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resumo 
 

 

Esta tese apresenta um estudo sobre alguns dos protocolos de 
cooperação MAC para redes sem fios utilizando o sistema IEEE 802.11 
multi-débito. É proposto um novo modelo de arquitetura para a 
categorização e análise da cooperação em redes sem fios, tendo este 
modelo sido aplicado a protocolos cooperativos existentes para camada 
MAC. 
É investigado como as características do meio físico, assim como os 
requisitos de níveis superiores podem ser aplicados ao processo de 
cooperação, com vista a melhorar as características de funcionamento 
da rede de comunicações. Para este propósito são exploradas as 
métricas mais relevantes para o processo de cooperação. São 
igualmente estudados os limites impostos pelos protocolos da camada 
MAC e as limitações práticas impostas por protocolos da família de 
normas que compõem o IEEE 802.11. 
Neste trabalho foi criada uma métrica multicamada, que permite 
considerar os requisitos aplicacionais de performance e o tipo de 
tráfego, assim como a mobilidade dos dispositivos, no funcionamento 
dos mecanismos de cooperação. Como forma de validação, e para 
corretamente avaliar o impacto da métrica, um novo protocolo de 
cooperação foi desenvolvido e implementado. O seu funcionamento é 
descrito de forma analítica assim como validado através de a um 
ambiente de simulação. 
Os resultados obtidos mostram que a utilização de uma métrica 
multicamada é uma técnica robusta, fornecendo melhorias consistentes 
no contexto de redes IEEE 802.11. São igualmente demonstradas 
várias outras características de funcionamento com impacto para as 
comunicações. Estes dados fornecem uma visão real e encorajadora 
para a realização de mais pesquisas para a melhoria da performance 
dos protocolos cooperativos, assim como a sua utilização num variado 
número de aplicações futuras. No final do documento são apresentados 
alguns desafios para a continuação da investigação deste tópico. 
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abstract This thesis presents a study on cooperative MAC protocols in 
Multi-rate IEEE 802.11 wireless networks. We proposed a novel 
architectural framework for cooperation algorithms in wireless 
network. This behavior model was considered for existing 
cooperative MAC protocols. A classification of these protocols was 
presented based on their cooperation objectives. 
We investigate how physical layer specifications and higher layer 
requirements can be applied in cooperation MAC protocols to 
enhance the overall network performance. For this purpose, we 
exploit the appropriate metrics which are consistent to the 
cooperation objectives. Performance bounds provided by MAC 
protocols and practical limitations posed by IEEE 802.11 standards 
have been also studied. 
A cross layer metric was achieved in cooperative MAC protocols to 
adapt cooperation performance to traffic service requirements and 
mobility scenario. In order to realize the impact of this metric, a 
new cooperative MAC protocol is designed and implemented. 
Analytical and simulation of this protocol was performed in different 
scenarios and environments.  
The obtained results have shown a robust technique in providing 
consistent cross layer optimization in context of IEEE 802.11 
networks. A number of findings was experienced which are 
illustrated at the end. These observations would enhance and 
encourage potential research in the area and optimize the 
performance of cooperative protocols for a number of interesting 
applications in future. A summary of future research challenges is 
presented at the end. 
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Summary 

 

Cooperative communication is becoming an alternative paradigm for 

next-generation wireless networks by offering efficient network 

resource management of bandwidth and energy. Cooperative 

techniques are envisioned to be used in a wide range of wireless 

networks. This work investigates in detail the cooperative MAC 

protocols in IEEE 802.11 networks. This chapter gives detail of 

motivation, objectives and original contributions. The thesis 

organization is presented at the end of the chapter. 
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1.1 Background and Motivation  

The world has witnessed the fast evolution of wireless communications over the past few 

decades. A variety of wireless networks have been deployed, e.g., Wireless Cellular 

Networks (WCN), Wireless Local Area Networks (WLAN), Wireless Ad Hoc Networks 

(MANET), Wireless Sensor Networks (WSN), and Wireless Mesh Networks (WMN), etc. 

The rise of wireless networks is due to practical aspects, such as the low cost of 

deployment and mobility. However, wireless communications are facing increasing 

demands of high data rate and seamless connectivity, even in high mobile scenarios. 

Fulfilling this need at reasonable costs is a challenge for research and engineering. Several 

technologies are exploring approaches that maintain connectivity at high data rates but 

without investing in extra bandwidth or substantial changes in infrastructure. One of these 

approaches is cooperative relaying communications. 

Cooperative relaying communications have recently emerged as a novel approach beyond 

the classical paradigms of point-to-point and point-to-multipoint. The key idea of 

cooperative communications is based on having users cooperating to transmit their 

messages, instead of operating independently and competing among each other for channel 

resources, as is done in conventional networks. Cooperative relaying achieves these 

benefits by allowing intermediate nodes (also called relays or helpers) to retransmit the 

source’s messages towards the destination thereby splitting a single transmission into 

multiple transmissions. Compared to a direct transmission, the source node has to allocate 

less power to reach the next hop. This provides per node energy saving and allows one to 

precisely focus the signal power specially where it is needed, an issue of high relevance in 

scenario such as WSNs. In addition, intermediate paths provided by several relays in the 

network can increase overall network capacity ‎[1]. 

Cooperative relaying communications are inspired by two fundamental concepts of 

wireless communications: relaying and multi-antenna communication. By overhearing 

different broadcasted signals, the destination can combine an original and the relayed 

signals transmitted respectively by source and relay nodes. Due to the spatial separation of 

the transmit antennas it is likely that both received signals were affected by statistically 

independent channels. In this case, combining these signals provides high spatial diversity 
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gains that protect the overall transmission from rapid channel fluctuations (fading). While 

conventional research mainly consider the broadcast nature of wireless channel as the 

origin of interference and performance degradation, cooperative relaying communication 

exploits this inherent feature to develop promising solutions for existing challenges in 

wireless networks. Furthermore, cooperative communications provide a feasible solution to 

overcome the practical implementation problems of Multiple Input Multiple Output 

(MIMO) techniques ‎[2] within relatively small devices, where the maximum distance 

between antennas is constrained by device size. 

In wireless communications, overhearing other communications can provide different 

levels of information which can be beneficial for every layer of OSI model. For instance, 

cooperation at physical layer (PHY) exploits the overheard information to mitigate fading 

effects of wireless channels and improve the performance parameters of the physical layer 

in terms of outage probability, outage capacity, Bit Error Rate (BER) and Packet Error 

Rate (PER) ‎[3]. In contrast, cooperation at higher layers (such as Medium Access Control 

(MAC) layer and network layer) takes advantage of overhearing information to enhance 

network performance by making use of extra network resources provided by relay nodes 

such as spectrum and power. 

The concept of cooperative relaying goes beyond the conventional transmission 

techniques, and it can address a spectrum of features from information theory to 

collaborative use of resources and negotiating procedures, within and across the OSI 

layers. Cooperative techniques can also be deployed in different categories of centralized, 

distributed and heterogeneous wireless networks. There are some contributions in industry 

which demonstrate the potential vital role of cooperative communications in future 

standardization bodies. For instance, some cooperative relay techniques have been 

proposed in the IEEE 802.16j ‎[4], and coordinated multicell space-frequency coding 

schemes were suggested in Third Generation Partnership Project Long Term Evolution 

(3GPP-LTE) ‎[5]. 

Inspired by the attractive features and potential benefits of cooperative relay based 

communications, there have also been natural efforts to exploit the cooperative techniques 

in IEEE 802.11 standards ‎[6]‎[10]. During recent years, many authors have proposed 

various cooperative schemes for MAC protocols of IEEE 802.11 networks ‎[16]-‎[30]. 
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Every cooperative solution developed for the IEEE 802.11 MAC protocol has a different 

objective for the usage of cooperation techniques. These objectives address multiple issues, 

from capacity improvement to service differentiation and fairness. Classification of 

existing cooperative protocols and understanding their inherent shortcomings is a valuable 

guidance for designing efficient cooperative MAC protocols useful in the context of IEEE 

802.11 standards. In particular, many analytical papers on cooperative MAC protocols 

focus on a cooperation process assuming ideal assumptions, regardless of higher layer 

requirements or overall constrains of IEEE 802.11 standards. Due to these idealistic 

assumptions, there is a large gap between design and theoretical analysis, and transforming 

these designs into real effective systems. 

This gap between theoretical and practical research on cooperative MAC protocols is 

easily assessed when practical constraints are applied to the real scenario. Thus, it is 

expected that current theoretical performance results for cooperative MAC protocols are 

not upheld when practical constraints are imposed by real scenarios. So far, the conditions 

leading to situations when non-beneficial cooperation arises due to such practical 

constraints were not adequately studied in previous works. Furthermore, all cooperative 

MAC protocols in context of IEEE 802.11 focus on the cooperative objective and 

respective cooperative gain. Thus, there is no solid study to assess the achievable gains of 

performance.  

1.2 Thesis Objective 

It has become clear that cooperative communications appear as a new paradigm beyond the 

existing communication models. When cooperative techniques are employed in each 

wireless standard such as IEEE 802.11, a question we must ask gradually becomes 

apparent: what is the behaviour model of cooperation? and based on the solution space, 

several questions will be entailed consequently in the light of the outlined motivation: 1) 

Which performance metrics can be improved by the cooperation model?, 2) What is the 

impact of the higher layer requirements and overall constrains of standard on the expected 

performance gain?, and 3) How the cooperation model can be modified in order to achieve 

the performance gain consistent to practical scenarios?.The answer to these questions 
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within the context of IEEE 802.11 provides a guideline which makes the framework of this 

thesis.  

The main objective of this research work is developing a realistic approach to cooperative 

communications in IEEE 802.11 wireless networks. Such a study involves several phases: 

In the first place, an architectural reference model is presented to model the behaviour of 

cooperation in wireless networks. In the next phase, a classification of cooperative 

solutions is presented. This classification is based on cooperative objectives. Furthermore, 

the impacts of higher layers requirements and practical issues on expected performance 

gain provided by existing IEEE 802.11 cooperative MAC protocols are considered. The 

initial purpose of this phase is to explore how the issues beyond the MAC layer can limit 

the performance gain provided by cooperative MAC protocol. In the third phase, a metric 

is proposed to coordinate the requirements of the higher layer to performance gain 

provided by cooperation at lower layers. This metric provides a consistent cooperation in 

the whole of Open Systems Interconnection (OSI) model layer model.  

1.3 Original Contributions  

The work performed in this thesis has a set of contributions relevant to cooperation in 

802.11 networks. 

