., Planktothrix/Oscillatoria (P. agardhii and 
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P. rubescens), Anabaenopsis, Nostoc (N. rivulare) and Aphanizomenon (A. flos-aquae), 

but also species belonging to the terrestrial genus Hapalosiphon (Codd et al., 1995; Dow 

and Swoboda, 2000; Kaebernick and Neilan, 2001). MC-LR is known to be produced by 

species belonging to the genera Anabaena, Microcystis, Nostoc and Anabaenopsis 

(WHO,1998a; Dow and Swoboda, 2000) and MC-YR is produced by Microcystis 

aeruginosa, M. viridis and Hapalosiphon sp. (WHO, 1998a; Dow and Swoboda, 2000). 

MC-RR has been isolated from Oscillatoria agardhii, Microcystis aeruginosa and M. 

viridis, and MC-LA from Microcystis aeruginosa (Dow and Swoboda, 2000). 

Synthesis pathway 

Microcystins are secondary metabolites produced non-ribosomally through a 

microcystin synthetase complex (Kaebernick and Neilan, 2001) and their synthesis seems 

to be an energy (ATP) dependent process (Bickel and Lyck, 2001). The synthesis 

enzymatic complex is codified by a mcy genes cluster composed by two operons (mcyA-C 

and mcyD-J) (Kaebernick and Neilan, 2001) and it is present in toxic strains of the genus 

Microcystis but also in microcystin producing strains of Anabaena, Nostoc and 

Planktothrix (Neilan et al., 1999), allowing the development of rapid and sensitive PCR 

(Polymerase Chain Reaction) methods for its detection directly from environmental 

samples (Tillet et al., 2001; Pan et al., 2002).  

Factors influencing microcystin synthesis 

Light 

In general, in spite of many contradictory studies, microcystin synthesis seems to 

increase with light intensity or photosynthetically active radiation (Rapala et al., 1997; 

Rapala and Sivonen, 1998; Kaebernick et al., 2000; Hesse and Kohl, 2001; Kaebernick 

and Neilan, 2001; Wiedner et al., 2003) but light quality seems to be also a determinant 

factor (red light favours toxin production while blue light doesn’t) (Kaebernick et al., 2000) 

and there are maximum irradiance values above which the microcystin production is 

inhibited (Wiedner et al., 2003). Some recent studies (Böttcher et al., 2001; Hesse and 

Kohl, 2001) concluded that variations in light intensity in natural environments have little or 

no significant effect on microcystin cellular content and the differences found in blooms 

toxicity are probably due to growth rates and toxic characteristics of different strains. 
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Temperature 

Temperature seems to influence the type of toxin produced. High temperatures (> 

25ºC) seem to enhance MC-RR production while lower temperatures favour MC-LR 

synthesis (Rapala et al., 1997; Rapala and Sivonen, 1998).  

Macronutrients (N and P) 

In the non-nitrogen-fixing cyanobacterium M. aeruginosa, microcystin content seems 

to increase at higher N:P ratios (Utkilen and Gjφlme, 1995; Lee et al., 2000) but Long et al. 

(2001) reported that fast cell-growth of Microcystis aeruginosa under N-limited conditions 

is associated with smaller cells and consequent higher intracellular microcystin quota. The 

growth of Microcystis spp. increases with increasing phosphorus concentrations (Utkilen 

and Gjφlme, 1995; Rapala and Sivonen, 1998; Kotak et al., 2000; Oh et al., 2000) and 

microcystin content in Microcystis aeruginosa also seems to be higher at high phosphorus 

concentrations (Jacoby et al., 2000; Kotak et al., 2000). Yet, Oh et al. (2000) documented 

higher values of microcystin content in M. aeruginosa under more P-limited conditions. In 

the N-fixing Anabaena spp. nitrogen (nitrates) showed an enhancement on toxin synthesis 

(Rapala et al., 1997) but in nitrogen-free medium N-fixing cyanobacteria can still produce 

more microcystin than the non-nitrogen fixing ones. Microcystin content in Anabaena spp. 

seems to have also a tendency to increase with phosphorus concentration (Rapala et al., 

1997) probably due to the fact that N-fixing cyanobacteria are less dependent on N 

concentrations. There are many controversial results concerning the effects of nitrogen 

and phosphorus concentrations on microcystin content but microcystin production in 

Microcystis strains seems to be influenced by variation in nitrogen and phosphorus 

concentrations with different responses depending on strain (Vézie et al., 2002). 

Micronutrients (Fe and Zn) 

Lukac and Aegerter (1993) found that zinc (Zn) enhanced growth and microcystin 

production in Microcystis aeruginosa, and low iron (Fe) concentrations decreased growth 

but increased the toxin synthesis. Utkilen and Gjφlme (1995) had contradictory results 

(probably due to the use of a different strain) in which a decrease in the iron concentration 

decreased the microcystin content and microcystin synthetase should be actively 

controlled by the amount of available free Fe2+.  
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Energy charge 

Phosphorus (constituent of DNA, RNA and ATP), nitrogen (nitrogen metabolism and 

respiration), iron (Chl a synthesis) and light (energetic source) are essential environmental 

factors for promotion of metabolic energy. Hence, Bickel and Lyck (2001) suggested that if 

microcystin synthesis requires energy (as ATP), the variation of toxin production should 

be mostly explained by the energetic state of the cyanobacterial cells, and nutrient 

limitation (P, N and Fe) and light variation should have only an indirect influence, since 

cell energetic state changes in stress conditions. In conditions of low levels of energetic 

charge, available energy in cell is primarily applied in essential protein synthesis and not 

in microcystin (secondary metabolite) synthesis (Bickel and Lyck, 2001). 

Genotype diversity 

As shown, there is a considerable number of studies that, is spite of controversial, 

indicate that the toxicity content of certain cyanobacteria species could be directly 

influenced by environmental factors but recent approaches pose genotype diversity 

between strains as the main factor determining the variability in toxicity levels between 

blooms of the same species (Rohrlack et al., 2001; Kurmayer et al., 2002), with the 

development and success of strains better adapted to certain environmental conditions. 

The genotypes may differ in growth strategy, plasmid content, interaction with 

zooplankton, microcystin content (Hesse and Kohl, 2001) and microcystin synthetase 

genes cluster, originating different variants of the toxin with different toxicities (Mikalsen et 

al., 2003). 

Toxicity and bioaccumulation 

Microorganisms 

Some bacteria (Ostensvik et al., 1998) have shown to be sensitive to microcystins 

and these toxins also showed to inhibit the growth of algal species belonging to the 

genera Chlamydomonas, Haematococcus, Navicula and Cryptomonas. MC-LR is able to 

paralyze the motile green alga Chlamydomonas reinhadtii, enhancing its settlement and 

creating a lake zone free of competitors for microcystin producer cyanobacteria (Kearns 

and Hunter, 2001). 

Plants 

Macrophytes such as Phragmites australis (Pflugmacher et al., 2001), 

Ceratophyllum demersum and Elodea canadensis (Wiegand and Pflugmacher, 2001) 
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have shown to absorb MC-LR. In Phragmites australis the higher values for absorbed MC-

LR were found in the stem and rhizome, with an increase in soluble glutathione S-

tranferases (sGST) (Pflugmacher et al., 2001). In the bryophyte Vesicularia dubyana MC-

LR absorption was higher than in two macrophytes (Wiegand and Pflugmacher, 2001). 

Microcystins cause also a reduction in the number and mass of fronds in the water plant 

Spirodela oligorrhiza (Romanowska-Duda and Tarczynska, 2002) and MC-LR is known to 

affect the physiology (including growth) of the white mustard Sinapis alba seedlings 

(McElhiney et al., 2001; Hamvas et al., 2003). Crop plants that are consumed by humans 

irrigated with microcystin contaminated water may suffer growth and development effects, 

and may also accumulate the toxins posing the potential risk of toxin transference to 

humans through the food chain. The salad lettuce (Lactuca sativa) grown with spray 

irrigation of water containing microcystin-producing Microcystis aeruginosa retains 

microcystins (Codd et al., 1999). Under laboratory conditions, microcystins proved to be 

inhibitors of growth and development in potato shoots and mustard seedlings (McElhiney 

et al., 2001) as well as plant protein phosphatases inhibitors.   

Zooplankton 

The lack of alternative phytoplankton for food when cyanobacteria dominate may 

contribute to unfavourable nutritive conditions for zooplankton (Kurmayer and Jüttner, 

1999) but the ingestion of Microcystis colonies by zooplankton may also be affected by 

colonies size and/or mucilage as well as their toxin content (Laurén-Määttä et al., 1997; 

Henning et al., 2001). While calanoid copepods avoid cyanobacteria that possess 

microcystins, daphnid cladocerans are less selective (Kurmayer and Jüttner, 1999) being 

are able to ingest both toxic and non-toxic Microcystis (Rohrlack et al., 1999) under 

depletion of edible food (green algae and diatoms), accumulating the microcystins 

(Mohamed, 2001) and potentially transferring them to higher trophic levels through the 

food chain. But also toxic effects have been observed in Daphnia spp. after cell-bound 

microcystins ingestion (Rohrlack et al., 2001) such as inhibition of protein phosphatases 

PP1 and PP2 (Henning et al., 2001). The brine shrimp Artemia salina, a crustacean, as 

proved to be sensitive to MC-LR (Delaney and Wilkins, 1995), leading to an increasing 

SGT (detoxification system glutathione S-transferase) activity and conjugation of the toxin 

to glutathione via this GST as the first step to microcystin detoxification (Beattie et al., 

2003). 
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Molluscs 

Mussels used for human consumption can accumulate microcystins posing 

intoxication hazards to human consumers in such a way that microcystins should be 

always monitored during and after occurrence of estuarine cyanobacterial blooms. The 

mussel Mytilus edulis, fed on Microcystis aeruginosa (with high microcystin content) for 3 

days, accumulated microcystins in its tissues (Williams et al., 1997). In another mussel, 

Mytilus galloprovincialis, microcystins were quickly accumulated but its depuration was not 

a very rapid process with microcystin persistence even after the bloom disappearance, 

probably due to recontamination by faeces containing the toxins (Amorim and 

Vasconcelos, 1999). Microcystins seem also to accumulate in some gastropods through 

grazing activity (Kotak et al., 1996). 

Crayfish 

The crayfish Procambarus clarkii has shown to accumulate microcystins in the 

intestine and hepatopancreas (Vasconcelos et al., 2001). 

Fish 

There has been documented that low concentrations of microcystins cause 

hepatopancreas and kidney damage in european carp (Cyprinus carpio) (Fischer and 

Dietrich, 2000). The rainbow trout (Oncorhynchus mykiss) suffers hepatotoxicosis by 

accumulating MC-LR that leads primarily to changes in cellular morphology, protein 

phosphatases inhibition and liver necrosis (Fischer et al., 2000). Embryos and larvae of 

the loach (Misguruns mizolepis), a small freshwater fish, have shown to be affected by 

toxicity of MC-LR which targets their liver and heart (Liu et al., 2002). The young life 

stages of fish seem to be more sensitive than adults or juveniles to microcystin 

hepatotoxic effects (Oberemm, 2001a). Microcystins have shown to be also accumulated 

in fish liver, viscera and muscle tissue, posing risks to humans that consume 

contaminated fish (Magalhães et al., 2001). The freshwater fish Oreochromis niloticus 

accumulates microcystins in the guts, liver and kidneys (Mohamed et al., 2003). A study 

using embryos of zebrafish (Danio rerio) showed that MC-LR is absorbed by embryos 

(Wiegand and Pflugmacher, 2001). Probably in order to allow adaptability, this fish 

species shows changes in its behaviour (such as reduced motility, increased rates of 

activity at night, reduced activity during the spawning period and reduced reaction on 

feeding (Baganz et al., 2001)) when exposed to long-term sublethal doses of MC-LR, but 

these changes can have reproductive effects with substantial ecological consequences 
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like reducing population growth and changing species composition of the water body 

(Baganz et al., 2001). 

Terrestrial insects 

The African locust, Locusta migratoria migratorioides has shown to be sensitive to 

MC-LR (Hiripiri et al., 1998) with a LD50 value of 0.2 µg per animal or 130 mg.kg-1.  

Birds 

Microcystins are known to cause liver necrosis in birds (ducks) (Matsunaga et al., 

1999). 

Mammals 

 Laboratory studies 

Microcystins are selective for hepatic cells, irreversibly inhibiting serine/threonine 

protein phosphatases PP1 and PP2A (Dawson, 1998) causing disintegration of 

hepatocytes structure, apoptosis, liver necrosis and internal haemorrhage in liver that may 

lead to death by hemorrhagic shock (Dow and Swoboda, 2000). MC-LR seems to bind 

also to ATP synthetase potentially leading to cell apoptosis (Mikhailov et al., 2003). 

Microcystins orally ingested are transported across the ileum into the bloodstream via a 

bile-acid transporter that exists in hepatocytes and cells lining the small intestine. 

Microcystins bound specifically to hepatocytes (reason why they concentrate in the liver) 

and are actively absorbed to hepatic cells (Dawson, 1998; Dow and Swoboda, 2000). In 

the hepatocytes, they form adducts with PP1 and PP2A from cytoplasm and nuclei, 

inhibiting them and leading to disruption of liver cell structures, intrahepatic haemorrhage 

and death if a high dose is administrated (Fitzgerald, 2001). Microcystins seem not to be 

hydrolyzed by stomach peptidases and MC-LR appears to be absorbed by the intestine 

(Dow and Swoboda, 2000). LD50 value (i.p., in mice) for MC-LR is usually 50 µg.kg-1 of 

body weight (Dow and Swoboda, 2000) but it can range from 25 to 125 µg.kg-1 (Dawson, 

1998; WHO, 1998b) and inhalation toxicity is also high (Dawson, 1998). Yet, MC-LR is 

much less toxic by oral ingestion with LD50 of 5000 µg.kg-1 in mice (WHO, 1998b). In 

swine, the lethal (i.p.) dose of MC-LR is 72 µg.kg-1 and the acute toxicosis results from 

severe intrahepatic haemorrhage with the blood flow being obstructed through the liver 

causing hypovolaemic shock, severe hypoglycaemia and/or terminal hyperkalemia 

(Beasley et al., 2000). MC-YR has a LD50 (i.p., in mice) value of 70 µg.kg-1 and MC-RR 

300 to 600 µg.kg-1 (WHO, 1998a). Some of the symptoms characteristic for this poisoning 
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are weakness, anorexia, cold extremities, pallor, apathy, respiratory problems, 

gastroenteritis, vomiting and diarrhoea (Codd et al., 1995; Codd, 2000; Dow and 

Swoboda, 2000) with necrosis of the liver that may lead to death by hemorrhagic shock or 

liver failure after some hours or days, depending on species (Gorham and Carmichael, 

1988). By inhibiting PP1 and PP2A, two important enzymes involved in tumour 

suppression, microcystins chronically administered have shown to promote liver cancer in 

mammals (Ito et al., 1997) by inducing oxidative DNA damage (Zegura et al., 2003). Mice 

exposed to a sub-lethal dose of MC-LR by intraperitoneal injections developed multiple 

neoplastic nodules in liver (Ito et al., 1997) in spite oral administration showed no chronic 

injuries. Yet, chronic effects (increased liver weight and hepatohistological damage) have 

been detected in rats after a treatment with low concentrations of microcystins in drinking 

water for 28 days (Heinze, 1999). A recent study indicates that microcystins chronically 

administrated may also induce kidney damage on rats (Milutinovi et al., 2002).  

Humans 

Human exposure to microcystins may occur through a direct route such as 

drinking water (Ueno et al., 1996; WHO, 1998b; Zhou et al., 2002), recreational water 

(WHO, 1998a) and haemodialysis (Pouria et al., 1998), or through an indirect route such 

as food (Williams et al., 1997; Amorim and Vasconcelos, 1999; Codd et al., 1999; 

Schaeffer et al., 1999; Magalhães et al., 2001). 

The knowledge about microcystin effects on humans is based on epidemiologic 

data, reports of intoxications and toxicological studies made on laboratory animals. The 

symptoms observed for laboratory mammals are thought to be similar to those felt by 

humans, in spite of the lack of studies in this area. Thus, epidemiological studies are the 

basis for human poisoning assessment and from the many worldwide cases reported until 

now, it is proven that microcystins cause acute (WHO, 1998b) and chronic effects on 

humans (Ueno et al., 1996; Zhou et al., 2002) and even death (Pouria et al., 1998). Acute 

intoxication by microcystins coincides frequently with the lysis of the bloom forming cells 

(by natural senescence or water treatment processes) and liberation of toxins to the 

water. The inhalation of dry cyanobacteria cells or contaminated water is more dangerous 

than oral ingestion of contaminated water indicating the hazardous potential of practicing 

aquatic sports in recreational waters that suffers a microcystin producing bloom (WHO, 

1998a). As exposed before, MC-LR is a potent cancer promoter in laboratory animals. 

Thus, chronic exposure to low concentrations of microcystins in drinking water can be a 

serious problem to Public Health, contributing for promotion of cancer in humans. 
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Epidemiological studies have already related the presence of microcystins in drinking 

water to an increase in the incidence of colorectal cancer (Zhou et al., 2002) and primary 

liver cancer (Ueno et al., 1996). There are more sensitive groups to microcystin poisoning 

that require special attention such as B-hepatitis patients but also children and old people 

(Fitzgerald, 2001).  

Available treatments 

Due to the rapid, irreversible and severe damage that microcystins cause in liver, 

therapy is difficult to be efficient and prophylaxis is also complicated. In 1988, Gorham 

and Carmichael referred immediate gastric lavage as the possible treatment if effective 

antidotes were unavailable. However, in the last fifteen years, several experimental 

studies were made about attenuation of animal and human intoxication by microcystins, 

showing interesting results (Dawson, 1998; Fitzgerald, 2001). Some are based on 

monoclonal antibodies against MC-LR (Nagata et al., 1995) and others on hepatic uptake 

blockers as the immunossupressant Cyclosporine A and the antibiotic rifampin (Dawson, 

1998). Recent studies such as the one from Gehringer et al. (2003) show that the 

membrane active antioxidant vitamin E, taken as a dietary supplement, may protect 

against toxicity of MC-LR by chronic exposure. 

