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resumo 
 

 

A proteína precursora de amilóide de Alzheimer (PPA) é uma proteína cerebral 
fundamental, envolvida em mecanismos celulares como a adesão e migração 
celular e neuritogénese. Como fosfoproteína, a PPA apresenta oito resíduos 
fosforiláveis no seu domínio citoplasmático. Um desses resíduos, Serina 655 
(S655), localiza-se no motivo funcional 

653
YTSI

656
, e a sua fosforilação altera o 

tráfego e o processamento da PPA, podendo ainda mediar a ligação desta a 
outras proteínas através de um hydrophobic pocket localizado imediatamente a 
jusante ao motivo YTSI (

657
His-Lys

676
). Nomeadamente, a proteína Gαo, uma 

subunidade α de proteínas G heterotrimérica, liga-se à PPA neste local. A Gαo 
está envolvida em várias cascatas de sinalização e é o membro da família G i/o 
mais abundante no cérebro. Quando ativada, a Gαo consegue induzir fatores 
de crescimento relacionados com a via JAK2/STAT3 via Rap, provavelmente 
através da interação e sequestro de proteínas RapGAP. Adicionalmente, a Gαo 
foi sugerida como um transdutor da PPA, funcionando esta como um guanidine 
exchange factor (GEF) para a Gαo. No entanto, ainda não foi atribuído nenhum 
papel funcional a esta interação. 
O presente trabalho teve como principal objetivo determinar o papel da PPA na 
cascata de sinalização da STAT3 induzida por Gαo, pela análise dos efeitos da 
co-transfecção de PPA-Gαo nos níveis de STAT3 e STAT3 fosforilada através 
de Western blot. Para isto, células humanas de neuroblastoma SH-SY5Y são 
co-transfectadas por 6h e 24h com PPA-GFP cDNAs (Wt ou fosfomutantes 
S655: S655A, SA, e S655E, SE) e Gαo ou GαoCA (um mutante Q205L que 
mimetiza um estado constitutivamente activo da Gαo). Adicionalmente, foi 
estudado como é que os metabolismo da PPA e da Gαo afetam-se um ao 
outro, através da quantificação dos níveis de Gαo, PPA e PPAs secretada por 
Western blot. 
Em geral, os resultados obtidos mostram que as co-expressões de PPA-GFPs 
com Gαo/GαoCA levam a um decréscimo da fosforilação da STAT3 induzida 
por Gαo. Isto parece ocorrer através da indução de um efeito retro-inibitório nas 
vias Gαo-STAT3 após a ativação inicial da Gαo e, enquanto este efeito é mais 
pronunciado para o mutante que reproduz desfosforilação do resíduo S655 da 
PPA, a fosforilação neste mesmo resíduo parece retardar este efeito. Em 
concordância, a PPA invariavelmente diminui os níveis de Gαo e a Gαo 
também diminui os níveis de PPA, potencialmente envolvendo um mecanismo 
de inibição da ativação da STAT3 induzida pela Gαo através da PPA por 
degradação lisossomal PPA/Gαo. 
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abstract 
 

The transmembranar Alzheimer’s Amyloid Precursor Protein (APP), an 
important brain protein, is potentially involved in cellular mechanisms such as 
cell adhesion, migration and neuritogenesis. As a phosphoprotein, APP has 
eigth phosphorylatable residues in its cytoplasmic domain. One of these 
residues, S655, lies within the APP 

653
YTSI

656
 sorting motif, and its 

phosphorylation alters APP trafficking and processing, and may potentially 
mediate its binding to other proteins by means of a hydrophobic pocket 
localized immediately downstream the YTSI motif (

657
His-Lys

676
). This is the 

pocket to which Gαo, an alpha subunit of heterotrimeric G proteins, binds to. 
Gαo mediates various signaling pathways and is the most brain-enriched 
member of the Gαi/o family. When activated, Gαo can induce the growth factors-
related JAK2/STAT3 pathway via Rap, probably through interaction and 
sequestration of RapGAP proteins. Gαo has been suggested to be a transducer 
of APP, with APP acting as a guanidine exchange factor (GEF) for Gαo. 
Nonetheless, no functional role has been attributed to this interaction. 
In the work here described, the role of APP in Gαo-induced STAT3 signaling 
was assayed, by analysing the effects of APP-Gαo co-transfection in STAT3 
and phospho-STAT3 levels by Western blot means. For this, human SH-SY5Y 
neuroblastoma cells were co-transfected for 6h and 24h, with APP-GFP fusion 
cDNAs (Wt or S655 phosphomutants: dephosphomimicking S655A and 
phosphomimicking S655E) and Gαo or GαoCA (a Q205L mutant mimicking 
constitutively active Gαo). Additionally, the effects of APP and Gαo in each other 
metabolism were also evaluated, by quantifying the levels of Gαo, APP and 
medium secreted sAPP by Western blot analysis. 
In general, the results obtained show that APP-GFPs co-expression with 
Gαo/GαoCA leads to a decrease in Gαo-induced STAT3 phosphorylation. This 
appears to occur via a retro-inhibition effect on the Gαo-STAT3 pathways 
following an initial Gαo activation and, while is more pronounced for the S655 
dephosphomimicking mutant, phosphorylation at S655 appears to delay this 
effect. Accordingly, APP invariably decreases Gαo half-life, and Gαo also 
decreases APP levels, with APP/Gαo lysosomal co-degradation being a 
potential mechanism by which APP inhibits Gαo-induced STAT3 activation. 
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APP intracellular C-terminal domain 
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GTP-bindign protein 

Gαi 

  

inhibitory G-protein alpha 

GAIP 

  

Gα-interating protein  

GAP-43 

  

Growth cone-associated protein 

GAPs 
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pSTAT3 
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SE APP/SE 

 

Phosphorylated S655 APP mutant 
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1. Introduction 

 

1.1.  Alzheimer’s Disease 

1.1.1. Alzheimer’s Disease pathology 

 

Alzheimer’s disease (AD), a disorder of unknown etiology, is the most common 

form of dementia in the elderly. AD is a chronic disorder, apparently preceded by a 

clinically silent period of several years or even decades, which slowly and irreversibly 

destroys neurons and causes serious cognitive disability (Arendt, 2001; Bojarski, Herms et 

al., 2008).  

Since it was presented for the first time in 1906 by Alois Alzheimer, this 

neurodegenerative disease is affecting an increasing number of individuals. In 2006, 

approximately 26.6 million people worldwide suffered from AD, and because of the 

growing life expectancy, the global prevalence of Alzheimer’s can be predicted to be more 

than 100 million in 2050 (Selkoe, 2004; Brookmeyer, Johnson et al., 2007).  

AD cases have been described according to lesions type, the type of onset, the 

cause (genetic or sporadic) and associated lesions (e.g. vascular lesions). Clinically, in the 

beginning, AD is characterized by a mild cognitive impairment and deficits in short-term 

and spatial memory, which can be confused with the normal changes of aging. The 

symptoms become more severe with disease progression and not only destroy a person’s 

memory, but the patient also presents disturbances in language use, perception, ability to 

learn necessary skills, reason, solve problems, think abstractly, make judgment, 

communicate and carry out daily activities. In some patients, AD can even lead to 

personality and behavioural changes (Marotta, Majocha et al., 1992; Arakawa, Kita et al., 

2008; Hooijmans and Kiliaan, 2008). In Figure 1 is depicted a comparison between a 

normal and an AD brain, through a brain cross-section, highlighting some of the 

neuropathological alterations in AD brains, including brain shrinkage. 
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The clinical symptoms of AD result from neuropathological lesions, including 

deposition of amyloid plaques (APs) and neurofibrillary tangles (NFTs), in characteristic 

brain regions, together with downstream reactive processes such as inflammation and 

oxidative stress, leading to loss of effective neural network connectivity, synaptic 

degeneration and progressive neuronal cell death (Bojarski, Herms et al., 2008; 

Duyckaerts, Delatour et al., 2009; Hampel, Shen et al., 2010; Lin and Luo, 2011). Of note, 

some reports indicate that AD could be a disease where not only neurons are affected, but 

also peripheral cells such as fibroblasts, lymphocytes and platelets (Bojarski, Herms et al., 

2008).  

The neuropathological and biochemical features of AD develop the disorder and 

delay the diagnosis, since the symptoms appear later on (Lemere and Masliah, 2010). 

Although there are currently accepted clinical guidelines for the probable diagnosis of AD, 

the definitive diagnosis of AD happens at autopsy with the postmortem examination of the 

brain, which reveals large quantities of NFTs and APs within the parenchyma (Marotta, 

Fig. 1: This image represents a cross-section of the brain as seen from the front. On the left the cross-section 

represents a normal brain and the one on the right represents a brain with Alzheimer's disease. Reproduced from 

American health assistance foundation (January 2012), http://www.ahaf.org/alzheimers/about/understanding/brain-with-

alzheimers.html 
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Majocha et al., 1992). In Figure 2, we can observe AP and NFT in a microscopic analysis 

of the AD brain. 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Several symptomatic treatments are in use for AD, but they are incapable of 

reversing the pathology of disease, namely, the widely used acetylcholinesterase inhibitors, 

which reduce inflammation and alleviate the symptoms. Recently, new therapeutic drugs 

are being developed, including vaccines aiming to destroy AP plaques before or after being 

aggregated. 

 

1.1.2. Hallmarks of AD 

The two major pathological hallmarks of AD that appear to be more correlated with 

the clinical symptoms are the extracellular amyloid plaques (also called senile plaques), 

and the intracellular neurofibrillary tangles. 

The APs are aggregated, insoluble, dense cores of 5-10 nm amyloid fibrils with 

surrounding reactive cells, dystrophic neurites, lysosomes, abnormal mitochondria, 

astrocytic processes and activated microglia (Fig. 3). The main proteinaceous component 

of APs is the neurotoxic β-amyloid (Aβ) peptide, produced by proteolytic cleavages of a 

type I transmembranar glycoprotein named β-amyloid precursor protein, APP (Selkoe, 

1999; Duyckaerts, Delatour et al., 2009; Hampel, Shen et al., 2010; Lemere and Masliah, 

2010). Amyloid-containing senile plaques are a prominent feature of specific AD brain 

Fig. 2: Histopathological analysis of an AD brain tissue, post-mortem. In this tissue cut we can observe the 

neurofibrillary tangles and amyloid plaques. Reproduced from Experimental genetics group (January 2012), 

http://med.kuleuven.be/legtegg/AD.html 
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regions, affect limbic and cortical structures, like cerebral cortex, amygdaloid nucleus, 

corpus striatum, diencephalon and hippocampus, but they also have been described in the 

cerebellum (Marotta, Majocha et al., 1992; Lukiw and Bazan, 2000; Merlo, Spampinato et 

al., 2010). The mechanisms responsible for the excessive accumulation of β-amyloid in the 

AD brain are unknown, but a few genetic, molecular biology and protein chemistry 

hypotheses have been proposed to explain the disease process (Marotta, Majocha et al., 

1992). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The neurofibrillary tangles (Fig. 3) derive from the intracellular accumulation of 

paired helical filaments resulted from hyperphosphorylation of a microtubule-associated 

protein known as Tau, causing it to aggregate into an insoluble form. In AD, this abnormal 

Tau protein induces the microtubule structures to collapse inside neuronal cell bodies, 

axons and dendrites (Hooijmans and Kiliaan, 2008; Duyckaerts, Delatour et al., 2009; 

Merlo, Spampinato et al., 2010). The progression of Tau pathology is stepwise and 

stereotyped from the entorhinal cortex, through the hippocampus, to the neocortex 

(Marotta, Majocha et al., 1992). 

Fig. 3: Representation of nerve cells within AD brains. The tissue with AD presents a much smaller number of nerve 

cells and synapses than a healthy brain; APs are abnormal deposits of protein fragments between nerve cells; the dead 

and dying nerve cells contains neurofibrillary tangles. Reproduced from health news (January 2012), 

http://www.healthinformer.net/alzheimer-disease-plaques-seen-with-conventional-mri-in-animal-model-for-the-first-

time.html 

http://en.wikipedia.org/wiki/Phosphorylation
http://en.wikipedia.org/wiki/Microtubule
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Although controversies still exist on the real causes of AD and on the precise 

relationship between Aβ, Tau and AD pathogenesis, the ability to determine both proteins 

levels in living people could markedly improve AD diagnosis and treatment, and these 

proteins still considered the most possible targets for new therapies (Merlo, Spampinato et 

al., 2010). 

The synaptic loss in AD is difficult to evaluate, however it is an early pathological 

hallmark of AD that is age dependent and largely independent of Aβ. More than Aβ 

deposits, this hallmark could be the neuropathological alteration that is more correlated 

with neuronal damage, cognitive decline and memory impairment (Hooijmans and Kiliaan, 

2008; Duyckaerts, Delatour et al., 2009). Furthermore, synaptic dysfunction and failure of 

brain connectivity appears to predate neuronal loss (Coleman, Federoff et al., 2004; 

Hooijmans and Kiliaan, 2008). Studies indicate that the neurodegenerative process initiates 

in the temporal lobe structures, like entorhinal cortex, followed by synapse disfunction and 

loss in the hippocampus (Coleman, Federoff et al., 2004; Duyckaerts, Delatour et al., 

2009). 

The plaques and tangles formation accompany this process, however research 

demonstrate that synaptic loss and memory impairment precede APs in the limbic system 

(Mucke, Masliah et al., 2000), and AD has been associated with synaptic disruption also in 

specific cortical areas (Duyckaerts, Delatour et al., 2009). 

These evidences demonstrate that synaptic failures of AD begin prior to neuronal 

loss, plaques and tangles development, and also prior to clinical detection of disease. The 

explicit recognition that AD starts long before the appearance of the traditional ways of 

detecting the illness will highlight the need of the development of early diagnosis 

(Coleman, Federoff et al., 2004). 

 

1.1.3. Risk factors 

As mentioned above, the cause or causes of AD are not yet identified and there is 

no cure, so efforts are needed for preventing the development of the dementia. Many 

theories have been proposed, like the “amyloid cascade hypothesis”. The amyloid 

deposition is seen as the primary pathway leading to neurodegeneration and AD. Although 

this hypothesis is one of the most persistent, there are yet controversy in some results, such 

as: the conflicting results about the neurotoxicity of deposited Aβ in vivo (Bishop and 
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Robinson, 2002); the fact that Aβ accumulation is not the earliest hallmark and is not 

always correlated to neuronal loss (Mucke, Masliah et al., 2000); the fact that many non-

demented persons show large amounts of AD neuropathologicals events (Hooijmans and 

Kiliaan, 2008). 

So, it becomes necessary to study the AD risk factors and underlying theories to 

explain the etiology of this illness. Some researchers suggest various theories and risk 

factors that play an important role in AD pathogenesis, like deregulation of calcium 

homeostasis (Bojarski, Herms et al., 2008), cardiovascular disorders (Hooijmans and 

Kiliaan, 2008), abnormal activation of lipid signaling (Lukiw and Bazan, 2000), induction 

of oxidative stress, and others. 

AD risk factors can be subdivided in sporadic and familial AD. About 95% of all 

AD cases appear to be of random, idiopathic or sporadic origin (Hooijmans and Kiliaan, 

2008). These sporadic cases involve the most significant risk factor – age – in concert with 

genetic and environmental risk factors. Some researchers suggest that a combination of 

lifestyle, genetic, and amyloid related factors, which enhance each other contribution in the 

onset and course of AD, will probably be at the etiology of the disease instead of being 

only one mechanism (Hooijmans and Kiliaan, 2008). In the group of risk factors for 

sporadic AD, the environmental factors are associated with a combination of life events, 

such as early-life childhood and adolescent environment, psychosocial and mental 

inactivity, loss of motivation and mental stress, a lower level of education and occupation, 

improper diet, higher age, exposure to neurotoxic factors, brain injury, and vascular disease 

(Arendt, 2001). The best-known genetic risk factor in late-onset sporadic AD is the 

apolipoprotein E (APOE) gene. This gene is located on chromosome 19 that encode the 

apolipoprotein E (ApoE) protein (Ling, Morgan et al., 2003). ApoE is polymorphic with 

three isoforms, ApoE2, ApoE3 and ApoE4, which translate into three alleles of the gene 

and differ from each other at two amino acids. ApoE plays an important role in cholesterol 

transport in the central nervous system and in AD development, which relates to its ability 

to interact with Aβ (Ling, Morgan et al., 2003; Hooijmans and Kiliaan, 2008; O'Brien and 

Wong, 2011). The mechanism by which ApoE4 predisposes individuals to AD is not clear. 

However, pathologically the evidence is that ApoE4 accelerates brain Aβ deposition, APs 

formation and loss of neuronal function by stimulating APP processing and reducing Aβ 

clearance (Ling, Morgan et al., 2003; Hooijmans and Kiliaan, 2008). 
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Familial AD is the second most important risk factor group. About 1% of AD cases 

occur due to this group of risk factors (Chiba, Nishimoto et al., 2007). This early onset AD 

develops because of missense mutations in the genes coding for the amyloid precursor 

protein (APP) on chromosome 21, presenilin 1 (PSEN1) on chromosome 14, and presenilin 

2 (PSEN2) on chromosome 1, all causing abnormal processing of APP to Aβ and 

production of Aβ-related neurotoxic peptides (Lukiw and Bazan, 2000; Hooijmans and 

Kiliaan, 2008). 

As mentioned before, APP is the precursor of Aβ and these proteins are implicated 

in the pathogenesis of both sporadic and familial AD. The APP gene localizes in the same 

chromosome that causes Down’s syndrome (trisomy 21), chromosome 21. The patients 

with this syndrome reveal the classical neuropathological features of AD, like APP 

overexpression, which results in brain Aβ accumulation, and formation of neurofibrillary 

tangles (Hooijmans and Kiliaan, 2008; O'Brien and Wong, 2011). This finding led to a 

specific search for families with early-onset AD with genetic linkage to chromosome 21 

and resulted in the identification of several missense mutations in APP, associated to 

familial AD (Hooijmans and Kiliaan, 2008). In familial AD, mutations of APP gene cause 

a change in amino acids adjacent to the BACE1 (enzyme essential for the generation of 

Aβ) cleavage site, or occur around the -secretase cleavage site, and result in alteration of 

APP proteolytic processing to Aβ, leading to increased production of total Aβ or to 

production of a more toxic Aβ peptide (Chiba, Nishimoto et al., 2007; Cole and Vassar, 

2007; O'Brien and Wong, 2011). 