The primary contribution ‎[32] of this thesis is developing a realistic approach to 

cooperative communications in wireless networks. In particular, there exist some dynamic 

aspects in wireless networks such as multi rate capabilities which directly affect 

cooperation. In order to model the cooperation in realistic environments, a framework is 

proposed to cope with the control and dynamic aspects of wireless technologies. In this 

framework, the behaviour concept of cooperation in wireless networks is represented by an 

architectural reference model. This reference model comprises all operation performed in 

each cooperative protocol and provides a similar method and common terminology to 

evaluate the cooperation in wireless networks. 

A second contribution ‎[35], published during the course of this thesis is to assess current 

cooperative MAC protocols, when their operations are mapped to our reference model. 

While previous works have designed every protocol separately, these protocols can then be 

classified based on their objectives and inherent limitations are identifiable. Toward the 
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assessment of these current cooperative MAC protocols, appropriate performance metrics 

and mathematical analysis lead to performance bounds when the practical specifications of 

different IEEE 802.11 amendments are applied. In most of research works, cooperation is 

always beneficial when assuming the ideal conditions, but when applying practical 

constrains of 802.11 networks, it is possible to determine conditions leading to non-

beneficial cooperation. 

A third contribution ‎[36] is a proposal to coordinate higher layer requirements and 

cooperation gains provided by lower layers, during the cooperation process. To achieve 

this cross layer purpose, a metric should be defined to take into account several aspects of 

wireless links and network features such as delay, reliability, mobility and stability. This 

novel metric is called CoopMetric and is applied to the well known cooperative MAC 

protocol (e.g. Cooperative MAC (CoopMAC) ‎[15]). In order to compare the performance, 

a comparison of original and new version of CoopMAC is deployed in a network 

simulator. The simulation results demonstrate substantial improvements of new CoopMAC 

while mobility and different types of service traffic are considered. 

The research work of this thesis was reported in several conference and journal papers.  

1) A reference model is proposed in ‎[32] for all cooperative algorithms used in relay-

based cooperative wireless networks. Instead of link state information, which is 

considered as a key metric for radio performance aspects, we propose network state 

information for deciding when to cooperate, with the result of having effective 

solutions for application data. Network-centric metrics and user-centric metrics are 

discussed as two main aspects for beneficial cooperation. Access delay, movement, 

and delay ratio are considered as important metrics for cooperation algorithms, and 

their impact is analyzed in several scenarios. The simulation results, using 802.11b 

networks, demonstrate that these metrics strongly impact any cooperation strategy 

aiming to improve network performance. In the simplified analysis, guidelines are 

discussed in which conditions the cooperation will be effective when the rate 

adaptation is employed.  

2) Cooperation in WLAN 802.11 standards is considered in ‎[33] in terms of capacity 

gain and delay reduction. Delay ratio is introduced as the main metric for relay 

selection and the method for its calculation is described. Relay areas, as potential 
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locations of relay nodes for a given delay ratio, are calculated for different 

cooperation scenarios. The relay area corresponding a given delay ratio is an 

indication for the probability of occurrence of cooperation. The performance 

bounds of delay and capacity for cooperation scenarios are further analysed in the 

context of IEEE 802.11bg standards. These performance bounds demonstrate the 

potentials of cooperation in providing spectrum efficiency.  

3)  In ‎[34], energy efficiency and capacity modelling are considered for cooperative 

cognitive networks. In this work, cooperative schemes to improve the performance 

of wireless cognitive networks are investigated. The idea of spectrum efficiency 

provided by cooperation is extended and it is further discussed how energy 

efficiency can be improved in cooperative scenarios with single relay nodes, for 

different wireless medium characteristics. Theses guidelines can be included in 

more advanced cognitive algorithms for cooperation decisions.  

4) In ‎[35], existing cooperative MAC protocols of IEEE 802.11 standards are 

reviewed and they are framed based on a proposed architectural model. A 

classification of the existing cooperative MAC protocols is further presented in 

three groups with respect to their operation and cooperative objectives: Minimum 

Transmission (Min-TX), Caching and Waiting for Failure (CWF) and Back-off 

Target Cooperation (BTC). By analysis of the system model and performance 

metrics for the Min-TX class of protocols, we evaluate the operation of Min-TX 

protocols and their performance gain. This evaluation indicates that cooperation 

techniques may provide a useful contribution to IEEE 802.11 communication 

challenges, but these are somewhat limited. For many communication scenarios, 

these protocols would only be useful for jumbo frames, packets larger than the 

802.11 normal MTU. Only for direct data rates near the minimum values of the 

specific 802.11 amendment do clear advantages seem to exist. Also, it should be 

noticed that for random deployments of nodes, the probability of finding a node in 

a useful location is reasonably low for all stations except those with the same low 

direct data rate connections. Although the literature already presents many different 

cooperative protocols, with different performances, these weaknesses seem inherent 

to all protocols in the Min-TX class. 

http://atnog.av.it.pt/content/energy-efficient-and-capacity-modeling-cooperative-cognitive-networks
http://atnog.av.it.pt/content/energy-efficient-and-capacity-modeling-cooperative-cognitive-networks


  

 

Introduction 

 

 8 
  

5) The concept of cooperative relaying strategies can be applied in autonomic 

management of mobile robotics ‎[36]. In this work, the cooperative techniques 

appeared as the main techniques for the optimization of network resource 

utilization in autonomous networks. Due to the structure of mobile robotics, it is 

possible to control the location of relay nodes in such a cooperation scenario. This 

capability enables policy-based management schemes to determine the optimum 

location of each node of networks based on its power profile, application service 

and needed spectrum. It is further discussed in several scenarios how the 

replacement of relay nodes can enhance the performance of a mobile robotics 

network. 

These contributions can lay down paths for cooperative schemes in other wireless 

technologies which have capabilities to exploit the cooperation. 

1.4 Software Resources 

Realizing the cooperative protocols in IEEE 802.11 standards needs an appropriate 

software resource. Any developed model in the context of IEEE 802.11 should be 

examined and verified through a network simulator. Most of the simulations were 

performed on OMNET++ ‎[15].  

OMNeT++ is a discrete event simulation environment. Its primary application purpose is 

the simulation of communication networks, but because of its flexible architecture, it is 

used in simulation of other distributed systems such as multi-processors and queuing 

networks. OMNeT++ provides modular architecture for models. The modules 

(components) are programmed in C++ and then by using a high level language called 

NED, the components are integrated into a larger components and models. OMNeT++ has 

extensive GUI support, can be embedded easily into applications. There are different 

simulation packages in OMNET++ which were developed for several communication 

systems and protocols. Mobility framework (MFw) is one of these work packages which 

supports IEEE 802.11 wireless networks, different mobility models, dynamic connection 

management and a wireless channel model. Therefore, MFw was used for implementation 

of proposed cooperative MAC protocols in simulation environment of OMNET ++ 4.0. 
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Besides the OMNET++, Matlab and MS-Excel were used for some mathematical analysis 

and data analysis. 

1.5 Thesis Organization 

Besides this introductory chapter, the remainder of this thesis is organized as follows: 

Chapter 2 gives the background material of cooperative communications in wireless 

networks, especially for physical and MAC layers, and reviews the related works. 

Cooperation at the physical layer is often modelled as MIMO system, and MIMO 

performance metrics are applied for evaluation of different cooperative PHY protocols. 

The cooperative MAC layer comprises cooperation at multiple access issues and 

cooperation in standard MAC protocols. This chapter also presents how the conceptual 

difference of cooperation in the physical layer and higher layers of OSI model can affect 

the role of relay nodes.  

Chapter 3 provides an overview of IEEE 802.11 standards. The physical layer 

specifications and frame formats are described in detail. Considering the frame format 

enables us to understand how the overhearing mechanism can obtain the useful information 

from exchanging packets between two stations. This chapter also presents the MAC 

protocols of IEEE 802.11 standards. The main characteristics of MAC protocol include 

Distributed Coordination Function (DCF), Carrier Sense Multiple Access with Collision 

Avoidance Mechanism (CSMA/CA).  Different DCF access modes and frame formats in 

the MAC layer are also discussed. In this chapter, we classify the IEEE 802.11 cooperative 

MAC protocols based on their cooperative objectives. These categories are Minimum 

transmission (Min-TX), Caching and Waiting for Failure (CWF) and Back-off Target 

Cooperation (BTC). A generic architectural framework for cooperation called MAPE 

model is also presented in this chapter. The MAPE model covers all cooperation strategies, 

presenting a structured way to properly map the different cooperation phases. As a case 

study, we use MAPE model to present the operations of IEEE 802.11 cooperative MAC 

protocols. Accounting for the deployment features and mapping operation of the MAPE 

reference model, we present a comparison of all cooperative MAC protocols. 

Chapter 4 presents the performance analysis of IEEE 802.11 cooperative MAC protocols. 

The system model and performance metric for Min-TX category are presented. Potential 
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geographical area for locations of relay nodes for Min-TX and CWF category is analysed 

by theoretical and practical approximations. A theoretical analysis is developed to explore 

the performance bounds of throughput achieved by cooperative protocols of Min-TX 

category by accounting for amendments to the specifications of IEEE 802.11bgn . A lower 

bound of data packet size to guarantee the beneficial cooperation in Min-TX category is 

analysed and evaluated in term of Maximum Transmission Unit (MTU) imposed by IEEE 

802.11. Furthermore, power performance and energy efficiency provided by cooperative 

schemes in IEEE 802.11 are also presented.  

Chapter 5 details our development of the cooperative cross layer issues in IEEE 802.11 

MAC protocols. Our proposed metric called CoopMetric is explained in detail for relay 

selection. This metric compromises several aspects of cooperation: Delay, reliability, 

mobility and stability provided by relay. A system model is presented for CoopMAC 

protocol enabled by CoopMetric. By implementation of this new version and original 

CoopMAC protocols in network simulator of OMNET++ and comparison of their 

performance, the role of CoopMetric is highlighted. The simulation results demonstrate 

how the CoopMetric can tune the lower layer operations to adapt to higher layer 

requirements. These adaptations are analysed for different types of traffic service which 

require various levels of bandwidth efficiency and reliability aspects. 

Chapter 6 of this thesis concludes with a summarization of promising future research 

directions. 