Guidelines for MC-LR 

The danger of tumour promotion by chronic exposure of microcystins in drinking 

water was the main reason for the definition of guidelines for these toxins by WHO (World 

Health Organization). The life time consumption safe level proposed was of 1 µg.L-1 for 

MC-LR (WHO, 1998b; Fitzgerald, 2001) and was based on animal studies of MC-LR orally 

administrated to pigs and mice (Fitzgerald, 2001). Many countries (such as Brazil, New 

Zealand and U.K.) have adopted this value as guideline for drinking water but Canada 

proposed the value 1.5 µg.L-1 and Australia proposes values ranging from 1.3 to 10 µg.L-1 

(USEPA, 2001). In Canada, there was also proposed a value of 10 µg.L-1 for short-termed 

exposure (Fitzgerald, 2001). For recreational waters with cyanobacterial blooms WHO has 

established 3 health hazard alert levels depending on the risk of adverse health effects 

(WHO, 1998a) and these are based on cyanobacterial densities. For cyanobacterial food 

supplements there is a proposed guideline for MC-LR of 10 µg.g-1 (Schaeffer et al., 1999) 

and, in Oregon, U.S.A., there has been established a maximum value of 1 µg.g-1 for food 

(USEPA, 2001).  
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Monitoring methods 

Physico-chemical 

Methods based on HPLC (High Pressure Liquid Chromatography) (Poon et al., 

2001; Spoof et al., 2001) are the most widespread quantitative and sensitive for detection 

of microcystins and other cyanotoxins, allowing the distinction between microcystin 

variants but also its isolation. Yet, they are expensive, time consuming, require a 

considerable sample volume for low concentrations, there aren’t many certified standards 

available for MC variants and usually purification or concentration of the sample is 

required (Tsutsumi et al., 2000; Nicholson and Burch, 2001). The recently developed 

method MALDI-TOF-MS (Matrix Assisted Laser Desorption/Ionization – Time of Flight 

Mass Spectrometry) has been used for the analysis of many peptides, including 

cyanobacterial secondary metabolites (e.g. antibiotics or toxins like microcystins (Fastner 

et al., 2001; Welker et al., 2002)). It requires only microgram quantities (not milligram 

quantities like in HPLC or bioassays) of cell material and the detection is rapidly made, 

without the need for time consuming extraction or purification processes, allowing the 

identification of known microcystin variants and other unknown metabolites which can be 

further characterized (Fastner et al., 2001; Welker et al., 2002). 

Immunological and Biochemical 

ELISA (Enzyme Linked Immunosorbent Assays) are based on mono (Zeck et al., 

2001) and polyclonal (Metcalf et al., 2000; Yu et al., 2002) antibodies actions against 

microcystin structure. They have low equipment requirements and allow a rapid, easy, 

effective and sensitive detection of microcystins (particularly MC-LR) in water samples 

(Nicholson and Burch, 2001), microorganisms and animal tissues, but toxicity is not 

assessed and they can be used only as a semi-quantitative screening tool. The problem 

of cross-reactivity with non toxic compounds (leading to false positives) has been 

minimized with competitive ELISA methods which may have detection limits of 0.07 µg.L-1 

(Zeck et al., 2001) or even less, making ELISA suitable for assessing microcystin 

concentrations below the WHO guideline of 1 µg.L-1 in drinking water. PPIA (Protein 

Phosphatase Inhibition Assays) are based on immunodetection and the toxic effects of 

microcystins at a molecular level, i.e. on the ability of microcystins to specifically inhibit the 

PP1 and PP2A, in spite of toxin transport into the cells is neglected and there is no direct 

relationship with mammalian toxicity. Many PPIA showed to overestimate the toxin 

concentrations and, for that, they are presently just used as a screening method. The 

colorimetric PPIA assay is a rapid, easy and sensitive screening method that doesn’t 
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require much equipment and that is less expensive than ELISA or radiolabelled PPIA (that 

uses both PP1 and PP2A) in spite of in this assay only PP1 is used. Nevertheless, it is an 

assay which correlates positively with HPLC (Wirsing et al., 1999; Metcalf et al., 2001) 

and there are recent options for detecting MC-LR in drinking water with detection limits 

below the WHO guideline of 1 µg.L-1 (Bouaícha et al., 2002). Competitive binding assays 

based on blockage of the active site of PP2A have also been developed for microcystins 

(Serres et al., 2000), and there are immunoblotting procedures based on anti-microcystin-

LR monoclonal antibodies to monitor the formation of microcystin-PP1 adducts in vitro and 

in vivo (Liu et al., 2000).  

Biological 

In vivo bioassays 

Bioassays based on Aeromonas hydrophila, Bacillus cereus and B. subtilis have 

shown to be sensitive and suitable for assessing toxicity of Microcystis aeruginosa 

extracts (Ostensvik et al., 1998). There are many plants such as Spirodela oligorrhiza 

(Romanowska-Duda and Tarczynska, 2002), Solanum tuberosum (McElhiney et al., 2001) 

and Sinapis alba (McElhiney et al., 2001; Hamvas et al., 2003) that have shown to be 

sensitive to microcystins and may be used to assess toxicity of these toxins. Bioassays 

using Daphnia spp. (Tarczynska et al., 2001; Kim et al., 2003) and Artemia salina 

(Delaney and Wilkins, 1995; Sabour et al., 2002) have become frequently used to assess 

microcystin toxicity. Test kit bioassays using larvae of the freshwater crustacean 

Thamnocephalus platyurus (Torokne et al., 2000) or using the African locust (Locusta 

migratoria migratorioides) (Hiripi et al., 1998) showed reaction to microcystins in spite the 

toxic responses were not specific. Fish-embryos tests using the species Danio rerio 

(Zebrafish) have shown to be very sensitive against cyanobacterial metabolites, in relation 

to adults or juveniles, probably due to their thin epithelia, large ratio of body surface to 

volume of embryos and vulnerability of developmental processes (Oberemm, 2001b). 

Mouse bioassays are the most used bioassays for determination of LD50 values, 

symptoms and effects for microcystins in mammals, and allow distinguishing between 

hepatotoxins and neurotoxins. Adult mice are usually injected intraperitoneally with the 

sample and according to sample toxicity different intoxication symptoms are observed 

usually within 24h. There are many studies using this kind of bioassay (Ito et al., 1997; 

Sedmak and Kosi, 1997; Vasconcelos and Pereira, 2000; Oudra et al., 2002; Sabour et 

al., 2002). Rat (Sekijima et al., 1999) and swine (Beasley et al., 2000) bioassays have 

also been used to assess microcystin toxicity. Nevertheless, these bioassays don’t detect 
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low microcystin levels nor distinguish between microcystin variants (Nicholson and Burch, 

2001). Besides, in vivo mammal bioassays have the inherent ethical questions. 

In vitro bioassays 

Studies in vitro (Heinze et al., 2001; Zegura et al., 2003) have been adopted as a 

more ethical and sensitive alternative for toxicity bioassays. The use of freshly prepared 

rat hepatocyte bioassays as an in vitro test system (with semi quantitative microscopic 

assessment of cell damage) seems to be promising in assessing toxicity of the 

cyanobacterial bloom samples, showing a strong correlation with the analytical data from 

HPLC (Heinze et al., 2001) in spite of the operational requirements such as the 

preparation of cell suspensions (Nicholson and Burch, 2001). Along with the analytical 

methods like HPLC, bioassays are still an important tool for assessing the toxicity level of 

the known cyanotoxins or the presence of additional unknown toxic substances. In 

resume, screening methods such as ELISA, PPIA or bioassays should always be 

combined with more sophisticated methods like HPLC or MALDI-TOF (Nicholson and 

Burch, 2001). 

Molecular 

Methods based on PCR (Polymerase Chain Reaction) are a recent approach for 

detection of pathogen microorganisms in natural environments and they are being 

proposed also as a mean to rapidly determine if a cyanobacterial bloom or a determined 

species is potentially toxic or not as well as toxic cyanobacteria quantification by designing 

primers based on mcy genes (Rudi et al., 1998; Tillett et al., 2001; Pan et al., 2002).  

Microcystin removal and elimination processes 

The removal of cyanobacterial cells by flocculation or filtration methods has proved 

to be an effective method to reduce toxin levels in water but only if there is no cell lysis 

and liberation of microcystins to water. If toxins are released, other methods are required 

such as activated carbon adsorption and ozonation to eliminate effectively dissolved 

microcystins from drinking water. Hence, methods that lead to cells lysis are not advisable 

and should be avoided in drinking water treatment plants.  

Cell-bound microcystins removal 

Flocculation by ferric chloride seems not to cause cyanobacterial lysis nor an increase 

in dissolved microcystin concentrations for Microcystis aeruginosa and Anabaena circinalis 
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(Chow et al., 1998). Slow sand filtration has also shown to remove efficiently cell-bound 

microcystins from drinking water (Grutzmacher et al., 2002). 

Dissolved microcystins elimination 

Microcystins show stability in deionised water, in sterilised water and under 

irradiation by sunlight (Dawson, 1998) or under extreme temperatures (>300ºC) and pH 

(WHO, 1998b). Thus, in natural environments, microcystins must be instable due to 

biodegradation and indirect photodegradation. Some of the bacteria known to degrade 

microcystins are Gram-negative and oxidase positive with low catalase activity (Welker et 

al., 2001). Sphingomonas sp. is a bacterium that degrades MC-LR through 

microcystinase, a constitutively expressed metallo-protein that is produced even in 

absence of the toxin (suggesting its hydrolytic activity over other peptides) (Bourne et al., 

2001). Other Sphingomonas-like bacteria can also degrade MC-YR and -RR besides MC-

LR (Park et al., 2001). In natural environments, photodegradation of microcystins occurs 

indirectly via pigments or humic substances that absorb the sunlight (Welker et al., 2001). 

Microcystins may be also photodetoxificated by UV irradiation (Kaya and Sano, 1998) and 

its rapid photocatalytic degradation can be achieved through a reactor with immobilized 

titanium dioxide catalyst (Shephard et al., 2002). In the environment, microcystins 

detoxification seems to be enhanced by adsorption on the sediments (Tsuji et al., 2001) 

but the elimination of microcystins in slow sand filtration filters is probably due to 

biodegradation rather than adsorption (Grutzmacher et al., 2002). Presently, most drinking 

water treatment plants have methods like ozonation, activated carbon filtration and 

chlorination that allow the removal of the majority of microcystins (but not all) in superficial 

waters (Tsuji et al., 1997). Yet, ozonation effectiveness in microcystins destruction has 

shown to be reduced by high levels of total organic carbon as well as high cyanobacterial 

densities (cells lyse with ozonation, increasing the dissolved toxins level) (Hoeger et al., 

2002). Particularly wood-based activated carbons adsorb efficiently microcystins from 

aqueous solutions (Pendleton et al., 2001) but clay material also seems to remove 

effectively microcystin-LR from water by adsorption of the toxin (Morris et al., 2000). 

Chlorination, using adequate sodium hypochlorite doses after cells removal, seems to be 

very effective for the elimination of microcystin-LR in raw water with no formation of 

noxious products from the process (Tsuji et al., 1997). Microcystins may be efficiently 

decomposed and removed from waters with high total organic carbon by ferrate oxidation-

coagulation (Yuan et al., 2002) and Fenton oxidation of MC-LR by Fenton reagent has 
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shown also to be a promising method for rapid degradation of this kind of hepatotoxins 

(Gajdek et al., 2001). 

Occurrence of microcystin producing blooms 

Since the last century many hepatotoxic blooms have been documented and are 

reviewed by several authors such as Gorham and Carmichael (1988), Codd et al., (1995), 

WHO (1998a; 1998b) and Codd (2000). The cases reported next have are restricted to 

the last twenty years. 

Europe 

In the last decade, several Portuguese freshwater bodies (including lakes, reservoirs 

and rivers), used for recreational or drinking purposes, have been found to have 

hepatotoxic blooms with production of diverse microcystins (MC-LR, MC-RR, MC-YR and 

others) mainly associated with the dominance of Microcystis aeruginosa (Vasconcelos et 

al., 1996; Vasconcelos, 2001; Vasconcelos and Pereira, 2001). In France, microcystins 

have been detected in Lake Grand-Lieu (Vézie et al., 1998) and Saint-Caprais reservoir 

(Maatouk et al., 2002) and were produced by Microcystis aeruginosa and Aphanizomenon 

flos-aquae, respectively. In 1995, near Liège, Belgium, three adjacent ponds suffered a 

Microcystis aeruginosa bloom with microcystin production related to bird deaths (Wirsing 

et al., 1998). Dense mats of benthic cyanobacteria (Oscillatoria and Phormidium) have 

been reported to occur in oligotrophic, cold and turbid alpine waters of south-eastern 

Switzerland, showing hepatotoxic (by microcystins) and neurotoxic effects in mice (Mez et 

al., 1997). Germany has studies from recent years that indicate that many German water 

bodies used for recreational or drinking water purposes were in their majority dominated 

by cyanobacteria from genera Planktothrix, Microcystis, Anabaena and Aphanizomenon, 

with microcystin and anatoxin-a production (Hummert et al., 2001; Wiedner et al., 2001; 

Frank, 2002) and having implications on the growth of fish (Ernst et al., 2001). In the last 

decade, many Czech recreational and drinking water reservoirs and fish ponds were 

found to be dominated by Microcystis spp., Planktothrix agardhii e Aphanizomenon flos-

aquae that produced microcystins (Marsálek et al., 2001) and high microcystin levels were 

detected in raw waters and some treated waters from drinking water treatment plants, 

endangering the consumers health (Bláha and Marsálek, 2001). During 1995 and 1996, 

three eutrophic Latvian lakes (Lakes Mazais, Lielais Balterzers and Sekitis) had summer 

blooms of potentially toxic Microcystis aeruginosa (with production of microcystins), 

Aphanizomenon flos-aquae and Anabaena flos-aquae, leading to a decrease in drinking 
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water quality and health problems resulting from the recreational use of lakes water 

(Eynard et al., 2000). North-Eastern Slovene freshwaters have suffered many blooms with 

M. aeruginosa dominance and microcystin production (Sedmak and Kosi, 1997). In the 

last twenty years the Loch Leven, in Scotland, had several hepatotoxic blooms of 

Microcystis aeruginosa and Anabaena flos-aquae associated with more than 1000 dead 

fish (with liver necrosis) that accumulated in the shores after Anabaena flos-aquae bloom 

senescence (Codd et al., 1995). In the United Kingdom, Microcystis blooms in lakes and 

reservoirs have been associated with death of sheep and dogs as well as human illness 

due to microcystin production (WHO, 1998a; Dow and Swoboda, 2000). In Sweden, 

between 1991 and 1997, microcystins were detected in some lakes with dominance of 

Microcystis aeruginosa, M. viridis and Planktothrix prolifica (Willén et al., 2000), in a water 

treatment plant (Codd et al., 1995) and in a river with a Planktothrix agardhii bloom that 

caused intoxication of pets and 121 persons (WHO, 1998a). A study based on dozens of 

south Norwich water bodies revealed the occurrence of many microcystin producing 

blooms of Anabaena spp., Microcystis spp. and Oscillatoria (Planktothrix) spp. (Utkilen et 

al., 2001). In the last decade, an intensive study on hundreds of freshwater bodies from 

Denmark reached the conclusions that the majority of blooms had microcystin production 

by Microcystis spp., Anabaena spp., Planktothrix agardhii e Aphanizomenon flos-aquae 

and the deaths of thousands of fish and a cow were related to hepatotoxic blooms of 

Anabaena flos-aquae and Planktothrix agardhii, respectively (Henriksen, 2001).  

North America 

Microcystins are the most frequent cyanotoxins in Canada and drinking water is the 

main exposure route (Gupta et al., 2001). Lakes used as drinking water sources suffer 

Microcystis aeruginosa blooms and MC-LR is found in concentrations higher than WHO 

guideline in both raw and treated tap waters (Gupta et al., 2001). In United States of 

America there have been reported hepatotoxic blooms of Microcystis aeruginosa 

(Puschner et al., 1998; Jacoby et al., 2000) related to animal deaths (24 heifers) 

(Puschner et al., 1998), and food supplements made on natural Aphanizomenon flos-

aquae blooms were found to have high levels of microcystin (Schaeffer et al., 1999). 

South America 

In 1996, Caruaru, Pernambuco state, Brazil, the deaths of 60 patients from a 

haemodialysis unit were related to microcystin intoxication due to the use of water from a 

reservoir suffering a bloom of Anabaena spp. and Microcystis spp. and the insufficient 
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treatment to eliminate the microcystins from that water (Pouria et al., 1998). The state of 

Paraná, Brazil, has frequent occurrence of microcystin producing Microcystis spp. blooms 

in freshwater lakes and reservoirs used for recreational and animal farming purposes but 

also in some used as drinking water supplies (Hirooka et al., 1999). The Patos Lagoon 

estuary, Rio Grande do Sul, southern Brazil, suffers regular blooms of Microcystis and 

microcystin is synthesised during their occurrence (Matthiensen et al., 2000). In 

Conception, Chile, Microcystis spp. blooms with the presence of microcystins have been 

reported in different lakes (Campos et al., 1999; Neumann et al., 2000). 

Oceania 

In February 2000, at Swan-Canning estuary, in Western Australia, there was a 

dense and severe Microcystis aeruginosa bloom (Atkins et al., 2001). Another hepatotoxin 

(cylindrospermopsin) occurrence seems to be very frequent in this country (Fitzgerald, 

2001). 

Asia 

Various brackish and freshwater bodies in South Korea including dams and lagoons 

used as drinking water sources showed dominant species belonging to Microcystis 

genera, but also Anabaena e Planktothrix/Oscillatoria, with production of microcystins and 

anatoxin-a (Oh et al., 2001; Park, 2001). In China, lakes suffering from Anabaena and 

Oscillatoria blooms revealed the presence of microcystins (Xu et al., 2000) and there has 

been reported a significant correlation between microcystin producing bloom occurrence 

in the superficial drinking water sources (ponds and rivers) and primary liver cancer 

incidence (Ueno et al., 1996). Over the last twenty years, in Japan, microcystins were 

detected in various naturally occurring Microcystis blooms (Tsuji et al., 1996; Park et al., 

1998; Matsunaga et al., 1999) and in one case they have caused the death of dozens of 

ducks (Matsunaga et al., 1999). Microcystins have also been found in several strains of 

Microcystis aeruginosa isolated from eutrophic aquaculture ponds and water reservoirs in 

Taiwan (Lee et al., 1998). In the Philippines, during the last years, Laguna de Bay 

suffered periodic blooms of Microcystis aeruginosa and many variants of microcystins 

were detected (Cuvin-Aralar et al., 2002). 