Presenilins proteins (PS1 and PS2) are integral components of a multiprotein 

protease complex, called -secretase, which is responsible for the cleavage of APP and 

other important proteins such as Notch, an essential cell development protein, similar to 

APP in size and intracellular localization (Ling, Morgan et al., 2003; Bojarski, Herms et 

al., 2008). Presenilins are involved in a range of physiological and biological processes 

(Ling, Morgan et al., 2003). The familial AD mutations in PSEN1 and PSEN2 show that 

the efficiency of presenilin-mediated Notch cleavage is reduced, in contrast to the effects 

on APP processing (Ling, Morgan et al., 2003). Indeed, mutations in presenilins genes lead 

to an increased production of the more toxic Aβ42, a form of Aβ peptide that is particularly 

prone to precipitate and aggregate, relative to Aβ40 (Ling, Morgan et al., 2003; O'Brien 

and Wong, 2011).  
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The Figure 4 summarizes the various AD risk factors above mentioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

  

  

 

 

 

 

 

 

 

 

 

 

1.2.  The β-Amyloid Precursor Protein (APP) 

As mentioned previously, Amyloid Precursor Protein (APP) is the precursor of the 

major protein component of senile plaques in Alzheimer’s disease, Aβ. APP is an integral 

type-I transmembranar glycoprotein that suffers cleavages, by protease activity, in different 

fragments including the Aβ. 

APP is ubiquitously expressed, as e.g. in endothelial cells, smooth muscle cells and 

all peripheral cells; in the central nervous system (CNS) it is abundantly expressed in 

neurons. Other brain cells that also express APP and release variable amounts of Aβ are 

glial cells, such as astrocytes (Perez, Zheng et al., 1997; King and Scott Turner, 2004). 

Despite years of intense investigation, the biological functions of normal APP are 

still far from clear. It is known that APP is important for normal CNS function. APP 

resembles a cell surface signaling receptor, and has been involved in memory regulation, 

Fig. 4: Various risk factors involved in neurotoxicity and AD onset. Proposed sequence of events in the development 

of AD, with a possible influence of Aβ, Tau and other risk factors. Adapted from Arakawa, Kita et al. (2008)  
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cell-cell interaction, cell adhesion, cell survival, cell growth, neurite outgrowth, and 

protease inhibition (King and Scott Turner, 2004). APP has also been implied in pro- and 

anti-apoptotic functions. (De Strooper and Annaert, 2000). 

 

1.2.1.  APP gene family, isoforms and domains 

In humans, the APP gene is located on the chromosome 21q21, and contains 19 

exons, of which exons 7, 8 and 15 can be alternatively spliced (De Strooper and Annaert, 

2000; da Cruz e Silva and da Cruz e Silva, 2003; Ling, Morgan et al., 2003). APP belongs 

to a family of related proteins that includes the amyloid precursor-like proteins (APLP1 

and APLP2) in mammals and amyloid precursor protein-like (APPL) in Drosophila, 

Caenorhabditis elegans, and Xenopus (De Strooper and Annaert, 2000; O'Brien and Wong, 

2011). All these are homologous type I transmembranar proteins with overlapping 

expression in brain, similarly metabolism, and that exhibit some functional redundancy 

(King and Scott Turner, 2004). Nonetheless, only APP cleavage gives rise to the Aβ 

peptide, which is derived from the domain encoded by parts of exons 16 and 17 (da Cruz e 

Silva and da Cruz e Silva, 2003; Ling, Morgan et al., 2003). 

Alternative splicing of the APP transcript generates at least 8 isoforms, ranging 

from 365 to 770 amino acids (da Cruz e Silva and da Cruz e Silva, 2003; King and Scott 

Turner, 2004; O'Brien and Wong, 2011). The three most common isoforms, however, 

predominate in a cell-type specific manner, and differ only in the size of their extracellular 

sequence: APP695, APP751 and APP770 (Fig. 5). APP695 is expressed predominantly in the 

CNS neurons, and the APP751 and APP770 are more expressed in non-neuronal cells, but are 

also found in brain glial cells (Selkoe, 2001; King and Scott Turner, 2004; O'Brien and 

Wong, 2011). All of these transcripts encode multidomain proteins with a single 

membrane-spanning region. The APP751 and APP770 differ from the APP695 in the 

expression of exon 7, which encodes a Kunitz serine protease inhibitor (KPI) domain 

(Selkoe, 2001). 
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Studies revealed that the different APP isoforms respond differently under various 

experimental conditions, like Aβ addition. All these three isoforms contain exons 16 and 

17, but APP695 responds more readily than the other isoforms to the accumulation of Aβ 

(da Cruz e Silva and da Cruz e Silva, 2003). 

 

 

 

 

 

 

The complete crystal structure of APP and the ligands or receptors that interact with 

the large APP ectodomain are not yet much understood (De Strooper and Annaert, 2000). 

However, a number of distinct, large independently-folding structural domains have been 

identified in the APP sequence. APP possesses three general domains: a large glycosylated 

extracellular component, a single membrane-spanning region and a short intracellular 

cytoplasmic domain (Hampel, Shen et al., 2010) (Fig. 6). 

Fig. 5: Schematic representation of the three major APP isoforms found in mammalian tissues. The number and 

vertical lines delineate the corresponding exons. The most abundant neuronal isoform is APP695 (exons 1-6, 9-18) that 

comprises 695 amino acids. As illustrated, APP751 (exons 1-7, 9-18) and APP770 (exons 1-18) are alternatively spliced 

isoforms that differ from APP695 in the expression of exons 7 and 8. The sequences encoded by the APP gene exons are 

indicated approximately to scale. The Aβ domain it’s represented in this figure as the solid gray region, whose sequence 

is divided between exons 16 and 17. Reproduced from da Cruz e Silva and da Cruz e Silva (2003)  
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The large extracellular region can be subdivided into several functional domains 

(Fig. 6). At the N-terminal is a cysteine-rich region consisting in a growth factor domain 

(GFD) and a copper-binding domain (CuBD) that interact tightly together. The GFD binds 

heparin and can stimulate neurite outgrowth (Kong, Miles et al., 2008). The CuBD of APP 

may regulate proteolytic processing or act as a metallotransporter. The copper binding to 

this domain affects the dimerization state of APP leading to reduction in Aβ production, 

whereas copper binding to the Aβ generates toxic species (Bossy-Wetzel, 

Schwarzenbacher et al., 2004; Kong, Miles et al., 2008). Studies revealed that the cysteine-

rich region also contains a zinc-binding domain. This APP metal-binding site was assumed 

to play mainly a structural role, modifying its conformation and interfering with APP 

binding to constituents of the extracellular matrix (De Strooper and Annaert, 2000). 

The copper-binding domain is followed by an acidic domain, which links the 

cystein-rich region to a Kunitz-type protease inhibitor (KPI) domain and an OX2 domain. 

The KPI and OX2 domains can be spliced out, to produce three main isoforms: APP770, 

APP751 and APP695. The longer isoforms APP751 and APP770 contain a 56-amino acid KPI 

domain, located in the middle of the APP ectodomain, which inhibits serine proteases. The 

OX2 domain is only present in APP770 (King and Scott Turner, 2004). Following these 

domains there is a glycosylated domain referred to as E2 (sometimes called the D6a, like in 

Figure 6) and an unstructured region, D6b, which precedes the transmembranar domain. 

The E2 domain possesses the RERMS motif that appears to have putative growth-

promoting properties and also has a heparin binding site (De Strooper and Annaert, 2000; 

Kong, Miles et al., 2008). 

Another specific domain that implicates a role for APP as a cell surface receptor is 

the C-terminal cytoplasmic tail. This region contains several consensus motifs that regulate 

Fig. 6: Schematic representation of functional domains arrangement of APP, highlighting some important regions. 
The N-terminal growth factor domain (GFD) is followed by copper-binding domain (CuBD), an acidic-rich region, 

Kunitz-type protease inhibitor (KPI) and OX2 domains that occur in some APP isoforms, a couple of glycosylated 

domains (D6a, sometimes called the E2 domain, followed by an unstructured domain, D6b), a transmembrane region 

(TM) and a cytoplasmic tail. The location of the Aβ region, a major component of Alzheimer’s disease plaques, is shown 

in red. Reproduced from Kong, Miles et al. (2008) 
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its trafficking and suggest a role in signal transduction, through interaction with several 

proteins (De Strooper and Annaert, 2000; Evin and Weidemann, 2002). The APP 

cytoplasmic domain has been shown to bind to the Fe65 protein and G proteins, for 

example. Some APP hereditary mutations that are linked with AD can cause constitutive 

activation of Go, a member of the heteromeric G protein family that serve as signal 

transducers of various cell surface receptors (Kong, Miles et al., 2008).  

 

 

1.2.2. APP metabolism: trafficking and processing 

As described above, APP is produced in large quantities in neurons and is 

metabolized very rapidly. APP traffic (Fig. 7) is tightly regulated and along it APP can be 

cleaved by specific proteases. APP follows the constitutive secretory pathway, being N-

glycosylated in the endoplasmic reticulum (ER) (immature APP) and further O-

glycosylated (APP maturation) in the Golgi, where it is highly abundant (Thinakaran and 

Koo, 2008; Vieira, Rebelo et al., 2010). After sorting in the ER and Golgi, APP is 

delivered to the axon, where it is transported by fast axonal transport to presynaptic 

terminals (O'Brien and Wong, 2011). APP can be packaged into secretory vesicles in the 

Trans-Golgi network (TGN) and delivered to the plasma membrane (PM). On the cell 

surface, APP may be proteolytically processed or suffer internalization, via its YENPTY 

motif, being delivered into the endocytic pathway (endosomes). Then, APP is either 

transport to lysosomes, where it suffers lysosomal degradation, or recycled by transport 

vesicles to the TGN or to the cell surface (Vieira, Rebelo et al., 2010). 

Crucial steps in APP metabolism occur at the cell surface and in the TGN. From the 

TGN, APP is transported via a clathrin coat complex, which mediate two steps: the 

transport directly to an endosomal compartment, and its reinternalization from the cell 

surface into the endocytic pathway, connecting the cell surface to the endosome (O'Brien 

and Wong, 2011). APP contains the NPXY (asparagiNe-Proline-any-tYrosine) amino acid 

motif (YENPTY domain), a conserved sorting signal that regulates the targeting of 

proteins for clathrin pit localization and their transport via clathrin-associated vesicles from 

the cell surface to the endosome (Evin and Weidemann, 2002; Small and Gandy, 2006; 

O'Brien and Wong, 2011). 
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Another complex that is implicated in APP transport is the retromer complex. The 

retromer is a multi-subunit complex that mediates the retrograde transport of several 

transmembranar proteins from endosomes to the TGN (Vieira, Rebelo et al., 2010). This 

complex consists of two sorting nexin subunits and a cargo-recognition trimer, vacuolar 

protein sorting (VPS) 26, VPS29, VPS35 (Small and Gandy, 2006). Several findings 

indicate that a dysfunctional retromer complex and/or one of its sorting receptor 

components, sorLA (a type-1 transmembrane molecule), can be related to late onset AD 

pathology (Vieira, Rebelo et al., 2010). Indeed, the TGN retrieval pathway, involving 

sorLA and the retromer, has been inversely correlated with Aβ production. Further studies 

revealed that phosphorylation of APP in the Ser655 residue enhances APP binding affinity 

for sorting proteins, such as the retromer-related VPS35 protein (at the core of the 

retromer) (Vieira, Rebelo et al., 2010). Ser655 phosphorylation was found to enhance both 

the protein exit from the Golgi, and its recycling back to the TGN from endosomes, 

increasing its cleavage to sAPPα during this trafficking cycle. 

Fig. 7: Schematic representation of APP trafficking in neurons. Newly synthesized APP (purple) is transported from 

the Golgi down the axon to the cell surface (1) or into a cell body endosomal compartment (2), with clathrin-associated 

vesicles (red) mediating both steps. In the cell surface, some APP is cleaved by α-secretase (6), generating the sAPPα 

fragment (green), and some is re-internalized into endosomes (3), where Aβ and sAPPβ are generated (blue). Following 

proteolysis, the endosome recycles to the cell surface (4), releasing Aβ and sAPPβ. Transport from the endosomes to the 

Golgi prior to APP can also occur, mediated by the retromer (5).  Reproduced from O'Brien and Wong (2011) 
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In what concerns cleavage, there are mainly two pathways for APP proteolytic 

processing: the amyloidogenic and non-amyloidogenic, distinguished by the mutually 

exclusive action of two different enzymes in the first cleavage event (Fig. 8). 

 

 

 

 

 

 

 

 

 

 

In the non-amyloidogenic pathway, cleavage of APP by α-secretase produces a 

large soluble extracellular N-terminal fragment, sAPPα, which has neuroprotective 

properties, and a C83 membrane-bound C-terminal fragment. This cleavage divides the Aβ 

domain and precludes the formation of intact Aβ. So, stimulating α-cleavage of APP leads 

to a significant decrease in Aβ generation (Evin and Weidemann, 2002; Ling, Morgan et 

al., 2003). This activation is a relatively major and ubiquitous pathway of APP metabolism 

in most cells. Membrane-bound disintegrin and metalloproteinases including ADAM17 

(also called TACE), ADAM10, ADAM9 and MDC-9 are proteins that have been identified 

as having α-secretase-like activity (Evin and Weidemann, 2002; Ling, Morgan et al., 

2003). The constitutive α-secretase activity occurs primarily at the cell surface, while the 

Fig. 8: Schematic diagram of APP proteolytic processing. APP can undergo proteolytic processing via two pathways: 

amyloidogenic and non-amyloidogenic. Cleavage of APP by β-secretase occurs at the beginning of the Aβ domain and 

generates a shorter soluble N-terminus, APPsβ, as well as an amyloidogenic C-terminal fragment (CTF-β, C99). 

Alternatively, α-secretase cleavage, within the Aβ domain, generates the large soluble N-terminal, APPsα, and a non-

amyloidogenic C-terminal fragment (CTF-α, C83). Further proteolysis of these fragments by -secretase results in 

generation of either the Aβ (amyloidogenic pathway) or p3-fragment (non-amyloidogenic pathway) and a cytoplasmic 

APP intracellular C-terminal domain (AICD). Reproduced from Kumar and Walter (2011) 
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regulated activity is predominantly located within the Golgi apparatus (Ling, Morgan et al., 

2003; Small and Gandy, 2006). There are several factors that can increase this pathway, by 

mechanisms involving the formation and release of secretory vesicles from the TGN, and 

thus enhancing APP (and possibly α-secretase) trafficking to the cell surface, as for 

example the activation of protein kinase C by phorbol esters (Evin and Weidemann, 2002; 

Ling, Morgan et al., 2003; da Cruz e Silva, Rebelo et al., 2009). 

The alternative, amyloidogenic pathway is characterized by the cleavage of APP by 

β-secretase at its β-cleavage site, producing the large soluble sAPPβ peptide and the 

carboxy-terminal fragment (CTF) C99. This pathway constitutes the first step in the 

formation of Aβ and is particularly enriched in neurons (Evin and Weidemann, 2002). Two 

novel transmembrane aspartyl proteases homologues, β-site APP-cleavage enzymes 

BACE1 and BACE2, were identified to cleave APP at the β-secretase sites. The major 

neuronal β-secretase that governs the first enzymatic step in this APP processing is 

BACE1. This protease appears to be produced as a pro-enzyme predominantly within the 

nuclear envelope and the ER (Ling, Morgan et al., 2003). The prodomain in BACE1 does 

not support activity but appears to facilitate correct folding of the active protease domain. 

This domain is cleaved by proprotein convertases (PPCs) immediately before trafficking 

through the Golgi (Ling, Morgan et al., 2003). Although the interaction of APP with 

BACE1 can occur in the ER and on the cell surface, evidence suggests that active BACE1 

predominantly localizes in the TGN and endosomes, consistent with the amyloidogenic 

cleavage of wild-type APP during endocytic/recycling steps (Evin and Weidemann, 2002; 

Ling, Morgan et al., 2003; Small and Gandy, 2006). The precise role of BACE2 in APP 

processing remains unclear. BACE2 shows similar substrate specificity, cleaving APP at 

the β-secretase site, but it also shows a distinct cellular localization pattern and intracellular 

protease specificity in the cleavage of APP that differentially affects the generation of Aβ 

(Ling, Morgan et al., 2003). Indeed, BACE2 can also have an α-secretase activity, cleaving 

APP in the middle of the Aβ domain, between Phe19 and Phe20 (Ling, Morgan et al., 

2003).  

The second enzymatic step is determined by cleavage of the membrane-bound C-

terminal APP fragments (CTFs) of each pathway by -secretase. The C83 and C99, 

fragments resulting from α-secretase and β-secretase cleavage, respectively, remain 

anchored in the membrane and may become degraded or can be further cleaved by -
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secretase, leading to the release and secretion of non-pathogenic p3 peptide and Aβ (Evin 

and Weidemann, 2002). In addition, in both pathways, -secretase cleavage generates a 

cytoplasmic APP intracellular C-terminal domain (AICD). -secretase is a multimeric 

complex composed of four essential transmembrane proteins: presenilin 1 or 2 (PS1 or 

PS2, respectively), nicastrin, APH-1 and PEN-2 (Small and Gandy, 2006; Thinakaran and 

Koo, 2008; O'Brien and Wong, 2011). This complex is essential for the sequential 

intramembranous proteolysis of a variety of transmembrane proteins, like APP, Notch and 

Cadherin. APH-1 aids the formation of a precomplex, which interacts with PS1 or PS2 

while Pen-2 enters the complex to facilitate the proteolytic cleavage of PS1 or PS2, which 

are critical to the γ-secretase complex (O'Brien and Wong, 2011). The ectodomain of 

nicastrin recognizes and binds to the previously cleaved transmembrane proteins (O'Brien 

and Wong, 2011). 