1.6 Concluding Remarks 

This chapter presented an overall view of the thesis. The motivation and background for 

cooperative communications were discussed. The main motivation of cooperative 

communications is to maintain connectivity at high data rate but without investing in extra 

bandwidth or substantial changes in infrastructure. Although the initial contribution of 

cooperative communications is related to PHY layer aspects, cooperative techniques 

provide many solutions for other OSI layers such as MAC layer. The original contribution 

of the thesis and also the thesis organization were presented.  
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CHAPTER 2  COOPERATION CONCEPTS IN 
WIRELESS NETWORKS 

 

 

 

 

 

 

 

Summary 

 

The concept of cooperation can be addressed from different 

perspectives and it is important to determine the style of cooperation 

that should take place at each communication layer. Cooperation can 

offer different advantages and drawbacks, depending on how it is 

applied to each communication layer. Note that cross-layer 

approaches can provide different solutions for a cooperation scheme 

by combination of multiple layer approaches. The purpose of this 

chapter is to provide an overview of the structure of recent protocols 

and algorithms in cooperative wireless networks both at physical and 

MAC layers.  
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2.1 Introduction 

The development of wireless communications has progressed tremendously due to its 

ability to provide mobile access and ubiquitous connectivity. However, there are key 

challenges that must be addressed in order to achieve reliable, high data rate, 

communication over the wireless channel. These are mainly related to channel aspects such 

as attenuation and multipath fading effects. Multipath fading is the random variation of 

channel quality in time, frequency and space which result in performance degradation of 

wireless communications. Therefore, effective solutions must address these different 

channel dimensions (time, frequency, and space) by providing diversity techniques and 

achieving different diversity gains. Diversity techniques increase the chances of a 

successful transmission by providing the receiver with several copies of the signal ‎[37]. 

Many forms of diversity are possible depending on the characteristics of the underlying 

channel(s). Space diversity using multi-antenna systems is particularly interesting since it 

can complement other forms. MIMO techniques which are used in modern wireless 

transceivers have demonstrated promising possibilities to achieve spatial diversity gains. 

By exploring several links between source and destination and making use of advanced 

signal‎ processing,‎ MIMO‎ systems‎ are‎ able‎ to‎ provide‎ significant‎ diversity‎ gains for 

wireless channels due to the fact that fading occurs independently in each link. 

Nevertheless, practical limitations such as antennas dimension, battery size and power 

budgets in many users applications (e.g., sensor networks and cellular phones) are not easy 

to overcome and demand alternative approaches. One of these alternative approaches is 

cooperative diversity. 

One view of looking to cooperative diversity paradigms lies in considering that these bring 

the advantages of MIMO systems to single antenna wireless devices by exploiting 

cooperation and antenna sharing. In this view, source nodes associate with other neighbour 

nodes, acting as relays (helpers) with the objective of providing extra transmission 

capacities to the given destination. As depicted in Figure 2.1, the destination (D) receives 

the combination of the original and relayed signals, respectively from source (S) and relay 

(R) nodes. The relayed signal can be reproduced by the relay node with amplification, 
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compressing or decoding of the original data. In this case, by using relays as supportive 

antennas for forwarding or retransmitting the original transmission, cooperative 

communications can provide a virtual distributed antenna system to achieve diversity. 

Hence, the cooperative communication is sometimes known as Virtual MIMO (VMIMO) 

‎[38] in some of its realizations. 

 

Figure ‎2.1 Cooperation at physical layer 

 

Although the physical layer is the usual target of cooperative diversity techniques, 

cooperation is a versatile strategy which can be exploited by collaborative use of resources 

and by negotiating procedures within and across all OSI layers. Thereby, cooperative 

diversity differs from other cooperation techniques which improve successful 

communication opportunities, because it is limited to the physical layer. Cooperation gains 

can also be obtained by cross-layer design if other layers are involved.  

The role of the relay node changes depending on the OSI layers which exploits the 

cooperation. The relay node operates as a virtual antenna when cooperation is applied at 

the Physical Layer. In contrast, when cooperation is applied in upper layers, the relay node 

mostly operates similarly to a repeater. Cooperative techniques in higher layers exploit 

useful characteristics of overhearing provided by conventional point-to-point wireless 

transmissions. This information enables nodes to decide if the cooperation is beneficial or 

not according to the cooperation objectives. For example, if overhearing information 

results in bandwidth efficiency of both S-R and R-D links compared to S-D link (Figure 

2.2), a cooperative scheme in the upper layer can be triggered. In this case, appropriate 

signalling must be exchanged between source, relay and destination to control the 
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cooperation action. Then the data packet is sent from source to relay first, and the same 

packet is (may be) forwarded from relay to the destination. This view of a relay node as a 

repeater does not support the combination of original and relayed signals at the destination 

node, the typical operation carried out by cooperative techniques at the physical layer. By 

using efficient methods of overhearing and analysis of information, cooperation in higher 

layers can provide more intelligent schemes without complex configuration requirements 

at the PHY layer.  

 

 

Figure ‎2.2 Relay node as a repeater for cooperation at upper layers. (Width of arrows 
illustrate practical link bandwidth) 

In this chapter, we provide an overview of cooperative diversity and cooperative 

techniques, considering different aspects. Section 2.2 presents the concept of cooperation 

from the viewpoint of information theory. Cooperation techniques at the PHY layer and 

several cooperative protocols are discussed in section 2.3. Section 2.4 presents cooperation 

schemes at the MAC layer, considering multiplexing issues and MAC protocols. Section 

2.5 concludes the chapter.  

2.2 Information theory and Cooperation 

The main idea behind cooperative diversity is to split resources allocated for direct and 

relaying transmissions, with the purpose of achieving important benefits in term of more 

successful transmissions. As an example, for a pre-assigned periodic symmetric Time 

Division Multiple Access (TDMA) scenario, as depicted in Figure 2.3 (a), there are two 

source nodes (S1 and S2) and two destination nodes (D1 and D2). In non-cooperation 
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mode, each source node has also duration of T/2 to transmit its information (Figure 2.3(b)). 

In cooperation mode, there are two phases with duration of T/4: In phase I and III, each 

source node transmits its information to a given destination while the other source node 

overhears this information. In phase II, the overheard information will be relayed (Figure 

2.3(c)). In this simple cooperative TDMA scheme, each source node wastes half of its 

transmission rate, since it allocates half of its transmission time to its own information and 

the other half to relaying information.  

 

 

 (a) 

 

 

(b) 

 

 

(c) 

Figure ‎2.3 (a) Simple TDMA based cooperation: (b) TDMA in non-cooperation mode (c) 
TDMA in cooperation mode 

 

The analysis of the above forwarding policy from the perspective of information theory as 

reported in ‎[41] demonstrates the improvement of outage probability obtained by 

cooperative diversity. These achievements are provided due to independent realizations of 

the fading phenomena experienced by different nodes and independent success 

probabilities of different links. Moreover, the combination of the direct link and the relay 

link from a source to a destination leads to higher mutual information. This means that the 
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destination can use information from both the direct transmission and the relayed 

transmission in order to decode the data. However, double transmission of the same 

information occurs at the cost of halving the transmission rate. 

In order to improve this combination at destination, two classical relay protocols are 

considered by Laneman et al ‎[42]: Decode-and-Forward (DF) and Amplify-and-Forward 

(AF). The main difference of these protocols refers to the operation of the relay node. In 

the cooperative AF protocol, the relay node amplifies the received signal and then forwards 

it. Therefore, the receiver accesses the information of two parallel noisy channels. In 

contrast, the relay node in a cooperative DF protocol decodes the received signal and then 

forwards it. Laneman et al considered some theoretical system models ‎[41] applied for 

classical relay techniques, i.e. cooperative AF and cooperative DF protocols. Relay 

selection is made based on relay reception signal to noise ratio (SNR). If the SNR value is 

low, the relay stays silent, allowing the source to retransmit instead. Otherwise, the relay 

sends the amplified signal (for AF protocol) or decoded signal (for DF protocol). This 

technique is known as Selection Relaying. In another technique which is called 

Incremental Relaying, regular communication takes place and the relay overhears the 

transmitted signal, then if no acknowledgement (ACK) is received, the relay sends the 

stored signal to the destination. These proposals by Laneman improve the performance of 

the basic cooperative AF and DF protocols. 

The study of cooperative diversity is inspired from classical MIMO. Thus, in most of the 

literature, MIMO-similar metrics, such as diversity and multiplexing gains, are taken into 

account for cooperative communications. From the point of view of information theory, 

there are multiple options to improve cooperative diversity transmission systems. By 

considering the basic mechanism in single relay approach, the first option can be to 

increase the number of relays [13]. In addition, the concept of orthogonality on source and 

relay nodes, using coding techniques borrowed from multi-antenna transmitter design and 

tuning the length of each phase of cooperation have posed several optimization issues 

related to cooperative diversity schemes ‎[45]‎[46]‎[47]. Nevertheless, there are some 

existing challenges related to the theoretical aspects of cooperative diversity. These 

challenges can be classified into the generalization to network topologies and design of 
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theoretical protocols that achieve (or improve approach to) the performance bounds 

computed by theoretical analysis. 

2.3 Cooperation techniques at the PHY layer 

There are several approaches to exploring cooperation at the physical layer which aim to 

achieve in practice the benefits predicted by information theory. Some techniques are 

based on adapting preexistent MIMO technologies and aim to achieve full diversity 

‎[41]‎[43]‎[44]‎[47]‎[49]‎[50]. These techniques are usually developed starting from modeling 

cooperation as MIMO systems and consider the performance improvement obtained by 

diversity schemes in terms of power saving, coverage extension and reductions in error 

probability. They also investigate how to perform Adaptive Modulation and Coding 

(AMC) ‎[39]‎[40] boosting and consequently symbol rate boosting. By exploiting the 

benefits in a cooperative environment, it may be possible for an AMC system to shift to a 

faster modulation scheme leading to higher throughput performance. Moreover, this can 

reduce power consumption and average packet delivery delay. 

Besides the techniques borrowed from MIMO and AMC systems, there exist other 

proposals that employ different types of coding schemes for exploring cooperation at the  

PHY layer, as we will discuss in following sections. 

2.3.1 Coded Cooperation 

In conventional communications, Forward Error Correction (FEC) codes are employed at 

the PHY layer for channel coding, in which each codeword begins with the original 

message bits followed by some redundancy. This redundancy allows the destination to 

detect a limited number of errors that may occur in the message, and even provides the 

correction for some types of errors without retransmission. Thus, this redundancy 

appended to the original message in FEC schemes provides additional information. 