Africa 

In July of 1995, in Egypt, River Nile (used as drinking water source) at Sohag 

province suffered an Oscillatoria tenuis bloom with production of microcystins (Brittain et 
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al., 2000). In Marocco, many ponds, lakes and reservoirs proved to have several 

cyanobacterial microcystin producing strains belonging to the genera Microcystis, 

Synechocystis, Pseudanabaena and Oscillatoria (Oudra et al., 2002; Sabour et al., 2002).  

In South Africa, there has been reported a contamination of drinking water by the 

presence of Microcystis aeruginosa (with confirmed MC-LR synthesis) and its relation to a 

livestock poisoning outbreak (Van Halderen et al., 1995). 

 
Concluding remarks 

Cyanobacterial blooms with microcystin synthesis occur worldwide in lakes, rivers 

and reservoirs used as drinking water sources or for recreation but the most concerning 

cases are those reporting the detection of these toxins in treated drinking water submitting 

consumers to a high risk of developing cancer. Thus, blooms that at first sight seemed to 

be a common ecological problem from eutrophication of water bodies have proved, 

indeed, to be a serious Human Health problem compromising the safety of the most 

important resource in which the whole Humanity depends on – drinking water. In spite of 

all the new approaches for microcystin elimination in drinking water plants and sensitive 

monitoring methods, water management strategies to reduce these blooms occurrence 

are urgent. It is necessary to raise a consciousness that the best way to eliminate this kind 

of problems is to prevent them from happening. Investigation should be also promoted in 

order to understand the characteristics of a local microcystin producing bloom occurrence 

as well as the factors influencing the toxin production in those specific local conditions. As 

a result, efficient local water management strategies could be more effective. 
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Abstract – The increasing eutrophication of superficial freshwaters due to the high levels 

of nutrient inputs (from agriculture, cities and industry), along with summer weather 

conditions, frequently leads to the occurrence of algal blooms. Cyanobacterial blooms are 

very common to occur in freshwaters and may become dangerous because some 

cyanobacteria produce toxins that affect many organisms, causing disease or even death. 

For humans, cyanobacterial toxic effects usually occur by direct skin contact with 

contaminated water, by contaminated food consumption or, most frequently, by 

contaminated water ingestion. In the present work, phytoplankton dynamics of the 

eutrophied Vela Lake (Figueira da Foz, Portugal), used for recreational purposes and as a 

water source for agriculture, was monitored in relation to environmental parameters. The 

collection of water samples for environmental parameters and phytoplankton 

determinations was made every fortnight during an annual cycle (2000-2001). Vela Lake 

is a shallow freshwater body surrounded by Pinus spp., aquatic macrophytes, sandy soil 

and agricultural areas. Phytoplankton community showed to be dominated by diatoms and 

green algae during the winter months (when nutrients were more available) and 

cyanobacterial blooms were recorded during the warmer months (when nutrients became 

unavailable) with dominance of the potentially toxic cyanobacteria Aphanizomenon flos-

aquae and Microcystis aeruginosa. The most important bloom occurred in the beginning 

of May 2001, with the development of a floating green scum characterized by the 

dominance of an A. flos-aquae strain and the scarce presence of M. aeruginosa. The 

development of this bloom was preceded by the lowest nitrogen levels in water but 

phosphate availability. At the time of bloom senescence, there was a sudden decrease in 

the dissolved oxygen levels (reaching depletion) and an increase in the ammonium levels 

(up to 1.8 mg.L-1). At the same time, a massive death of ichthyofauna (approximately 8 

tons) was recorded in the lake and associated with these severe environmental 

conditions, although cyanotoxins liberation during the bloom senescence was not 

assessed. There was also the development of significant M. aeruginosa blooms related to 

high ammonium levels but also to phosphate depletion. 

Keywords: eutrophication, phytoplankton dynamics, cyanobacterial blooms, 

Aphanizomenon flos-aquae, Microcystis aeruginosa, fish kills. 
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Introduction 

Eutrophication of superficial freshwaters is increasing worldwide mainly due to the 

pressure of anthropogenic activities on aquatic systems and it is generally related to 

nutrient inputs from agriculture, livestock production, cities and industry (Hall et al., 1999; 

Codd, 2000; de Jonge et al., 2000; Cooperband and Good, 2002; Withers and Lord, 

2002). These high nutrient concentrations, along with water stability and an increase in 

water temperature and in pH, frequently lead to the occurrence of algal blooms, 

particularly cyanobacterial blooms (Hadas et al., 1999; Jacoby et al., 2000; Oliver and 

Ganf, 2000). Cyanobacteria can dominate due to several characteristics such as their low 

dependence on nitrogen (by fixing N2 (Flores and Herrero, 1994)), competition for light and 

nutrients through buoyancy regulation (Brookes and Ganf, 2001; Porat et al., 2001) and 

reduced grazing by zooplankton (Kurmayer and Jüttner, 1999; Rohrlack et al., 1999). The 

primary consequence of blooms occurrence is the water quality reduction with 

economical, ecological and Public Health implications (Codd, 2000). From an ecological 

point of view, specific biodiversity decreases at all trophic levels and there is a 

deterioration of the habitat, with increased turbidity, a decrease in oxygen concentration 

and production of substances that give a bad taste and odour to the water (Park, 2001). 

Besides these factors, blooms of cyanobacteria may become dangerous because many 

cyanobacterial strains produce toxins that affect many organisms, causing disease or 

even death (Codd et al., 1995; Codd, 2000; Dow and Swoboda, 2000; Briand et al., 2003). 

In humans, cyanobacterial toxic effects usually occur by direct skin contact with 

contaminated water (WHO, 1998a), by contaminated food consumption or by 

contaminated water ingestion (Gorham and Carmichael, 1988; Fitzgerald, 2001; Zhou et 

al., 2002), but has also happened through haemodialysis with the death of 60 patients 

(Pouria et al., 1998). According to the effects on animals, cyanotoxins can be classified as 

dermatotoxins (lipopolyssacarides, lyngbyatoxin-a and aplysiatoxins), neurotoxins 

(anatoxin-a, homoanatoxin-a, anatoxin-a(s) and saxitoxins) and hepatotoxins (microcystin, 

nodularin and cylindrospermopsin) (Kaebernick and Neilan, 2001). Cyanobacterial blooms 

have been recorded in marine, brackish and freshwaters worldwide and a great 

percentage (50 to 90 %) of them has been considered toxic (Codd et al., 1995; WHO, 

1998b; Codd, 2000; Dow and Swoboda, 2000). Presently, there are more than 40 known 

toxic cyanobacterial species (Dow and Swoboda, 2000; WHO, 1998a) belonging to the 

genera Microcystis, Planktothrix/Oscillatoria, Anabaena, Oscillatoria, Aphanizomenon, 

Lyngbya, Cylindrospermopsis, Synechococcus, Gloeotrichia, Nostoc, Schizothrix, 
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Synechocystis and Nodularia. Yet, for each toxic species there may be toxic and non-toxic 

strains and in toxic ones toxicity may vary among them (Hesse and Kohl, 2001). Toxic 

cyanobacterial blooms have been reported in many Portuguese water bodies 

(Vasconcelos, 2001). Vela Lake (Figueira da Foz, Portugal) is a shallow eutrophied 

freshwater body used for recreational purposes and as a water source for agriculture. It is 

surrounded by Pinus spp., aquatic macrophytes, sandy soil and agricultural areas. The 

water volume is predominantly influenced by the variation of groundwater levels and 

rainfall. There are not many published studies about this Lake, in spite of being subject of 

investigation at different levels. Yet, toxic cyanobacterial blooms occurrence in Vela Lake 

has already been reported by Vasconcelos et al. (1993). 

In the present work, the phytoplankton dynamics (with special regard towards 

cyanobacteria) in Vela Lake was monitored during an annual cycle (2000-2001) in relation 

to chlorophyll a and environmental parameters such as pH, water temperature, 

conductivity, dissolved oxygen, total suspended solids and orthophosphates, ammonium, 

nitrate and nitrite concentrations.  

 

Material and Methods 

Study area and sampling 

Vela Lake (44º58’N, 5º18’ W) is a shallow eutrophied freshwater body located in 

Quiaios (Figueira da Foz, Portugal). It has an area of approximately 0.7 km2 and it is 6 km 

away from the Atlantic Ocean (Fig.1). This water body is 

used for recreational and agricultural purposes and 

organic matter and nutrient inputs come from human 

activities inside the lake (such as fishing and recreation) 

and in surrounding areas (such as agriculture). In the East 

zone of the lake, agriculture is practiced using high 

amounts of fertilizers and pesticides that are lixiviated into 

the lake water.  
 
 
 
 
 
 
Figure 1 – Vela Lake location in Portugal (adapted from 

http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/m
odis_port_20020423.jpg) 

 

  N 

http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/modis_port_20020423.jpg
http://earthobservatory.nasa.gov/Newsroom/NewImages/Images/modis_port_20020423.jpg
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The collection of water samples (three replicates of one litre) for environmental 

parameters and phytoplankton determinations was made every fortnight. For qualitative 

information about seasonal variation of phytoplankton species it was used a 25 µm mesh 

size trawl. 

Environmental parameters and chlorophyll a 

Water temperature, dissolved oxygen, pH and conductivity were analysed in situ with 

a multi-parameter probe. In laboratory, parameters such as total suspended solids, 

orthophosphates, ammonium, nitrate and nitrite concentrations were determined according 

to APHA (1992). Chlorophyll a determination was also performed according to APHA 

(1992). Sampling dates distribution was assessed through a Principal Components 

Analysis (PCA). 

 

Phytoplankton analysis 

Phytoplankton material collected with the nylon net 25 µm mesh size was fixed in 

formol (5% v/v). Identification of phytoplankton species was made by observation with a 

light microscope using different references for Cyanoprokaryota (Geitler, 1932; Komárek 

and Anagnostidis, 1989; Komárek and Anagnostidis, 1999), Bacillariophyceae (Germain, 

1981; Krammer and Lange-Bertalot, 1986-1991; Lange-Bertalot, 2001) and 

Chlorococcales (Komárek and Fott, 1983). Quantification samples were fixed in lugol (1% 

v/v) and the enumeration was performed according to Lund et al. (1958) method with at 

least 400 cells counted. Phytoplanktonic species distribution was assessed through a 

Principal Components Analysis (PCA). 

 

Results 

Physical and chemical parameters 

Concerning nutrient concentrations during the study period (from November 2000 to 

November 2001), there are some interesting observed data (Table 1 and Fig. 2). 

Orthophosphates, nitrite and nitrate concentrations attained the highest values in late 

December and beginning of January. Nitrogen sources had higher levels from November 

until April and the rest of the year levels were low. Nitrate concentration varied from 0.30 

to 6.60 mgNO3
-.L-1, corresponding to the sampling dates of 2nd May 2001 and 4th January 
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2001, respectively. The highest nitrite concentration was 0.205 mgNO2
-.L-1 in 20th 

December 2000 and generally disappeared from April to November. Ammonium levels 

were generally low during all year, but showed high levels between November and 

December (ranging from 1.53 to 2.19 mgNH4
-.L-1) and a sudden increase in 29th May 2001 

(up to 1.80 mgNH4
-.L-1).  

 
Table 1 – Environmental data recorded during the one year study period in Vela Lake. 
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06-10-2000 485 21,0 9,15 8,70 0,000 0,80 0,70 0,00 0,96   
20-10-2000 483 17,4 8,60 6,30 0,000 1,00 0,65 0,08 14,97 0,059 
02-11-2000 479 16,3 8,60 7,90 0,000 0,80 0,70 0,24 40,50 0,045 
17-11-2000 493 12,2 7,52 5,10 0,003 0,70 1,53 0,53 29,61 0,026 
05-12-2000 475 14,6 7,61 7,23 0,064 2,80 2,19 0,75 30,75 0,030 
20-12-2000 452 11,9 7,70 7,61 0,205 4,80 1,64 1,65 14,98 0,011 
04-01-2001 419 12,7 7,77 7,54 0,086 6,60 0,61 1,06 21,74 0,015 
18-01-2001 372 11,5 8,34 7,84 0,009 4,70 0,48 1,22 38,80 0,020 
01-02-2001 346 12,3 7,29 24,40 0,026 4,40 0,45 1,27 7,65 0,004 
13-02-2001 327 16,6 7,35 7,00 0,038 3,60 0,52 1,27 2,14 0,002 
01-03-2001 331 14,5 8,06 9,00 0,032 2,80 0,48 0,93 13,86 0,010 
15-03-2001 335 15,1 7,76 7,80 0,042 2,60 0,50 1,01 10,18 0,006 
29-03-2001 327 15,3 8,72 11,70 0,023 1,80 0,35 0,67 33,64 0,006 
14-04-2001 341 19,0 9,40 9,90 0,000 0,50 0,36 0,16 22,61 0,012 
02-05-2001 364 15,2 8,52 10,20 0,000 0,30 0,36 0,19 29,90 0,016 
16-05-2001 348 17,5 8,95 10,00 0,000 0,50 0,85 0,24 149,43 0,028 
29-05-2001 315 28,7 8,24 0,00 0,010 0,60 1,81 0,24 19,22 0,023 
12-06-2001 306 23,4 9,25 8,70 0,000 0,60 0,46 0,00 66,93 0,028 
01-07-2001 289 29,4 9,94 13,30 0,000 0,80 0,54 0,00 65,27 0,053 
20-07-2001 297 23,5 9,60 11,50 0,000 1,10 0,84 0,00 28,48 0,081 
31-07-2001 272 24,9 8,84 6,10 0,000 1,00 0,65 0,00 54,51 0,070 
22-08-2001 298 26,4 9,49 10,90 0,000 0,80 0,64 0,00 27,65 0,055 
07-09-2001 310 23,8 8,82 9,80 0,000 0,40 0,47 0,00 42,10 0,060 
21-09-2001 300 18,6 9,04 9,80 0,000 0,60 0,58 0,00 44,50 0,071 
10-10-2001 299 17,9 8,90 8,60 0,000 0,50 0,52 0,00 21,36 0,055 
25-10-2001 305 17,0 9,40 11,90 0,000 0,60 0,49 0,00 24,72 0,043 
14-11-2001 346 12,0 9,01 10,60 0,000 0,60 0,56 0,00 36,12 0,049 
29-11-2001 370 10,3 8,98 10,33 0,000 0,50 0,49 0,00 13,86 0,042 
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Phosphorus availability was limited to the period between the end of October and 

the end of May 2001, with the highest value of 1.65 mgPO4
3-.L-1 (corresponding to the 

sampling date of 20th December 2000) and with depletion of this nutrient during the 

remaining months.  

Figure 2 – Nutrient (nitrate, nitrite, ammonium and orthophosphates) concentrations during 
the study period. 

 

The pH did not show very strong differences during all the year (Table 1 and Fig. 3), 

but there was a slight increase in its value during the warmer months (from April to 

November). Temperature showed the highest values in summer months, but also some 

0,00

0,10

0,20

06
-10

-00

06
-11

-00

06
-12

-00

06
-01

-01

06
-02

-01

06
-03

-01

06
-04

-01

06
-05

-01

06
-06

-01

06
-07

-01

06
-08

-01

06
-09

-01

06
-10

-01

06
-11

-01

N
itr

ite
 (m

gL
-1
)

0,0

2,0

4,0

6,0

06
-10

-00

06
-11

-00

06
-12

-00

06
-01

-01

06
-02

-01

06
-03

-01

06
-04

-01

06
-05

-01

06
-06

-01

06
-07

-01

06
-08

-01

06
-09

-01

06
-10

-01

06
-11

-01

N
itr

at
e 

(m
gL

-1
)

0,0

1,0

2,0

3,0

10
-06

-00

11
-06

-00

12
-06

-00

01
-06

-01

02
-06

-01

03
-06

-01

04
-06

-01

05
-06

-01

06
-06

-01

07
-06

-01

08
-06

-01

09
-06

-01

10
-06

-01

11
-06

-01

A
m

m
on

iu
m

 (m
gL

-1
)

0,0

1,0

2,0

06
-10

-00

06
-11

-00

06
-12

-00

06
-01

-01

06
-02

-01

06
-03

-01

06
-04

-01

06
-05

-01

06
-06

-01

06
-07

-01

06
-08

-01

06
-09

-01

06
-10

-01

06
-11

-01O
rt

ho
ph

os
ph

at
e 

(m
gL

-1
)



Capítulo IV – Phytoplankton dynamics in Vela Lake (Portugal)  

84 

increased values in April (Fig.3). Oxygen was available all year, except in 29th May, where 

there was total oxygen depletion (Fig.3). The highest value for dissolved oxygen was 

recorded in the beginning of February with 24.40 mg.L-1. Total suspended solids showed 

increased values from June until November, with the two highest values observed in July 

and October. 
 

Figure 3 – pH, water temperatures and oxygen concentrations recorded during the study 

period. 
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Chlorophyll a concentrations suffered many oscillations during the one year study 

(Fig.4) with the highest value (149.43 µg.L-1) attained for 16th May 2001 (Fig. 4). Of 

interest there are also the values achieved in 12th June (66.93 µg.L-1) and 1st July 2001 

(65.27 µg.L-1).  

 

Figure 4 – Chlorophyll a concentrations recorded during the study period. 
 

Phytoplankton composition 

During the study period, 56 algal taxa were identified in Vela Lake. The taxa number  

 
Figure 5 – Number of phytoplanktonic taxa in Vela Lake during the one year study period. 
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showed many variations (Fig. 5) with the lowest values recorded in 13th February and the 

highest in 29th May and 7th September 2001.  

From late April until the beginning of November 2001, cyanobacterial species were 

the most abundant, and, from November to early April, diatoms and chlorophytes were 

well established (Fig. 6). 

 
Figure 6 – Seasonal phytoplankton composition in Vela Lake during the one year study 

period. 
 

 

The most abundant cyanobacterial species found in this Lake during the study 
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Pseudanabaena sp. showed also a high density only in 12th June, co-dominating the 

bloom with M. aeruginosa.  