Several data indicates the presence of -secretase complex and its enzymatic 

activity in multiple compartments, including the ER, Golgi, TGN, endosomes and plasma 

membrane, but studies in cell lines have showed that APP cleavages occur mainly in the 

TGN and endosomes (Thinakaran and Koo, 2008). The -secretase complex cleaves at 

multiple sites within the APP transmembrane domain. The cleavage of C83, CTF resulting 

of α-secretase, leads to AICD and p3 fragments production. The processing of C99, 

consequent CTF of the amyloidogenic via, results in different Aβ forms and AICD. The 

AICD, free from the membrane, has been suggested to function as a transcription factor, 

but genes regulated by AICD have not been unambiguously identified (Hampel, Shen et 

al., 2010). The release of the cytoplasmic tail of APP by -cleavage may function in gene 

expression, with AICD being targeted to the nucleus, where it forms a multimeric complex 

with the nuclear adaptor protein Fe65 and the histone acetyltransferase Tip60, potentially 

stimulating the transcription of various genes, including APP itself (Ling, Morgan et al., 

2003). 

Noteworthy, APP metabolism may be regulated by direct APP phosphorylation, 

and the aberrant production of Aβ associated with AD may result from deregulated, 

abnormal APP phosphorylation (da Cruz e Silva and da Cruz e Silva, 2003). 
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1.2.3. Phosphorylation of APP 

The direct phosphorylation of APP might be important in APP-mediated roles such 

as neuronal differentiation, possible by altering APP traffic, by regulating APP proteolytic 

cleavage to its physiological fragments and/or the binding of APP to specific signal 

transducers. APP is a phosphoprotein with several well defined phosphorylated residues at 

its extracellular and intracellular portions (Fig. 9).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Only one phosphorylatable domain was identified in the extracellular ectodomain, 

and the residues shown to be phosphorylated are Ser198 and Ser206 (da Cruz e Silva, 

Fardilha et al., 2004). This phosphorylation appears to occur in two distinct cellular 

locations: in a post-Golgi secretory compartment and at the cell surface, by ectoprotein 

kinases (da Cruz e Silva, Fardilha et al., 2004). Particularly, phosphorylation of APP 

cytoplasmic tail comprises three crucial motifs, 
653

YTSI
656

, 
667

VTPEER
672

, and 

682
YENPTY

687
, which have been shown to regulate the interaction of APP with some of its 

binding proteins (da Cruz e Silva and da Cruz e Silva, 2003; Lee, Kao et al., 2003; da Cruz 

e Silva, Fardilha et al., 2004). 

Fig. 9: Schematic representation of the APP phosphorylatable residues. The top diagram represents APP and 

indicates the two phosphorylated Serine residues present in its ectodomain. The bottom diagram shows the complete 

amino acid sequence of the cytoplasmic tail, and the three phosphorylatable functional domains. Serine, threonine and 

tyrosine putative phosphorylation sites are shown enlarged (numbering is relative to APP695). The relative localization of 

the Aβ sequence is shown. Reproduced from da Cruz e Silva, Fardilha et al. (2004) 
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The 
653

YTSI
656

 (amino acid numbering according human APP695 isoform), is a 

typical YXXI sorting signal, responsible for mediating APP basolateral sorting. This motif 

contains Thr654 and Ser655, two consensus residues for phosphorylation known to be 

phosphorylated in vitro and in vivo. The possible putative kinases involved in their 

phosphorylation are protein kinase C (PKC) and calmodulin-dependent protein kinase II 

(CaMKII) (Isohara, Horiuchi et al., 1999; da Cruz e Silva and da Cruz e Silva, 2003; 

Schettini, Govoni et al., 2010). Ser655 was also reported to be phosphorylated by APP 

kinase I (da Cruz e Silva and da Cruz e Silva, 2003). Phosphorylation of Ser655 was 

observed to occur predominantly in mature rather than immature APP isoforms (da Cruz e 

Silva, Fardilha et al., 2004). As described above, various studies revealed that 

phosphorylation within this sorting motif modulates APP trafficking. Mimicking 

phosphorylation at the Ser655 residue was reported to enhance APP secretory traffic, e.g. 

by increasing APP binding to the retromer complex and the subsequent retromer-mediated 

APP retrieval to the TGN (Vieira, Rebelo et al., 2010). S655 phosphorylation, potentially 

via PKC, also increases sAPPα production by the alpha-secretase pathway (da Cruz e 

Silva, Rebelo et al., 2009; Vieira, Rebelo et al., 2009). 

The 
667

VTPEER
672

 motif contains Thr668. This residue can be phosphorylated by 

neuronal cyclin-dependent kinase 5 (Cdk5), cyclin-dependent protein kinase 2 (Cdc2), 

glycogen synthase kinase 3β (GSK-3β), c-Jun-N-terminal kinase 3 and stress-activated 

protein kinase 1b (da Cruz e Silva and da Cruz e Silva, 2003; da Cruz e Silva, Fardilha et 

al., 2004; Schettini, Govoni et al., 2010). Phosphorylation at Thr668 might be involved in a 

neuron-specific aspect of APP metabolism and/or function, because this phosphorylation in 

mature APP occurs only in the brain, being detected in neurites (da Cruz e Silva, Fardilha 

et al., 2004). Phosphorylation of this domain appears to be an important factor in the 

control of interactions of APP with other proteins. However, there are contradictory results 

for the role of APP phosphorylation at Thr668 in Aβ production, in Fe65 binding and in 

nuclear translocation of AICD or AICD/Fe65 complex (Schettini, Govoni et al., 2010). 

Tyrosine phosphorylation of APP may functionally link APP processing and 

neurotrophic signaling to intracellular pathways associated with cellular differentiation and 

survival. This phosphorylation occurs in residues of the amino acid sequence 

682
YENPTY

687
, encompassing an NPXY signaling motif, which is a typical internalization 

signal for membrane-associated receptor proteins (da Cruz e Silva and da Cruz e Silva, 



25  

APP and APP phosphorylation in Gαo-induced STAT3 signaling 

2003). This motif is present in many Tyrosine-Kinase (TK) receptors and non-receptors 

TKs; it is generally phosphorylated and represents the docking site for several interacting 

APP-binding proteins, involved in cell signaling and gene transcription (Russo, Venezia et 

al., 2005; Schettini, Govoni et al., 2010). The phosphorylation of APP occurs in Tyr682 

and Tyr687, although phosphorylation at this last residue is still somehow controverse (da 

Cruz e Silva and da Cruz e Silva, 2003; da Cruz e Silva, Fardilha et al., 2004; Rebelo, 

Vieira et al., 2007). In cell-culture studies, Tyr682 can be phosphorylated by the 

overexpression of the nerve growth factor receptor TrkA, by a constitutively active form of 

the tyrosine kinase Abl or by the Src kinase (da Cruz e Silva, Fardilha et al., 2004; Russo, 

Venezia et al., 2005; Schettini, Govoni et al., 2010). In some studies using HEK293 cells, 

it was reported that the phosphorylation of APP at Tyr687 is important for its processing 

by α- and - secretases, increasing CTF-α and AICD generation (Takahashi, Niidome et al., 

2008). Of note, it is possible that APP may only become Tyr682 phosphorylated after full-

length APP cleavage by the -secretase complex (da Cruz e Silva, Fardilha et al., 2004). 

 
 

1.3.  APP as a potential mediator of G proteins signaling  

1.3.1. G proteins 

G proteins, also called guanine nucleotide-binding proteins, are a family of 

heterotrimeric proteins that have a crucial role as molecular switches in signal transduction 

pathways mediated by G protein-coupled receptors (GPCRs). They are involved in 

transmitting extracellular messages from hormones, neurotransmitters, chemokines and 

other signaling factors that interact with GPCRs and G proteins to activate many 

intracellular signaling pathways (Hewavitharana and Wedegaertner, 2012).  

The heterotrimeric G proteins are signal-transducing protein complexes composed 

of α, β and  subunits, located on the cytoplasmic side of the plasma membrane (Knust, 

2001). The Gα subunit contains the nucleotide binding site and GTPase activity, along with 

sites for binding receptors, effectors and Gβ, and a helical domain whose function is not 

clear (Neer, 1995). This subunit determines G protein diversity. The β and  subunits form 

a dimer, a single complex that only dissociates when it is denatured and is, therefore, a 

functional monomer (Neer, 1995). Today it is known that both α and β subunits positively 
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regulate effectors, acting as signaling molecules by activating other second messengers or 

by gating ion channels directly (Neer, 1995). 

Different types of G proteins share a common mechanism. They are activated in 

response to a conformation change in the GPCR receptor. The GPCRs constitute a large 

and the most versatile protein family of transmembrane receptors in the mammalian 

genome (Gudermann, Schoneberg et al., 1997; Wettschureck and Offermanns, 2005). The 

diversity of this superfamily is a result of the large number of members, their ability to 

form different dimer combinations and their ability to respond to several stimuli, as well as 

by the large amount of intracellular signaling pathways they activate. Signaling by GPCRs 

is not just limited to second messenger molecules but also includes transcription factors 

and molecules that affect the cytoskeleton. Despite their structural and functional diversity, 

all GPCRs share a similar molecular architecture (Knust, 2001). They consist of an 

extracellular N-terminus, an intracellular C-terminus, and seven transmembrane domains 

in between, linked by alternating intracellular and extracellular loops (Gudermann, 

Schoneberg et al., 1997). 

In the inactive state, the Gα subunit has GDP in its binding site. When a chemical 

or physical signal stimulates the receptor, the receptor becomes activated and changes its 

conformation. The Gα subunit responds with a conformational change that decreases GDP 

affinity, so that GDP comes off the binding site (Fig. 10). Once GTP is bound, the Gα 

assumes its activated conformation and dissociates both from the receptor and from Gβ 

(Knust, 2001). Then, both free Gα-GTP and Gβ can interact with downstream effectors 

proteins and diverse downstream signaling cascades, while the receptor is able to interact 

with other G proteins and amplify signal transduction (Knust, 2001). In addition to 

activation of second messenger molecules, Gα subunits can also modulate the activity of 

transcription factors, thereby regulating gene expression (Ram and Iyengar, 2001). The 

activated state lasts until the GTP is hydrolyzed to GDP by the inherent GTPase activity of 

Gα, allowing re-association with Gβ. G protein becomes inactive and returns to the 

receptor, starting a new cycle (Wettschureck and Offermanns, 2005). 
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The GTPase cycle of G protein activation and deactivation is subject to regulation 

by many protein factors that either influences the rate of guanine nucleotide exchange or 

the rate of hydrolysis of bound GTP. 

The family of regulators of G protein signaling (RGS), for example, has been found 

to play a role in desensitization. These proteins are GTPase-activating proteins (GAPs) that 

are involved in mechanisms that accelerate the rate of GTP hydrolysis and thereby 

negatively regulate G protein signaling (Diverse-Pierluissi, Fischer et al., 1999; 

Hewavitharana and Wedegaertner, 2012). RGS proteins block G protein function by 

accelerating α subunit GTPase activity, physically blocking the binding to G protein 

effectors and/or altering the level of free β subunits available to their downstream 

effectors, therefore allowing for rapid modulation of G protein-mediated signaling 

(Wettschureck and Offermanns, 2005; Blazer, Roman et al., 2010).  

By contrast, guanine nucleotide exchanger factors (GEFs) promote the activation of 

G proteins by increasing the rate of GDP dissociation and GTP association (Hewavitharana 

and Wedegaertner, 2012). The ligand-bound GPCRs are widely recognized as guanine 

exchange factors for heterotrimeric G proteins. 

The functional versatility of the G protein mediated signaling pathways is based on 

its modular architecture and on the fact that there are numerous subtypes of G proteins. In 

Fig. 10: Activation and deactivation of G proteins by guanine nucleotide exchange and GTP hydrolysis. A ligand 

binds to the receptor and is activated to become a catalyzer, enhancing the rate of detachment of bound GDP from the α-

subunit of the G protein. The rapidly exchange of GDP to GTP in the α-subunit site is rapidly processed (1) and causes 

activation of both α- and β-subunits, enabling them in turn to activate specific effector enzymes. The interaction between 

receptor and G protein is transient, allowing the receptor to catalyze guanine nucleotide exchange on a succession of G 

protein molecules. The system returns to the resting state following hydrolysis of the bound GTP, and promotes 

deactivation of G protein (2). Reproduced from Gomperts, Kramer et al. (2009) 
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humans, there are genes encoding 16 Gα, 5 Gβ and 12 G subunits (Hewavitharana and 

Wedegaertner, 2012). The α-subunits increase the diversity, define the basic properties of a 

heterotrimeric G protein, and can be divided into four families: Gi/o; Gs; Gq and G12/13 

(Wettschureck and Offermanns, 2005; Shan, Chen et al., 2006; Hewavitharana and 

Wedegaertner, 2012). Each family consists of various members that often show very 

specific expression patterns. Members within each family have structural and functional 

homologies (Wettschureck and Offermanns, 2005; Hewavitharana and Wedegaertner, 

2012). 

The G proteins of the Gi/o family are widely expressed. The main members of these 

types of G proteins are Gi proteins (Gi1, Gi2 and Gi3) that inhibit various types of adenylyl 

cyclases and thus lower the levels of the second messenger cyclic AMP (cAMP). The 

function of members of the Gi/o family is affected by pertussis toxin (PTX), which is able 

to ADP-ribosylate the Gi/o α-subunit, and, subsequently, uncouples Go and Gi from their 

receptors, leading to the disruption of their signaling. A less widely distributed member of 

this family is Gz, which is not affected by PTX, is expressed in various tissues (nervous 

system and platelets) and was recently shown to interact specifically with various other 

proteins including Rap1GAP and certain RGS proteins. Other α-subunits that belong to the 

Gi/o family, like gustducin and transducin are involved in specific sensory functions, taste 

and visual, respectively. The Go member is particularly abundant in the nervous system 

and will be discussed later on, with its action being greatly mediated by its β-complex. 

Indeed, activation of Gi/o is believed to be the major coupling mechanism that results in the 

activation of β-mediated signaling processes. 

The ubiquitously expressed G protein Gs stimulates adenylyl cyclase, resulting in 

increases intracellular levels of cAMP (Wettschureck and Offermanns, 2005). 

The Gq/G11 family of G proteins binds to and activates members of phospholipase 

C β-isoform family (Wettschureck and Offermanns, 2005). Interestingly, there is no 

obvious difference between the abilities of both G protein α-subunits to regulate β-

isoforms of phospholipase C. The α-subunits of Gq and G11 are almost ubiquitously 

expressed and are involved in various biological signaling pathways (Wettschureck and 

Offermanns, 2005). 

In the G12/13 family, the two members G12 and G13 appear to be expressed 

ubiquitously. Studies have showed that G12/13 can induce a variety of signaling pathways 
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leading to the activation of various downstream effectors including other G proteins 

(Hewavitharana and Wedegaertner, 2012). Of note, the analysis of cellular signaling 

processes regulated by these G proteins has been difficult since there are no specific 

inhibitors available. The G12 and G13 Gα subunits were described to bind to and regulate 

cell adhesion proteins, and interact directly with the cytoplasmic domain of some members 

of the Cadherin family of cell surface adhesion molecules (Wettschureck and Offermanns, 

2005; Hewavitharana and Wedegaertner, 2012).  

The much less understood G protein β and  subunits, but with a very important 

role in the regulation of various effectors, are tightly associated and can be regarded as one 

functional unit. The different subunits could produce several different combinations, but 

not all possible pairs are formed (Neer, 1995). The β subunits show very high sequence 

identity and exhibit a more or less ubiquitous expression pattern, whereas  subunits are 

considerably more diverse in sequence and tissue expression (Gudermann, Schoneberg et 

al., 1997; Hurowitz, Melnyk et al., 2000). This suggests that through their diversity these 

specific subunits couple selectively to effectors, although the molecular determinants of 

Gβ-effector coupling are not well known. 

 

1.3.1.1. Gαo Protein: genetics, expression pattern and function 

The Gαo protein was accidently discovered during the purification of Gαi from 

bovine brain. Gαo was designed as the ‘other’ GTP-binding protein to differentiate from 

Gαs, Gαi and transducin. PTX-mediated ADP ribosylation and electrophoresis samples 

detected an additional Gα subunit with molecular weight of 39 kDa and revealed a highly 

Gαo expression in brain tissue (Jiang and Bajpayee, 2009; Bromberg, Lyengar et al., 2011). 

In contrast to the well characterized pathways transduced by other G-proteins, only 

recently some mechanism details of Gαo signaling were elucidated. Nonetheless, the 

identification of direct effectors of Gαo and the determination of Gαo-induced cellular 

responses are still far from known. 

The cDNAs encoding Gαo have been cloned and identified in several species, such 

as human, rat, mouse, bovine, Drosophila. Gαo has a highly degree of similarity among the 

species, suggesting that Gαo-mediated signaling are important to receive, integrate and 

execute the transduction of extracellular stimuli (Jiang and Bajpayee, 2009). 
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Analysis of genomic cDNA clones encoding Gαo revealed that the human Gαo gene 

localizes on chromosome 16q13 and contains 11 exons. Both Gαo isoforms, Gαo1 (GoAα) 

and Gαo2 (GoBα), are generated via alternative splicing and are identical in the first two-

thirds of the amino acid sequence. The two forms differ by only 20 amino acids in human 

cells. Gαo1 and Gαo2 share the first 6 exons that encode 241 N-terminal amino acids, and 

each isoform has unique exons 7, 8 and 9. Different sets of exons suggest that each isoform 

may contribute to distinctive biological functions in the body and, especially, in the human 

brain (Jiang and Bajpayee, 2009). 

The Gαo protein has a less ubiquitous expression pattern than Gαi or Gαs. The 

protein is expressed widely in the CNS and was estimated to compose 0.5%-1% of 

membrane proteins in brain (Jiang and Bajpayee, 2009; Bromberg, Lyengar et al., 2011). 