Another type of additional information appended to the original message can also be 

obtained by cooperative diversity through the duplication of original message. This 

similarity between systematic FEC and cooperative diversity leads to their convergence 

into a powerful technique which is formally known as Coded Cooperation (CC).  
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Figure ‎2.4 Coded cooperation implementation for a system using TDMA ‎[52]. 

 

Hunter et al. ‎[52] proposed a system model as indicated in Figure ‎2.4 in which CC is 

described for a TDMA cooperative system for two users with one destination. In this case, 

diversity‎is‎achieved‎by‎partitioning‎a‎user’s codeword into two parts. Each user receives 

the first codeword partition from the partner, and upon successful decoding, transmits the 

second codeword partition. This technique results in that user’s codeword being received at 

the destination through independent fading channels. The analysis shows the impressive 

gains in performance of this method. By applying more sophisticated and efficient coding 

schemes for the relaying decision, CC is able to avoid the retransmission of erroneous data 

leading to efficient resource utilization. Moreover, CC schemes are able to control the 

cooperation level by adjusting the amount of bits transmitted in each phase instead of using 

static portioning ‎[51]. They can also enable the relay mode to operate efficiently in two 

modes of incremental relaying and selection relaying. As mentioned before, in incremental 

relaying, the relay only transmits if the packet at the destination is received with error, 
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whereas, in selective relaying, the relay only transmits if it has correctly decoded the 

packet. 

 

 

(a) 

 

 

 

(b) 

Figure ‎2.5 Cooperative communication with network coding 

 

2.3.2 Cooperation Using Network Coding 

Network coding was originally employed in wired networks in which additional 

information appended to the original message is obtained by linear combinations of the 

messages. This scheme explores the combination at bit level while channel coding operates 

at packet level. This combination can be also considered when cooperative diversity is 

employed. As a simple example, for two nodes of A and B shown in Figure ‎2.5 (a) with 

coded packets of XA and XB , relay node (R) can assist both terminals simultaneously by 

transmitting XA⊕ XB where   is the XOR function to build a combined message. By using 

one relay node and allocation of at most three subsequent transmission slots, the 
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information transmitted from both A and B can be retrieved correctly, even if the direct 

links of both nodes fail.  

Network coding can be also applied in an alternative way as shown in Figure ‎2.5 (b). Here 

network coding is only carried out by each‎other’s‎cooperative‎partner‎and‎the‎forwarded‎

information is conducted in another time slot, which results in a potential gain. 

Cooperation through network coding outperforms other forms of diversity communication. 

According to the analysis performed in ‎[54] with Binary Linear Combination, for a given 

slot error rate  , the probability of a successful packet transmission turns from       

       into                   . The improvement is obtained at the cost of one or 

two extra slots compared to the conventional direct transmission.  

Building on the principle of PHY layer network coding, there are several proposals aiming 

to improve the performance of cooperative communications. The solutions presented in 

‎[55] and ‎[56] provide Non-Binary Linear Combination with a focus on the composition of 

the relay messages with more combinations of original messages. The authors of these 

proposals demonstrate that binary combination is unable to reach the upper bound of 

improvement gain, thus they improve network performance by replacing non-binary 

combinations which increase the probability of successfully decoding relay messages. In 

other proposals using network coding, the authors focus on energy sharing ‎[57] and 

minimization of interference effect ‎[58]‎[59] by simultaneous transmission. They show how 

the algebraic linear combination and classical complex approach of symbol constellations 

can enhance the cooperative communications when they are enabled by network coding 

schemes. Although network coding solutions bring some extra benefits for cooperation 

scenarios, the design of the MAC layer becomes quite complex. 

2.3.3 Cooperation Techniques Exploring Space-Time Coding 

Space Time Coding (STC) ‎[60] has become known as a technique to improve the 

reliability of data transmission in wireless communication systems using multiple transmit 

antennas. STC schemes rely on transmitting simultaneous replicas of the same signal to the 

receiver in the hope that at least some of them may survive the physical path between 

transmission and reception in a good enough state to allow reliable decoding. Anghel et al 

‎[62] studied space-time coding for classical multi-antenna systems and showed how it can 

http://en.wikipedia.org/wiki/Transmission_%28telecommunications%29
http://en.wikipedia.org/wiki/Wireless
http://en.wikipedia.org/wiki/Antenna_%28radio%29
http://en.wikipedia.org/wiki/Receiver_%28radio%29
http://en.wikipedia.org/wiki/Transmission_medium


 

 

Cooperation Concepts in Wireless Networks 

 

21  
 

perform efficiently in a distributed VMIMO system. In ‎[44] and ‎[63], the authors 

employed Orthogonal Space Time Block Code (OSTBC) and they demonstrate the mutual 

benefit obtained by cooperative and local space diversities. However, there are some 

challenges for STC use in cooperative diversity. The main challenge refers to the number 

of available relays and their features in implementation of STC design techniques in 

cooperation systems. These features can be synchronization of relays, behaviour of the 

arriving and departing relays to the relays set and unfeasibility of OSTBCs exploitation in 

very large relay set. These challenges cannot be solved individually and there are trade-off 

issues between them. These trade-off issues are addressed by some designs presented in 

‎[61]‎[64]‎[65] in which different antenna selection and antenna combination methods are 

discussed to achieve STC techniques properties in cooperative diversity systems. 

2.4 Cooperation Techniques Operating at MAC Layer 

Over the last decade, the potential of cooperative relay based wireless communications has 

mostly attracted research activities in theoretical and practical aspects related to PHY 

layer. Some of the proposals aiming to provide beneficial performance improvements at 

PHY level were discussed in Section ‎2.3. Nevertheless, both telecommunications operators 

and end-users will reject a wireless network with manual configuration requirements at the 

PHY layer. Therefore, the MAC layer necessarily plays a crucial role in realizing wireless 

networks enabled by cooperative protocols, at least for automatically handling PHY layer 

cooperation aspects. 

The concept of cooperation at MAC layer can be structured in two categories: 

1) Cooperation applied at access method level: In this category, cooperation is 

explored in the physical layer and novel multiple access methods should be 

employed to properly coordinate the multiple users (sources, relays and 

destinations) and their access to the wireless medium.  

2) Cooperation applied at MAC protocol level: In this class, cooperation is 

explored by near-to-standard MAC protocols while only conventional point-to-

point communications exists from point of view of PHY layer. According to 

information obtained from PHY layer of neighbor nodes, these MAC protocols can 

determine potential beneficial cooperation. Therefore, instead of cooperation at 
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PHY layer (which often is decided hoping for improvements, or, in another words, 

as blind cooperation) the MAC protocol can perform more intelligent cooperation 

decisions. Moreover, capabilities provided by the PHY layer and requirements of 

upper layers can meet together in MAC layer by employing cross-layer design 

considerations. This improves network performance through the advanced usage of 

cooperative schemes in standard MAC protocols. 

In this section, both of these categories will be discussed in detail.  

2.4.1 Cooperation Applied at Access Method Level  

In wireless communications, multiple access methods allow several nodes to connect to a 

common transmission medium and to transmit over it in order to share the capacity. In 

conventional wireless communications, there are three fundamental types of multiple 

access methods: TDMA, Frequency Division Multiple Access (FDMA) and Code Division 

Multiple Access (CDMA). These methods are based on multiplexing schemes in time, 

frequency and spread spectrum respectively. 

Since cooperative communications present a new paradigm with an extra entity of relay 

node which is added to source and destination nodes considered in conventional 

communications, multiple access techniques should coordinate source and relay node to 

access the wireless channel for transmission of a single packet. In order to transmit packets 

in two phases of cooperation from source to relay and relay to destination, orthogonal 

channels are needed. This orthogonality may be achieved in time by using modified 

TDMA, FDMA and CDMA. In TDMA and FDMA systems, source nodes transmit over 

orthogonal time or frequency channels and radio resources must be properly allocated to 

fully exploit the advantages of cooperation. In contrast, in CDMA systems, users transmit 

simultaneously over different code or spatial dimensions, but may experience Multiple 

Access Interference (MAI) due to practical difficulties in achieving orthogonality among 

the different dimensions. Therefore, in order to mitigate MAI, preceding techniques at the 

relays or multiuser detection schemes at the destination must be employed. Sendonaris et 

al. ‎[37]‎[66] investigate the cooperation problem in a network with two mobile users where 

they want to transmit their data to a base station. Nodes can cooperate with each other 

using CDMA, TDMA, or FDMA by combining the received message from the other node 

http://en.wikipedia.org/wiki/Transmission_medium
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in their own signal. The results reveal that optimal strategy for combining the user signals 

is obtained‎ in‎ the‎case‎of‎CDMA.‎Furthermore,‎ significant‎ cooperation‎gain,‎ in‎ terms‎of‎

higher data rate and more robustness to channel variations, is also achieved by this 

cooperation scheme. However, increasing number of users leads to high complexity, 

driving from optimal method, and makes it impractical for a larger network. Although a 

suboptimal solution is also provided by the authors, the implementation of this method still 

requires extra overhead in the receiver structure which may not be cost efficient in cheap 

wireless devices. Sadek et al. ‎[67] proposed an approach for designing TDMA based 

protocols for relay-based wireless networks, and the results indicate a relevant increase in 

the maximum stable throughput by applying the solutions to pure TDMA. In this solution, 

potential relay nodes store packets sent to the Access Point in a queue, and if no reply is 

received they use the empty time slots in a TDMA allocation method to retransmit the 

failed transmitted packets.  

One of the main challenges in multiple access strategies is relay selection algorithms to 

find the best relay to forward the overheard packet. This is in contrast to the PHY layer 

where individual signals are being retransmitted by the relay. This fact causes the 

cooperation in the MAC layer to be with less overhead compared to that in the PHY layer.  

2.4.2 Cooperation Applied at MAC Protocol Level 

 In wireless communications, there are several issues such as addressing, assigning 

channels to different users, and avoiding collisions which need a control mechanism to be 

applied to multiple access methods. Therefore, new protocols which are known as Media 

Access Control (MAC) protocols operate based on a multiple access methods and control 

mechanism. While multiple access methods are classified based on channel resources (e.g. 

time, frequency and code), MAC protocols are concerned with the collision methods and 

packet delivery. Collision recovery and collision avoidance are two main categories in 

existing MAC protocols of wireless communications. ALOHA and Carrier sense multiple 

access with collision avoidance (CSMA/CA) protocols are well known examples residing 

in the respective mentioned categories. 