 
Figure 7 - Seasonal dynamics of the most abundant cyanobacterial taxa in Vela Lake during 

the same period. 
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Figure 8 - Seasonal dynamics of the most abundant Chlorococcales taxa in Vela Lake during 
the same period. 

 

Figure 9 - Seasonal dynamics of the most abundant Bacillariophyceae taxa in Vela Lake 
during the same period. 
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January 2000, the Bacillariophyceae group almost totally dominated the phytoplankton 

community in Vela Lake. In 4th January, a small-scale bloom of diatoms was recorded with 

almost complete dominance of Aulacoseira granulata var. angustissima. 

 

The 16th May 2001 A. flos-aquae bloom  

In 16th May 2001, there was the strongest cyanobacterial bloom with dominance of 

the potentially toxic Aphanizomenon flos-aquae (with 87 % dominance over the total 

phytoplankton) but there was also detected the potentially toxic Microcystis aeruginosa 

(representing only 3 % of the total phytoplanktonic density) (Fig.10). Yet, during the A. 

flos-aquae bloom, the number of phytoplanktonic taxa did not show a strong reduction 

(Fig. 5). 

 

 
Figure 10 – Phytoplankton composition in Vela Lake at the Aphanizomenon flos-aquae 

bloom (16th May 2001). 
 
 

The Principal Component Analysis  

Results from PCA analysis of phytoplanktonic species occurrence (Fig. 11) indicate 

that the three first principal components accounted for 56% of total variability. The first axe 

is defined by the species Aphanizomenon flos-aquae (coded as ANSO), among others, on 

the negative side, and by Cyclostephanus invisitatus (CYIN), among numerous species, 

on the positive side. Along the second axe there is observed a gradient which positive 

extreme is defined by Scenedesmus opoliensis var. monoensis (SCOP), among other 
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species such as Cyclotella ocellata (CYOC), and the negative extreme is defined by a 

cluster in which M. aeruginosa (MIAE) is included. 

 

 

Figure 11 – Phytoplankton species distribution according to PCA analysis. 
 

 

The distance of A. flos-aquae from the other species suggests its occurrence under 

particular conditions, probably indicating that the first axe gradient is defined by the 

nitrogen sources levels, particularly nitrate and ammonium, which were the lowest in the 

16th May 2001 when the bloom occurred. The second axe should follow a gradient defined 

by environmental variables such as phosphate levels. 

Following this interpretation, the M. aeruginosa should have occurred with high 

nitrate and ammonium levels but with very low phosphate concentrations, which was true.  
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Figure 12 – Distribution of sampling dates according to PCA analysis. 
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first axe is most likely defined by the dissolved oxygen level which was depleted in 29th 
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Discussion 

There is a lack of published investigation concerning Vela Lake, which does not 

allow an adequate comparative analysis with physico-chemical and phytoplankton 

dynamics in previous years. Yet, Vasconcelos et al. (1993) have reported the occurrence 

of several toxic strains of Microcystis aeruginosa in this lake. 

In the present study, a seasonal phytoplankton dynamics could be established in 

Vela Lake. Orthophosphate, nitrite and nitrate concentrations had the highest values in 

late December and beginning of January, coinciding with a small-scale bloom of diatoms 

(with dominance of Aulacoseira granulata var. angustissima) and the highest dissolved 

oxygen levels. The results observed in this study are verified in other environmental 

studies (Eynard et al., 2000; Galvão, 2000 in Caetano et al., 2001), in which diatoms 

dominate under conditions of high levels of N and P and cyanobacterial dominance 

coincides with the lowest nutrient concentrations. This is probably due to the 

cyanobacterial capabilities of fixating N and storing P (Oliver and Ganf, 2000).  

As observed during the study period, Vela Lake was dominated by potentially toxic 

cyanobacteria from mid-spring (late April) to late autumn (November). The main 

potentially toxic blooms were recorded in 16th May (dominated by Aphanizomenon flos-

aquae) and during June (dominated by Microcystis aeruginosa). 

By comparing the nutrient data with the cyanobacterial dominant species, the 

development of the strong A. flos-aquae bloom (in 16th May) was preceded by the lowest 

concentrations of nitrogen sources: nitrate (0.30 mg.L-1), nitrite (0.00 mg.L-1) and 

ammonium (0.36 mg.L-1) indicating that this cyanobacterial strain is not very dependent on 

nitrogen availability, probably due to its N-fixing capability. Yet, the availability of 

phosphate (0.19 mg.L-1) was necessary to the bloom development. The bloom 

senescence coincided with the oxygen depletion in water. After the restoration of oxygen 

levels, there was depletion in phosphate levels and this situation remained constant until 

the end of the year 2001. The A. flos-aquae density did not recover and stood low from 

end of May on, suggesting that this strain is not able to dominate in phosphate depleted 

conditions. This phosphorus dependence is reported for Aphanizomenon flos-aquae 

(Teubner et al., 1999) and other N-fixing filamentous cyanobacteria (Kahru et al., 2000; 

Oliver and Ganf, 2000).  

During this bloom, the number of taxa recorded in the lake did not decrease, 

indicating there was not a strong alteration of phytoplankton community although the 

green alga Coelastrum reticulatum var reticulatum showed to be affected in its density. 
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The explanations for that fact could remain in the environmental parameters variation but 

also in a potential allelopathic effect of the dominant cyanobacterium over this algae, as 

observed for other cyanobacteria and green algae (Kearns and Hunter, 2000; Kearns and 

Hunter, 2001).  

At the time of this A. flos-aquae bloom there was recorded a sudden change in the 

cladocerans community with the disappearance of Daphnia spp. (Antunes et al., in press).  

This A. flos-aquae bloom recorded in 16th May had a chlorophyll a concentration of 

149.43 µg.L-1 which corresponds to the level 3 of the levels of risk established by WHO 

(World Health Organization) for recreational waters with cyanobacterial dominance 

(WHOa). Level 3 is characterized by scum formation or >150 µg.L-1 Chl a, corresponding 

to a high risk of severe adverse health effects to occur, considering A. flos-aquae as 

potentially toxic, since it has been proved to produce microcystins (Plumley, 1997; Rapala 

et al., 1993 in Lehtimäki et al., 1997) and neurotoxins such as anatoxin-a (Rapala et al., 

1993 in Lehtimäki et al., 1997) and saxitoxins (also called PSP (Paralytic Shellfish 

Poisoning) toxins) (Pereira et al., 2000, Ferreira et al., 2001).  

The fish mortality observed during this study coincided with the dissolved oxygen 

depletion (anoxia) and the highest ammonium levels after the bloom senescence. The 

determination of cyanotoxins potentially produced by this A. flos-aquae strain was not 

performed but the possibility of a massive liberation of those cyanotoxins during the cells 

lysis remains also open since A. flos-aquae strains isolated from blooms of Microcystis 

aeruginosa and Aphanizomenon flos-aquae in Portuguese water bodies, such as 

Crestuma reservoir, were found to produce several PSP-type toxins (Ferreira, 1994 in 

Vasconcelos, 2001). In Guadiana River, the occurrence of an Aphanizomenon flos-aquae 

bloom was related to a human intoxication episode (Oliveira, 1991 in Vasconcelos, 2001) 

and fish kills during senescence of the bloom. During the oxygen depletion, 

Chlorococcales organisms dominated the phytoplankton community. Chlorophyll a 

concentration was very low although the number of taxa was near the highest (with the 

development of bacillariophyceae and particularly chlorophyceae species that did not 

occur during the rest of the year, probably due to the dominant algae competition over 

them).  

The development of this M. aeruginosa blooms occurred after the dissolved oxygen 

depletion and the sudden increase of the ammonium levels to 1.81 mg.L-1. The M. 

aeruginosa density remained relatively high until the end of October 2001, even with 

phosphate depletion in the water, indicating the ability of this strain to resist phosphorus 

unavailability probably due to its capacity of storing phosphorus (Oliver and Ganf, 2000). 
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However, non-N-fixing cyanobacteria like M. aeruginosa develop in habitats where 

nitrogen sources must be available (Jacoby et al., 2000;.Oliver and Ganf, 2000) as 

confirmed in the present study. Total suspended solids showed increased values from 

June until November (when the rain becomes more intense) probably coinciding to the 

lower water volume in the lake after the drier months, causing the reduction of light 

availability in the water column and coinciding with the dominance of M. aeruginosa which 

has low energy requirements and is able to regulate its buoyancy in order to achieve the 

optimal light intensity (Brookes and Ganf, 2001; Porat et al., 2001). The reduction of this 

colonial cyanobacterium density in Vela Lake was mainly related to sudden decreases in 

temperature.  

According to the same guidelines mentioned above and established by WHO for 

recreational waters (WHOa), the Microcystis aeruginosa bloom observed in 27th June with 

a chlorophyll a concentration of 65.27 µg.L-1 corresponded to a level 2 (100000 cells.mL-1 

or 50 µg.L-1 under cyanobacterial dominance conditions), representing a moderate risk of 

occurrence of adverse health effects. Considering the known toxicity of the strains of 

Microcystis worldwide (Oh et al., 2001) and, particularly, in Vela Lake (Vasconcelos et al., 

1993), these blooms could have represented a concerning Public Health issue. Further, in 

Australia, there is the specific cell density of 50000 cells.mL-1 for M. aeruginosa as health 

alert indicator to anticipate possible microcystin poisoning outbreaks (Fitzgerald et al., 

1999). Therefore, in Vela Lake, health risks were present in 12th and 27th June M. 

aeruginosa blooms. 

The control of phosphorus inputs into the water bodies is very important because 

high phosphate concentrations enhance the growth of Microcystis aeruginosa but also its 

microcystin production (Kotak et al., 2000; Oh et al., 2000). The same is observed for N-

fixing cyanobacteria (Rapala et al., 1997). In general, nutrient inputs into the water bodies 

may arise from losses in land run-off and drainage from agricultural land (Withers and 

Lord, 2002) due to an inadequate management of nutrient (which exceed production 

requirements) and land (using farming methods that increase erosion and enhance run-

off). Although P losses are higher than N losses, P increase in water is more important for 

eutrophication. As mentioned by other authors (Withers and Lord, 2002), rather than 

applying general guidelines, it is becoming imperative the research for site-specific 

information of each eutrophied water body through the definition of its vulnerability by 

integrating nutrient sources, nutrient transport and ecological impacts, to achieve more 

effective strategies in nutrient loss reduction and management. As exposed above, 

eutrophication is an important cause of the increasing occurrence of toxic cyanobacterial 
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blooms worldwide and consequent animal and human illness or death. Therefore, it is 

becoming essential a proper water management regarding the nutrient inputs to water 

systems but also a better understanding of the interactions between the factors 

influencing these toxins production in order to control it. It would be important that in every 

country, investigation focused more on this major Public Health issue in order to 

understand and adapt control strategies to regional characteristics of these cyanobacterial 

blooms occurrence and specific local cyanobacterial strains.  

 

Conclusions 

After the results obtained during the study period concerning the presence and 

dominance of potentially toxic cyanobacteria, one should consider future investigation on 

the monitoring for the presence of cyanotoxins along with these same parameters already 

performed. If one could establish a direct relation between phytoplanktonic succession 

and potential for cyanotoxins production, it would be easier to predict, prevent and control 

intoxication situations for aquatic organisms but also for Vela Lake recreational users. In 

16th May 2001, Vela Lake suffered an intense A. flos-aquae bloom, and in 12th and 27th 

June 2001 M. aeruginosa blooms also occurred. The development of the A. flos-aquae 

bloom was related to the lowest nitrogen levels recorded in the lake and the M. 

aeruginosa first bloom development was associated with the highest ammonium levels 

and phosphate depletion. In these blooms, health risks were present, according to the 

World Health Organization (WHO, 1998a), indicating that some short-term safety 

measures should have been taken such as the use of informative material for recreational 

visitors of the lake, referring to possible risks concerning poisoning by cyanotoxins, or/and 

even the prohibition of people contact with the scum (WHO, 1998a; Fitzgerald, 2001). 

Long-term measures would include the regular monitoring of potentially toxic bloom 

forming cyanobacteria in this lake, eutrophication reduction (with phosphorus levels lower 

than 0.01 µg.L-1 (WHO, 1998a)), maintenance of transparency, artificial mixing of the 

water and protection of surrounding soil from erosion. 

A proper and effective water management is becoming necessary to prevent these 

potentially toxic cyanobacterial blooms from happening in order to avoid the possible 

intoxication situations aroused from their occurrence.  
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Abstract – Cyanobacterial blooms in freshwaters are becoming more frequent worldwide 

mainly due to eutrophication of superficial water bodies. These blooms occurrence usually 

causes oxygen depletion, but sometimes there is also production of toxic compounds. An 

important cyanotoxin is the hepatotoxin microcystin which is known to cause disease and 

death at different trophic levels, including humans. This toxin is produced by strains 

belonging to the genera Microcystis, Anabaena, Planktothrix/ Oscillatoria, Anabaenopsis, 

Nostoc, Aphanizomenon and Hapalosiphon. Toxigenicity variation in a particular species 

seems to be primarily determined by genotype diversity among strains, in spite of some 

environmental factors seem also to influence microcystin biosynthesis and toxigenicity. A 

potentially microcystin producing strain of Aphanizomenon flos-aquae was isolated from a 

bloom in Vela Lake, during May 2001, and the strain was evaluated concerning its growth 

under different concentrations of nitrate (0.00, 0.85, 8.50 and 85.01 mgNO3
-.L-1) and 

phosphate (0.00, 0.55, 2.18, 4.36 and 8.71 mgPO4
3-.L-1), and potential inhibitory effects 

over the growth of two microalgae (Chlorella vulgaris and Pseudokirchneriella subcapitata). 

The growth of the cyanobacterial strain studied showed to be highly dependent on 

phosphorus rather than on nitrogen, probably due to its nitrogen fixing capability. 

Concerning the potential effects over other microalgae, the A. flos-aquae exudates 

showed to inhibit, although slightly, the growth of both tested green algae. After the results 

obtained in laboratory, we may suggest that planktonic blooms of this strain of A. flos-

aquae are favoured by high phosphate concentrations (from the agriculture effluents, for 

example) rather than by high nitrate levels. Thus, the control of the phosphate inflow into 

the superficial water body from which the strain was isolated from would be an important 

factor to avoid the occurrence of potentially toxic blooms of this strain as well as the 

inherent potential intoxication problems at the different trophic levels, namely at the 

phytoplankton level, which zooplankton community depends on.  

Keywords: Aphanizomenon flos-aquae, nutrient limitation, Chlorella vulgaris, 

Pseudokirchneriella subcapitata, growth inhibition. 
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Introduction 

The eutrophication of superficial freshwater bodies used as recreational waters or as 

drinking water supplies has become more frequent worldwide due to the continuous 

increase of human population and consequent intensification of agricultural and industrial 

activities, with high nutrient inputs (Hall et al., 1999; Codd, 2000; de Jonge et al., 2000; 

Cooperband and Good, 2002; Withers and Lord, 2002). Additionally, there is also a 

deficient water management and environmental factors such as high nutrient levels, low 

turbulence, higher temperature (15-30ºC) and pH (6-9) values, enhance the development 

of planktonic cyanobacteria in lakes and reservoirs, leading to formation of surface blooms 

accumulating as scum (Hadas et al., 1999; Jacoby et al., 2000; Oliver and Ganf, 2000). In 

laboratory, there is also evidence that factors such as light, temperature, nutrient levels, 

influence cyanobacterial development (Lee and Rhee, 1999; Saadoun et al., 2001). The 

main problem about cyanobacterial blooms is that, besides increasing suspended solids, 

causing oxygen depletion and giving bad odour and taste to water (Saadoun et al., 2001), 

a high percentage of them has shown to be harmful (Codd et al., 1995; Codd, 2000; Dow 

and Swoboda, 2000) due to the production of toxic secondary metabolites by many 

cyanobacteria. Presently, there are more than 40 cyanobacterial species known to have 

toxic strains (Dow and Swoboda, 2000) because for each species considered toxic there 

may be toxic and non-toxic strains and in toxic ones toxicity may vary among them (Hesse 

and Kohl, 2001; Böttcher et al., 2001). Cyanotoxins can be classified as dermatotoxins, 

neurotoxins or hepatotoxins (Dow and Swoboda, 2000; Kaebernick and Neilan, 2001), 

according to the effects on animals, and there are many cases reported that show how 

dangerous they can be for numerous organisms, humans included (Gorham and 

Carmichael, 1988; Pouria et al., 1998; Codd, 2000; Fitzgerald, 2001; Briand et al., 2003). 

Microcystin (MC) is a hepatotoxin to which special attention has been given due not only 

to its effects by acute exposure (resulting in death of animals and humans (Pouria et al., 

1998)) but particularly to its potential of promoting cancer in humans after chronic 

exposure through drinking water (Ueno et al., 1996; Zhou et al., 2002). For this last 

reason, WHO (World Health Organization) has already established a lifetime consumption 

safe level of 1 µg.L-1 for the most common microcystin variant (MC-LR), in drinking water 

(WHO, 1998). Microcystin variants occur in freshwaters worldwide and are mainly 

produced by colonial Microcystis spp. and strains belonging to filamentous Anabaena, 

Planktothrix/ Oscillatoria, Anabaenopsis, Nostoc and Aphanizomenon (Dow and 

Swoboda, 2000; Kaebernick and Neilan, 2001). Microcystin is a secondary metabolite 

produced non-ribosomally through a microcystin synthetase complex which is codified by 
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a mcy genes cluster (55 kb) composed by two operons (mcyA-C and mcyD-J) (Tillet et al., 

2000) and it is present in toxic strains of the genus Microcystis but also in microcystin 

producing strains of Anabaena, Nostoc and Planktothrix (Neilan et al., 1999), allowing the 

development of rapid and sensitive PCR (Polymerase Chain Reaction) methods for 

detection of toxic strains directly from environmental samples (Tillet et al., 2001; Pan et 

al., 2002). In spite of many contradictory studies, microcystin synthesis seems to be 

influenced by environmental factors such as light (Rapala and Sivonen, 1998; Rapala et 

al., 1997; Kaebernick et al., 2000; Hesse and Kohl, 2001; Wiedner et al., 2003), 

temperature (Rapala and Sivonen, 1998; Rapala et al., 1997), trace metals (Lukac and 

Aegerter, 1993; Utkilen and Gjφlme, 1995) and nutrients such as phosphorus (Rapala et 

al., 1997, Kotak et al., 2000; Jacoby et al., 2000; Oh et al., 2000; Vézie et al., 2002) and 

nitrogen (Rapala et al., 1997; Utkilen and Gjφlme, 1995; Lee et al., 2000; Long et al., 

2001). Bickel and Lyck (2001) have suggested that if microcystin synthesis requires 

energy (as ATP), the variation of this secondary metabolite production should be primarily 

explained by the energetic state of the cyanobacterial cells, that decreases in stress 

conditions (e.g. nutrient limitation and light variation) with available energy being primarily 

applied in essential protein synthesis. On the other hand, some recent studies (Hesse and 

Kohl, 2001; Böttcher et al., 2001; Vézie et al., 2002; Rohrlack et al., 2001; Kurmayer et al., 

2002) consider that microcystin synthesis depends more on genotype diversity of strains 

rather than on environmental factors, with genotypes differing in growth strategy, plasmid 

content, interaction with zooplankton, microcystin content (Hesse and Kohl, 2001) and 

microcystin synthetase genes cluster, originating different variants of the toxin with 

different toxicities (Mikalsen et al., 2003). Microcystin variants are known to be 

accumulated and to cause several toxic effects at different trophic levels (see chapter III of 

this thesis). For instance, microcystin-LR seems to have an allelopathic function towards 

other microalgae (Kearns and Hunter, 2000; Kearns and Hunter, 2001), resulting in 

growth inhibition or in settlement by paralysing them, but having also effects at a higher 

trophic level by originating unfavourable conditions for zooplankton (Brett and Müller-

Navarra, 1997; Brett et al., 2000; DeMott, 1999; Scheuerell et al., 2002).  