However, the regional distribution of Gαo protein in all brain is not homogeneous. At the 

anatomic level, high concentrations of Gαo have been detected in the frontal cortex, 

cerebellum, hypothalamus, hippocampus and substantia nigra, being principally found on 

the cytoplasmic face of the plasma membrane coating the cell body and the neurites, 

particularly at ‘cell-to-cell’ contacts. It was also determined that Gαo is one of the most 

abundant proteins in the neuronal growth cones, structure at the tip of the growing neurite 

that is generated during neuronal differentiation. In addition, Gαo expression has also been 

observed in heart tissue, pituitary gland and pancreatic islets (Jiang and Bajpayee, 2009). 

 The Gαo protein has been received considerable attention aiming to determine its 

physiological role in the body, mainly due to its high expression in CNS. Gαo has been 

associated to cell survival, neuronal development, neuronal adhesion, migration and some 

diseases as Alzheimer’s and Parkinson’s. Studies with Gαo knockout mice have reported 

several neurological deficiencies, including poor motor coordination, hyperactive and 

abnormal behaviour, as well as hyperalgesia, when subjected to the lack of this protein 

(Jiang and Bajpayee, 2009). Another study has revealed that Gαo activation can induce 

neurite outgrowth in PC12 cells through inhibition of PKC and modulation of intracellular 

calcium levels (Strittmatter, Fishman et al., 1994). 

 

1.3.1.2.  Modulation of Gαo activity  

Many protein factors are involved in signal transduction through G proteins to 

regulate the strength, duration, efficiency and specificity of signaling. Gαo is a highly 
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effective molecular signaling transducer and many GPCRs have been identified to couple 

to Gαo protein, such as the cannabinoid 1 (CB1) receptor, muscarinic cholinergic receptors, 

α2-adrenergic receptors, and as previously mentioned, these are widely recognized as GEFs 

for heterotrimeric G proteins. However, several non-receptor proteins have also shown to 

affect the Gαo subunit G protein activity, including the growth cone-associated protein with 

molecular weight of 43 kDa (GAP-43), APP, Presenilin 1 and the activator of protein 

signaling (AGS) (Jiang and Bajpayee, 2009). 

GAP-43, a protein highly expressed in the growth cones of developing and 

regenerating neurons, has the ability to enhance Gαo binding to GTP in the distal tips of 

growth cones (acting as a GEF), suggesting that Gαo protein can have a neurite outgrowth 

role. Interestingly, PTX does not alter the Gαo activation by GAP-43 like in the others 

GEFs. AGS is another GEF involved in regulating Gαo-mediated signaling, enhancing 

GTPS binding to both Gi and Go proteins. APP and Presenilin 1 have also been 

hypothesized to act as a GEF for Gαo protein (Jiang and Bajpayee, 2009). 

Other protein factors have also been identified, but these act as decreasers of the 

guanine nucleotide exchange rate. A RGS protein identified was the Gα-interacting protein 

(GAIP) that is responsible to selectively accelerate the deactivation of Gαo protein. This 

RGS protein is not only responsible for deactivation of Gαo protein signaling, but also 

regulates the duration and specificity of receptor-stimulated Gαo protein signaling (Jiang 

and Bajpayee, 2009). Other studies revealed the existence of G protein regulatory (GPR) or 

GoLoco motifs, which bind to Gαo and stabilize it in the GDP-bound conformation while 

simultaneously competing with Gβ for Gα binding (Siderovski, Diverse-Pierluissi et al., 

1999; Jiang and Bajpayee, 2009).  

 

1.3.1.3.  Gαo-mediated signaling transduction 

The signaling transduction mechanism of Gαo protein and its intracellular effectors 

has received widely attention, in an attempt to identify the ligands that might stimulate the 

signal, the downstream signaling pathways subsequently activated, and the cellular 

functional output of the signaling cascades. 

Several studies have shown that Gαo is required to activate phospholipase C (PLC)-

β, adenylyl cyclases 2 and 4, and phosphoinositol-3-kinase (PI3K)-β and -; also, Gαo has 
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inhibitory effects on adenylyl cyclase 1 and several voltage-gated calcium (Ca
2+

) channels. 

Besides that, Gαo knockout mice have indicated that Gαo has a critical role in the 

muscarinic inhibition of L-type Ca
2+

 channels in the heart and in the regulation of Ca
2+

 and 

potassium (K
+
) channels in hippocampal neurons. In addition to the regulation of Ca

2+
 and 

K
+
 channels, Gαo proteins may also regulate sodium (Na

+
) channels in cells (Jiang and 

Bajpayee, 2009; Bromberg, Lyengar et al., 2011). 

The role of Gαo in the mediation of the MAPK signaling is still elusive, but in 

Chinese hamster ovary cells it was demonstrated that the expression of an active Gαo 

mutant is not sufficient to directly induce MAPK activation, but greatly potentiates the 

activation of PKC, a PI3K-dependent mechanism, that leads to B-Raf kinase and MAPK 

pathway stimulation (Jiang and Bajpayee, 2009; Bromberg, Lyengar et al., 2011). 

As previously described, Gαo signaling induces neurite outgrowth, by several 

ligands that activate Gi/o coupled receptors, but only recently two pathways have begun to 

elucidate some mechanistic details of how Gαo mediates neurite outgrowth. In Neuro2A 

cells it was demonstrated that de CB1 receptor stimulates Gαo and activates downstream 

signaling converging on signal transducer and activator of transcription 3 (STAT3) that 

finally leads to neurite outgrowth (He, Gomes et al., 2005). The interaction of STAT3 

signaling and Gαo will be discussed in more detail below. The other signaling involved in 

neurite outgrowth, but not as well detailed, is the GRIN pathway. G protein-regulated 

inducer of neurite outgrowth 1 and 2 (GRIN1 and GRIN2) bind specifically to Gαo and are 

also enriched in neuronal growth cones. Studies demonstrated that co-expression of GRIN 

with an activated mutant of Gαo leads to activation of Cdc42 and enhances neurite 

outgrowth in Neuro2A cells (Nakata and Kozasa, 2005; Bromberg, Lyengar et al., 2011). 

 

1.3.1.4.  APP-Gαo binding and Alzheimer’s disease 

A physical interaction between APP and Gαo protein was demonstrated in synthetic 

vesicle preparations (Okamoto, Takeda et al., 1995). A completely conserved cytoplasmic 

APP695 sequence, 
657

His-Lys
676

, was reported to form a complex with and to activate the 

Gαo protein (Nishimoto, Okamoto et al., 1993). In further studies using phospholipid 

vesicles containing APP695 and Gαo, 22C11, a monoclonal antibody against the 

extracellular domain of APP, was used to evaluate the interaction between APP and Gαo. 

The authors have found that 22C11 acts on APP695 to stimulate Gαo in APP695/Go vesicles, 
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increasing GDP/GTP exchange rate of Gαo. This effect of 22C11 was specific among 

various antibodies and was observed neither in Gαo vesicles alone nor in APP695/Gi2 

vesicles. These data demonstrated that APP behaves like a Gαo-linker receptor whereby it 

specifically activates Gαo in a ligand-dependent and ligand-specific manner (Okamoto, 

Takeda et al., 1995). 

Presenilin 1 was also shown to directly interact with Gαo. These in vitro studies 

suggest that Gαo may be involved in neuronal loss in AD through apoptotic signaling 

mediating by either Aβ, mutant APP or mutant PS1 (Jiang and Bajpayee, 2009). G protein 

inhibitors (like PTX) have been demonstrated to block Aβ toxicity (Sola Vigo, Kedikian et 

al., 2009). In neuronal cultures, data has shown that interaction of APP with toxic Aβ 

species promotes toxicity by a mechanism that involves APP-mediated Gαo protein 

activation (Sola Vigo, Kedikian et al., 2009). A mechanism proposed is that under 

pathological loads of Aβ, the interaction of APP and Gαo is reduced, liberating Gαo and 

subsequently increasing G-protein activity, which may in turn results in downstream 

effects including calcium deregulation and subsequent cell death (Shaked, Chauv et al., 

2009). The Gαo protein may be involved in the pathogenesis of AD by other mechanism(s). 

In familial Alzheimer’s disease (FAD), three missense mutation into isoleucine, 

phenylalanine and glycine at 642 position of valine (V642) have been identified in the 

APP695 isoform (Okamoto, Takeda et al., 1995; Giambarella, Yamatsuji et al., 1997). 

These mutations co-segregate with the disease phenotype. All three mutants have been 

shown to specifically activate the Gαo protein and induce PTX-sensitive apoptosis in COS-

NK1 cells. Studies of Gαo knockout, and expression of V642-APPs mutant lacking the 

His
657

-Lys
676

 in COS-NK1 cells, provided strong evidence for a mediating function of Gαo 

in APP-induced apoptosis. Data further demonstrated that the Gβ subunit was responsible 

for triggering apoptosis in COS-NK1 cells and the expression of mutationally activated 

Gαo only induced little apoptosis (Giambarella, Yamatsuji et al., 1997). 

 

1.3.2.  STAT3 signaling 

1.3.2.1.  STAT proteins 

Signal transducer and activator of transcription (STAT) transcription factors have 

been reported to play a variety of roles in biological processes, such as cellular 
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proliferation, differentiation, migration and apoptosis, regulation of target genes 

transcription and cell mediation of cytokine receptor signaling (Horvath, 2000; Lee, Park et 

al., 2007; Chiba, Yamada et al., 2009; Chiba, Yamada et al., 2009). 

Seven mammalian STAT family members have so far been identified: STAT1, 2, 3, 

4, 5a, 5b and 6, which are structurally conserved and essential for carrying out multiple 

cellular functions in response to cytokine stimulation, hormones and growth factors signals 

in a wide range of cell types and tissues (Horvath, 2000; Chiba, Yamada et al., 2009; 

Chiba, Yamada et al., 2009). The domain structure of STAT proteins is critical for STAT 

functions and several structural and functional regions have been defined, including a N-

domain (ND) responsible for dimer-dimer interactions, a Coiled-Coil domain responsible 

for protein interactions, a src homology 2 (SH2) domain for receptor recognition and 

dimerization, which is connected to the DNA binding domain via a linker domain (LD) 

implicated in transcription. A tyrosine phosphorylation site required for activation and 

dimerization, and a serine phosphorylation site in a C-terminal transcriptional activation 

domain were also described (Fig. 11) (Horvath, 2000). 

 

 

 

 

 
 

 

 

Ligand-activated cytokine or growth factor receptors initiate STAT signal 

transduction by the activation of cytoplasmatic tyrosine kinases of the Janus Kinase (JAK) 

family, or receptors with intrinsic tyrosine kinase activity, which results in the recognition 

of specific receptor phosphotyrosine residues by a latent cytoplasmatic STAT protein SH2 

domain. Phosphorylation of tyrosine residues of STATs allows STAT dimerization and 

nuclear translocation, where they transcriptionally regulate the expression of target genes. 

The phosphorylation of STATs serine residues are required to regulate their transcriptional 

functions (Horvath, 2000; Lee, Park et al., 2007; Chiba, Yamada et al., 2009). A general 

model for receptor-mediated activation of STAT signaling is represented in Fig. 12. 

 

Fig. 11: The structural domains and functional regions of the STAT proteins. ND, N-domain responsible for dimer-

dimer interactions (yellow box); Coiled-Coil, coiled-coil domain responsible for protein interactions (green box); DNA-

binding, a sequence-specific DNA-binding domain (red box); LD, linker-domain implicated in transcription (orange 

box); SH2, src homology 2 domain for receptor recognition and dimerization (blue box). All STATs include a tyrosine 

(Y) phosphorylation (P, red circles) site required for activation and dimerization. Several of the STATs also have a serine 

(S) phosphorylation (P, red circles) site in their C-terminal transcriptional activation domain (TAD, purple box).  Adapted 

from Horvath (2000) 
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1.3.2.2. STAT3 function 

The STAT proteins are structurally similar, but they diverged functionally and 

coevolved with specific enhancers, and cannot substitute for one another in the regulation 

of target genes. Several studies on the functional roles of STAT3 revealed that this protein 

is essential for growth regulation, organogenesis, early embryonic development, neural 

stem cell differentiation, survival and inflammatory response of neurons, being implicated 

in the regulation of several genes linked to cell division downstream of growth signals 

(Horvath, 2000; Ng, Cheung et al., 2006; Chiba, Yamada et al., 2009). Of note, the STAT3 

transcript can be alternatively spliced to generate STAT3b, which lacks the 55-aa C-

terminal domain of STAT3a and, instead, has a 7-aa C-terminal domain (Horvath, 2000). 

In diverse cell types, activation of STAT3 has been reported downstream of 

receptors for cytokines such as interleukin-6 (IL-6), leukemia inhibitory factor (LIF) and 

ciliary neurotrophic factor (CNTF) that utilize a common receptor subunit gp130, as well 

as a number of receptors with intrinsic tyrosine kinase activity (Horvath, 2000; Lee, Park et 

al., 2007). The recruitment of proteins containing SH2 domains, including STAT3, 

subsequently leads to the phosphorylation of STAT3 by receptor-associated Janus kinases 

at tyrosine 705 (Tyr705). The activate STATs causes homo- or heterodimerization of 

Fig. 12: Classical example of STAT activation mechanism by transmembrane receptors. 1- The binding of the 

ligand (yellow triangle) induces receptor oligomerization and activation of JAKs.  2- JAKs phosphorylate (P) each other 

and phosphorylate the receptor cytoplasmic domain on tyrosine residues (Y), creating sites for interaction with proteins. 

3- SH2 domains of latent cytoplasmic STAT protein recognize specific receptor phosphotyrosine residues, and the 

receptor-bound STATs become tyrosine phosphorylated by JAKs. 4- The phosphorylation of STATs allows STAT 

dimerization (homodimers are illustrated, but heterodimers can also form), and recruitment of them to the nucleus where 

they bind to promoter response elements and activate transcription of their target genes. Receptors with intrinsic tyrosine 

kinases and oncogenic tyrosine kinases can apparently activate STATs without the participation of JAK kinases. Adapted 

from Horvath (2000) 
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STAT1/3 transcription factors and subsequent translocation to the nucleus, activating 

multiple target gene transcription via interaction with specific DNA-response elements 

(Ng, Cheung et al., 2006). 

 

1.3.2.3.  APP and Gαo in STAT3 signaling 

The STAT3 signaling pathway has been extensively spotlighted due to its 

involvement and regulatory role in various biological processes, such as neuronal 

development. Studies demonstrated that CNTF is an instructive signal for astroglial type 2 

cell fate, specifically mediated via activation of STAT3 (Aberg, Ryttsen et al., 2001; Xu, 

Chen et al., 2009). In AD patients, studies showed controversies regarding the involvement 

of STAT3 signaling. Some experiences have detected an elevation of STAT3 

phosphorylation at Tyr705 in the postmortem samples of AD brains (Wan, Fu et al., 2010), 

while others have concluded that STAT3 inactivation is involved in the pathogenesis of 

AD (Chiba, Yamada et al., 2009; Chiba, Yamada et al., 2009). It has also been reported 

that APP relies on the activation of the JAK/STAT3 signaling pathway to induce cell 

death, increasing the expression of a chemokine with neuroinflammatory properties 

(Vrotsos, Kolattukudy et al., 2009). These results indicated that APP expression increased 

phosphorylation of STAT3 at Tyr705. Other studies indicate that the STAT3 signaling is 

crucial for sAPPα-induced glial differentiation. Results have demonstrated that sAPPα is 

able to enhance phosphorylation of STAT3 at Tyr705 in a time-dependent manner, by 

directly and indirectly activation of JAK/STAT signaling through gp130 (Kwak, Dantuma 

et al., 2010). 

The ability of Gα subunits to stimulate STAT3 is especially intriguing because 

STAT3 plays an important role in differentiation, proliferation, transformation, apoptosis, 

and development of cells. In a previous study, results have showed that overexpression of a 

constitutively active Gαo mutant, Gαo Q205L, in NIH-3T3 fibroblast cells leads to the 

activation of the STAT3 pathway, resulting in increased proliferation and in the 

transformation of the cells (Ram, Horvath et al., 2000). Gαo was shown to increase both 

Tyr705 STAT3 phosphorylation and STAT3 transcriptional activity. In Neuro-2A cells, 

where endogenous Gαo proteins are expressed, previous data indicated that activation of 

cannabinoid receptor 1-coupled Gαi/o (CB1), a GPCR that regulates neurite outgrowth, 

leads to the activation of STAT3 and changes in gene expression and, subsequently, in the 
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normal cell physiology (He, Gomes et al., 2005). STAT3 phosphorylation by Gαo subunits 

(Fig. 13) appears to be mediated via Src, a member of a family of cytoplasmic tyrosine 

kinases, and to involve activation of a cascade of signaling intermediates, like small 

GTPases (Rap1-GAP, Rac 1, Rap 1 and Ral 1) (Ram and Iyengar, 2001; He, Gomes et al., 

2005). This may be an important pathway in neurons, where Gαo activation can lead to 

neurite outgrowth and neuronal plasticity. Activation of many GPCRs has also been 

reported to phosphorylate and activate STAT3 via others Gα subunits, like Gα16, leading to 

changes in gene transcription (Wu, Lo et al., 2003). 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The work here described is thus aimed to prove the interaction of APP and Gαo in 

STAT3 signaling and the cellular/molecular role of this interaction, elucidating the 

sequence of events/signaling pathways after activation. 

  

Fig. 13: Go signaling to the nucleus during the induction of neurite outgrowth. In Neuro2A cells, activation of CB1 

cannabinoid receptor mediates neurite outgrowth. Overexpression of Gαo reduces the stability of Rap1GapII, which 

results in the activation of Rap1. Activation of Rap1 leads to the activation of Src and STAT3 that mediate gene 

expression that promotes neurite outgrowth. The CB1 activation also stimulates the small GTPase Rac1 and subsequently 

c-Jun N-terminal kinase (JNK). Both of these proteins are activated downstream Src, and JNK also enhances STAT3 

phosphorylation. Reproduced from Bromberg, Lyengar et al. (2011) 
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2. Aims of this thesis 

 

In the work here described we mainly intended to test if APP and APP 

phosphorylated at S655 could modulate Gαo-induced STAT3 signaling. For this, the SH-

SY5Y neuroblastoma cell line was used, along with specific cDNAs for APP and Gαo and 

several molecular and cellular biology procedures. 