Inspired by the attractive features and potential benefit of cooperative relay based 

communications ‎[37]‎[41]‎[42]‎[44]‎[66], there have naturally been efforts to exploit the 

http://en.wikipedia.org/wiki/Media_access_control
http://en.wikipedia.org/wiki/Media_access_control
http://en.wikipedia.org/wiki/Contention_%28telecommunications%29
http://en.wikipedia.org/wiki/Contention_%28telecommunications%29
http://en.wikipedia.org/wiki/Contention_%28telecommunications%29
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cooperative techniques in some standard MAC protocols. The main characteristic of these 

standard MAC protocols is that stations are able to overhear traffic from other stations. In a 

standard communication scenario this is a problem which imposes higher medium access 

variability as well as lower throughput. However, the same factors can be exploited in 

order to enhance network performance, if stations collaborate with each other by creating 

multiple signal paths from source to destination and forwarding overheard information.  

When cooperation is applied in the MAC layer, the communication between source and 

destination is limited to signaling required for coordination of the cooperation while the 

data message is sent from source to relay and then is forwarded from relay to destination. It 

means that the relay operates similarly to a repeater or Store-and-Forward (SF) relaying 

protocol. In this case, the destination receives one copy of data packet through the relay. 

This is in contrast to physical layer relaying where the relay creates a distributed virtual 

antenna system for relaying the whole message and the destination receives the original 

and relayed packets respectively from direct and relay paths.  

The MAC protocol is traditionally informed by the network layer about the next-hop to be 

used. Overhearing other node's traffic can be beneficial for those MAC protocols that are 

based on a shared communication medium with medium sensing functionalities. In 

cooperative MAC protocols the information overheard from neighbours, both from PHY 

and MAC layers, can help to choose intermediate relay neighbors with the aim of 

facilitating cooperation, while not requiring additional communication or processing at the 

network layer. ALOHA protocol and IEEE 802.11 MAC protocol are two categories which 

received special attention for cooperation.  

The concept of cooperation is also addressed in some works related to ALOHA systems. 

Analyzing the stability of interacting queues in the ALOHA system were studied in ‎[68] 

and ‎[69]. The issue of stable throughput region and exploring bounds on the stable 

throughput region of ALOHA are the main concerns of works reported in ‎[70]‎[71]‎[72]‎[73]. 

Studies on the design and stability analysis of the cognitive collaborative multiple access 

protocol can be found in ‎[74]‎[75]‎[76]. 

The IEEE 802.11‎[7]‎[8]‎[6]‎[10] family of protocols arose as the dominant industrial 

standard for WLANs providing simple mechanisms for the establishment of both 

infrastructure or ad-hoc networks. Also, it can support multiple transmission data rates 
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depending on observed wireless channel conditions, terminal capabilities, performance 

requirements, spectrum requirements, or administrative policies. Multiple transmission 

data rates allow the source node to adjust its data rates according to distance to the 

destination. The received SNR value at the destination has an inverse relation to its 

distance from the source node. Therefore, low distance can provide high SNR and 

modulation schemes with high symbol rate and thus data rate and inversely. This 

adaptation helps multiple data rates to increase the range of wireless communications. 

However, this feature leads to the so called performance anomaly problem ‎[102]: if equal 

transmission opportunity is to be provided to all participant nodes in the same 802.11 

network, the result is that nodes using a low data rate will take a longer time to complete 

transmission when they are allowed to transmit, thus degrading the performance of the 

remaining, higher rate nodes. For example, when using the IEEE 802.11g ‎[7] protocol, 

transmitting a packet of fixed size at the minimum data rate (6Mbps) makes the shared 

communication channel busy for a period of time 9 times longer compared to a packet 

transmitted at the highest data rate (54Mbps). Developments of the most recent revisions to 

the standard, such as IEEE 802.11n ‎[8], which boost the maximum data rate up to more 

than 300Mbps, further exacerbate the problem. So the ratio of low data-rate nodes to all 

nodes in the same collision domain affects channel efficiency and overall system 

performance. In other words, total system performance is constrained by nodes with low 

data rates. In addition, nodes at the edge of a multirate cell suffer from higher packet loss 

due to worse channel conditions and higher interference levels. 

CoopMAC ‎[17] and Relay-enabled Distributed Coordination Function (rDCF) ‎[16] 

protocols are two relevant solutions which address the performance anomaly problem. The 

main idea behind these solutions is that one low data rate direct transmission link can be 

replaced by two faster transmission links, using a relay node, yielding higher performance. 

This mechanism is applied by overhearing other nodes’ transmissions and by estimating 

their communication data rates. Based on overhearing information and in order to find the 

best relay node with high performance gain, a neighbour mapping model is employed. 

After the selection of relay node, a new set of modified control packets are exchanged to 

coordinate the packet transmission in two paths of source-relay and relay-destination. This 

cooperative technique can improve network capacity by reducing the transmission delay 

between the source and destination. The reduction of transmission delay appeared as a 
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cooperative objective in several IEEE 802.11 cooperative MAC protocols ‎[16]-‎[23]. 

Besides the reduction of transmission delay, there are other cooperative objectives such as 

service differentiation and fairness improvement which were further discussed in ‎[30] and 

‎[29]. These solutions exploit the overhearing information exchange between users to 

address the aspects of higher layer issues by using cooperative algorithms. 

Besides the well known MAC protocols which attract much attention for cooperative 

techniques, another class of cooperative MAC methods exploits the Automatic Repeat 

Request (ARQ) ‎[77] for the purpose of cooperation. In standard ARQ, if the source node 

does not receive an acknowledgment before the timeout, it usually retransmits the packet 

until the source node receives an acknowledgment or exceeds a predefined number of 

retransmissions. In cooperative ARQ scheme, the relay node stores the packet originated 

by the source, and based on the Acknowledgment (ACK) from the destination the relay 

node decides to participate in cooperation. If the destination replies with a negative 

acknowledgement (NACK) to the original transmission, the relay node starts to cooperate 

by retransmitting the stored packet.  

The concept of cooperative ARQ was tackled from a fundamental point of view, 

considering simplified network topologies, and considering ideal scheduling among the 

relays ‎[79]-‎[84]. In ‎[79], the performance gains using cooperative ARQ protocols were 

analyzed in terms of improved probability of error. The authors of ‎[80]‎[81] demonstrated 

how cooperation can enhance the outage probability and SNR gain. The effect of 

cooperation on saturation throughput performance was studied in ‎[82] and the 

improvement through cooperation was concluded. A delay model for single source and 

single relay for cooperative ARQ protocols is presented in ‎[83]. In ‎[84], the authors 

propose a collaborative ARQ protocol that exploits diversity through collaboration in 

wireless networks. They demonstrate that the proposed cooperative ARQ protocol can 

achieve the same performance as an array of M antennas. Some other works focused on the 

relay selection algorithms for cooperative ARQ schemes wherein the best candidate relay 

node ‎[85]‎[86] and a set of the best candidates ‎[87]‎[88] are selected  

Furthermore, the Hybrid Automatic Repeat Request (HARQ) method ‎[78] can also be 

employed in the context of cooperation. Standard HARQ is a combination of high-rate 

FEC coding scheme and ARQ method. HARQ performs better than ordinary ARQ in poor 

http://en.wikipedia.org/wiki/Retransmission_%28data_networks%29
http://en.wikipedia.org/wiki/Forward_error_correction
http://en.wikipedia.org/wiki/Automatic_repeat-request
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signal conditions due to the use of coding schemes. Zhao and Valenti ‎[89] proposed a 

cooperative HARQ method between the nodes in several clusters. In this method, each 

cluster has one pair of source and destination and several potential relay nodes. After the 

original transmission by the source is done, each relay has an opportunity for cooperation, 

provided that the original transmission to destination was failed and the relays store the 

original packet. The relay with less distance to the destination has high priority for 

cooperation. The numerical results and analysis confirm the performance improvement of 

HARQ over the non-cooperative HARQ method.  

2.5 Concluding Remarks 

In this chapter, cooperative communications were investigated from the view points of 

information theory, physical layer and MAC layer protocols. Cooperative diversity aims to 

reach the performance of MIMO systems at a lower cost with single-antenna nodes. 

Therefore, information theoretical models consider the MIMO system as an inception to 

compute the performance bounds achieved by cooperative diversity schemes in terms of 

MIMO system metrics. However, these models are far from being put into practice, and 

cooperation at PHY layer attracts further works to achieve the possible objectives predicted 

by information theory. The existing cooperative protocols in the physical layer were 

presented and it was discussed how different types of coding schemes can improve the 

performance of cooperative diversity. Cooperation in the MAC layer was analyzed in two 

categories of multiple access issues and standard MAC protocols. In the first category, 

multiple access issues are studied to fine tune the channel access for cooperative PHY 

layer protocols and the key objective of the second category is to exploit cooperation in 

standard MAC protocols such as DCF and ARQ protocols.  
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CHAPTER 3  COOPERATION IN IEEE 802.11 
WIRELESS NETWORKS  

 

 

 

 

 

 

 

Summary 

 

There is great attention given to exploiting the cooperative techniques 

in different wireless technologies. IEEE 802.11standards have 

attracted major research works to provide solutions for the challenges 

faced. In order to apply efficient cooperative schemes and algorithms 

for a wireless technology, we need to consider its potentials and 

capacities as well as limitation, complexity and requirements needed 

to obtain the cooperative objectives. This chapter presents IEEE 

802.11 specifications in PHY and MAC layers. It also presents three 

categories of cooperative MAC protocols in IEEE 802.11 standards 

and provides a brief description of the operation for each protocol. 

Finally, a comparison of protocols is presented to highlight their 

characteristics in terms of deployment issues and MAPE model 

phases.  
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3.1 Introduction 

IEEE 802.11 standards‎[6]-‎[14] are known as the popular, cheap, and flexible technology to 

support infrastructure WLAN and many wireless ad hoc networks. This technology 

specifies both the MAC and the PHY layer protocols. The objective of the PHY layer is to 

use the suitable modulation schemes given the wireless channel conditions and provides 

the required bandwidth, whereas the MAC layer operates in a distributed manner on how 

to allocate the offered bandwidth in the shared medium between all stations.  

The prominent element for the success of IEEE 802.11 is its MAC layer which can operate 

on top of several PHY layers and it provides robust and adaptive schemes, which can be 

tailored to varying conditions. The practical features of IEEE 802.11 MAC and cooperative 

schemes have led the research community to provide a diversified set of solutions for 

different challenges from rate adaptation techniques ‎[90]-‎[99] concerned with the physical 

layer to service differentiation ‎[29] at the application layer and even cross-layer approach. 