The laboratory ecological studies of potentially microcystin producing cyanobacterial 

strains may allow the improvement of water management strategies to control or even 

avoid the occurrence of such blooms. Many strains of A. flos-aquae are able to produce 

hepatotoxins such as microcystin (Plumley, 1997; Willen and Mattson, 1997 in Lotocka, 

2001) and neurotoxins such as anatoxin-a (Rapala et al., 1993 in Lehtimäki et al., 1997) 

and saxitoxins (Pereira et al., 2000; Ferreira et al., 2001). In Portugal, Aphanizomenon 
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flos-aquae blooms have been recorded, with production of saxitoxins (also named PSP 

(Paralytic Shellfish Poisoning)-type toxins), in several reservoirs such as Crestuma 

reservoir (northern Portugal) (Ferreira et al., 2001) and Montargil reservoir (central 

Portugal) (Pereira et al., 2000).  

This report presents the effects of different nutritional conditions (N and P) on the 

growth of a microcystin potentially producing cyanobacterial strain isolated from a bloom 

in Vela Lake during May 2001. In this same study there were also assessed the effects of 

this cyanobacterial strain exudates on the growth of two green algae (Chlorella vulgaris 

and Pseudokirchneriella subcapitata) considered highly edible for zooplankton (particularly 

cladocerans). 

 

Material and Methods 

Cyanobacterium cultures 

The strain used in this assay was isolated from a bloom occurred in a Portuguese 

eutrophied shallow lake (Vela Lake, Figueira da Foz, Portugal) in May 2001 and it was 

identified as belonging to the species Aphanizomenon flos-aquae (Komárek and 

Anagnostidis, 1989). Unialgal cultures were obtained by repeated isolation steps in 

sterilized liquid Woods Hole Marine Biological Laboratory MBL medium. The cultures 

media used for the nutritional experiments were based on sterilized MBL medium, but with 

some modifications concerning nitrogen and orthophosphate concentrations, in order to 

study the cyanobacterial strain growth under different nutritional conditions.  

Two sets of experiments were conducted to assess the A. flos-aquae growth under 

the different nutrient concentrations. In the first one, cyanobacterial cells were grown in 2 

L flasks with 1.8 L growth medium for four different concentrations of nitrate and 

phosphate, ranging from depleted to saturated nutrient conditions (0.00, 0.85, 8.50 and 

85.01 mgNO3
-.L-1, and 0.00, 2.18, 4.36 and 8.71 mgPO4

3-.L-1, referred as APH0N, 

APH0.85N, APH8.5N, APH85N, APH0P, APH2P, APH4P and APH8P, respectively). All 

cultures were grown at 21 ºC under constant illumination using cool white fluorescent 

lights, positioned vertically, and cultures continuous aeration was assured by a single air 

pump (through sterile, 0.45-µm-pore-size filters). Initial cell density was 4 x 104 cells.mL-1 

for all cultures. The growth in each culture was assessed by optical density, chlorophyll a 

and cell density (using a Sedgwick-Rafter counting chamber (APHA, 1995)), and physico-

chemical parameters such as temperature, pH, orthophosphates (APHA, 1995), 

ammonium (data not shown) (APHA, 1995), nitrates and nitrites (Rodier, 1996) were 
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determined with a 2-4 days interval, corresponding to an aliquot of 250 mL.day-1 for 

analysis.  

On the second set of experiments for A. flos-aquae growth under different nutrient 

concentrations, cyanobacterial cells were grown in triplicate for different concentrations of 

nitrate (0.00, 0.85, 8.50 and 85.01 mgNO3
-.L-1, referred as APH0N’, APH0.85N’, APH8.5N’ 

and MBL, respectively) and phosphate (0.00, 0.55, 2.18, 4.36 and 8.71 mgPO4
3-.L-1, 

referred as APH0P’, APH0.5P, APH2P’, APH4P’ and MBL, respectively) in 500 mL 

Erlenmeyer flasks with 500 mL sterilized growth medium (modified MBL). The tests were 

performed in an incubation chamber under controlled laboratory conditions: temperature 

was maintained at 24 ºC under a constant illumination (using cool white fluorescent lights) 

and no bubbling was applied to the cultures, but they were agitated in the same chamber 

at 40 rpm. Initial cell density was 105 cells.mL-1 for all cultures. Biomass was assessed by 

dry weight (filtering 20-50 mL of the cultures, depending on the development stage, 

through tarred Whatman GF/C filters, which were then dried for 24h at 60 ºC), chlorophyll 

a (filtering 10-50 mL, depending also on cell number, through a Whatman GF/C filter, 

performing an 90 % acetone treatment and measuring it spectrophotometrically) and 

optical density at 440, 620 and 750 nm (measured also spectrophotometrically). From day 

0 to day 13, optical density was measured with a 2-3 days interval and from that day on, 

optical density was measured everyday to assess the beginning of the stationary phase in 

each culture. Chlorophyll a and dry weight were determined less frequently in the 

beginning of the tests due to volume limitation. At the late stationary phase, an aliquot of 

each culture was taken and frozen for possible measurement of microcystin content.  

 

Green algae growth experiments 

The green algae used for the growth inhibition tests were Chlorella vulgaris and 

Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum and 

currently used as standard species for algal toxicity tests (OECD, 2002)), due to their 

importance as highly edible food sources to zooplankton, particularly daphnids. The 

potential allelopathic effects of released cyanobacterial compounds on the growth of these 

two green algae were assessed. The tests were conducted, in triplicate, using sterilized MBL 

medium as the main culture medium. The algae were exposed, during a 96 hours period, to the 

exudates (growth medium and associated algal products, after filtration through a Whatman GF/C 

filter) obtained from the stationary phase cultures of A. flos-aquae grown in P deficiency, P and N 

saturation and N depletion conditions, to check if this cyanobacterial strain released some noxious 

compounds towards the tested green algae. The source culture of each exudate or filtrate (30 
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mL exudate added to 70 mL MBL) will be referred as 0.5Pf (filtrate of A. flos-aquae grown 

in 0.55 mgPO4
3-.L-1 and 85.01 mgNO3

-.L-1), MBLf (filtrate of A. flos-aquae grown in 8.71 

mgPO4
3-.L-1 and 85.01 mgNO3

-.L-1) and 0Nf (filtrate of A. flos-aquae grown in 8.71 

mgPO4
3-.L-1 and 0.00 mgNO3

-.L-1). There were also performed control experiments at the 

same time. Control 1 corresponds to growth of the green algae in 100mL nutrient 

saturated MBL medium and control 2 corresponds to the algae growth in 30 mL distilled 

water added to 70 mL MBL in order to discharge any effect from possible nutrient 

deficiency due to the dilution caused by the added filtrate volume. The tests were conducted 

in glass vessels of 250 mL with 100 mL of final test solution and the cultures handling followed 

aseptic conditions. The vessels were randomly located in the growth chamber and cultures were 

maintained with a temperature of 24 ºC, continuous light and at 100 rpm. The pH was measured to 

ensure there were not relevant oscillations. The growth was quantified by measuring the algal 

biomass density (by optical density) over time and in control cultures there must have been reported 

at least a 16 fold increase within the test period. The initial cell concentration was approximately 

5x104 cells.mL-1 for both C. vulgaris and P. subcapitata. The nomographs used to establish the 

relationship between absorbance (at 440 nm) and cell density for C. vulgaris (1) and P. subcapitata 

(2) were already prepared in our laboratory for daphnids algal feeding procedures: 

 

Cells.mL-1 = -155820 + Abs x 13144324  (1) 

 

Cells.mL-1 = -17107.5 + Abs x 7.92535x106 (2) 

 

where Abs is the absorbance value measured at 440 nm. 

 

Data analysis 

In the cyanobacterial growth experiments, the Pearson correlation coefficient was 

used to compare the different methods of biomass determination: cell number, optical 

density and chlorophyll a concentration, in the first set, and dry weight, optical density and 

chlorophyll a, in the second set of experiments. A one-way analysis of variance (ANOVA) 

was used to assess significant differences among the A. flos-aquae densities after the 

nutritional treatments and also between the green algae cell densities after the control and 

exudates treatments. This one-way ANOVA was followed by a post hoc multiple 

comparisons Tukey HSD test, where applicable (Zar, 1996) with statistically significant 

differences in growth reported for P<0.05.  
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Results 

A. flos-aquae growth under N and P limitation  

Effect of nitrate limitation 

In the first set of nutritional experiments, the limitation of nitrate availability did not 

show to cause a strong inhibitory effect on the growth of A. flos-aquae (Figs. 1 and 2). 

There was a similar tendency among the cyanobacterium growth for all the nitrate 

concentrations tested (Fig. 1). The growth rates obtained during this experiment were very 

similar among the treatments and ranged from 0.35 to 0.36 d-1 for APH8.5N and all the 

other treatments, respectively. Optical density showed a good positive correlation with the 

other growth parameters measured: cell counting (r = 0.994, P<0.001, n=27) and 
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Figure 1 – Effects of different nitrate and phosphate concentrations on the growth of A. flos-
aquae: APH0N, APH0.85N, APH8.5N and APH85N correspond to the cyanobacterial growth in 
0.00, 0.85, 8.50 and 85.01 mgNO3

-.L-1, respectively; APH0P, APH2P, APH4P and APH8P 
correspond to 0.00, 2.18, 4.36 and 8.71 mgPO4

3-.L-1, respectively. 
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chlorophyll a (r = 0.904, P<0.001, n=27). The cultures with different nitrate concentrations 

on this experiment all presented a strong dark green colour and cells in suspension. 

For the second set of nutritional experiments, nitrate limitation also did not seem to 

decrease the A. flos-aquae growth (Figs. 3 and 4). In fact, this cyanobacterial strain grew 

even better in nitrate depleted medium rather than in the other media with nitrate 

availability (Figs. 2 and 4), showing statistically significant differences. In this experiment, 

the optical density showed a positive correlation with dry weight (r = 0.948, P<0.001, 

n=30) and chlorophyll a concentration (r = 0.758, P<0.001, n=30) (data not shown). 

Between the optical density measurements at different λ, the 440nm absorbance values 

were highly positively related with the absorbance values for 620nm (r = 0.997, P<0.001, 

n=154) and 750nm (r = 0.994, P<0.001, n=154) (data not shown).  
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Figure 2 – Optical density measured in the last day of A. flos-aquae growth experiment in 
different concentrations of nitrate (APH0N, APH0.85N, APH8.5N and APH85N correspond to 
0.00, 0.85, 8.50 and 85.01 mgNO3

-.L-1, respectively, all with 8.71 mgPO4
3-.L-1) and phosphate 

(0.00, 2.18, 4.36 and 8.71 mgPO4
3-.L-1, referred as APH0P, APH2P, APH4P and APH8P, 

respectively, all with 85.01 mgNO3
-.L-1). 
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On this second set of experiments, in a chamber with controlled conditions, all 

cultures (including the phosphorus treatments) presented a yellowish coloration and the 

cyanobacterial cells tended to settle at the bottom of the glass flasks. Besides, the MBL 

nutrient saturated culture showed a reduced growth output in relation to other cultures 

with lower nutrient concentrations (such as APH2P’, APH4P’, APH0N’ or APH8.5N’). The 

highest growth rate value obtained was only of 0.20 d-1 for APH0N’.  

 

Effect of phosphate limitation 

The strain studied showed to be very sensitive to phosphorus variation (Fig.1), 

showing a reduced growth under lower phosphorus concentrations and almost no growth 

in phosphorus depleted medium (Figs.1 and 3). In the first set of nutritional experiments, 

higher phosphate concentrations enhanced the growth of this A. flos-aquae strain (Figs. 1 

and 2) following a gradient tendency. Optical density correlated well with cell density and 

chlorophyll a concentration showing r values of 0.968 (P<0.001, n=16), and 0.951 

(P<0.001, n=16), respectively. The highest growth rate was recorded for APH8P and the 

lowest for APH0P with the values of 0.37 and 0.13 d-1, respectively. During the 

experiment, as the cells had been grown at lower phosphate concentrations the cultures 

would come more yellow but with cells in suspension. 
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Figure 3 – A. flos-aquae growth during the second set of experiments under different 
concentrations of nitrate (0.00, 0.85, 8.50 and 85.01 mgNO3

-.L-1, referred as APH0N’, 
APH0.85N’, APH8.5N’ and MBL, respectively, all with 8.71 mgPO4

3-.L-1) and phosphate (0.00, 
0.55, 2.18, 4.36 and 8.71 mgPO4

3-.L-1, referred as APH0P’, APH0.5P, APH2P’, APH4P’ and 
MBL, respectively, all with 85.01 mgNO3

-.L-1). Each point corresponds to a mean value of three 
replicates and standard deviations are not presented due to graphics aesthetics.  
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On the second set of nutritional experiments, the growth gradient observed 

previously (Figs. 1 and 2) for the phosphate concentrations was not so obvious (Fig. 3 and 

4). The APH2P’, APH4P’ and MBL cultures all showed to have grown better than the 

APH0.5P and APH0P’ cultures. The growth rates obtained for this experiment concerning 

the different phosphate treatments were 0.19, 0.18 and 0.17 d-1 for APH2P’, APH4P’ and 

MBL, respectively. For APH0.5P’, the growth rate was lower (µ = 0.16 d-1) and for APH0P’ 

the cyanobacterial strain almost did not grow at all (µ = 0.05 d-1). After the optical density 

values obtained for the last day of experiments (Fig. 4), there was a significant difference 

between the treatments APH2P’, APH4P’ and MBL, and the treatments APH0.5P and 

APH0P’. The phosphate concentrations of 2.18 and 4.36 mg.L-1 have shown not to be 

limitating for the A. flos-aquae growth. The correlations between the biomass parameters 

measured were already described in the previous section (different nitrate concentration 

treatments).  
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Figure 4 – Optical density measured in the last day of A. flos-aquae growth experiment in 
different concentrations of nitrate (0.00, 0.85, 8.50 and 85.01 mgNO3

-.L-1, referred as APH0N’, 
APH0.85N’, APH8.5N’ and MBL, respectively, all with 8.71 mgPO4

3-.L-1) and phosphate (0.00, 
0.55, 2.18, 4.36 and 8.71 mgPO4

3-.L-1, referred as APH0P’, APH0.5P, APH2P’, APH4P’ and MBL, 
respectively, all with 85.01 mgNO3

-.L-1). Each point corresponds to a mean value of three 
replicates and error bars represent the standard deviation with the different letters representing 
significant differences between the treatments (P<0.05).  
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Media physico-chemical parameters during the A. flos-aquae growth 

In the first set of nutritional experiments, several physico-chemical parameters were 

determined during the A. flos-aquae growth in the cultures with different nitrate and 

phosphate concentrations. Those parameters included pH and nitrate, nitrite, ammonium 

and orthophosphate concentrations. For the nitrogen limitation experiments (Fig. 5), the 

cultures suffered a rapid decrease in all media phosphate concentration achieving its 

depletion approximately at the 12th day of growth. The nitrite levels were highest for 

APH85N and raised from 0.00 to 0.37 mg.L-1 in 5 days following a decrease to 0.24 mg.L-1 

which was maintained. The APH8.5N reached 0.17 mg.L-1 in 5 days and approximately 

maintained that level until the end of the experiment. The nitrate concentration slightly 
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Figure 5 – Medium physico-chemical parameters during the growth of the A. flos-aquae 
strain under different nitrate (APH0N, APH0.85N, APH8.5N and APH85N corresponding to 0.00, 
0.85, 8.50 and 85.01 mgNO3

-.L-1, respectively) and phosphate concentrations (APH0P, APH2P, 
APH4P and APH8P correspond to 0.00, 2.18, 4.36 and 8.71 mgPO4

3-.L-1, respectively). 

0,00

0,10

0,20

0,30

0,40

0 4 8 12 16

Days

N
itr

ite
 

(m
g.

L
-1

)

0,00

20,00

40,00

60,00

80,00

100,00

0 4 8 12 16

Days

N
itr

at
e 

(m
g.

L
-1

)



Capítulo V – A. flos-aquae growth under nutrient limitation and effects on green algae  

113 

decreased in the APH85N during the experiment (from 85 to 76 mg.L-1) but in the other 

cultures it almost did not change.  

For the phosphate limitation experiments (Fig. 5), the media nitrite levels showed a 

gradual increase during the A. flos-aquae growth in all different phosphate concentration 

cultures with the highest nitrite concentration of 1.59 mg.L-1 for APH0P (0.00 mgPO4
3-.L-1). 

Nitrate levels did not change much during the experimental period. Phosphate levels 

decreased until depletion in all cultures but faster in the cultures where the initial 

phosphate concentration was lower. 