 

2.1.  General Aims 

- To study if APP-Gαo co-transfection modulates Gαo-induced STAT3 signaling by 

western blot analysis; 

- To study if APP phosphorylation at S655 modulates Gαo-induced STAT3 signaling; 

- To evaluate the effect of Gαo activation and APP S655 phosphorylation in APP-Gαo 

binding. 

 

2.2.  Specific Aims 

- To purchase and amplify Gαo and GαoCA (a Q205L mutant mimicking constitutively 

active Gαo) cDNAs. 

- To optimize SH-SY5Y cells transfection with Gαo and GαoCA cDNAs, and test anti- 

Gαo antibodies. 

- To optimize time conditions of SH-SY5Y cells transfection with Gαo and GαoCA in 

terms of their effects on STAT3 signaling. 

- To test if APP overexpression affected Gαo and GαoCA-induced STAT3 signaling. 

- To test if APP phosphorylation at S655 influences Gαo- and GαoCA-induced STAT3 

signaling, by co-transfecting cells with APP-GFP fusion cDNAs (Wt or S655 

phosphomutants: S655A and S655E) and Gαo or GαoCA CDNAs. 

- To analyse if Gαo and GαoCA have an effect on APP turnover and/or cleavage. 

- To evaluate if APP-GFP proteins differentially interact with Gαo or GαoCA proteins 

using the GFP-trap
®
 pull-down technique.  
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3. Materials and Methods 

 

3.1.  Culture and maintenance of the SH-SY5Y cell line 

The human neuroblastoma SH-SY5Y cell line is derived from the original cell line 

SK-N-SH, isolated from a bone marrow biopsy of a neuroblastoma patient. The SH-SY5Y 

cell line was maintained in a 5% CO2 humidified incubator at 37°C with a recommended 

culture medium: 10% fetal bovine serum (FBS) minimal essential medium (MEM):F12 

(1:1), with 2mM L-glutamine and 100U/mL penicillin and 100mg/mL streptomycin [10mL 

Streptomycin/Penicilin/Amphotericin solution, Gibco]. Cells were split at 70-80% 

confluence. 

 

3.2.  Wt and S655 Phosphomutants APP-GFP cDNAs 

APP-GFP cDNAs were already available at the lab. Namely, APP isoform 695 

(APP695) cDNA was used as template to generate S655 cDNA point mutations, namely 

Serine 655 to Alanine (S655A) or to Glutamate (S655E), using site directed mutagenesis 

(da Cruz e Silva, Iverfeldt et al., 1993; Vieira, Rebelo et al., 2010). These two amino acids, 

due to their size and charge, mimic a constitutively dephosphorylated (S655A) and 

phosphorylated (S655E) S655 residue, respectively. Further, PCR was performed to 

remove the stop codons of Wt and S655 phosphomutants APP695 cDNAs and engineer the 

APP695-GFP cDNA constructs (APP-GFP) by subcloning the amplified APP cDNA 

fragments into the EGFP-N1 plasmid, encoding for the Green Fluorescent Protein (GFP) 

(Vieira, Rebelo et al., 2009). 

 

3.3. Wild-type and constitutively active G-protein alpha o – Gαo and GαoCA 

(Q205L) cDNAs 

The G-protein alpha o cDNA was obtained at the Missouri S&T cDNA Resource 

Center. The human wild type G-protein alpha o subunit has been cloned into pcDNA3.1+ 

(Invitrogen) at KpnI (5') and Xba I (3'). The open reading frame was amplified by PCR 

from human whole brain cDNA (Clontech). The Q205L mutation was introduced into the 
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wild-type human G-protein alpha o by Quickchange mutagenesis kit (Stratagene). The 

constitutively activated Gαo is characterized by a change in Glutamine 205 to Leucine 

(Q205L), resulting in a Gαo subunit mutation that lacks guanosine triphosphatase (GTPase) 

activity, remaining in a constitutively active form. Both these clones are distributed in 

Invitrogen's pcDNA3.1+ vector, which can be used for mammalian expression and 

production of stably transfected cell lines. Upon purchase, these cDNAs, together with the 

empty pcDNA3.1 plasmid vector, were transformed in competent E. coli strains, and 

plasmid DNA amplified by megaprep technique using the Promega Wizard
®
 Plus 

Megapreps DNA Purification System, following the manufacturer instructions. 

 

3.4.  SH-SY5Y cells transfection with APP-GFP and Gαo or GαoCA cDNAs 

In order to study the effect of APP and APP phosphorylation on Gαo-induced 

STAT3 signaling, SH-SY5Y neuroblastoma cells were transiently transfected or co-

transfected with Wt, S655A (SA), or S655E (SE) APP-GFP fusion cDNAs contructs, and 

Gαo or GαoCA (a Q205L mutant)cDNAs. To optimize SH-SY5Y cells transfection with 

these constructs, three different transfection methods were initially tested, the Polyplus, the 

TurboFect
TM

 lipid-mediated, and TurboFect
TM

 combined with CombiMag methods. In 

these preliminary experiment cells were left to transfect for 24h. In further experiment the 

transfection method of choice was the TurboFect
TM

 and cells were transfected for specific 

time periods (2h, 4h, 6h, 8h or 24h). Cells were then harvested in 1% SDS for Western 

blotting (WB). 

 

3.4.1.  Transfection by the Polyplus method 

To proceed the transfection with the polyplus method, cells were seeded per well in 

2 mL of cell growth medium 24h prior transfection and, at the time of transfection, cells 

were 60-80% confluent.  First, the transfection mix was prepared, where 1 μg of DNA was 

diluted in 100 μL of jetPRIME
TM

 buffer (this must be diluted 1:5). After being mix by 

vortexing and a briefly spin down, 2 μL of jetPRIME
TM

 reagent were added to the diluted 

DNA (1:2 DNA to jetPRIME
TM

 reagent ratio). The mixture was vortexed, subjected to spin 

down and incubated for 10 min at room temperature. Then, 100 μL of transfection mix was 

added, per well, dropwise onto the cells in regular cell growth medium, and distributed 
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evenly. The six-well plates were gentle agitated and incubated at 37ºC in a humidified 

incubator in an atmosphere of 5% CO2. After 4h of incubation, this transfection medium 

had to be replaced by 2 ml of growth medium and the plates returned to the incubator, in 

order to complete 24h of transfection. 

 

3.4.2.  Transfection using the TurboFect
TM

 reagent 

Transfections were carried out according to the manufacter’s instructions 

(Fermentas Life Sciences). Before transfection the appropriate medium was replaced. 

Briefly, for each monolayer of cells grown in six-well plates, 2 μg of the respective DNA 

were diluted in 100 μL of serum-free growth medium. After being quickly vortexed, 4 μL 

of TurboFect
TM

 were added to the diluted DNA. The mixture was vortexed, incubated for 

15-20 min at room temperature, and then transferred dropwise to each well, with gentle 

agitation of the plate to achieve even distribution. The cells were incubated at 37ºC in a 

CO2 incubator. After 6h, cell medium was replaced and transfection was left to occur until 

the selected transfection time. In the main experiments the transfection levels were 

decreased by down-scaling the protocol to 1 μg of cDNA to 2 μL of TurboFect
TM

. 

 

3.4.3.  Transfection using the TurboFect
TM

 reagent plus CombiMag 

In this transfection method, TurboFect
TM

 lipid-mediated transfection is improved, 

by incorporating a CombiMag reagent. This last component increases transfection 

efficiency, due to the use of magnetism by a magnetic plate (also called ‘magnetofection’). 

Cells were seeded in order to accomplish 60-90% confluency at the time of transfection. 

Before magnetofection the appropriate medium was replaced, and for each monolayer of 

cells to transfect, 1 μL of the CombiMag reagent, previously vortexed, was pipetted into a 

microtube. The DNA and TurboFect
TM

 reagent mixture was prepared in a second 

microtube: first, 1 μg of DNA was diluted in 100 μL of serum-free growth medium; 

second, TurboFect
TM

 is vortexed and 1 μL of this was added to the diluted DNA. This 

mixture was added to the first microtube with the CombiMag reagent. After being 

vortexed, the microtube was incubated for 15-30 min at room temperature. This was added 

onto the medium above each cell monolayer, with gentle mixing, and then the six-well 

plates were placed over a magnetic plate (OZ Biosciences), during 15 min. Transfected 
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cells were incubated at 37ºC in a CO2 incubator, cell medium exchanged after 6h, 

according to the Turbofect
TM

 protocol, and transfection was left to occur for a total of 24h. 

 

3.5.  Cell collection and quantification of protein content (BCA) 

Cells’ conditioned medium (500 µl) was collected into a microtube containing 55 

µl of 10% SDS, the remainder medium was sucked with a Pasteur pipette, and further cells 

were collected with 250 µl of 1% boiling SDS. Cellular and medium lysates were boiled 

for 10 min, and cell lysates were sonicated for 30 sec. 

The total protein quantification method was performed by Pierce’s BCA protein 

assay kit in an aliquot of the cell lysates, following the manufacturer’s instructions. This 

assay is the result of two reactions. Firstly, there is the reduction of Cu
2+

 to Cu
+
 by protein 

in an alkaline medium to form a light blue complex. In this biuret reaction peptides 

containing three or more amino acid residues form a coloured chelate complex with cupric 

ions in an alkaline environment containing sodium potassium tartrate. The amount of Cu
2+

 

reduced is proportional to the amount of protein present in the solution. The bicinchoninic 

acid reagent (BCA) addition leads to a sensitive colorimetric detection of the Cu
+
 cation, 

by chelation of two molecules of BCA with each Cu
+
 ion (a temperature dependent 

reaction). This gives rise to a purple-coloured reaction product that strongly absorbs light 

at a wavelength of 562 nm. The BCA/copper complex exhibits a high linearity in a 

working range of increasing BSA concentration between 20 to 2000 µg/ml. Total protein 

concentration of each sample was determined through a standard curve prepared by 

plotting BSA absorbance vs. BSA standard concentration. The standards were prepared, as 

in Table 1, directly into the wells of a 96-well microplate. 

 

Table 1. Standards used in the BCA protein assay method, with standard protein 

concentrations. BSA, Bovine serum albumin solution (2 mg/ml). 

Standard BSA (µl) 10% SDS (µl) H2O (µl) Protein mass (µg) W.R. (µl) 

P0 - 2,5 22,5 0 200 

P1 1 2,5 21,5 2 200 

P2 2 2,5 20,5 4 200 

P3 5 2,5 17,5 10 200 

P4 10 2,5 12,5 20 200 

P5 20 2,5 2,5 40 200 
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The samples were prepared in each well by adding 5 µl of each sample to 20 µl of 

the solution in which the sample was collected (in this case 1% SDS). 200 µl/well of 

working reagent (W.R), was prepared by the mixture of BCA reagent A with BCA reagent 

B in the proportion of 50:1, respectively, and was rapidly added to each well (standards 

and samples). The microplate was incubated at 37ºC exactly for 30 min, and then cooled to 

RT. The absorbance at 562 nm was immediately measured using a microplate reader 

(Infinite M200, Tecan), with gentle oscillation and 25 readings for each well. 

 

3.6.  Antibodies 

The primary antibodies used in this study were: the monoclonal 22C11 mouse 

antibody (Chemicon) directed against APP N-terminus, recognizing full-length APP and 

secreted APP (sAPP), and the polyclonal CT695 rabbit antibody (Invitrogen) that 

recognizes APP C-terminal (detection of APP full length and APP C-terminal peptides), 

for APP and APP-GFP detection; the polyclonal rabbit anti-Gαo (Upstate) and the 

monoclonal mouse anti-Gαo (Chemicon) antibody that recognizes the Go α subunit; the 

monoclonal rabbit anti-phospho-STAT3 (Tyr705, Millipore) and the monoclonal mouse 

anti-STAT3 (Cell Signaling Technology) antibodies, directed against the STAT3 isoforms 

alpha (~84kDa) and beta (~76kDa), were used to evaluate the modulation of STAT3 

signaling. A polyclonal rabbit anti-PARP cleavage site (214/215) antibody that can be used 

as a marker for detecting apoptotic cells by recognizing the 85 kDa fragment of cleaved 

PARP was used in the transfection optimization assay. As potential loading control for 

Western blot assays, the monoclonal antibody anti-β-Tubulin, that binds the two major and 

a minor β-tubulin isotypes, was used. A list of all the antibodies used, together with their 

respective dilutions and secondary antibodies is depicted in Table 2. 

 

Table 2. Antibodies used in the Western blots, respective target proteins and specific 

dilutions used. All the secondary antibodies are from Amersham Pharmacia. 

Target 

Protein/Epitope 
Primary Antibody Secondary Antibody 

APP C-terminal 
CT695 (Invitrogen) 

Dilution: 1:500 

Horseradish Peroxidase 

conjugated α-Rabbit IgG 

Dilution: 1:5000 

APP N-terminal 
22C11 (Chemicon) 

Dilution: 1:250 

Horseradish Peroxidase 

conjugated α-Mouse IgG 

Dilution: 1:5000 
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Target 

Protein/Epitope 
Primary Antibody Secondary Antibody 

Gαo 
Anti- Gαo (Upstate) 

Dilution: 1:5000 

Horseradish Peroxidase 

conjugated α-Rabbit IgG 

Dilution: 1:5000 

Gαo 

Anti- Gαo (Chemicon) 

Dilution: 1:3000, 1:1000 

1:500 

Horseradish Peroxidase 

conjugated α-Mouse IgG 

Dilution: 1:5000 

PARP cleavage site 214-215 
Anti-PARP cleavage site 

(214/215) (Chemicon) 

Dilution: 1:1000 

Horseradish Peroxidase 

conjugated α-Rabbit IgG 

Dilution: 1:5000 

Phospho-STAT3 

Anti-phospho-STAT3 (Tyr 

705), clone EP2147Y 

(Millipore) 

Dilution: 1:3000 

Horseradish Peroxidase 

conjugated α-Rabbit IgG 

Dilution: 1:1000 

STAT3 

Anti-STAT3 (124H6) 

(Millipore) 

Dilution: 1:1000 

Horseradish Peroxidase 

conjugated α-Mouse IgG 

Dilution: 1:2000 

β-Tubulin 
2-28-33 (Invitrogen) 

Dilution: 1:2000 

Horseradish Peroxidase 

conjugated α-Mouse IgG 

Dilution: 1:5000 

 

3.7.  Western Blot Assays 

Mass-normalized cell aliquots were subjected to a 7.5% (for the medium samples) 

and 5-20% gradient (optimization and experimental assays) sodium dodecylsulfate (SDS) 

polyacrylamide gel electrophoresis (PAGE), being subsequently electrotransferred onto 

nitrocellulose membranes. After proteins transfer, the membranes were hydrated in 1X 

TBS for 10 min. To block possible non-specific binding sites of the primary antibody, a 

blocking solution was used of 5% non-fat dry milk in 1X TBS-T solution. The membranes 

were immersed in this solution for 1h or 2h. Then, the incubation with primary antibody 

was achieved for a period of time according to the manufactures instructions (ranging from 

2 h to overnight incubation). After this incubation, membranes were washed three times for 

10 min each, with 1X TBS-T. The membrane was further incubated with the specific 

secondary antibody conjugated with horseradish peroxidase which binds to the respective 

primary antibody, for 2h with agitation. All primary and secondary antibodies used, with 

specific dilutions (Table 2), were diluted in 1X TBS-T/3% non-fat dry milk, 1X TBS-T/5% 

non-fat dry milk or 1X TBS/1% BSA. Then, the membranes were again subjected to three 

washes for 10 min each, with 1X TBS-T. To proceed to the detection of the secondary 
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antibody and consequently of the proteins, membranes were submitted to the enhanced 

chemiluminescence (ECL) detection method. This method is a light emitting non-

radioactive method for detection of immobilised specific antigens, conjugated directly or 

indirectly with horseradish peroxidase-labelled antibodies. The washed membranes were 

incubated at RT for 1 min with home-made ECL detection solution (detailed composition 

in appendix) or for 2-5 min with Luminata
TM

 Crescendo (Millipore). The excess of 

detection reagent was drained off the membrane. In a dark room the blot was then placed 

in an x-ray film cassette with a sheet of a Hyperfilm ECL (GE Healthcare) on the top of it. 

The cassette was closed and the blot exposed for an appropriate period of time. The film 

was then removed and developed with developer solution (Sigma Aldrich), washed in 

water, and fixed in a fixing solution (Sigma Aldrich). Then one can estimate if the 

membrane needs more or less time inside the x-ray cassette. The blot was further washed 

in 1X TBS-T and distilled water before drying, for better conservation. 

 

3.8.  GFP-trap
®
 pull-down assays 

For biochemical studies, the green fluorescent protein (GFP)-fusion proteins and 

their interacting factors can be isolated fast and efficiently via pull down of GFP with 

GFP-trap
®
 (Chromotek). Since the interaction is mediate by a small GFP-binding protein 

coupled to a monovalent matrix (e.g. agarose beads) the GFP-trap
®
 enables purification of 

any protein of interest fused to GFP, eGFP, YFP or Venus. 