In this chapter, we provide an overview of existing cooperative MAC protocols in IEEE 

802.11 standards. In order to have a comprehensive study of cooperative MAC protocols, 

we present a new generic architectural reference model. This reference model enables us to 

model the cooperation behaviour of each protocol. It also provides a unified framework 

and terminology for comparison of protocols. In this chapter, the existing protocols are 

classified based on the potential objectives obtained by cooperative techniques. The 

architectural and practical aspects of these protocols are also addressed.  

The remainder of this chapter is organized as follows: Section ‎3.2 reviews the Physical 

(PHY) layer and MAC layer of IEEE 802.11 standards. Section ‎3.3 provides different 

categories of cooperative MAC protocols proposed for IEEE 802.11 standards. This 

section is followed by the details of each category as well as existing protocols in each 

category. These protocols are also compared in concept of architectural model presented in 

Section ‎3.5 and also operational issues. Finally a summary of this chapter is presented in 

Section ‎3.5.  
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3.2 An overview of IEEE 802.11 standard 

3.2.1 IEEE 802.11 Physical (PHY) Layer  

The physical (PHY) layer provides functionalities to transmit and receive data packets 

properly over a shared wireless medium. The PHY layer operates as an interface between 

the MAC layer and the wireless medium. The main functions of the physical layer are: 1) 

carrier sense indication, 2) interaction and packet exchange with the MAC layer, and 3) 

transmission and reception of data packets by using signal carrier and spread spectrum. 

The IEEE 802.11 standard includes several physical layers:  

The original IEEE 802.11standard was published in 1997. It defines three different PHYs: 

frequency hopping (FHSS) and a direct sequence spread spectrum (DSSS) in the 

unlicensed 2.4 GHz band, and infrared (IR) at 316–353 THz. It supported a basic data rate 

of 1 Mb/s with an optional 2 Mb/s mode.  

The high-rate project 802.11b ‎[6] was started in 1997 and was released in 1999. It boosts 

the data rates of the DSSS PHY to 11 Mb/s in the 2.4 GHz band. It is currently the most 

prevalent physical layer. The main challenge posed by 802.11b is the interference from the 

other devices in the free Industrial, Scientific and Medical band (ISM). 

The IEEE 802.11a amendment was released in 1997. It operates in the 5 GHz band and it 

uses the orthogonal frequency-division multiplexing (OFDM) PHY that supports a data 

rate of up to 54 Mb/s data rate. The main issue with 802.11a is its short range. 

Furthermore, as 802.11a operates in the 5GHz band, communication with legacy 802.11 

devices is not possible and this interoperability problem led to the formation of 802.11g. 

The 802.11g standard ‎[7] was released in 2003. Since it provides DSSS-compatible 

signalling in the 2.4 GHz band and operates on both DSSS and OFDM-based physical 

layers, it is able to support a maximum data rate of 54 Mb/s. Similar to 802.11b, it suffers 

from interference in the ISM band.  

The IEEE 802.11n standard ‎[8] was released in 2009. The main feature of this standard is 

multiple-input multiple-output (MIMO) capability. In order to obtain the spatial 

multiplexing, a flexible MIMO system allows for arrays of up to four antennas. The major 

innovation of this standard is the use of an optional 40 MHz bandwidth for the channel 
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while the previous amendments support 20 MHz bandwidth. It operates in both the 2.4 and 

5 GHz bands. Special features such as 20/40 MHz bandwidth, various antenna 

configurations and different modulation schemes provide data rates of up to 600 Mbps. 

Furthermore, IEEE 802.11n has some features which can be exploited by medium access 

enhancements. Proposed enhancements to 802.11n are under development as part of IEEE 

802.11ac ‎[9] amendment. In this amendment, wider RF bandwidth (up to 160 MHz), more 

MIMO spatial streams (up to 8), multi-user MIMO, and high-density modulation (up to 

256 QAM) will be employed. 

Comparisons of the PHY specifications for the most popular IEEE 802.11 standards 

(i.e.802.11a, 802.11b, 802.11g, and 802.11n) are illustrated in Table ‎3–1. Besides the PHY 

evolution in 802.11 in order to support the high data rates required for current and future 

application services, there are some other amendments which address different frameworks 

such as vehicular communication (802.11p ‎[11]), mesh networking  (802.11s‎[12]) and 

video transport stream (802.11aa‎[13]). More details of PHY layer architecture and frame 

format are presented in Appendix I. 

 

Table ‎3–1 Characteristics of the various physical layers in the IEEE 802.11 standard 

Characteristic 802.11a 802.11b 802.11g 802.11n 

Frequency 5 GHz 2.4 GHz 2.4 GHz 2.4GHz/5 GHz 

Rate (Mbps) 
6, 9, 12, 18, 

24, 36, 48, 54 
1, 2, 5.5, 11 

1, 2, 5.5, 6, 9, 11, 

12, 18, 22, 24, 33, 

36, 48, 54 

6.5 to 600 

 

Modulation 

BPSK, QPSK, 

16 QAM, 

64 QAM 

(OFDM) 

DBPSK, DQPSK, 

CCK 

(DSSS, IR and FH) 

BPSK, DBPSK, 

QPSK, DQPSK, 

CCK, 16 QAM, 

64 QAM 

(OFDM and 

DSSS) 

BPSK, QPSK, 

16 QAM, 

64 QAM 

 

Basic Rate 6 Mbps 1 or 2 Mbps 1,2, or 6 Mbps  

 

3.2.2 IEEE 802.11 Media Access Control (MAC) Layer 

The IEEE 802.11 MAC protocol provides a reasonable reliable delivery mechanism for 

user data over a wireless shared medium, which is organized in channels. The key feature 

of the IEEE 802.11 standards is that even though its PHY layer has evolved over the 

different amendments, all the amendments are based on the same MAC layer, which 

http://en.wikipedia.org/wiki/IEEE_802.11ac
http://en.wikipedia.org/wiki/IEEE_802.11ac
http://en.wikipedia.org/wiki/MIMO
http://en.wikipedia.org/wiki/Multi-user_MIMO
http://en.wikipedia.org/wiki/Quadrature_amplitude_modulation
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operates on top of all the physical layers. Additional functionalities to the basic MAC were 

always added as optional functionalities, preserving backward compatibility ‎[10]‎[14]. 

The IEEE 802.11 MAC supports two access methods: Distributed Coordination Function 

(DCF) and Point Coordination Function (PCF). These methods are classified respectively 

as contention-based and polling based MAC protocols. The DCF method provides a 

contention-based service to access the shared medium while the PCF method is the 

optional access method in IEEE 802.11 and can provide infrastructure WLANs enhanced 

by Quality of Service mechanisms (QoS). Different access modes and MAC frame formats 

of IEEE 802.11 are explained in detail in Appendix I. 

3.3 Classification of IEEE 802.11 cooperative MAC protocols 

Several works have explored the cooperative communication concept in IEEE 802.11. 

Taking into consideration the different techniques and solutions proposed, it is natural that 

the underlying concepts and mechanisms share some similarities. Therefore, for a brief 

overview of the current state of the art, a categorization of the solutions is proposed, based 

on how these solutions exploit the wireless medium in order to provide enhanced 

performance. In this classification, three parts of the DCF transmission cycle will be 

improved by cooperation techniques: Back-off waiting, transmission of data packets, and 

acknowledgement of reception. The categories can be listed as following:  

1) Minimum Transmission (Min-TX): The idea of this category is reducing 

transmission time while exchanging data frame by using two fast transmissions (by 

using relay) instead of a slow one. Although all protocols present similarities, some 

of them employ other known techniques such as traffic aggregation, network 

coding, throughput mapping and opportunistic relay selection always with the 

claim of enhancing the cooperation gain. 

2) Caching and Waiting for Failure (CWF): The protocols of this category operate 

based on the overhearing and storing of the original packets by potential relay 

node(s) and when the ACK frame was not successful, the store packets will be 

retransmitted by relay node(s).  

3) Back-off Target Cooperation (BTC): The key idea of this category is to modify the 

back-off window by cooperative techniques in order to achieve some performance 

improvements.  
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Table ‎3–2 summarizes the proposed classification of IEEE 802.11 cooperative MAC 

protocols, and for every category we present its key objective and special features. The 

protocols of each category and their special features will be described in the section 

following this one. 

 

Table ‎3–2 Classification of 802.11 Cooperative MAC protocols, key objective and protocols 

Category Key objective Special features 

Minimum Transmission (Min-

TX) 

Replace two fast transmissions by 

using relay instead of one slow 

one (e.g. CoopMAC, rDCF, 

CoopMACA ,CODE ,EMR and 

ORP). 

Aggregation (CoopMACA) 

Network coding (CODE) 

Priority mapping (EMR) 

Opportunistic Relay (ORP) 

 

Caching and Waiting for 

Failure (CWF) 

Neighbours which store the packet 

will forward it after they sense the 

lack of ACK (e.g. CMAC, CD-

MAC, NCSW and PRCSMA). 

PHY coding scheme 

(CMAC,CD-MAC) 

ARQ technique (NCSW, 

PRCSMA) 

 

Back-off Target Cooperation 

(BTC) 

To modify the back-off window 

and vary the priority for access the 

medium by a cooperative scheme 

(e.g. SD-MAC and C-MAC). 

Service differentiation (SD-

MAC) 

Collision resolution (C-MAC) 
 

 

3.3.1 Minimum transmission (Min-TX) 

The key objective of protocols in this category is to minimize the transmission delay of 

data packets. The main concept underlying solutions with this objective is that two 

transmissions at a faster data rate may result in a lower delay than a single transmission at 

a slower data rate. Protocols fitting this category are rDCF ‎[15], CoopMAC ‎[17], RAMA 

‎[18], and CCMAC ‎[19]. Furthermore, some special techniques and features can improve 

the performance of the protocols in this category, such as frame aggregation in 

CoopMACA ‎[20], network coding in CODE ‎[21], priority mapping in EMR ‎[22] and 

opportunistic method of relaying in ORP ‎[23].  

Since the design goal of this approach is to reduce the delay of transmitting data and to 

improve network performance, the Monitor phase of cooperation protocols considered in 

this category includes sensing several parameters such as data rate, RSSI and SNR. The 

Analyze, Plan and Execute phases vary according to the initiation of the cooperation and 
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implementation method. In the following, we describe these phases for every protocol of 

this category.  