For both the nitrate and phosphate limitation experiments, the ammonium levels 

were undetectable and the temperature and pH values were not significantly altered 

during the experiments. 

 

Effects of A. flos-aquae cultures exudates on growth of green algae  

This strain of A. flos-aquae showed to have some influence over the growth of the 

two green algae tested meaning there is something in the cyanobacterium cultures 

exudates that, although slightly, inhibits at some extent the growth of both Chlorella 
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Figure 6 – Effect of the exudates from the A. flos-aquae cultures on growth of C. vulgaris 
and P. subcapitata. The source culture of each exudate (30 mL added to 70 mL MBL) are 
referred as 0.5Pf (filtrate of A. flos-aquae grown in 0.55 mgPO4

3-.L-1 and 85.01 mgNO3
-.L-1), MBLf 

(filtrate of A. flos-aquae grown in 8.71 mgPO4
3-.L-1 and 85.01 mgNO3

-.L-1) and 0Nf (filtrate of A. 
flos-aquae grown in 8.71 mgPO4

3-.L-1 and 0.00 mgNO3
-.L-1). The control 1 corresponds to 100mL 

MBL and control 2 corresponds to 30 mL distilled water added to 70 mL MBL. Each point 
corresponds to a mean value of three replicates. 
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vulgaris and Pseudokirchneriella subcapitata. For P. subcapitata, its average growth rate 

during the test period was not decreased by the dilution effect of the addition of 30 mL 

distilled water to 70 mL of MBL growth medium and in controls 1 and 2 the µ values were 

1.218 and 1.223 d-1, respectively. There was only a slight inhibition of growth (not 

statistically different from the control treatments) when the A. flos-aquae exudates were  

 

present in the growth media. Nevertheless, the exudate from APH0.5P had the most 

notorious effect over this green alga growth (µ = 1.195 d-1) and MBL culture exudate had 

the lowest (µ = 1.219 d-1) inhibitory effect of the three cyanobacterial exudates considering 

the growth rate measured. After 72h, this effect was already visible in the optical density 

measurements although at both 72h and 96h there were no statistically significant 

differences between the exudates treatments and the controls. For C. vulgaris, the growth 
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Figure 5 – Effects of exudates from the cyanobacterium cultures on the growth of the two 
green algae tested (C. vulgaris and P. subcapitata). The source cultures of each exudate (30 
mL added to 70 mL MBL) are referred as 0.5Pf (filtrate of A. flos-aquae grown in 0.55 mgPO4

3-

.L-1 and 85.01 mgNO3
-.L-1), MBLf (filtrate of A. flos-aquae grown in 8.71 mgPO4

3-.L-1 and 85.01 
mgNO3

-.L-1) and 0Nf (filtrate of A. flos-aquae grown in 8.71 mgPO4
3-.L-1 and 0.00 mgNO3

-.L-1). 
The control 1 corresponds to 100mL MBL and control 2 corresponds to 30 mL distilled water 
added to 70 mL MBL. Each is a mean value (3 replicates) and the different letters in error bars 
represent significant differences between the treatments (P<0.05). 
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rate at the end of the test did not decrease by the addition of 30 mL distilled water to 70 

mL of MBL growth medium achieving average growth rate values of 1.046 and 1.053 d-1 

for controls 1 and 2, respectively. At 72h, although there was an obvious inhibition of the 

A. flos-aquae exudates on this alga growth in relation to the control treatments, the 

differences were not statistically significant. However, at 96h, the differences between the 

control 2 and the 0.5Pf and the MBLf treatments turned statistically significant (Fig. 5). At 

96h, the average growth rate of 0.5f treatment was 0.970 d-1 and for MBLf treatment the µ 

value was 0.992 d-1. The exudate from the APH0.5P culture was the most inhibitor for the 

C. vulgaris growth, following the exudates from cyanobacterial cultures MBL and APH0N’.  

 

Discussion 

A. flos-aquae growth under N and P limitation  

During the one year monitoring period in Vela Lake (see Cap. IV of this thesis), 

water body from which the A. flos-aquae strain was isolated, the nitrate concentration 

varied from 0.3 to 6.6 mgNO3
-.L-1, corresponding to the sampling dates of 2nd May 2001 

and 4th January 2001, respectively. The lowest nitrate concentration preceded the A. flos-

aquae bloom development which reached its highest cell density in 16th May 2001. But in 

heavily eutrophied lakes, the nitrate concentration can reach much higher values. Thus, 

the nitrate concentration range chosen for the nutritional experiments (0.00 mgNO3
-.L-1 to 

85.01 mgNO3
-.L-1) included the ranges that may occur in most of the environmental 

aquatic systems. For the experiments using different phosphate levels, the concentrations 

ranged from 0.00 to 8.71 mgPO4
3-.L-1, including the majority of environmental phosphate 

concentration ranges (including the fish culture ponds). In Vela Lake the phosphate 

concentration ranged from 0.00 (corresponding to the sampling dates from 12th June until 

29th November 2001) to 1.65 mgPO4
3-.L-1 (corresponding to the sampling date of 20th 

December 2000). The phosphate depletion recorded from the 12th day June on was 

related with lower densities of this A. flos-aquae strain. 

The A. flos-aquae strain studied is a filamentous cyanobacterium which is capable of 

fixing atmospheric nitrogen (N2) in specialized cells called heterocysts (Flores and 

Herrero, 1994) when the ammonia or nitrate levels are low. This characteristic should be 

the responsible for the results obtained for different nitrate concentrations where this 

strain could normally grow even in total nitrate depleted medium. But in the highest TN:TP 

ratio conditions (APH0.5P) this strain grew worse and almost did not grow in phosphate 

depleted medium (with nitrate saturation conditions) as observed by Saadoun et al. (2001) 
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for another N-fixing filamentous cyanobacterium. Several studies have reported that the 

growth of N-fixing filamentous cyanobacteria is highly dependent on phosphorus 

concentrations (Lehtimäki et al., 1997; Rapala et al., 1997). Environmental studies have 

also related the development of A. flos-aquae strains with low TN:TP (total nitrogen: total 

phosphorus) ratios (Teubner et al., 1999; Oliver and Ganf, 2000) and the non-occurrence 

of nitrogen-fixing cyanobacteria blooms in environments with high N:P ratios may be 

explained by the low competitive advantage of these filamentous cyanobacteria under 

phosphorus limitation (Kahru et al., 2000; Oliver and Ganf, 2000). 

In the second set of nutritional experiments, photooxidation is a possible cause for 

the observed “yellowish bad look” of the cultures and lower growth rates in relation to the 

first set of nutritional experiments. Cultures agitation was also probably insufficient (40 

rpm showed to be low for the 500 mL Erlenmeyer flasks, by causing the settlement of 

cells) probably interfering with the availability of CO2 to the cultures. The higher light 

intensity, along with higher temperature and lower cultures aeration may have caused the 

lower grow rate values. Studies using A. flos-aquae from the Baltic Sea (Lehtimäki et al., 

1997) reported that it grew best at 16 to 22ºC and at low irradiances (25 to 45 µmol.m-2.s-

1). Yet, the 24ºC temperature was chosen because the temperatures between 20 and 

25ºC and high light intensities (42 µmol.m-2.s-1) seem to favour the production of anatoxin-

a and microcystin variants in N-fixing filamentous cyanobacteria (Rapala et al., 1997, 

Rapala and Sivonen, 1998). The MBL nutrient saturated culture showed a lower output 

than cultures with lower nutrient concentrations (such as APH2P, APH4P, APH0N or 

APH8.5N), suggesting there may have been some problem with the MBL medium 

preparation (used in the three replicates), although all cultures were prepared and 

handled the same way.  

During A. flos-aquae growth in the different media, the nitrite levels were positively 

related to the media nitrate concentrations. Nitrate levels were maintained during the 

growth but phosphate levels rapidly decreased until depletion in all cultures. For both the 

nitrate and phosphate limitation experiments, the ammonium levels were undetectable 

probably to the immediate assimilation by the cyanobacteria of the potentially produced 

ammonia in the media since it is the most preferred nitrogen source used by 

phytoplanktonic organisms (Bhaya et al., 2000). 

 

Effects of A. flos-aquae cultures exudates on growth of green algae  

Cyanobacteria have shown to cause growth inhibition or settlement over other 

microalgae (Keating, 1978; Kearns and Hunter, 2000; Kearns and Hunter, 2001). 
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Concerning the present work experiments exposing the green algae to A. flos-aquae 

cultures exudates, in general, it was recorded an inhibition in their growth by the 

cyanobacterial exudates at some extent. For both green algae, between the controls, their 

growth rate was not decreased by the dilution factor of the addition of 30 mL distilled 

water to the growth medium, excluding the nutrient deficiency possibility from the 

discussion regarding growth inhibition. Hence, it must be the presence of a certain 

compound in the A. flos-aquae exudates that causes the inhibition of the green algae 

growth. The exudates from A. flos-aquae cultures were taken at the late stationary phase 

when extracellular cyanotoxins levels should be higher as in other filamentous 

cyanobacteria (Rapala and Sivonen, 1998), due to the beginning of cell lysis. 

For both green algae, the greater growth inhibition effects were caused by the 

exudate of A. flos-aquae grown in phosphate limitation (0.5 mgPO4
3-.L-1) indicating that 

the inhibition factor was stronger in this cyanobacterial exudate, although the 

cyanobacterial material density was 1.35 and 1.93 fold lower than in MBL and aPH0N’ 

cultures, respectively. C. vulgaris showed to be more sensitive than P. subcapitata to all 

the A. flos-aquae cultures exudates tested suggesting that it could be used as an 

important species to assess the toxicity of this cyanobacteria rather than P. subcapitata. 

However, C. vulgaris showed to have a lower growth rate than P. subcapitata, perhaps 

needing a higher test period (96h) than the 72h test period established for P. subcapitata 

(OECD, 2002). More, the differences between the controls and the 0.5f and MBLf 

treatments only became statistically significant at 96h for C. vulgaris. Generally, the 

strength of the inhibitory effect was related to the nitrate and, in particular, phosphate 

depletion in the source culture of the exudate. Thus, the toxic compound seems to be 

produced by A. flos-aquae at higher extent in media with nutrient limitation. 

Many strains of A. flos-aquae are able to produce microcystin (Plumley, 1997; Willen 

and Mattson, 1997 in Lotocka, 2001), but the synthesis of this hepatotoxin by filamentous 

cyanobacteria is usually enhanced by high P levels (Rapala et al., 1997). Thus, the 

production of this toxin should not be the main cause of the green algae growth inhibition. 

Yet, anatoxin-a production by Aphanizomenon does not seem to be altered by phosphate 

concentration variation, although the cyanobacterial growth is limited at lower phosphate 

concentrations (Rapala et al., 1993 in Lotocka, 2001). Thus, the production of this 

cyanotoxin could be one of the factors responsible for the green algae growth inhibition 

under the 0.5f treatment. More, nitrogen has shown to decrease anatoxin-a concentration 

in Aphanizomenon (Rapala et al., 1993) and, thus, in nitrogen depletion, its production 

should be higher, possibly partially explaining also the growth inhibition by the APH0N’ 
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culture exudate if the anatoxin-a production by this strain is proved. Saxitoxins production 

by an Aphanizomenon sp. has shown to be restricted under phosphate limitation but 

increased under nitrate limitation (Dias et al., 2002). 

Hence, it may be suggested that the higher growth effects obtained for the APH0.5P 

exudate can be due to anatoxin-a production rather than microcystin or saxitoxin 

production. An important factor to assess would have been the presence of microcystin 

and other cyanotoxins in the exudates. Thus, further investigation should be conducted to 

evaluate if there are cyanotoxins being produced (not only microcystin, but also anatoxin-

a and saxitoxins) by the cyanobacterial strain and, by using both toxic and non-toxic A. 

flos-aquae strains exudates, compare and assess if the effects on growth of the green 

algae tested are indeed due to cyanotoxins production or not. Nevertheless, many other 

factors rather than the presence of cyanotoxins in the exudate may be responsible for the 

green algae growth inhibition (Kearns and Hunter, 2000). 

 

Conclusions 

After the results obtained for the growth of Aphanizomenon flos-aquae under 

different nutrient concentrations, the cyanobacterium showed to be highly dependent on 

phosphorus availability rather than on nitrogen availability in the cultures media, which can 

be explained by its ability to fix nitrogen. These results are in accordance to other studies 

concerning this filamentous cyanobacterium (Lehtimäki et al., 1997; Teubner et al., 1999) 

and others (Rapala et al., 1997; Oliver and Ganf, 2000) in which their growth is promoted 

by high phosphate concentrations and low N:P ratios. The present study shows that this 

same A. flos-aquae strain may inhibit the growth of the green algae Chlorella vulgaris and 

Pseudokirchneriella subcapitata which are a highly edible food source for zooplankton, 

namely cladocerans. C. vulgaris showed to be more sensitive than P. subcapitata to the 

A. flos-aquae exudates and the growth inhibition effects were more strong for the 

phosphate limiting cyanobacterial culture exudate. The growth inhibition observed is 

difficult to explain with the available data, but it should be related to the presence of a 

certain substance which production is promoted by phosphate limitation or inhibited by 

high phosphate levels. However, further investigation is needed to confirm these 

suppositions. The assessment of cyanotoxins production potential by this strain should be 

the immediate step to take subsequently to this study. Then, experiments using toxic and 

non-toxic strains of A. flos-aquae should be conducted to clarify if growth inhibition is 

indeed caused by cyanobacterial chemical defence (allelopathy). 
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Chronic effects of Aphanizomenon flos-aquae on the survival and 
reproduction of dapnhids – a preliminary study 

 
 

Abstract – The ingestion of filamentous cyanobacteria by zooplankton may be affected by 

factors such as the mechanical interference (filaments rigidity or large size) but also the 

production of cyanobacterial toxins (secondary metabolites). However, among 

zooplankters, in situations of alternative food source unavailability, daphnid cladocerans 

are not very selective towards toxic cyanobacteria, being able to ingest both toxic and 

non-toxic cyanobacterial strains and accumulate the toxins. The aim of this study was to 

evaluate the effects of a potentially toxic strain of Aphanizomenon flos-aquae, given as a 

food source, on the survival and reproduction of Daphnia magna and D. longispina 

(Cladocera; Branchiopoda; Crustacea). Test organisms were fed with A. flos-aquae 

cultured in different concentrations of phosphate. The life history traits of A. flos-aquae-fed 

daphnids were compared to a control, in which the organisms were fed with the green alga 

Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum). Results showed 

that A. flos-aquae was used as a food source by these daphnids, since they were able to 

survive and reproduce during the course of the experiment. Nevertheless, the 

reproductive output of A. flos-aquae-fed daphnids was far from reaching the one of 

organisms fed with the alga P. subcapitata (used in routine culture rearing). Additionally, A. 

flos-aquae grown with lower phosphate concentrations revealed a less significant 

reproductive impairment on Daphnia spp. in relation to A. flos-aquae grown in phosphate 

saturated medium. A similar pattern of response was observed in both D. longispina and 

D. magna, although the latter daphnid showed to be less susceptible than the former one. 

Results suggest that food quality may not be the main factor controlling the reproductive 

output of daphnids and cyanobacterial toxins production may be also involved. However, 

further research is required to enlighten this point of view. 

Keywords: Aphanizomenon flos-aquae, phosphorus limitation, Daphnia magna and D. 

longispina, survival and reproduction effects. 

 
 

Introduction 

The occurrence of Harmful Algal Blooms is becoming more frequent all over the 

world, in general due to the increasing eutrophication of superficial water bodies (Codd, 

2000). Cyanobacteria, in particular, are able to develop massively with conditions of 
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eutrophication (high nutrient levels), low turbulence, high temperatures and pH, leading to 

formation of superficial cyanobacterial blooms that may accumulate as surface scum 

(Hadas et al., 1999; Jacoby et al., 2000; Oliver and Ganf, 2000). Cyanobacterial blooms 

may be harmful because many cyanobacteria are able to produce toxic secondary 

metabolites that can be classified as dermatotoxins, neurotoxins or hepatotoxins (Dow 

and Swoboda, 2000; Kaebernick and Neilan, 2001), according to the effects on animals. 

There are many cases reported that show how cyanotoxins can be dangerous for 

numerous organisms, humans included (Gorham and Carmichael, 1988; Pouria et al., 

1998; Codd, 2000; Fitzgerald, 2001). Microcystin (MC) is a hepatotoxin to which special 

attention has been given due to its potential of promoting cancer in humans after chronic 

exposure through drinking water (Ueno et al., 1996; Zhou et al., 2002) and WHO (World 

Health Organization) has already established a lifetime consumption safe level of 1 µg.L-1 

for the most common microcystin variant (MC-LR), in drinking water (WHO, 1998). 

Microcystin variants occur in freshwaters worldwide and are mainly produced by colonial 

Microcystis spp. and strains belonging to filamentous Anabaena, Planktothrix/ Oscillatoria, 

Anabaenopsis, Nostoc and Aphanizomenon (Dow and Swoboda, 2000; Kaebernick and 

Neilan, 2001). Microcystin synthesis seems to be influenced by environmental factors 

such as light (Kaebernick et al., 2000; Wiedner et al., 2003), temperature (Rapala and 

Sivonen, 1998), trace metals (Lukac and Aegerter, 1993; Utkilen and Gjφlme, 1995) and 

nutrients such as phosphorus (Rapala et al., 1997, Kotak et al., 2000; Oh et al., 2000; 

Vézie et al., 2002) and nitrogen (Lee et al., 2000; Long et al., 2001), in spite of recent 

approaches consider the energetic state of the cyanobacterial cells (Bickel and Lyck, 

2001) and genotype diversity (Kurmayer et al., 2002; Vézie et al., 2002; Mikalsen et al., 

2003) as the main factors that modulate microcystin production. Microcystin variants are 

known to be accumulated and to cause several toxic effects at different trophic levels (see 

chapter III of this thesis). For instance, microcystin-LR seems to have an allelopathic 

function towards other microalgae (Kearns and Hunter, 2001), resulting in growth 

inhibition or in settlement by paralysing them. The lack of alternative phytoplankton for 

food when cyanobacteria dominate may contribute to unfavourable nutritive conditions for 

zooplankton since cyanobacteria are known to be nutritionally poor (Brett and Müller-

Navarra, 1997; Brett et al., 2000). Daphnids, in particular, have shown to be affected in 

their reproduction when cyanobacteria dominate the phytoplankton community (DeMott, 

1999; Scheuerell et al., 2002). This could be due to Daphnia spp. high requirements for 

nutrients such as P (phosphorus) to synthesize several cellular constituents 

(phospholipids, ATP/ADP, nucleic acids) (Scheuerell et al., 2002). RNA:DNA ratio is 
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highly correlated with somatic growth rate and depending on high food P:C ratios (Vrede 

et al., 2002). In addition, P-limitation indirectly affects the cladocerans development (by 

decreasing growth rates and clutch size) through the alteration of algae biochemical 

composition, by reducing the essential fatty acids content (Ferrão-Filho et al., 2003). 