After transfection (as in section 3.4.2.), SH-SY5Y cells were washed in 1x PBS and 

1 ml of cold PBS with 1x PMSF (dilute stock 1:100) was added, keeping the six-well plate 

on ice. The cells were collected with a scrapper to a microtube and immediately putted on 

ice. The sample was then centrifuged for 5 min at 4ºC at 3000 g, the supernatant was 

removed, and 500 μl of lysis buffer was added to the pellet. This was maintained 30 min on 

ice and vortexed twice, with 10 min intervals. Meanwhile, the protein sepharose G beads 

and the GFP-TRAP beads (Chromotek) were being prepared, by resuspending them in 

wash buffer, centrifuging at 13000 g for 1 min and keeping at 4ºC. After the 30 min, the 

sample was centrifuged for 5 min at 10000 g at 4ºC, 25 μl of supernatant were transferred 

to a new microtube and 12 μl of Loading Buffer/10% SDS were added, always keeping the 

sample on ice (‘cells lysates’). The rest of the supernatant was transferred to a new 

microtube and, to pre-clear the cell lysate, washed protein sepharose G beads were added 
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(25 μl for sample) for 1h at 4ºC with orbital agitation. After BCA protein quantification (as 

described before in section 3.5.), mass normalized lysates were centrifuged for 5 min at 

13000 g at 4ºC, and the supernatant transferred to GFP-TRAP beads (20 μl for sample) and 

incubated overnight with orbital shaking at 4ºC. The mixture was then centrifuged for 5 

min at 10000 g at 4ºC, 25 μl of supernatant were collected to a new microtube and 12 μl of 

Loading Buffer/10% SDS were added (‘Supernatant’). The pellet was washed with 1 ml of 

wash buffer, incubated for 10 min with agitation at 4ºC and centrifuged for 1 min at 10000 

g at 4ºC. The supernatant was fully discarded and these operations were repeated for eight 

or nine times. 50 μl of Loading Buffer/1% SDS and 2,5 μl of β-mercaptoethanol were 

added to the precipitates. Afterwards, all protein samples were sonicated for 30 sec, boiled 

for 10 min and frozen. The precipitates, lysates and supernatants were separated by WB. 

 

3.9.  Ponceau S staining of proteins bands 

Ponceau S staining of proteins bands has been applied as an alternative means to 

actin or β-tubulin immunoblotting to assess equal gel loading, or quality control of 

membrane transfer in Western blots. This loading control practice has been described as a 

fast, inexpensive, and nontoxic method, and binding is fully reversible in a few minutes 

(Romero-Calvo, Ocon et al., 2010). The nitrocellulose membranes were incubated in 

Ponceau S solution (Sigma Aldrich, 0.1 % [w/v] in 5% acetic acid) for seven minutes, 

followed by a brief rinse in distilled water so that the bands were clearly visible. The 

membranes were then inserted into transparency sheets and scanned (Fig. 14) in a GS-800 

calibrated imaging densitometer (Bio-Rad).  After that, membranes were washed in 1x 

TBS-T for 2–3 min with gentle agitation and 1x in distilled water until the staining was 

completely eliminated. The stain solution can be re-used and the membranes can be 

immunologically detected. 

 

 

 

 

 

 

 

Fig. 14: Example of a Ponceau S staining to be used as a loading control in Western blots. Nitrocellulose 

membranes were subjected to reversible Ponceau S staining, and lanes of bands scanned in a GS-800 calibrated imaging 

densitometer (Bio-Rad). 
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3.10.  Fluorescence Microscopy  

Cells grown on coverslips were fixed with a 4% paraformaldehyde PBS solution 

for 30 min and permeabilized with a 0,2% TRITON in PBS solution for 10 min; after these 

procedures, coverslips were immediately washed three times with PBS solution. 

Afterward, the cells were blocked with 50 μL PBS-3% BSA for 30 min. In order to 

visualize Gαo and APP, 20 μL of both anti-Gαo and 22C11 antibodies were added in each 

coverslip. After two hours of incubation, the primary antibodies were removed by washing 

the coverslips three times with PBS, for 10 min each wash. 40 μL of secondary antibodies, 

Alexa Fluor 488 and Texas-Red, were diluted in PBS-3%BSA and added to the coverslips 

for two hours in the dark, at room temperature. Coverslips were further washed three times 

with PBS and one last time with distilled water, and then mounted onto microscope glass 

slides with a drop of DAPI-containing antifading Reagent (Bio-Rad) for further 

fluorescence microscopy analysis. Fluorescence microphotographs were taken using 

confocal microscopy, LSCM. Images were acquired in a LSM 510 META confocal 

microscope (Zeiss) using an Argon laser line of 488 nm (green channel), a 561 nm DPSS 

laser (red channel), and a Diode 405-430 laser (blue channel). 

 

3.11.  Data analysis 

Autoradiography films resulting from immunoblots detection were scanned in a 

GS-800 calibrated imaging densitometer (Bio-Rad) and protein bands were quantified 

using the Quantity One densitometry software (Bio-Rad). Data from Gαo/GαoCA and APP-

GFP cDNAs transfected cells was compared to vector pcDNA3 (V1) and N1-EGFP (V2) 

transfected cells, respectively, and expressed as mean ± SEM (standard error of the mean) 

of four independent experiments. Statistical significance analysis was conducted by one 

way analysis of variance (ANOVA) followed by the Tukey test. 
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4. Results 

4.1. Optimization of APP/Gαo cDNAs transfection 

In order to optimize SH-SY5Y cells transfection, three transfection methods - 

Polyplus, Turbofect
TM

, and Turbofect
TM

 plus CombiMag - were tested. For this, SH-SY5Y 

neuroblastoma cells were plated at 70-80% confluence, being transfected at the next day 

with Gαo and GαoCA cDNAs, using the three different transfection methods as described 

in sections 3.4. The levels of Gαo transfection were evaluated by Western blot analysis 

using an anti-Gαo antibody (Fig. 15), by comparing with non-transfected cells (NT, Fig.15 

at the right).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 15: Evaluation of Gαo and GαoCA cDNAs transfection in SH-SY5Y cells using different transfection methods. 
Upper panel: Immunoblot analysis of Gαo and GαoCA cDNAs transfection, cleaved PARP (for apoptosis analysis) and 

STAT3 signaling, using anti-Gαo, anti-PARP cleavage site (214/215), anti-STAT3 and anti-phospho-STAT3 (Tyr705) 

antibodies, respectively. Lower panel and graphs: Protein expression profiles of Gαo and cleaved PARP with different 

transfection methods, allowed evaluate Gαo transfection and apoptosis rate. NT: non-transfected cells; Go PP, Go TF and 

Go TF+Combi: cells transfected with Gαo cDNA, using Polyplus, TurbofectTM, and TurbofectTM plus CombiMag 

respectively; GoCA PP, GoCA TF and GoCA TF+Combi: GαoCA cDNA transfected cells, using Polyplus, TurbofectTM 

lipid-mediated and TurbofectTM plus CombiMag respectively. 
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All the transfection methods tested rendered good levels of Gαo transfection, but 

both the Turbofect
TM 

and Turbofect
TM

 plus CombiMag methods yield higher transfections. 

Although the Turbofect
TM

 plus CombiMag method yielded the best efficient transfection 

rate, it was associated with an increase in cell death. PARP cleavage, a classical 

characteristic of apoptosis, was used to evaluate the apoptosis rate, by Western blot 

analysis using an anti-PARP cleavage site (214/215) antibody (Fig. 15). Therefore, in all 

successive experimental assays, the Turbofect
TM

 reagent method was used. Of note, the 

mouse anti-Gαo antibody (Chemicon) was first tested here and rendered no visible signal. 

 

4.2. Pilot experiment – time periods of Gαo transfection 

Subsequently, a pilot experiment was delineated in order to optimize the best time 

periods of Gαo transfection for the study of Gαo–induced STAT3 signaling. For that, cells 

were plated at 70-80% confluence and transfected, after 24h, with pcDNA3 vector alone or 

the Gαo and GαoCA cDNAs, for 2h, 4h, 6h, 8h and 24h. After each transfection time 

period, cells were collected for Western blot analysis. Both the anti-phospho-STAT3 

(pSTAT3, Tyr 705) and anti-STAT3 antibodies were used to analyse STAT3 activation, 

and the levels of Gαo were analysed using the anti-Gαo rabbit antibody (Fig. 16). Tubulin 

was detected by anti-β-Tubulin antibody. Again, the mouse anti-Gαo antibody was not able 

to detect endogenous or transfected Gαo, and hence only the rabbit antibody (Upstate) was 

used in further experiments.  

Increase in Gαo expression could be observed from 6h of transfection on, and its 

expression increased with time of transfection; GαoCA expression could be observed from 

4h on, and was slightly higher than for Gαo. Gαo effects on the STAT3 signaling could be 

observed from 6h until 24h of transfection, and only Gαo at 6h visibly induced STAT3 

phosphorylation. Indeed, for the other periods following the 6h time point, and for all the 

GαoCA transfections, the levels of STAT3 phosphorylation were found to decrease below 

the vector pcDNA3 ones. Hence, a retro-inhibition mechanism of this pathway appears to 

exist upon longer Gαo overexpression times or with Gαo activation, mimicked by the 

GαoCA mutant. Further, at 8h and 24h, GαoCA overexpression induces a higher negative 

feedback on STAT3 phosphorylation than Gαo. 
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In synthesis, the 6h transfection period was the only one where STAT3 activation 

could be recorded by Western blot means, and at 24h of transfection the pSTAT3/STAT3 

ratio were below vector levels for both Gαo and GαoCA. Hence, in all subsequent assays, 

6h and 24h were the transfection time periods chosen, as they rendered higher and opposite 

effects on STAT3 signaling. Further, in the following main experiments, the transfection 

levels were purposely decreased in an attempt to record not only Gαo but also GαoCA-

induced STAT3 phosphorylation at the 6h period. 

 

 

 

 

Fig. 16: Evaluation of Gαo transfection effects on the STAT3 signaling upon different times of transfection (2h, 4h, 

6h, 8h and 24h). Upper panel: Immunoblot analysis of SH-SY5Y cells that were transfected with pcDNA3 vector, Gαo 

and GαoCA cDNA. Gαo and GαoCA cDNA transfections were confirmed by using the anti-Gαo antibody. STAT3 

signaling was analysed by the use of anti-phospho-STAT3 (Tyr705) and total anti-STAT3 antibodies. Tubulin was also 

detected by using an anti-β-Tubulin antibody. Graph: The rate of STAT3 activation is presented by the ratio of Phospho-

STAT3 to total STAT3 levels for the samples transfected only with the pcDNA3 vector, or with Gαo and GαoCA cDNAs 

at different times of transfection. V1: vector pcDNA3 transfected cells; Go and GoCA: cells transfected with Gαo and 

GαoCA cDNA, respectively. 
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4.3. APP effects on Gαo–induced STAT3 signaling 

4.3.1. APP and Gαo effects on STAT3 activation levels 

In order to decipher the influence of APP and Gαo interaction on STAT3 signaling, 

and the underlying mechanisms, non differentiated SH-SY5Y neuroblastoma cells were 

transfected with pcDNA3 (V1) and EGFP-N1 (V2) empty vectors, APP-GFP (Wt, S655A 

and S655E - mimicking APP S655 dephosphorylation and phosphorylation, respectively), 

Gαo and GαoCA (a Q205L mutant mimicking constitutively active Gαo) cDNAs, and co-

transfected with APP-GFP fusion cDNAs and Gαo or GαoCA. Transfection was conducted 

for 6 and 24 h by the Turbofect
TM

 method, after which cells and medium were harvested 

for Western blot procedure. Transfection of APP-GFP constructs was confirmed for all 

conditions by using the 22C11 antibody against APP N-terminus (Fig. 17, bands a, b in 

Wt, SA or SE lanes), which also detects endogenous APP proteins (bands c-e). Transfected 

Gαo or GαoCA (Fig. 17, lanes Gαo and GαoCA) and endogenous Gαo were detected for all 

conditions, using the rabbit anti-Gαo antibody.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 17: Qualitative assessment of Gαo and APP-GFP levels of transfection upon 6h and 24h of transfection. 
Immunoblot analysis of SH-SY5Y cells transfected with pcDNA3 (V1) and N1-EGFP (V2) vectors, Gαo and GαoCA (Go 

and GoCA, respectively), wild-type and S655 phosphomutant APP-GFP (Wt, SA, SE) cDNAs, or co-transfected with 

APP-GFP fusion cDNAs and Gαo or GαoCA: Go + Wt, SA or SE: Gαo and Wt, S655A or S655E co-transfected cells; 

GoCA + Wt, SA or SE: cells co-transfected with GαoCA and Wt, S655A or S655E. Upper panel: 6h of cDNAs 

transfection; lower panel: 24h of cDNAs transfection. Gαo and APP expressions were detected using the anti-Gαo 

antibody and the 22C11 antibody, against APP N-terminus, respectively. a) APP-GFP 695 mature; b) APP-GFP 695 

immature forms; c) endogenous APP 751/770 mature; d) endogenous APP 751/770 immature forms; e) endogenous APP 

695 immature form. 



55  

APP and APP phosphorylation in Gαo-induced STAT3 signaling 

Tubulin was detected by using an anti-β-Tubulin antibody. Tubulin levels showed a 

consistent variation pattern, indicating that it was an experimental variable and therefore 

not suited to be used as a loading control (Fig. 18). Thus, Ponceau S staining of total 

proteins bands was performed, and samples’ lanes were quantified and used as loading 

control for further quantitative determinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Following, the activation of STAT3 signaling was analyzed using both an anti-

phosphoSTAT3 (Tyr 705) and anti-STAT3 antibodies, in the 6h and 24h Western blots. 

 

APP effects on Gαo-induced STAT3 signaling (6h of transfection) 

 

The levels of STAT3 and P-STAT3 for each condition were quantified by 

densitometry and plotted upon their correction to the loading control (Ponceau S). At 6h of 

transfection, no significant variation on total STAT3 levels was observed for all conditions 

tested. On the other hand, significant alterations in STAT3 phosphorylation levels (P-

STAT3) could be observed for some conditions. Protein quantification data were used to 

determine the P-STAT3/STAT3 ratio for each condition, a measure of STAT3 activation 

(Fig. 19). 

 

Fig. 18: Qualitative assessment of tubulin levels upon 6h and 24h of transfection. Immunoblot analysis of SH-SY5Y 

cells transfected with pcDNA3 (V1) and N1-EGFP (V2) vectors, Gαo and GαoCA (Go and GoCA, respectively), wild-

type and S655 phosphomutant APP-GFP (Wt, SA, SE) cDNAs, or co-transfected with APP-GFP fusion cDNAs and Gαo 

or GαoCA: Go + Wt, SA or SE: Gαo and Wt, S655A or S655E co-transfected cells; GoCA + Wt, SA or SE: cells co-

transfected with GαoCA and Wt, S655A or S655E. Upper panel: 6h of cDNAs transfection; lower panel: 24h of cDNAs 

transfection. Tubulin detected by anti-β-Tubulin antibody. 
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Fig. 19: Evaluation of the influence of APP and APP phosphorylation in Gαo-induced STAT3 signaling in SH-

SY5Y cells, upon 6h of transfection. A. Western blot analysis of cells transfected with pcDNA3 (V1) and N1-EGFP 

(V2) vectors, Gαo and GαoCA (Go and GoCA, respectively), wild-type and S655 phosphomutant APP-GFP (Wt, SA, 

SE) cDNAs, or co-transfected with APP-GFP fusion cDNAs and Gαo (Go+ Wt, SA or SE) or or GαoCA (GoCA+ Wt, 

SA or SE). STAT3 signaling was analysed using anti-phospho-STAT3 (Tyr 705) and anti-STAT3 antibodies. B. Graphic 

analysis of STAT3, phospho-STAT3 (P-STAT3) and P-STAT3/STAT3 ratio variations for all conditions tested. Data are 

presented as mean ± SEM, upon correction to Ponceau. *p<0.05 (experimental vs vector control data). n=4. 

A. 

B. 
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As expected, we observe that both Gαo and GαoCA induce STAT3 phosphorylation, 

although GαoCA leads to lower increases (not statistically significant), possibly due to the 

induction of a retro-inhibitory mechanism. Transfected alone, APP-GFP proteins do not 

change the phosphorylation state of STAT3, when compared to N1-EGFP values, except 

for the S655 phosphorylated mutant form (SE APP) that appears to be prone to increase 

this signaling pathway. All APP-GFPs/Gαo co-transfections lead to a decrease in Gαo-

induced STAT3 phosphorylation, potentially by enhancing a retro-inhibition effect 

following Gαo and/or STAT3 activation. This effect appears to be enhanced by APP S655 

dephosphorylation (SA APP), and by Gαo activation, as it is higher when APP-GFPs are 

co-transfected with activated Gαo (GαoCA). 

 

 

APP effects on Gαo-induced STAT3 signaling (24h of transfection) 

SH-SY5Y 24h transfected cells lysates were also probed for phosphoSTAT3 (Tyr 

705) and total STAT3 (Fig. 20A). At 24h of transfection, a greater variability on the 

STAT3 protein levels could be observed, in comparison with the 6h time point (Fig. 19B 

and 20B). Indeed, slight increases could be observed upon transfection with the APP-GFP 

or Gαo cDNAs. 

On the other hand, the profiles of variation of STAT3 phosphorylation were similar 

to the ones observed at 6h but with much lesser amplitude, which lead to no significant 

variations (Fig. 20B). 

The P-STAT3/STAT3 ratio (Fig. 20B) generally decreases for all constructs. This 

was previously seen for Gαo and GαoCA 24h transfections in the pilot experiment (Fig. 

16), corroborating the existence of a retro-inhibition mechanism that, besides activation-

dependent (as seen in the 6h condition), appears to be time dependent (compare P-

STAT3/STAT3 ratio at 6h and 24h, Fig. 19B and 20B). Again, this downregulation is more 

pronounced for GαoCA transfection and for its co-transfections with APP-GFP cDNAs, in 

particular with the S655A dephosphomimicking mutant. 
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Fig. 20: Evaluation of the influence of APP and APP phosphorylation in Gαo-induced STAT3 signaling in SH-

SY5Y cells, upon 24h of transfection. A. Western blot analysis of cells transfected with pcDNA3 (V1) and N1-EGFP 

(V2) vectors, Gαo and GαoCA (Go and GoCA, respectively), wild-type and S655 phosphomutant APP-GFP (Wt, SA, 

SE) cDNAs, or co-transfected with APP-GFP fusion cDNAs and Gαo (Go+ Wt, SA or SE) or or GαoCA (GoCA+ Wt, 

SA or SE). STAT3 signaling was analysed using anti-phospho-STAT3 (Tyr 705) and anti-STAT3 antibodies. B. Graphic 

analysis of STAT3, phospho-STAT3 (P-STAT3) and P-STAT3/STAT3 ratio variations for all conditions tested. Data are 

presented as mean ± SEM, upon correction to Ponceau; n=4. 