Relay-enabled Distributed Coordination Function (rDCF) 

The rDCF protocol ‎[15] proposed the use of relay communications in the DCF mode of 

IEEE 802.11 for wireless ad hoc networks in order to improve the existing physical layer 

multirate capabilities. The main feature of this protocol is that a slower direct transmission 

is replaced by two faster hop transmissions. To do that, every node collects information 

from nearby neighbours by listening and monitoring ongoing transmissions. If the 

overhearing node finds that packets can be transmitted faster by acting as a relay between 

sender and receiver, it adds the identity of the sender and receiver into a database called 

willing list. The willing list is periodically advertised to all one-hop neighbours. After 

reception of other willing lists, nodes add the potential relay nodes into their relay table. 

When a node has a packet to send, it first searches the relay table. If it cannot find a 

compatible relay node, standard DCF is applied. Otherwise, to coordinate the cooperative 

communication, a new type of handshaking is performed between the sender, relay and 

receiver nodes by using modified RTS and CTS packets.  

The mathematical analysis considered throughput gain and lower bound of node density. It 

was demonstrated that the throughput gain increases as packet length increases and when 

packet length is too small (less than 400 bytes), rDCF performs worse than DCF. It means 

that the control overhead of rDCF is more than DCF and there is a lower bound of packet 

length leading to useful cooperation. The lower bound of node density was further 

discussed in order to find at least one relay node when the distance between source and 

destination nodes is varied. In ‎[15], rDCF protocol was compared to DCF known rate 

adaptation protocol, Receiving-Based Auto Rate (RBAR) ‎[91]. In [90], it has already been 

shown that RBAR outperforms the standard DCF. According to simulations, the rDCF 

protocol outperforms the RBAR protocol in terms of throughput and delay as expected in 

mathematical analysis. The simulation also showed that unfairness does not exist under 

rDCF because the channel conditions between the sender and the relay node and between 

the relay node and the receiver are more stable than the direct link. As a result, the number 

of transmission failures due to channel errors can be significantly reduced by using relay. 

The impact of hidden relay nodes and mobility effects was further studied on the 
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performance of rDCF. The simulation shows that the impact of hidden relay on the delay 

performance is almost negligible and throughput of rDCF is always greater than that of 

RBAR. In a mobility model drawn up by authors of rDCF protocol, the delay under rDCF 

is significantly less than that under RBAR. rDCF outperforms RBAR because it can have a 

higher transmission rate when the sender and the receiver are far away from each other. 

For the same reason, the total throughput under rDCF is much better than that under 

RBAR. 

Cooperative MAC (CoopMAC) 

The authors of the CoopMAC protocol ‎[17] proposed two versions of a MAC protocol for 

WLANs and wireless ad hoc networks, the second version (CoopMAC II) being more 

compatible with the existing IEEE 802.11 standards. Similarly to the rDCF protocol, every 

node opportunistically and passively collects information about channel conditions from its 

neighbours. With this information, it can measure their signal to noise ratio (SNR) and 

estimate relative distances and the modulation scheme used. Although the node has access 

to this information, the modulation scheme is not present at the MAC layer. In the 

CoopMAC protocol, the MAC addresses of potential relay nodes, as well as the 

transmission rates to the Access Point (for infrastructure WLANs), are stored in a table 

called CoopTable. As shown in Figure ‎3.1, when a packet is ready to be sent, source node 

(Ss) searches the CoopTable for a potential relay node. If Ss succeeds in finding a relay 

node such as Sh which provides useful cooperation with performance improvement, then Ss 

sends a modified RTS packet including the MAC address of Sh in reserved field of MAC 

header (Figure ‎3.1). Sh responds with a new control packet called Helper To Send (HTS) to 

inform the source that it can operate as a relay node. Afterwards the destination (Sd) sends 

a CTS packet to complete the handshaking. The data packet is exchanged from source to 

relay and then forwarded from relay to destination. Figure ‎3.1 (c) shows the coordination 

of control and data packets and also the computation of NAV timer by hidden nodes (e.g. 

STA1 and STA2). 
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(a) 

 

(b) 

 

(c) 

Figure ‎3.1 CoopMAC protocol ‎[17](a) Control message flow, (b) Data message flow, (c) 
Defer access mechanism  

 

In analysis of part of the CoopMAC protocol, the authors studied the mathematical model 

to obtain the saturated throughput of CoopMAC and also the computation of cooperative 

regions which are the potential area of relay nodes in IEEE 802.11b.  
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The simulation results obtained in ‎[17] show that the CoopMAC protocol can provide 

better performance in terms of capacity gain, service delay, and energy efficiency when 

compared to legacy 802.11b MAC protocol. The throughput achieved by CoopMAC 

increases as the number of mobile nodes in the network increases since the probability of a 

low rate station finding a high-rate two-hop path increases. Results concerning the impact 

of node mobility in CoopMAC indicate that, for an indoor office mobility setting, 

performance improvements will be significant when compared with a legacy IEEE 802.11b 

network. Therefore, it is concluded that cooperative MAC almost isolates the impact of 

mobility on network performance compared to high impact of mobility on the link 

adaptation algorithm of legacy MAC protocol. The reduction in interference obtained with 

CoopMAC can further improve overall system performance due to a reduction of the total 

energy radiated by the network. Results concerning energy saving in CoopMAC indicate 

that, in a saturated network, a high data-rate node can get more bits per joule if it is 

participating in two-hop forwarding schemes. 

In ‎[17], implementation feasibility and alternative approaches to be pursued in order to 

reduce implementation constraints are further discussed. 

Cooperative MAC protocol using packet Aggregation (CoopMACA) 

The CoopMACA protocol ‎[20] proposes a cooperative technique based on the Min-TX 

category and employs packet aggregation for cooperative MAC protocol in IEEE 802.11 

WLAN. In the CoopMACA protocol, there are two types of relay selection processes: 1) 

relay selection by the source node, which is performed in a similar way to the CoopMAC 

‎[19] protocol and 2) distributed contention between candidate relay nodes. The main 

feature of CoopMACA is the distributed relay selection algorithm which takes into 

consideration the aggregation concept. Two factors determine the priority of the candidate 

relay nodes which contend for access to the channel: 1) Having the packet to be sent to the 

same destination node of ongoing transmission, and 2) providing throughput improvement 

for forwarding the packet from source to destination. In the CoopMACA protocol, the 

sensing parameters are obtained from overhearing RSSI of neighbour nodes and the PLCP 

sub-header of the IEEE 802.11 MAC frames. When the source node (NS) has a packet to 

send, it will check its cooperative table. If (NS) finds the appropriate relay node, it will 

announce this to the relay node by using a modified RTS (Figure ‎3.2). Otherwise, the 
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distributed relay selection starts. After the potential relay nodes received the RTS, they will 

compete in three rounds. In the first round, those relay nodes which have packets to be sent 

to the same destination are selected (Classification Round). The winners of the second 

round are those relay nodes which can provide throughput improvement via forwarding the 

packets between corresponding source and destination nodes (Priority Round). The third 

round is the back-off contention round for access to the channel performed by the winners 

of the two primary rounds (Contention Round). After the final relay node is selected (NH), 

similar to CoopMAC protocol, it will send out a packet Helper To Send (HTS) to signal 

the cooperation and then if the relay node has the original packet to send to same 

destination, the aggregation is applied for both its original packets and relayed packet. 

 

Figure ‎3.2 Time sequences of control and data packets in CoopMACA ‎[20] 

 

The mathematical analysis of the CoopMACA protocol derived an expression for the 

saturation throughput. To do that, the success probability of a packet transmission through 

the helper node and computation of cooperative regions were further analysed. The 

simulation results showed that CoopMACA outperforms the CoopMAC and DCF 

protocols in terms of saturation throughput, network throughput and collision probability. 

The innovative aspects of aggregation and three rounds of helper selection process in 
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CoopMACA provide a robust protocol compared to CoopMAC which can adapt to the 

changes in the network topology instantaneously especially in a general mobile scenario.  

Coordinated Cooperative MAC (CCMAC) 

The CCMAC protocol ‎[19] considers the concurrent cooperative transmission for uplink 

from‎clients‎to‎AP.‎According‎to‎the‎channel‎condition‎and‎the‎helper’s‎status‎of‎whether‎a‎

data packet has been cached or not, the CCMAC supports three different transmission 

modes: basic, half and enhanced modes. In basic mode, the sender does not need a helper 

or there is no helper which can help, and normal DCF mode is applied. The operation of 

half mode and enhanced modes is based on successful transmission from relay to 

destination. The key idea of half mode is that if relay successfully receives a packet and if 

transmission from relay to destination is unsuccessful due to a bad channel, the relay does 

not drop the packet and store it. If this relay is selected again by the source node for 

retransmission when the previous failed packet, the relay will be informed by tag number 

written in the RTS. If this tag number is the same as the tag number of stored packet, the 

relay will send the HTS to indicate the cached packet (half mode). Otherwise, the enhanced 

mode activates, similar to CoopMAC operation. The half mode provides a shorter 

transmission duration than the other two modes, because the packet only needs to be 

transmitted once and through a fast link.  

In theoretical analysis of CCMAC protocol, the WLAN was modelled as a stochastic 

environment and in order to solve the coordination of concurrent transmissions, a policy 

gradient algorithm was applied based on reinforcement learning. According to analysis and 

simulation of CCMAC in IEEE 802.11b, it was found that CCMAC can achieve 

considerable‎throughput‎performance‎improvement,‎without‎imposing‎significant‎network‎

overheads. It was further discussed that CCMAC using IEEE 802.11b achieves good 

coordination between nodes in enhanced mode to provide up to 5 concurrent transmissions.  

Relay Aided Media Access (RAMA)  

The RAMA protocol ‎[18] also employs relays to improve the rate adaptation mechanism of 

IEEE 802.11 DCF mode in wireless ad hoc networks. The main feature in the RAMA 

protocol is that the relay nodes introduce themselves to potential source nodes, advertising 

their capacity to participate in a cooperative relaying process. These advertisements are 

performed if the relay nodes find that they can reduce the transmission delay of ongoing 
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communication between source and destination. The relay nodes produce an invitation 

frame and send it to source node in DCF mode. Upon reception of this frame, the source 

node will record it in a table named Relay List. Other relay candidates will cancel their 

invitation for corresponding source-destination after hearing the invitation from the winner 

relay node. The next time a source node wants to send data packets to the same destination, 

it will use the winner relay node (which was recorded from previous invitation). When the 

relay receives the relayed frame from the source, it will forward that immediately after 

SIFS. Since SIFS has the highest priority of inter frame spaces in DCF, this assures that the 

forwarding by the relay is free of contention. Results from analysis and simulation in ‎[17] 

show that RAMA can significantly improve performance in terms of both throughput and 

delay specially when compared to known rate adaptation protocol, the RBAR protocol 

‎[91]. 