Thus, physico-chemical environmental parameters can have a major effect on daphnid 

cladocerans development through the effect on food quality (Scheuerell et al., 2002). 

Besides food quality, food limitation in zooplankton may be also due to feeding inhibition. 

Cyanobacteria may inhibit feeding by mechanical interference with the filtering apparatus 

(by cyanobacterial filaments/colonies size, shape, filaments rigidity or mucilage production 

by Microcystis spp. (Rohrlack et al., 1999a; Henning et al., 2001)) but cyanotoxins 

production seems also to work as a direct defence mechanism against grazing by 

affecting the ingestion (Kurmayer and Jüttner, 1999; Rohrlack et al., 1999b; Henning et 

al., 2001; Lotocka, 2001). Rohrlack et al. (2001) suggest that Microcystis inhibits the 

ingestion rate of Daphnia by microcystin synthesis rather than by mechanical interference 

and that this inhibition increases with increasing toxin content. Nevertheless, daphnid 

cladocerans have shown to be less selective than copepods towards cyanobacteria, being 

able to ingest both toxic and non-toxic Microcystis colonies (Mohamed, 2001) at the same 

rate (Rohrlack et al., 1999b) under depletion of edible food (green algae and diatoms), 

accumulating the toxin (Mohamed, 2001) and potentially transferring it to higher trophic 

levels through the food chain. Toxic effects have also been observed in Daphnia spp. after 

cell-bound microcystin ingestion (Laurén-Määttä et al., 1997; Rohrlack et al., 1999b; 

Rohrlack et al., 2001) resulting in reduction of survival (killing in a few days) and 

population density, and delay of animal maturation. These effects are probably connected 

to Daphnia’s protein phosphatases 1 and 2A activity inhibition (DeMott and Dhawale, 

1995 in Rohrlack et al., 2001). Most of the recent studies on cyanobacterial toxicity 

towards daphnids by microcystin production are mainly focused on colonial Microcystis 

spp. (Laurén-Määttä et al., 1997; Rohrlack et al., 1999b; Mohamed, 2001; Rohrlack et al., 

2001; Lürling and van der Grinten, 2003) rather than on filamentous cyanobacteria. 

However, many strains of the filamentous cyanobacterium A. flos-aquae are able to 

produce microcystin (Plumley, 1997; Willen and Mattson, 1997 in Lotocka, 2001) but also 

neurotoxins such as anatoxin-a (Rapala et al., 1993 in Lehtimäki et al., 1997) and 

saxitoxins (Pereira et al., 2000, Ferreira et al., 2001). Aphanizomenon flos-aquae blooms 

have been recorded, with production of saxitoxins (also named PSP (Paralytic Shellfish 

Poisoning)-type toxins), in several Portuguese reservoirs such as Crestuma reservoir 
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(northern Portugal) (Ferreira et al., 2001) and Montargil reservoir (central Portugal) 

(Pereira et al., 2000).  

This study presents the results of laboratory tests using a strain belonging to the 

filamentous and potentially toxic cyanobacterium Aphanizomenon flos-aquae, isolated 

from a natural bloom in Vela Lake (May 2001), and two cladocerans (Daphnia magna and 

D. longispina). The tests aimed to assess the potential effects of this cyanobacterial strain, 

grown in different phosphorus concentrations, on the survival and reproduction of these 

daphnids, when given as an exclusive food source. 

 

Material and Methods 

Microalgae cultures 

The strain used in this assay was isolated from a bloom occurring in a Portuguese 

eutrophied shallow lake (Vela Lake, Figueira da Foz, Portugal) in May 2001 and it was 

identified as belonging to the species Aphanizomenon flos-aquae (Komárek and 

Anagnostidis, 1989). The culture medium was based on sterilized Wood Hole Marine 

Biological Laboratory MBL medium, but with some modifications concerning 

orthophosphate concentration. Cyanobacterial cells were grown in 2 L flasks with 1.8 L 

growth medium with three different concentrations for phosphate (2.18, 4.36 and 8.71 

mgPO4
3-.L-1, referred as APH2P, aPH4P and APH8P, respectively). The green alga 

Pseudokirchneriella subcapitata (formerly known as Selenastrum capricornutum) was also 

cultured in MBL medium, and it was used as a control for food source experiments. All 

cultures were grown at 21 ºC under constant illumination (40 µmol of photons.m-2.s-1) 

using cool white fluorescent lights, positioned vertically, and cultures continuous aeration 

was assured by a single air pump (through sterile, 0.45-µm-pore-size filters).  

A. flos-aquae feeding table for the daphnids 

The correlation between optical density (at 440 nm) and cell number (using a 

Sedgwick-Rafter counting chamber) was assessed by following A. flos-aquae growth in 

MBL medium. These measurements were performed everyday, in quadruplicate, during 

13 days and evaluated by linear regression analysis. After the obtained results, an A. flos-

aquae feeding table was established for the daphnids tested.  
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Daphnids cultures 

The testing daphnids include a standard species, Daphnia magna, frequently used 

as a test organism in many ecotoxicological studies, and an autochthonous species, D. 

longispina (Antunes et al., 2003), isolated from another eutrophied lake (Mira Lake, 

central Portugal). Parent cladocerans of both species were reared in ASTM hard water 

culture medium with an organic additive, as described by Antunes et al. (2003). The 

cultures had no aeration supply and a temperature of 20 ± 2 ºC was maintained with a 

16:8 h light:dark photoperiod. Medium renewal was performed every two days and 

animals were fed everyday with the green alga Pseudokirchneriella subcapitata at a 

concentration of 3.00 x 105 cells.mL-1 for D. magna but only 1.50 x 105 cells.mL-1 for D. 

longispina as justified on a previous report (Antunes et al., 2003). The cultures were 

cyclically renewed for individuals by replacement of the progenitor by neonates from the 

third or forth clutch. The experimental tests were conducted using neonates from the third 

to the fifth brood of the partenogenic cycle, with all animals ageing less than 24 h old. 

Food source experiments 

To assess the potential chronic effects of A. flos-aquae, grown under different 

phosphate concentrations and given as an exclusive food source, on the chosen 

daphnids, preliminary life story experiments were performed during 15 days. The 

cladoceran clones used were clone A sensu Baird et al. (1989) and EM7 clone sensu 

Antunes et al. (2003) for D. magna and D. longispina, respectively. A. flos-aquae grown in 

three different phosphate concentrations (2.18, 4.36 and 8.71 mgPO4
3-.L-1, identified as 

APH2P, APH4P and APH8P, respectively) with a constant nitrogen concentration (85.01 

mgNO3
-.L-1) was given as food source to the test daphnids. Before feeding, the 

cyanobacterium cultures were centrifuged and resuspended in ASTM medium at the 

same concentration previously described for the usual food source Pseudokirchneriella 

subcapitata (used in the control test). For the control and for each treatment, ten replicate 

glass vessels were prepared with one organism in 50 mL of ASTM medium and 

maintained as already described for daphnids cultures. Everyday, animals’ survival and 

offspring were analysed and juveniles removed and counted. To evaluate reproduction 

during the test, parameters such as the age at first reproduction, total number of neonates 

(total offspring) and number of broods were recorded. Survival was assessed by daily 

observing the mortality of the parent animals. The rate of population increase (r, day-1) 

was estimated after the Euler-Lotka equation: 
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         n 

1 = Σ e–r.x.lx.mx 
             x=0 

where r is the rate of population increase (d-1), x is the age class (days; 0...n), lx is the 

probability of surviving at age x and mx is the fecundity at age x. Standard deviation for r 

was determined according to the jack-knifing technique (Meyer et al., 1986).  

Data analysis 

The relationship between optical density and cell number during A. flos-aquae 

growth in MBL medium was assessed by linear regression analysis.  

Daphnids mortality values obtained for the different treatments during the 

experiment were compared by the Fischer exact test. A one-way analysis of variance 

(ANOVA) was used to assess significant differences among the food source regimes, for 

each species, considering the test parameters: age at first reproduction, total number of 

offspring, number of broods and rate of population increase. This one-way ANOVA was 

followed by a post hoc multiple comparisons Tukey HSD test, where applicable (Zar, 

1996). For all analysis, a statistically significant difference in reproduction or growth is 

reported for P<0.05.  

 
Results 

A. flos-aquae feeding table for the daphnids 

After the results obtained for the optical density and cell counting during the 

R2 = 0,9775

y = 6E-08x + 0,0724

0,000
0,200
0,400
0,600
0,800
1,000
1,200
1,400
1,600
1,800

0,0E+00 5,0E+06 1,0E+07 1,5E+07 2,0E+07 2,5E+07 3,0E+07

Cell number (cells.mL-1)

O
pt

ic
al

 d
en

si
ty

 (4
40

 n
m

)  c

Figure 1 – Linear regression analysis of the growth parameters optical density and cell 
counting, after measured everyday for 13 days, in quadruplicate.  
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cyanobacterial strain growth over the 13 days, a high positive correlation (R2=0.9775) was 

observed between these two growth parameters (Fig.1) with the equation obtained being  

Table 1 – A. flos-aquae feeding table for D. magna and D. longispina, which specifies the A. 
flos-aquae volume (mL) per day for 50 mL Daphnia spp. medium. 

 

A. flos-aquae
volume (mL) per
day   

A. flos-aquae 
volume (mL) per 
day   

A. flos-aquae 
volume (mL) per 
day   

A. flos-aquae 
volume (mL) per 
day  

Abs 
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D
. 
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0,900 1,131 0,566 1,050 0,958 0,479 1,200 0,830 0,415 1,350 0,733 0,366 

0,905 1,125 0,562 1,055 0,953 0,476 1,205 0,827 0,413 1,355 0,730 0,365 

0,910 1,118 0,559 1,060 0,948 0,474 1,210 0,823 0,412 1,360 0,727 0,364 

0,915 1,111 0,556 1,065 0,943 0,472 1,215 0,819 0,410 1,365 0,724 0,362 

0,920 1,105 0,552 1,070 0,939 0,469 1,220 0,816 0,408 1,370 0,722 0,361 

0,925 1,098 0,549 1,075 0,934 0,467 1,225 0,812 0,406 1,375 0,719 0,359 

0,930 1,092 0,546 1,080 0,929 0,465 1,230 0,809 0,404 1,380 0,716 0,358 

0,935 1,085 0,543 1,085 0,925 0,462 1,235 0,805 0,403 1,385 0,713 0,357 

0,940 1,079 0,540 1,090 0,920 0,460 1,240 0,802 0,401 1,390 0,711 0,355 

0,945 1,073 0,536 1,095 0,916 0,458 1,245 0,798 0,399 1,395 0,708 0,354 

0,950 1,067 0,533 1,100 0,911 0,456 1,250 0,795 0,398 1,400 0,705 0,353 

0,955 1,061 0,530 1,105 0,907 0,453 1,255 0,792 0,396 1,405 0,703 0,351 

0,960 1,055 0,527 1,110 0,902 0,451 1,260 0,788 0,394 1,410 0,700 0,350 

0,965 1,049 0,524 1,115 0,898 0,449 1,265 0,785 0,393 1,415 0,697 0,349 

0,970 1,043 0,522 1,120 0,894 0,447 1,270 0,782 0,391 1,420 0,695 0,347 

0,975 1,037 0,519 1,125 0,890 0,445 1,275 0,779 0,389 1,425 0,692 0,346 

0,980 1,032 0,516 1,130 0,885 0,443 1,280 0,775 0,388 1,430 0,690 0,345 

0,985 1,026 0,513 1,135 0,881 0,441 1,285 0,772 0,386 1,435 0,687 0,344 

0,990 1,020 0,510 1,140 0,877 0,439 1,290 0,769 0,384 1,440 0,685 0,342 

0,995 1,015 0,507 1,145 0,873 0,436 1,295 0,766 0,383 1,445 0,682 0,341 

1,000 1,009 0,505 1,150 0,869 0,434 1,300 0,763 0,381 1,450 0,680 0,340 

1,005 1,004 0,502 1,155 0,865 0,432 1,305 0,760 0,380 1,455 0,677 0,339 

1,010 0,999 0,499 1,160 0,861 0,430 1,310 0,757 0,378 1,460 0,675 0,337 

1,015 0,993 0,497 1,165 0,857 0,428 1,315 0,753 0,377 1,465 0,672 0,336 

1,020 0,988 0,494 1,170 0,853 0,427 1,320 0,750 0,375 1,470 0,670 0,335 

1,025 0,983 0,491 1,175 0,849 0,425 1,325 0,747 0,374 1,475 0,668 0,334 

1,030 0,978 0,489 1,180 0,845 0,423 1,330 0,745 0,372 1,480 0,665 0,333 

1,035 0,973 0,486 1,185 0,842 0,421 1,335 0,742 0,371 1,485 0,663 0,331 

1,040 0,968 0,484 1,190 0,838 0,419 1,340 0,739 0,369 1,490 0,660 0,330 

1,045 0,963 0,481 1,195 0,834 0,417 1,345 0,736 0,368 1,495 0,658 0,329 

    1,500 0,656 0,328 
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presented as follows: 

Cells.mL-1 = -1206666.7 + Abs x 1.6667x107  (1) 

where Abs is the absorbance measured at 440 nm. This equation (1) allowed the 

construction of a feeding table using this cyanobacterium as food source for the tested 

daphnids (Table 1), considering the required cell concentrations for each test (3.00 x 105 

cells.mL-1 for D. magna and 1.50 x 105 cells.mL-1 for D. longispina). 

Food source experiments 

At the end of the 15 days experiment, after applying the Fischer Exact Test, the 

mortalities obtained in the food source treatments using A. flos-aquae for both daphnid 

clones were not statistically higher than in the control (P<0.05) (Table 2). Nevertheless, D. 

longispina fed on A. flos-aquae (APH) grown in higher concentrations of phosphate 

(APH4P and APH8P) attained the highest mortality percentages (Table 2).  
 
Table 2 – Mortality percentages of D. magna and D. longispina clones during the 15 days of 

experiment when fed on a cyanobacterial strain of A. flos-aquae grown under different phosphorus 
concentrations. 

A. flos-aquae 

Species 
Control 

(P. subcapitata) 
APH2P (grown in 

2.18 mgPO4
3-.L-1) 

APH4P (grown in 

4.36 mgPO4
3-.L-1) 

APH8P (grown in 

8.71 mgPO4
3-.L-1) 

D. magna 0.0  20.0  30.0  10.0  

D. longispina 0.0  10.0  30.0  30.0  

 

The food source had also a significant effect on the reproduction and rate of 

population increase (Fig. 2). For D. magna, the average age at first reproduction was 

significantly higher from the control when animals were fed with APH and between APH 

treatments, the age at first reproduction was significantly higher for APH4P and APH8P 

food sources. For D. longispina, the age at first reproduction was significantly higher for all 

feeding regimes using APH and, between the APH food source regimes, this same 

parameter was significantly higher for APH4P and APH8P treatments in relation to APH2P 

feeding regime.  

The total number of offspring (number of neonates produced per female), for both 

clones, was significantly negatively affected by all the feeding regimes using APH, in 

relation to the food source used in control (Fig. 2). More, for D. longispina, by comparison 

to APH2P, both APH4P and APH8P regimes significantly decreased the total number of 
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offspring and, between these last, there is a tendency indicating a gradual decrease in this 

parameter towards APH8P. 

For D. magna, there were no significant differences between the number of broods 

at the control and at APH food source treatments, in spite of evidence indicating a gradual 

decrease in number of broods from the control to the APH grown in higher phosphate 

concentration (Fig. 2). However, for D. longispina, the number of broods was significantly 

affected when the animals were fed with APH4P and APH8P, in relation to the food 

source used in control (Fig. 2). Between the APH food source treatments, APH8P regime 

caused a significant decrease in the number of broods by comparing with APH2P and 

APH4P regimes. The number of broods produced in control was 3 and 4 for D. magna 

and D. longispina, respectively. 

The survival and reproduction effects accumulated during the 15 days experiment 

are expressed in the population intrinsic growth rate (r) for which values are significantly 
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Figure 2 – Age at first reproduction (days), total number of offsring, number of broods and 
population growth rate during the 15 days experiment using D. magna and D. longispina fed on a 
cyanobacterial strain of A. flos-aquae grown in different phosphorus concentrations. Error bars 
represent the standard deviation and the different letters represent significant differences between 
the food sources (P<0.05). 
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lower at APH regimes in relation to control, for both species (Fig.2). Among the APH 

treatments, D. longispina did not show significant differences, although there is a 

decreasing tendency towards the APH grown in higher phosphate concentrations. On the 

other hand, for D. magna, r is significantly lower for APH4P and APH8P, by comparison to 

APH2P treatment.  

In general, both species showed to be affected when fed with A. flos-aquae, no 

matter under what conditions of phosphorus availability the cyanobacterium was grown. 

 

Discussion 

The exposure of the tested cladocerans to A. flos-aquae, in general, increased 

mortality, delayed maturation of females and decreased offspring production and 

population growth rate. D. longispina showed to be more sensitive for the experiments 

using the most P-saturated algae (APH8P) as food source. The higher mortalities 

obtained for all treatments using APH as food source, in relation to control, indicate that 

these daphnids are not very well adapted to this food source, in spite of ingesting it and 

achieving considerable survival percentages and reproduction output. The fact that results 

for average age at first reproduction showed higher values for all feeding treatments using 

APH (in particular APH4P and APH8P) indicates a delayed maturation of daphnids for 

these treatments. A. flos-aquae strongly reduced the total offspring of both cladocerans, 

suggesting an important effect of this food source on their reproduction. The number of 

broods, by comparison to control, is also significantly lower for P-saturated algae (APH4P 

and APH8P). 