 

A. 

B. 
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4.3.2. Effect of APP overexpression in Gαo levels 

During the previous analysis of the STAT3 signaling activation, we have noticed 

that APP overexpression was having an effect on Gαo levels, what could also partially 

relate with a STAT3 retro-inhibition mechanism. To analyse this, first the levels of 

endogenous and transfect Gαo were quantified in all experimental conditions. The effect of 

APP-GFP expression on endogenous Gαo levels was determined by comparing Gαo levels 

in transfected APP-GFP samples versus N1-EGFP (V2) samples. Variations in exogenous 

Gαo levels were obtained by analysing Gαo levels in APP-GFP/Gαo and APP-GFP/GαoCA 

co-transfections, in comparison with Gαo and GαoCA samples, respectively (Fig. 21). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 21: Analysis of endogenous and exogenous Go levels with APP-GFPs tranfection and co-transfection, 

respectively, at 6h and 24h. Immunoblot analysis of SH-SY5Y cells transfected with pcDNA3 (V1) and N1-EGFP (V2) 

vectors, Gαo and GαoCA (Go and GoCA, respectively), wild-type and S655 phosphomutant APP-GFP (Wt, SA, SE) 

cDNAs, or co-transfected with APP-GFP fusion cDNAs and Gαo or GαoCA: Go + Wt, SA or SE: Gαo and Wt, S655A or 

S655E co-transfected cells; GoCA + Wt, SA or SE: cells co-transfected with GαoCA and Wt, S655A or S655E. Gαo 

levels were analysed by using a rabbit anti-Gαo antibody at 6h (upper panel) and 24h (lower panel) of transfection. 
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At 6h and 24h, endogenous Gαo levels decreased with APP-GFPs transfection in 

comparison to the N1-EGFP vector, except for S655E APP that only appears to have this 

type of effect at 24h (Fig. 21 and 22). Wt and S655A APP-GFP transfection decrease the 

Gαo levels by ~50% and ~40%, respectively, upon 6h of transfection, and S655A even 

decreases Gαo levels by ~65% at 24h. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When analysing the exogenous Gαo/GαoCA levels (Fig. 23), much smaller 

decreases could be observed, perhaps due to the strong promoter of Gαo plasmids and their 

good transfection rates. Indeed, only a small decrease in Gαo levels with APP co-

transfection can be observed at 6h, but this effect increases with time, being more apparent 

upon 24h of transfection (Fig. 23). The same occurs with APP/GαoCA co-transfections, 

although more pronounced than for APP/Gαo co-transfections, and again slightly 

increasing with time, supporting that this negative effect of APP on Gαo levels is time and, 

specially, Gαo activation-dependent. 

S655 phosphorylated APP (SE APP) decrease exogenous levels of Gαo again only 

at 24h. This downregulation effect of S655E APP on exogenous Gαo levels occurs already 

at 6h for GαoCA, potentially due to Gαo activation. 

 

 

Fig. 22: Protein expression profiles of endogenous Gαo levels with APP-GFPs 6h and 24h of tranfection.  N1-

EGFP: vector N1-EGFP transfected cells; Wt, SA, SE: cells transfected with Wt, S655A and S655E APP-GFP cDNAs, 

respectively. Data are presented as mean±SEM, upon correction to Ponceau. *p<0.05, **p<0.01. n=4. 



61  

APP and APP phosphorylation in Gαo-induced STAT3 signaling 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3.3. Effect of Gαo overexpression in APP levels 

To evaluate the effect of Gαo overexpression in APP, endogenous APP levels were 

quantified in Gαo and GαoCA transfection samples and compared to pcDNA3 (V1) 

samples. The analysis of exogenous APP levels was obtained by quantification of the 

levels of total APP, or APP-GFP alone, in APP-GFP/Gαo and APP-GFP/GαoCA co-

transfection samples, and their comparison to the corresponding APP-GFP sample (Fig. 

24). 

Fig. 23: Fold-increase of exogenous Go and GoCA protein expression levels with APP-GFPs co-tranfection at 6h 

and 24h. Upper panel: Exogenous Gαo levels at 6h and 24h of transfection. Lower panel: Exogenous GαoCA levels at 6h 

and 24h of transfection. Go and GoCA: cells transfected with Gαo and GαoCA cDNA, respectively; Go:Wt, SA or SE: 

Gαo and Wt, SA or SE co-transfected cells; GoCA:Wt, SA or SE: cells co-transfected with GαoCA and Wt, SA or SE. 

Data are presented as mean±SEM, upon correction to Ponceau *p<0.05, **p<0.01. n=4. 
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Fig. 24: Analysis of endogenous APP and transfected APP-GFP levels at 6h and 24h. Immunoblot analysis of SH-

SY5Y cells transfected with pcDNA3 (V1) and N1-EGFP (V2) vectors, Gαo and GαoCA (Go and GoCA, respectively), 

wild-type and S655 phosphomutant APP-GFP (Wt, SA, SE) cDNAs, or co-transfected with APP-GFP fusion cDNAs and 

Gαo or GαoCA: Go + Wt, SA or SE: Gαo and Wt, S655A or S655E co-transfected cells; GoCA + Wt, SA or SE: cells 

co-transfected with GαoCA and Wt, S655A or S655E. Upper panel: 6h of cDNAs transfection; lower panel: 24h of 

cDNAs transfection. APP expressions were detected using the 22C11 antibody, against APP N-terminus, respectively. 

Red box: total APP forms; Yellow box: APP-GFP bands. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

When observing Gαo and GαoCA solely transfected samples, we can observe a 

decrease in endogenous APP levels, but this effect is more pronounced upon 24h of 

transfection. Contrary to what was observed for the APP-induced decrease in Gαo levels, 

this effect was similar between Gαo and GαoCA proteins (Fig. 25).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 25: Representation of protein expression profiles of endogenous APP levels with Gαo and GαoCA tranfection 

at 6h and 24h. pcDNA3: vector pcDNA3 transfected cells; Go and GoCA: cells transfected with Gαo and GαoCA 

cDNA, respectively. Data are presented as mean±SEM, upon correction to Ponceau. *p<0.05. n=4. 
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Relatively to APP-GFP and Gαo and GαoCA co-transfections, these invariably lead 

to a decrease in exogenous total APP and APP-GFP levels, which in general follow the 

same variation profiles (Fig. 26). At 6h, either Gαo or GαoCA decrease both Wt and SA 

APP-GFPs levels, an effect that is more pronounced following 24h of transfection. This 

time-dependent effect is also observed for the S655E mutant, but Gαo is less able to 

diminish its levels at 6h of transfection (Fig. 26). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 26: Fold-increase of total APP and APP-GFP protein expression with Gαo and GαoCA co-tranfection at 6h 

and 24h. Upper panel: APP-GFP fold-increase with Gαo and GαoCA co-transfection. Lower panel: Total APP fold-

increase with Gαo and GαoCA co-transfection. Go:Wt, SA or SE: Gαo and Wt, SA or SE co-transfected cells; 

GoCA:Wt, SA or SE: cells co-transfected with GαoCA and Wt, SA or SE. Data are expressed as mean±SEM, upon 

correction to Ponceau. *p<0.05, **p<0.01, ***p<0.001. n=4. 
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In synthesis, Gαo decreases APP levels, what may occur by directly or indirectly 

intervene in APP cleavage or in APP degradation. To analyse if Gαo decreases APP levels 

by increasing its cleavage to sAPP, the conditioned medium collected for each condition 

was analysed by Western blotting. The analysis of 6h (data not shown) and 24h medium 

Western blots (Fig. 27) revealed that sAPP levels do not increase with Gαo and GαoCA 

overexpression. In fact, APP-GFPs/GαoCA co-transfection seems to even decrease sAPP 

levels. Therefore, Gαo does not decrease APP levels by increasing APP cleavage but 

potentially by increasing APP degradation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Visual analysis of cellular APP/Gαo levels 

In order to visualize endogenous Gαo and APP levels in SH-SY5Y cells, and 

compare their cellular distribution, immunocytochemistry was performed in non-

transfected cells fixed upon 6h and 24h of medium substitution. Fluorescence microscopy 

was further carried out using a Confocal microscope, and cells were randomly selected for 

analysis (Fig. 28). Very interestingly, both the 6h and 24h images demonstrate that cells 

with high APP content (mainly visible at the Golgi) have low Gαo levels and cells with 

high Gαo levels show medium APP levels. This result is completely consistent with the 

previous Western blot data. Of note, endogenous Gαo and APP appear to colocalize at the 

plasma membrane (when Gαo levels are higher) and at cytoplasmic vesicles, when Gαo 

levels are lower.  

Fig. 27: Qualitative analysis of sAPP levels from the conditioned medium collected at 24h of transfection. 
Immunoblot analysis of medium from SH-SY5Y cells transfected with pcDNA3 (V1) and N1-EGFP (V2) vectors, Gαo 

and GαoCA (Go and GoCA, respectively), wild-type and S655 phosphomutant APP-GFP (Wt, SA, SE) cDNAs, or co-

transfected with APP-GFP fusion cDNAs and Gαo or GαoCA: Go + Wt, SA or SE: Gαo and Wt, S655A or S655E co-

transfected cells; GoCA + Wt, SA or SE: cells co-transfected with GαoCA and Wt, S655A or S655E. Evaluation of 

sAPP levels was performed using 22C11 antibody. 
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Fig. 28: Evaluation of endogenous APP and Gαo levels in SH-SY5Y non-transfected cells at 6h and 24h, by 

immunocytochemistry procedures. APP and Gαo cellular distribution was visualized using the 22C11 antibody and 

Alexa Fluor 488, and anti-Gαo antibody and Texas-Red, respectively. Coverslips was mounted on microscope glass slides 

with DAPI, to delimitate the nucleus of cells. Microphotographs represent non-transfected cells, plated in parallel with 

the transfected, and fixed at 6h (A.) and 24h (B.) since medium substitution. 

A. 

B. 
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4.5. Analysis of APP-Gαo binding 

The effect of Gαo activation and APP S655 phosphorylation in APP-Gαo binding 

was analysed by using GFP-trap
®
 to precipitate GFP fusion proteins. SH-SY5Y cells were 

plated at 70-80% confluence and, after 24h, co-transfected with: i) EGFP-N1 vector and 

Gαo cDNA (N1:Go; control); ii) wild-type APP-GFP and Gαo cDNAs (Go:Wt), to evaluate 

if Gαo binds to APP; iii) wild-type APP-GFP and GαoCA cDNAs (CA:Wt), to test if Gαo 

activation alters binding; iv) phosphorylated APP, SE, and Gαo cDNAs (Go:SE), to analyse 

if the phosphorylated state of APP alters APP-Gαo binding.  

After 6h of transfection, cells were collected to proceed with the pull-down assay. 

Afterwards, the precipitates, lysates and supernatants were separated by Western blot, and 

blots probed with the APP C-terminal antibody CT695, for APP and APP-GFP detection, 

and the polyclonal anti-Gαo antibody (Fig. 29).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APP-GFP (bands a, b) were detected in all Go:Wt and Go:SE lysates and 

precipitated samples, being excluded from the N1:Go co-transfection, as expected, and 

from supernatants, the later indicating that all APP-GFP were completely pulled-down and 

cleared from these samples. Of note, in lysates and supernatants we could detect 

endogenous APP in all conditions, but not in pulled-down samples, as expected. 

Unfortunately, Gαo expression was only verified in lysates and supernatants, while in the 

pulled-down samples no Gαo signal was detected. 

Fig. 29: Evaluation of APP-Gαo binding with Gαo activation and APP S655 phosphorylation. Western blot analysis 

of SH-SY5Y cells co-transfected and submitted to GFP pull-down assays. Confirmation of APP expression with antibody 

CT695 against APP C-terminal, which detected: a) APP-GFP 695 mature; b) APP-GFP 695 immature forms; c) 

endogenous APP 751/770 mature; d) and e) endogenous APP 751/770 and 695 immature forms, respectively. Analysis of 

Gαo and GαoCA cDNA transfection was performed using an anti-Gαo antibody. N1:Go: vector EGFP-N1 and Go cDNA 

co-transfected cells; Go:Wt: cells co-transfected with Gαo and wild-type APP-GFP cDNA; CA:Wt: cells co-transfected 

with GαoCA and wild-type APP-GFP cDNA; Go:SE: Go and SE APP-GFP (phosphorylated APP) cDNAs co-transfected 

cells. 
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5. Discussion 

 

Gαo was described to induce neurite outgrowth via activation of two signaling 

cascades, the STAT3 and GRIN pathways (He, Gomes et al., 2005; Nakata and Kozasa, 

2005). APP binds to Gαo but the role of APP in these pathways was never evaluated (Fig. 

30). Nevertheless, APP and sAPP have been shown to modulate neuritogenesis in a 

complex and well-ordered manner, with APP phosphorylation at S655 enhancing its 

neuritogenic effect (Rocha, 2011). A potential functional co-interaction between APP and 

Gαo in neuritogenic signaling is therefore especially appealing and worth investigating. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Therefore, in the present work we addressed the role of APP and APP S655 

phosphorylation in Gαo-induced STAT3 signaling, and we have also evaluated the effects 

that APP and Gαo promote in each other metabolism. 

From our first preliminary experiment we have concluded that the Turbofect
TM

 

reagent method was the more appropriate for Gαo and GαoCA cDNAs transfection in SH-

Fig. 30: Gαo-induced neurite outgrowth through both GRIN1 and STAT3 signaling cascades. Overexpression of 

Gαo leads to GRIN1 and Rap1GAP activation, which in turn trigger cascades that promote neuritogenesis. Both of these 

proteins activate downstream signaling that activates Cdc42 and leads to STAT3 phosphorylation, respectively. The role 

of APP in Gαo-induced neurite outgrowth by these two pathways is not yet known. Adapted from reference (He, Gomes 

et al., 2005) 
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SY5Y cells, when compared to Polyplus and Turbofect
TM

 plus CombiMag methods. The 

Polyplus rendered less transfection rates and, as expectedly, the combination of a magnetic 

particle, CombiMag, with the Turbofect
TM

 transfection reagent enhanced the deliver 

efficiency for all Gαo cDNAs. However, due to the method in itself or to the higher 

amounts of Gαo expression, this combined method is associated with an increase in cell 

death, proving to be cytotoxic (Fig. 15).  

Following, we tested the effect of Gαo and GαoCA overexpression in STAT3 

signaling with time (2h, 4h, 6h, 8h and 24h). Gαo and GαoCA transfections could be 

observed mainly from 6h on, and alterations in STAT3 phosphorylation state were more 

significant at 6h and 24h, the time points chosen for the subsequent experiments (Fig. 16). 

At 6h, Gαo was able to induce STAT3 phosphorylation but, upon 24h of transfection, P-

STAT3 levels decreased below pcDNA3 vector ones, evidencing a retro-inhibition 

mechanism of this pathway. This negative mechanism appeared to be strongly dependent 

on Gαo activation, since P-STAT3 was always found inhibited in GαoCA transfected cells, 

at all time points analysed. This is consistent with data on the literature evidencing not only 

a transiently STAT activation, but also suggesting the existence of an efficient negative 

feedback mechanism. Indeed, in normal cells, and under physiological conditions, STAT3 

activation, mediated by phosphorylation at the Tyr705 residue, is a tightly controlled 

transient process. While some authors indicate that it lasts from 30 minutes to few hours 

(Debnath, Xu et al., 2012), other authors advocate cytokines-mediated STAT3 

phosphorylation generally peaks 15 to 30 minutes following stimulation, further declining 

to baseline levels over one to two hours (Walker, Chaudhury et al., 2011). Either way, the 

residence time of the STAT3 active state is very quick, justifying the declining levels of P-

STAT3 that we observed in our experimental conditions, especially for the activated 

GαoCA construct. This retro-inhibitory mechanism is believed to be partially due to a 

negative feedback from STAT3-target genes. Actually, in order to tightly control 

transcription of key STAT3-target genes, many STAT3 target genes are themselves 

negative regulators of STAT activation (Walker, Chaudhury et al., 2011). 

Subsequently, we evaluated the effects of APP overexpression in Gαo-induced 

STAT3 signaling and the role played by APP S655 phosphorylation in that regulation. For 

that, SH-SY5Y cells were transfected with the vectors pcDNA3 and N1-EGFP, Wt, SA 

and SE APP-GFPs, Gαo and GαoCA cDNAs, or co-transfected with the APP-GFP and Gαo 
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cDNAs. As in pilot experiment, at 6h we could observe a stimulation of STAT3 

phosphorylation, not only for Gαo but also for GαoCA (Fig. 19), probably resulting from 

the lower GαoCA transfection levels (compare Fig. 16 and Fig. 19). Activated Gαo was 

reported to enhance STAT3 levels (Ram, Horvath et al., 2000) and the lower increases in 

P-STAT3 levels that we observed for GαoCA in our experimental conditions appears to 

result from the previously observed retro-inhibition mechanism.  

Regarding the APP-GFPs proteins alone, these did not alter the phosphorylation of 

STAT3 except for the phosphomimicking S655E mutant, which slightly increases this 

signaling pathway relative to N1-EGFP values. This may potentially occur via secreted 

sAPP, since S655 phosphorylation increases sAPP production (Vieira, Rebelo et al., 2009) 

and sAPP was observed to potentially activate STAT3 (Kwak, Dantuma et al., 2010). 

S655E-induction of STAT3 may also occur via Gαo. Indeed, as already mentioned, other 

major protein found in axonal growth cones is the Gαo-binding protein GAP-43, whose 

expression is up-regulated by APP (Strittmatter, Valenzuela et al., 1990; Mucke, Masliah 

et al., 1994). The findings that GAP-43 acts as a GEF for Gαo protein suggests a potentially 

role for this protein in mediating phospho S655 APP-induced STAT3 activation. 

Unexpectedly, all APP-GFPs/Gαo co-transfections decreased the Gαo-induced 

STAT3 phosphorylation, and we were not able to observe an initial positive effect of APP 

on Gαo-induced STAT3 activation. These negative effects could result from the 

enhancement of the previously observed retro-inhibition effect, which appears occur after 

Gαo and/or STAT3 activation, and may also involve Gαo downregulation. Apparently, 

this(ese) retro-inhibition effect(s) occurs after Gαo and/or STAT3 activation. Indeed, APP-

GFPs/GαoCA co-transfection led to a higher retro-inhibition effect, together with APP 

S655 dephosphorylation (mimicked by the SA APP mutant). Consistent results are shown 

at 24h (Fig. 20), where a general decrease in the P-STAT3/STAT3 ratio was detected for 

all Gαo/GαoCA and APP-GFP transfections and co-transfections, supporting that this retro-

inhibition mechanism is also time dependent. Again, GαoCA transfection and its co-

transfection with APP-GFP cDNAs, especially with the S655A phosphomutant, resulted in 

negative effects on STAT3 phosphorylation levels. 

In synthesis, at 6h and 24h, with different transfection conditions, we could observe 

a retro-inhibition mechanism in STAT3 signaling, that appears to be strongly Gαo 

activation-dependent (as seen in the 6h and 24h conditions), but also time-dependent (as 
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seen in the 24h condition, when compared to the 6h). In addition, mimicking S655 

dephosphorylation through the use of the S655A mutant increases this effect, suggesting 

that APP S655 phosphorylation deviates APP from its negative role on Gαo–induced 

STAT3 activation. 

Further and somewhat expected, in all these transfection and co-transfection 

conditions tested, β-tubulin levels also showed alterations, which discarded its use as a 

loading control. The alterations of β-tubulin levels with APP-GFP and Gαo transfections 

are a response against the cellular morphological changes that are induced by these 

potentially neuritogenic proteins. In fact, our group had already reported differences on β-

tubulin levels with cellular differentiation and Wt APP-GFP transfection, suggesting that 

β-tubulin can even be used as a differentiation cytoskeleton-related marker (Rocha, 2011). 

Ponceau S staining of proteins bands is widely used (Romero-Calvo, Ocon et al., 2010) 

and proved to be a good loading control to use in these transfection and co-transfection 

conditions. 

We have further observed that increasing APP expression affected the intracellular 

levels of Gαo, what could also partially relate APP with its previously observed Gαo-related 

STAT3 retro-inhibition mechanism. APP-GFPs overexpression decreased endogenous Gαo 

levels to approximately half of their levels relative to control conditions, at 6h and 24h of 

transfection (Fig. 22). However, S655E APP-GFP only decreased Gαo levels upon 24h of 

transfection. Again, APP-induced Gαo downregulation is a time-, APP S655A 

dephosphorylated- and Gαo–activated dependent effect, suggesting a partial correlation 

between this effect and the observed APP-induced STAT3 retro-inhibition (Fig. 19 and 

20). APP-GFP could also decrease exogenous Gαo and GαoCA levels, upon their co-

transfection (Fig. 23). These decreases were smaller than for the endogenous levels 

possibly due to the strong promoter of Gαo plasmids and their good transfection rates. 

Again, higher decreases could be observed upon 24h of transfection, when compared to the 

6h period, and especially for the Gαo activated mutant, confirming its time- and activation-

dependency. Moreover, this was especially true for the phosphomimicking S655E mutant, 

which a much more delayed effect on Gαo downregulation. 

In conclusion, both endogenous and exogenous Gαo levels are diminished with APP 

overexpression. So, APP appears to participate in a Gαo inactivation mechanism, 

potentially by targeting Gαo for degradation. Since both APP-induced negative effects on 
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P-STAT3 and Gαo levels are time-, APP S655A dephosphorylated- and Gαo–activated 

dependent, they are potentially interrelated, with APP decreasing Gαo–induced STAT3 

activation through Gαo downregulation.     

In other hand, Gαo overexpression also had a similar effect on the APP levels, 

suggesting that both proteins are co-degraded to some extent. Gαo and GαoCA transfected 

cells were associated with slight decreases in endogenous APP levels, an effect also time-

dependent, being more pronounced upon 24h of transfection (Fig. 25). The same results 

were obtained from APP-GFPs/Gαo and GαoCA co-transfection cells, which presented 

decreases in exogenous APP-GFP levels. Again, this effect is mainly time-dependent for 

the S655E phosphomimicking mutant, with its levels only significantly decreasing at 24h, 

for both the Gαo and GαoCA constructs. Nonetheless, Gαo and GαoCA co-transfections 

lead to similar decreases in APP-GFP and total APP levels, with APP downregulation 

being independent of a previous Gαo activation. This indicates that a previous APP-Gαo 

interaction and activation step is upstream APP-induction of a decrease in Gαo levels. 

The later results indicate that Gαo decreases the APP half-life, with this decrease 

potentially occurring via interference on APP synthesis, cleavage or degradation. Since it 

has higher effects on exogenous APP proteins, Gαo appears to directly or indirectly 

intervene in APP cleavage or in APP degradation, rather than in its transcription rate. Our 

subsequent results strengthen the hypothesis of Gαo-induced APP degradation, since the 

medium secreted sAPP data revealed that neither Gαo or GαoCA overexpression increase 

APP proteolysis to sAPP (Fig. 27). Moreover, APP-GFPs/GαoCA co-transfection seems to 

even decrease sAPP levels, in accordance with an APP/Gαo co-degradation hypothesis. 

The fact that Gαo is less able to decrease the levels of S655 phosphorylated APP (S655E) 

and vice-versa, together with the knowledge that the dephospho S655A mutant is 

preferentially targeted for lysosomal degradation (Vieira, Rebelo et al., 2010) suggests that 

the APP downregulation mechanism observed is APP/Gαo lysosomal co-degradation. 

Remarkably, visualization of SH-SY5Y non-transfected cells fluorescence 

microphotographs (Fig. 28) revealed that cells with high APP levels express low Gαo 

levels, while cells with high Gαo levels show invariably medium or low APP levels. These 

results are completely consistent with our previous Western blot data and with unpublished 

data of our laboratory. Regarding cellular distribution, endogenous Gαo and APP appear to 

colocalize at the plasma membrane (when Gαo levels are higher) and at cytoplasmic 
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vesicles when Gαo levels are lower. Together with the fact that cells with high levels of 

APP have its localization mainly at its ‘cellular reservoir’ - the Golgi, make these locations 

a strongly support for APP/Gαo lysosomal co-degradation hypothesis.  

Finally, we evaluated if APP-Gαo binding is affected by Gαo activation and APP 

S655 phosphorylation, by using GFP-trap
®
 to precipitate the APP-GFP fusion proteins. 

Unfortunately, we cannot conclude anything regarding APP-Gαo binding, since no Gαo 

could be pulled-down with the APP-GFP proteins, under the conditions tested. These 

results raise a question of whether N-terminally fused GFP decreases the APP-Gαo binding 

strength, or if this binding is so fast that it is difficult to observe. Future experiments will 

involve e.g. immunoprecipitation of non GFP-fused Wt, S655A, and S655E cDNAs. 

 

 

 

6. Conclusion 

The experiments performed in this work indicate that APP-GFP and Gαo/GαoCA 

co-transfected SH-SY5Y cells suffer a decrease in Gαo-induced STAT3 signaling, possibly 

via a retro-inhibition effect on the STAT3 pathways, at the Gαo and STAT3 levels. This 

negative effect is enhanced by Gαo activation, APP S655 dephosphorylation, and by time 

of transfection (in particular for the phosphomimicking S655E mutant). From our data we 

proved that a downregulation of Gαo levels indeed occurs downstream APP (potentially 

after their interaction and subsequent Gαo activation) and, consistently, SH-SY5Y cells 

with high APP levels were observed to possess low Gαo levels. In fact, APP-GFP 

overexpression led to a decrease in endogenous and exogenous Gαo levels and, by its turn, 

Gαo overexpression decreased APP levels. These effects seem also to be time-dependent 

and Gαo-activation dependent. Moreover, sAPP levels did not increase with APP/Gαo co-

transfection, suggesting that Gαo enhances APP degradation, and that APP-Gαo co-

degradation is part of the mechanism by which APP inhibits Gαo-induced STAT3 

activation. APP S655 phosphorylation delays this inactivation phase and/or the first 

activation phase, and this remains to be analysed. Figure 31 summarizes the pathways and 

the hypothesis that we take from these experiments. 
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Future experiments will comprehend the detection of a first, fast, APP-Gαo-induced 

STAT3 activation phase, the characterization of the inhibitory mechanism induced by APP 

on this pathway, and the recording and characterization of APP-Gαo binding by alternative 

methods.

Fig. 31: Schematic model hypothesizing how APP regulates Gαo/STAT3 signaling pathways. Right to left: JAKs 

bind to tyrosine kinase (TK), growth factor or cytokine receptors. The binding of the ligand to the receptor triggers 

activation of JAKs, increasing its kinase activity. They phosphorylate the receptor cytoplasmatic domain on 

tyrosine residues and create sites for STATs interaction. STAT3 recognize specific receptor phosphotyrosine residues and 

become tyrosine phosphorylated by JAKs. The phosphorylation of STAT3 at Tyr705 by receptor-associated Janus 

kinases allows homo- or heterodimerization of STAT3 transcription factors and subsequent translocation to the nucleus, 

activating transcription of their target genes. In order to tightly control transcription of key STAT3-target genes, many 

STAT3 target genes are themselves negative regulators of STAT activation. APP S655 phosphorylation increases Tyr705 

phosphorylation of STAT3, potentially by increasing secreted sAPP levels, indirectly activating JAK/STAT signaling. 
Go-coupled receptor, when stimulated by a ligand, activates Go subunits. The activated α-subunit reduces the stability of 

Rap1-GAP, which results in the activation of Rap1 and, subsequently Src and STAT3 activation that mediate gene 

expression. The Src activation also stimulates the small GTPase Rac1 and then c-Jun N-terminal kinase (JNK). Gαo 

overexpression also leads to GRIN1 activation and, consequently the activation of another small GTPase Cdc42; this, 

together with Rac1, regulates actin cytoskeleton remodelling that helps neuritogenesis. The role of APP in Gαo-induced 

STAT3 activation is not yet known. GAP-43 has the ability to enhance Gαo activation, acting as a GEF. Indirectly, 

phospho S655 APP may potentially increase GAP-43 levels by increasing GAP-43 phosphorylation and thus decreasing 

its cleavage by calpain. Directly, APP-Gαo interaction leads first to Gαo activation (and subsequent signaling cascades 

activation), and second to APP-Gαo lysosomal co-degradation, in a mechanism that is overall enhanced by APP S655 

dephosphorylation. 
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Appendix 

 

Cell culture Solutions and Immunocytochemistry 

 

 

 PBS (1x) 

For a final volume of 500 ml, dissolve one pack of BupH Modified Dulbecco’s Phosphate 

Buffered Saline Pack (Pierce) in deionised H2O. Final composition: 

- 8 mM Sodium Phosphate 

- 2 mM Potassium Phosphate 

- 140 mM Sodium Chloride 

- 10 mM Potassim Chloride 

 

Sterilize by filtering through a 0.2 μm filter and store at 4ºC. 

 

 10% FBS MEM:F12 (1:1) 

- MEM (Gibco, Invitrogen)        4,805 g 

- F12 (Gibco, Invitrogen)        5,315 g 

- NaHCO3 (Sigma)         1,5 g 

- Sodium pyruvate (Sigma)        0,055 g 

- Streptomycin/Penicillin/Amphotericin solution (Gibco, Invitrogen)  10 mL 

- 10% FBS (Gibco, Invitrogen)       100 mL 

- L-glutamine (200 mM stock solution)      2,5 mL 

 

→ Dissolve in distilled (d) H2O; 

→ Adjust the pH to 7.2/ 7.3; 

→ Adjust the volume to 1000 mL with dH2O. 

 

 4% Paraformaldehyde 

For a final volume of 100 mL, add 4g of paraformaldehyde to 25 mL deionised H2O. 

Dissolve by heating the mixture at 58ºC while stirring. Add 1-2 drops of 1 M NaOH to 

clarify the solution and filter (0.2 μm filter). Add 50 mL of 2X PBS and ajust the volume 

to 100 mL with deionised H2O. 
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SDS-PAGE and Immunoblotting Solutions 

 

 

 LGB (Lower gel buffer) (4x) 

To 900 ml of deionised H2O add: 

- Tris    181.65 g 

- SDS    4 g 

 

Mix until the solutes have dissolved. Adjust the pH to 8.9 and adjust the volume to 1L with 

deionised H2O. 

 

 UGB (Upper gel buffer) (5x) 

To 900 ml of deionised H2O add: 

- Tris   75.69 g 

 

Mix until the solute has dissolved. Adjust the pH to 6.8 and adjust the volume to 1 L with 

deionised H2O. 

 

 30% Acrylamide/0.8% Bisacrylamide 

To 70 ml of deionised H2O add: 

- Acrylamide   29.2 g 

- Bisacrylamide  0.8 g 

 

Mix until the solute has dissolved. Adjust the volume to 100 ml with deionised water. 

Filter through a 0.2 μm filter and store at 4ºC. 

 

 10% APS (ammonium persulfate) 

In 10 ml of deionised H2O dissolve 1 g of APS. Note: prepare fresh before use. 

 

 10% SDS (sodium dodecilsulfate) 

In 10 ml of deionised H2O dissolve 1 g of SDS. 

 

 Loading Gel Buffer (4x) 

- 1 M Tris solution (pH 6.8)     2.5 mL (250 mM) 

- SDS        0.8 g (8%) 

- Glicerol       4 ml (40%) 

- β-Mercaptoetanol      2 ml (2%) 

- Bromofenol blue      1 mg (0.01%) 
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Adjust the volume to 10 ml with deionised H2O. Store in darkness at room temperature. 

 

 1 M Tris (pH 6.8) solution 

To 150 ml of deionised H2O add: 

- Tris base    30.3 g 

 

Adjust the pH to 6.8 and adjust the final volume to 250 ml. 

 

 10x Running Buffer 

- Tris     30.3 g (250 mM) 

- Glycine    144.2 g (2.5 M) 

- SDS     10 g (1%) 

 

Dissolve in deionised H2O, adjust the pH to 8.3 and adjust the volume to 1 L. 

 

 Resolving (lower) gel solution (60 ml) 

7.5%   or   10% 

- H2O       29,25 ml    25,2 ml 

- 30% Acryl/0.8% Bisacryl solution   15 ml     19,8 ml 

- LGB (4x)      15 ml     15 ml 

- 10% APS      300 μL    300 μL 

- TEMED     30 μL     30 μL 

 

 Resolving (lower) gel solution for gradient gels (60 ml) 

5%   and   20% 

- H2O       17.4 ml    2.2 ml 

- 30% Acryl/0.8% Bisacryl solution   5 ml     20 ml 

- LGB (4x)      7.5 ml     7.5 ml 

- 10% APS      150 μL    150 μL 

- TEMED      15 μL     15 μL 

 

 Stacking (upper) gel solution (20 ml) 

3.5% 

- H2O       13.2 ml 

- 30% Acryl/0.8% Bisacryl solution   2.4 ml 

- UGB (5x)      4.0 ml 

- 10% APS      200 μL 

- 10% SDS      200 μL 

- TEMED      20 μL 
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 1x Transfer Buffer 

- Tris    3.03 g (25 mM) 

- Glycine   14.41 g (192 mM) 

 

Mix until solutes dissolution. Adjust the pH to 8.3 with HCl and adjust the volume to 800 

ml with deionised H2O. Just prior to use add 200 ml of methanol (20%). 

 

 

 10x TBS (Tris buffered saline) 

- Tris    12.11 g (10 mM) 

- NaCl    87.66 g (150 mM) 

 

Adjust the pH to 8.0 with HCl and adjust the volume to 1L with deionised H2O. 

 

 10x TBST (TBS+Tween) 

- Tris    12.11 g (10 mM) 

- NaCl    87.66 g (150 mM) 

- Tween 20   5 ml (0.05%) 

 

Adjust the pH to 8.0 with HCl and adjust the volume to 1L with deionised H2O. 

 

 Membranes Stripping Solution (500 ml) 

- Tris-HCl (pH 6.7)   3.76 g (62.5 mM) 

- SDS     10 g (2%) 

- β-mercaptoetanol   3.5 ml (100 mM) 

 

Dissolve Tris and SDS in deionised H2O and adjust with HCl to pH 6.7. Add the 

mercaptoethanol and adjust volume to 500 ml. 

 

 ECL home-made (250 ml) 

Solution A - ECL luminol solution (Stock solution): 

 

- 20 mM luminol (in DMSO) *   1.25 ml (100μM) 

- 100 mM 4-iodophenol (in DMSO) *  5 ml (2mM) 

- 0.1 M Tris (pH 9.35)    125 ml (50 mM)  

 

Adjust volume to 250 ml with deionised H2O.  

* Protect from the light; conserve at -20ºC 

 

Solution B – Hydrogen peroxide 
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Pull-down solutions 

 

 Lysis buffer (5 ml) 

- 50 mM Tris (pH 8)     250 μl of 1M Tris (pH 8) 

- 25% glycerol     1250 μl 100% glycerol 

- 0.5% Gepac-ca-630 (NP40)    250 μl 10% NP40 

- 200 mM NaCl     200 μl 5M NaCl 

- β-mercaptoethanol     0,35 μl β-mercaptoethanol 

- 1 mM PMSF      50 μl 100 mM PMSF 

- protease inhibitor cocktail    5 μl of protease inhibitor cocktail 

 

Keep all on ice. 

 

 Wash buffer (20 ml) 

- 10 mM Tris (pH 8)     200 μl of 1M Tris (pH 8) 

- 0.1% Gepac-ca-630 (NP40)    200 μl 10% NP40 

- 150 mM NaCl     600 μl 5M NaCl 

- 0.25 mM EDTA     40 μl 0.25M EDTA 

- 1 mM PMSF      200 μl 100 mM PMSF 

- protease inhibitor cocktail    20 μl of protease inhibitor cocktail 

 

Keep all on ice. 

 