As possible hypotheses for the affectation of A. flos-aquae treatments on the 

survival and reproduction of both species, in relation to control treatment with P. 

subcapitata, there are: feeding inhibition, low nutritional value of cyanobacteria and/or the 

potential toxicity by intracellular cyanotoxins after filaments ingestion. First, feeding 

inhibition may be caused by mechanical interference due to filaments rigidity, large size or 

aggregation, reducing the feeding rates or blocking the filtering apparatus, although 

daphnids have shown to possess a phenotypic plasticity towards filamentous 

cyanobacteria (Ghadouani and Pinel-Alloul, 2002) by enlarging the area and mesh size of 

their filtering apparatus. Yet, cyanobacteria have also shown to inhibit feeding through 

cyanotoxins synthesis (Kurmayer and Jüttner, 1999; Rohrlack et al., 1999b; Henning et 

al., 2001; Lotocka, 2001; Rohrlack et al., 2001), as a chemical defence. Kurmayer and 

Jüttner (1999) found that, for a microcystin producing strain of the filamentous Planktothrix 

rubescens, grazing resistance (food avoidance) should be mediated by chemical defences 
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(toxin production) rather than by the large size and rigidity of filaments. A study 

concerning the grazing of D. magna over the potentially toxic cyanobacteria species 

Microcystis aeruginosa and Aphanizomenon flos-aquae also showed to have a limiting 

impact on grazing intensity (Lotocka, 2001). Thus, this factor should be considered in the 

present discussion because many strains of A. flos-aquae are able to produce microcystin 

(Plumley, 1997; Rapala et al., 1993 in Lehtimäki et al., 1997). Yet, further investigation, 

including a set of experiments involving toxic and non-toxic strains of A. flos-aquae, 

should be conducted in order to evaluate if there is a feeding inhibition due to mechanical 

interference and/or to cyanotoxins production. However, feeding inhibition should not be 

the only factor behind the differences observed between the control and APH treatments, 

since the animals survived and reproduced, indicating they ingested and digested enough 

A. flos-aquae filaments to achieve that performance level, as observed by Kurmayer 

(2001) for Aphanizomenon flexuosum (non-toxic), using the alga as a source of energy. 

This also means that these Daphnia clones may feed on A. flos-aquae as an alternative 

food source when an edible food source is lacking. Therefore, taking into consideration 

that food quantity was approximately the same, food quality should be another important 

factor to consider, due to the low nutritional value of cyanobacteria (Brett and Müller-

Navarra, 1997; Brett et al., 2000), with lack of essential fatty acids used as energy source. 

As already mentioned, there are several strains of A. flos-aquae capable of producing 

toxins such as microcystin (Plumley, 1997; Willen and Mattson, 1997 in Lotocka, 2001) 

and microcystin as proved to cause toxic effects on Daphnia spp., after ingestion (Laurén-

Määttä et al., 1997; Rohrlack et al., 1999b; Rohrlack et al., 2001), decreasing the survival 

and population density, and delaying animals maturation. The toxic effects observed in 

daphnids are thought to be connected with the inhibition of their protein phosphatases 1 

and 2A activity by microcystin (DeMott and Dhawale, 1995 in Rohrlack et al., 2001). Other 

filamentous toxic cyanobacteria (Anabaena spp.), anatoxin-a producers, have shown to 

affect both survival and fecundity in Daphnia pulex (Claska and Gilbert, 1998), by affecting 

brood size, brood number, age at first reproduction and interclutch interval.  

For differences between APH treatments, neither mechanical interference nor food 

nutritional value seem to be the cause, since filaments size or rigidity was similar between 

APH treatments and P-limited algae should lead to negative effects if food quality would 

be the most important parameter. As observed by several authors (including Scheuerell et 

al., 2002; Ferrão-Filho et al., 2003), P-limitation indirectly affects the cladocerans 

development through the reduction of the essential fatty acids content of algae. In the 

present case, A. flos-aquae grown under the lowest P concentration showed the weakest 



Capítulo VI – Chronic effects of A. flos-aquae on dapnhids  

135 

effects on survival and reproduction of the tested daphnids, suggesting that this should 

not be one of the factors determining the differences obtained among the APH treatments. 

The different results recorded among APH treatments in the present study might have 

been influenced by the possible microcystin (or other cyanotoxins) synthesis, since the 

most intense effects over daphnids were obtained for animals fed on A. flos-aquae grown 

under the highest P concentrations, which have shown to enhance microcystin production 

in toxic filamentous cyanobacteria (Rapala et al., 1997). In N-fixing cyanobacteria, 

microcystin synthesis seems to be considerably more dependent on P rather than on N, 

due to the referred capability of N fixation. Thus, microcystin (Rapala et al., 1997) content 

increases with P concentration and if this was a relevant factor modulating our results, 

APH4P and APH8P should have more microcystin production and could, therefore, induce 

stronger toxic effects on daphnids such as those observed in this study and also reported 

by DeMott (1999) and Rohrlack et al. (2001) after microcystin ingestion. However, further 

investigation should also be conducted to evaluate if there are, in fact,  cyanotoxins being 

produced (not only microcystin, but also anatoxin-a and saxitoxins) and compare the 

effects on daphnids of both toxic and non-toxic A. flos-aquae strains. Furthermore, toxicity 

of a cyanobacterial strain depends on cellular toxin content but also on the rate with which 

the daphnid is feeding on that strain (Rohrlack et al., 2001). In this case, however, the 

strongest effects on APH8P can be due to toxic effects but also to a higher inhibition of 

ingestion as referred by Rohrlack et al. (2001) for Microcystis. Thus, ingestion rate should 

also be monitored to check this toxin-mediated feeding inhibition hypothesis for 

differences observed between the APH treatments. Nevertheless, the inhibition of growth 

and reproduction may be due to the combined occurrence of more than one inhibition 

factor. 

 

Conclusions 

The present study shows that the strain of A. flos-aquae used in this study, when 

given as an exclusive food source, affects the survival and reproduction of two clones 

belonging to Daphnia magna and D. longispina, suggesting that characteristics of this 

strain as a food source are not the most suitable for these cladocerans development. The 

differences found, in relation to a control treatment using Pseudokirchneriella subcapitata 

as an edible food source, may be explained by feeding inhibition (through mechanical 

interference or toxin production), low food quality and/or toxicity after ingestion, but further 

investigation is needed to confirm these suppositions.  
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Between the APH treatments, the A. flos-aquae grown in higher phosphorus 

concentration showed stronger effects on reproduction parameters. In general, D. 

longispina showed to be more sensitive than D. magna to the gradient of APH phosphorus 

concentration, with the most significant effects for P-saturated cells (APH8P). The 

explanation(s) for these differences may rely on toxins production, which may be 

enhanced at higher P concentrations (Rapala et al., 1997) causing feeding inhibition 

and/or toxic effects after the toxins ingestion, rather than mechanical interference, 

nutritional value (that could lead to starvation) or food quantity. 

However, additional investigation is needed to evaluate these speculated 

explanations. The assessment of cyanotoxins production potential by this strain should be 

the immediate prolongation of this study due to the possible risk that, in particular, 

microcystin may represent to many organisms when accumulated by cladocerans and 

potentially transferred to higher trophic levels through the food chain (Ferrão-Filho et al., 

2002). Then, experiments using toxic and non-toxic strains of A. flos-aquae should be 

conducted to clarify if feeding inhibition is caused by mechanical interference, 

cyanobacterial chemical defence or both. Another interesting point to check, if cyanotoxins 

production by this A. flos-aquae strain is proved, would be the detoxification potential of 

these daphnids towards those cyanotoxins, since the clones used in this study could 

ingest the potentially toxic alga and still survive and reproduce.  
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Discussão geral 

No presente estudo, foi inicialmente apresentada muita da investigação efectuada 

internacionalmente acerca das temáticas: ocorrência de blooms de cianobactérias, 

produção de cianotoxinas e sua toxicidade em diversos organismos, incluindo os 

humanos. Foi dada especial relevância à hepatotoxina microcistina e ao perigo que a 

presença desta na água pode representar para a Saúde Pública (Gorham and 

Carmichael, 1988; Codd et al., 1995; Pouria et al., 1998; Codd, 2000). Relativamente aos 

factores que influem na produção desta, existe muita contrariedade entre os estudos 

efectuados, principalmente devida à diversidade genotípica entre as diferentes estirpes 

cianobacterianas (Hesse and Kohl, 2001; Rohrlack et al., 2001; Kurmayer et al., 2002; 

Mikalsen et al., 2003). Assim, para cada estirpe, existirá um padrão respectivo 

relativamente à capacidade de produção das variantes de microcistina e à influência dos 

parâmetros ambientais sobre esta, tornando necessária a identificação, ao nível da 

estirpe, das cianobactérias que geralmente dominam os blooms de um determinado 

sistema aquático, de forma a conseguir definir estratégias específicas para o controlo do 

seu desenvolvimento e produção de toxinas. 

A segunda fase deste estudo pretendeu ser uma abordagem integrada (de dados 

ambientais e laboratoriais) ao problema ambiental dos blooms de cianobactérias 

potencialmente tóxicas, destacando os factores que favorecem o seu desenvolvimento, 

assim como os efeitos em organismos de dois níveis tróficos tróficos (fitoplâncton e 

zooplâncton). A estirpe utilizada nos estudos laboratoriais pertence à espécie 

Aphanizomenon flos-aquae e foi isolada a partir de um bloom ocorrido na Lagoa da Vela, 

na Primavera de 2001, em que esta estirpe dominava a comunidade fitoplanctónica em 

cerca de 87% (Cap. IV), com potenciais riscos para a Saúde Pública, de acordo com os 

níveis propostos pela Organização Mundial de Saúde (WHO, 1998a). O desenvolvimento 

deste bloom foi precedido de condições de indisponibilidade em azoto. Após o pico do 

bloom, verificou-se um período de senescência deste, provavelmente devido às 

condições de anoxia verificadas, seguindo-se um pico nos níveis de amónia 

(possivelmente resultante da degradação da massa fitoplanctónica remanescente), 

favorecendo o desenvolvimento de um bloom de Microcystis aeruginosa.  

Uma vez que os estudos incidem normalmente sobre estirpes de Microcystis 

aeruginosa e que a sua produção de cianotoxinas já foi estudada nesta lagoa 

(Vasconcelos, 1993), a escolha da estirpe de A. flos-aquae teve o carácter de aprofundar 

o conhecimento acerca das estirpes potencialmente tóxicas que co-dominam com 

estirpes de M. aeruginosa provavelmente tóxicas (Vasconcelos, 1993), aquando de 
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blooms na Lagoa da Vela. E é neste contexto que se inseriram os ensaios laboratoriais 

de crescimento desta estirpe de A. flos-aquae em meio com diferentes concentrações de 

fósforo e azoto (Cap. V) e os seus efeitos em clorófitas (Chlorella vulgaris e 

Pseudokirchneriella subcapitata) (Cap. V) e cladóceros (Daphnia magna e D. longispina) 

(Cap. VI). A estirpe cianobacteriana estudada mostrou ter um crescimento mais sensível 

ao teor em fósforo relativamente aos níveis de azoto (Cap. V), presumivelmente devido à 

sua capacidade de fixação de azoto, que a torna mais independente da concentração 

deste nutriente no meio, como confirmado em estudos semelhantes efectuados para 

outras cianobactérias fixadoras de azoto (Lehtimäki et al., 1997; Rapala et al., 1997).  

Integrando os dados ambientais e laboratoriais, o desenvolvimento desta estirpe de 

A. flos-aquae na Lagoa da Vela foi precedido dos níveis mais baixos de nitratos no meio 

(0.30 mgNO3
-.L-1), mas pode ainda crescer perfeitamente num meio com depleção total 

de nitratos (0.00 mgNO3
-.L-1) devido à sua capacidade de fixação do azoto atmosférico, 

sugerindo que esta seja uma das vantagens competitivas mais determinantes no seu 

sucesso sobre as restantes espécies fitoplanctónicas aquando do seu desenvolvimento 

num bloom. No entanto, a depleção em fosfatos (0.00 mgPO4
3-.L-1) condiciona em larga 

escala o desenvolvimento desta estirpe, tal como verificado no ambiente e no laboratório. 

Aquando da ocorrência do bloom, a concentração de fosfatos era de 0.24 mgPO4
3-.L-1. 

Em laboratório, a concentração de fosfatos 0.55 mgPO4
3-.L-1 provou ter resultados 

significativamente inferiores relativamente aos obtidos para concentrações superiores de 

fosfatos (de 2.18 mgPO4
3-.L-1 a 8.71 mgPO4

3-.L-1), indicando que o crescimento desta 

estirpe pode ser estimulado pela disponibilidade de maiores concentrações de fosfatos. 

Assim, a combinação de baixas concentrações de nitratos (ou sua depleção) e elevadas 

concentrações de fosfatos (provenientes da actividade agro-pecuária, por exemplo) num 

sistema aquático como a Lagoa da Vela pode tornar-se “explosiva”, levando ao 

desenvolvimento de grandes blooms desta estirpe de A. flos-aquae, superiores ao 

ocorrido em Maio 2001. 

Os resultados obtidos nos testes utilizando as espécies fitoplanctónicas C. vulgaris 

e P. subcapitata mostraram uma ligeira inibição do crescimento das mesmas, 

especialmente em C. vulgaris, provocada pelos compostos presentes nos exudatos da 

estirpe de A. flos-aquae estudada (Cap. V). Tal efeito sugere a possibilidade de alelopatia 

desta estirpe relativamente a espécies fitoplanctónicas potencialmente competidoras. 

Existem outros estudos que demonstraram efeitos alelopáticos das cianobactérias sobre 

outros grupos fitoplanctónicos (Keating, 1978; Kearns and Hunter, 2000; Kearns and 

Hunter, 2001). As espécies testadas no presente estudo são fontes de alimento 
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altamente edíveis pelo zooplâncton, sugerindo que a sua redução no meio ambiente, 

devida ao efeito alelopático mencionado, pode também levar ao decréscimo da 

comunidade zooplanctónica e da sua diversidade específica. 

Além deste efeito indirecto sobre o zooplâncton, a estirpe de A. flos-aquae utilizada 

mostrou também provocar efeitos significativos na sobrevivência e reprodução dos 

cladóceros testados (D. magna e D. longispina), ao ser fornecida como alimento 

exclusivo, relativamente a um controlo utilizando Pseudokirchneriella subcapitata (Cap. 

VI). Os efeitos negativos acompanharam uma tendência gradual de aumento, à medida 

que a estirpe de A. flos-aquae utilizada tivesse sido cultivada num meio com 

concentrações cada vez maiores de fosfatos. A produção de toxinas pode ser um 

importante factor responsável pelos efeitos registados, pois os níveis mais elevados de 

microcistina são normalmente verificados em condições de elevadas concentrações em 

fósforo (Rapala et al., 1997). No entanto, a produção de outras cianotoxinas poderá 

também ter determinado o decorrer dos ensaios, visto A. flos-aquae possuir estirpes 

capazes de sintetizar também anatoxina-a (Rapala et al., 1993 in Lehtimäki et al., 1997) e 

saxitoxinas (Pereira et al., 2000; Ferreira et al., 2001). Em próximos ensaios, o despiste 

da produção destas outras toxinas deverá ser tomado em consideração. No entanto, os 

efeitos negativos desta estirpe de A. flos-aquae sobre a comunidade de cladóceros 

confirmam o declínio acentuado registado para as espécies de Daphnia aquando do 

bloom da cianobactéria na Lagoa da Vela (Antunes et al., in press). 

Concluindo, os resultados obtidos em laboratório parecem estar em conformidade 

com os dados ambientais. Assim, em resumo, a estirpe de A. flos-aquae isolada do 

bloom na Lagoa da Vela desenvolve-se bem em condições de disponibilidade de fósforo, 

resistindo à indisponibilidade de azoto pela sua capacidade de fixação do azoto 

atmosférico e apresentando, assim, uma vantagem competitiva relativamente às 

restantes espécies fitoplanctónicas existentes na Lagoa quando os níveis de azoto no 

meio são muito reduzidos. Mais, os estudos laboratoriais de ecotoxicidade sugerem uma 

capacidade alelopática desta cianobactéria sobre outras microalgas, nomeadamente 

clorófitas. Os cladóceros também mostraram ser afectados na sua sobrevivência e na 

sua reprodução, ao serem sujeitos a um regime alimentar utilizando esta estirpe de A. 

flos-aquae como fonte de alimento exclusiva. Além disso, a falta de alimento edível, 

provocada pelo efeito alelopático acima referido, pode também condicionar a manutenção 

da comunidade zooplanctónica. Produza ou não cianotoxinas, esta estirpe 

cianobacteriana provou ter efeitos aos níveis das comunidades fitoplanctónica e 

zooplanctónica.  
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Se a produção de microcistina por esta estirpe de A. flos-aquae vier a ser 

confirmada por estudos posteriores, é necessário focar a atenção no potencial perigo de 

contaminação dos produtos agrícolas (particularmente os utilizados para consumo 

humano) por bioacumulação da toxina (Codd et al., 1999), ao irrigar as culturas com água 

da lagoa. Além disso, já foram provados os efeitos que esta toxina pode provocar no 

desenvolvimento de muitas culturas agrícolas (McElhiney et al., 2001; Hamvas et al., 

2003). 

Actualmente, é necessária uma gestão adequada e eficaz dos sistemas hídricos 

relativamente à entrada de nutrientes (especialmente fosfatos e nitratos) nos sistemas 

aquáticos, de forma a evitar a ocorrência destes blooms de cianobactérias 

potencialmente tóxicas e os possíveis riscos de intoxicações por elas provocados. 

Adicionalmente, é imperativo o desenvolvimento de uma sensibilização integrada do 

público, agricultores e industriais relativamente aos potenciais efeitos perigosos deste tipo 

de fenómenos para a Saúde Pública, enfatizando a responsabilidade de cada 

interveniente na introdução excessiva desses nutrientes no meio aquático. Através de 

uma melhor compreensão da dinâmica ecológica dos sistemas aquáticos, por todos os 

intervenientes, poder-se-á atingir uma gestão integrada, responsável e mais eficiente e 

efectiva desses mesmos sistemas aquáticos. 
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