Efficient Multi-rate Relaying (EMR) 

The EMR protocol ‎[22] introduces a multi-rate relaying MAC protocol which is able to 

utilize the traditional shortest path routing algorithm and a fast forwarding scheme of 

packets to improve the throughput of a IEEE 802.11 multi-hop network. In EMR, the most 

prominent feature is the selection of the effective throughput with consideration of various 

combinations of the source, destination and relay. To do this, the available throughput can 

be mapped to a priority (a 4-bit value), where higher number means higher priority. In this 

protocol, modified RTS and CTS packets are exchanged at the basic rate. Potential relay 

nodes can estimate their distance from the source and destination based on the RSSI of the 

control packets. After one relay node is selected by the source node, the priority of the 

ongoing transmission is integrated into the control packets. Upon reception of the control 

packets, potential relays will calculate their own priority and compare it against the current 

priority announced in control packets. Those relays with higher priority may send out their 

relay request packet, which contains the relay address and priority path. The relay selection 

is then done by source when it selects the best relay and responds with a relay response 

packet which contains relay address and accepted priority value. This priority-based 

scheme implemented in EMR protocol enables IEEE 802.11 to improve throughput 

performance.  
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The throughput performance of the EMR scheme has been analytically modelled and it 

performs much better than the proposed multi-rate scheme of MTM.  

Opportunistic Relay Protocol (ORP) 

The Opportunistic Relay Protocol (ORP) ‎[23] was proposed for infrastructure WLANs, 

when the relaying is performed for the uplink between a source node and the AP. The 

innovation of the ORP protocol is its opportunistic approach of using channel time 

reservations. In ORP, the source node reserves the channel optimistically with the hope 

that there is a potential relay node to complete the transmission of data faster than the 

direct transmission. The duration field of the data frame sent by the source to Access Point 

(AP) is set based on the maximum possible data rate (e.g., 11Mbps in 802.11b). From the 

PLCP header of this data frame every intermediate node can overhear the actual data rate 

and data frame length. These sensing parameters, as well as the channel reservation time, 

can help the intermediate node to decide if the data frame needs to be relayed or not. If the 

relaying is necessary and the intermediate node can forward the data frame to the AP 

within the time constraint implied by the duration value, the intermediate node contends 

for channel acquisition as a potential relay. After the AP receives a data frame from a 

potential relay, it will send out an ACK directly to the source. Otherwise, the source must 

retransmit the frame. To avoid collisions between multiple potential relay nodes, a shorter 

back-off timeout is used. 

Cooperative Medium Access for Multi-rate Wireless Ad Hoc Networks 

(CODE) 

The CODE protocol ‎[21] exploits two techniques to improve the multi- rate capability of 

802.11 for ad hoc networks: 1) Using multiple relay nodes to provide a more robust link, 

especially when there is mobility, and 2) Exploring network coding ‎[31] to support 

bidirectional traffic and to further improve system throughput. These features enable 

simultaneous transmission of uncoded information by multiple nodes when the symmetric 

traffic flows are applied. The relay selection is based on sensing the signal strength of RTS 

or CTS packets and also by extracting the piggybacked transmission rate in the CTS 

packets, all performed by the source node. If the source node selects a single relay node, 

then the CODE protocol operation is similar to the rDCF protocol. Otherwise, the source 

node picks the two best relay nodes and determines their priority to access the channel via 
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a Cooperative CTS (CCTS) based on channel quality registered in its cooperative table. 

The distinctive feature of CODE is its support of bidirectional traffic. When one or two 

relay nodes are available and the destination also has packets to send for the current source 

node, the mechanism of network coding will be triggered. In this case, the destination will 

request network coding, which requires that the relay node(s) should wait for the data 

packet from the destination before relaying packets from the source. Then, two packets 

(Source to Destination and Destination to Source) could be XORed into one packet and 

then broadcast (Figure 3.3). In CODE protocol a more control packet of NC (network 

coding) is designed for the relay nodes to reserve time duration if network coding is used. 

Simulation results ‎[21] indicate that CODE outperforms rDCF ‎[15] in terms of throughput 

gain. 

 

 

 

Figure ‎3.3 Control and data packets in CODE protocol ‎[21] 

 

3.3.2 Caching and Waiting for Failure (CWF) 

The cooperative motivation of this category is to increase the reliability of wireless 

networks, leading to increased performance and transmission range. The main concept 

driving protocols of this CWF category is that the act of sensing failures, when 

transmitting packets, triggers cooperation. Applied to IEEE 802.11, when the transmission 

of a data packet fails, and the source node does not receive the ACK, neighbours (potential 

relays) which overheard the original packet and have stored it, can forward it again. The 
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simplest protocol of this category is UTD MAC ‎[24], while protocols enabled by coding 

schemes are presented in CMAC ‎[25] and CD-MAC ‎[26]; NCSW ‎[27] and PRCSMA ‎[28] 

employ ARQ-based cooperative MAC schemes.  

University of Texas at Dallas MAC (UTD MAC) 

The UTD MAC protocol ‎[24] is a simple cooperative IEEE 802.11 MAC protocol for 

wireless ad hoc networks. The main idea behind UTD MAC is that the cooperation phase 

is initiated by packets failure to be received. For this, every potential relay node is 

overhearing mode, and store a copy of every data frame transmitted between a pair of 

source and destination. In the UTD MAC protocol, when the destination node does not 

acknowledge the received data frame, the relay nodes retransmit the stored packet. The 

final relay node is selected by the contention to access the channel after a new inter frame 

space period, called relay inter frame space (RIFS). If the destination node finally responds 

with a positive acknowledgment, the source node and corresponding relay nodes drop the 

stored packet. Otherwise, the data packet is retransmitted by the source node in a non-

cooperation mode. The comparative results between UTD MAC and CoopMAC show that 

UTD MAC achieves average higher throughput and average lower delay especially for 

relay nodes placed close to the source and the destination. This happens because in UTD 

MAC relay nodes always participate in cooperation, as opposed to CoopMAC where relays 

are used only when a packet performance gain of less delay is clear‎[24]. 

(FEC) Cooperative Communication MAC (CMAC/FCMAC) 

The CMAC protocol ‎[25] exploits spatial diversity via user cooperation, in WLAN and 

wireless ad hoc networks. In the normal CMAC protocol, every node has two queues, one 

for its own data and another for its partner’s data. Overheard packets are stored in the 

partner queue of a potential relay. If after a certain interval, no acknowledgement message 

from the destination is received, the relay that received the data frame correctly from the 

source will transmit the frame. The CMAC protocol may utilize more than one partner and 

resolve potential collision between partners, thus a random back-off process should be 

performed by partners. 

By using the FEC scheme, an improved version of CMAC protocol, called FCMAC was 

proposed. The distinctive feature of FCMAC is the usage of Forward Error Correction 

(FEC) and retransmission combining techniques to provide enhanced robustness in 
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cooperative transmission. This gain can be obtained at the cost of additional overhead due 

to the partner queue and FEC for each packet. 

Cooperative Diversity Medium Access Control (CD-MAC) 

The Cooperative Diversity MAC (CD-MAC) protocol was proposed by Moh et al. in ‎[26] 

for ad hoc networks. CD-MAC exploits coding schemes at the physical layer, thus 

requiring custom hardware, but not requiring any changes to the format of MAC frames. 

For cooperative diversity in the physical layer, there are two types of algorithms are used: 

1) Repetition, in which the relays repeat the sender message individually on orthogonal 

channels, and 2) Space-time coding, in which all the relays transmit simultaneously on the 

same channel using orthogonal distributed space-time coding (DSTC). 

Since DSTC was initially applied to transmit diversity in multi-antenna systems ‎[101], 

cooperative diversity as a virtual multi-antenna model can also exploit Distributed Space 

Time Block Coding (DSTBC) to improve the performance of cooperative communications. 

When the first RTS packet fails, the source node sends a cooperative RTS (C-RTS) along 

to a Pre-selected relay using the DSTBC code. The relay is selected based on monitoring or 

overhearing the source’s neighbours with respect to link quality. The destination and its 

relay reply the C-RTS by using a cooperative CTS (C-CTS) packet. In a cooperative 

manner, channel reservation, data transmission and acknowledgment are performed. CD-

MAC can achieve higher packet delivery ratios when compared to the legacy IEEE 802.11 

DCF. However, this improvement is achieved at the cost of high transmission overheads 

and high complexity of the coding scheme.  

Node Cooperative Stop and Wait (NCSW)  

The NCSW protocol ‎[27] exploits cooperative techniques to enhance the performance of 

Automatic Repeat Request (ARQ) schemes for wireless ad hoc networks. The Stop and 

Wait (SW) mechanism is selected as the core of ARQ scheme to provide a frame by frame 

acknowledgment mechanism and compatibility to IEEE 802.11. In the SW-ARQ protocol, 

if a transmitted frame cannot be decoded successfully by the receiver then the receiver 

node will send a not-acknowledgment (NAK) message to the sender node asking for a 

retransmission of the erroneous frame, and the sender node will respond to the NAK by 

retransmitting the frame. In this non-cooperative scheme, all the neighbour nodes are 

oblivious to the retransmissions between the sender and the receiver nodes. However in the 
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NCSW scheme, all the neighbour nodes monitor ongoing communications, and decode and 

store a copy of the last unacknowledged transmitted frame until the reception of a 

corresponding ACK. After the neighbour nodes receive a NAK from the destination node, 

they will cooperate with the sender in the retransmission process. The analytical and 

simulation results of the NCSW protocol demonstrate its improved performance in terms 

of throughput, average delay and delay jitter. 

Persistent Relay Carrier Sensing Multiple Access (PRCSMA) 

The PRCSMA protocol ‎[28] can also be presented as a cooperative MAC protocol which 

allows distributed ARQ scheme in IEEE 802.11 wireless ad hoc networks. In the 

PRCSMA protocol, all nodes keep a copy of any ongoing transmission between given 

source and destination nodes. If the destination does not receive the packet successfully, 

the destination sends a Claim For Cooperation (CFC) message in the form of a RTS 

control packet to ask cooperation from the nearby neighbours. Those active relays which 

receive the CFC message and have the copy of the corresponding packet will be ready to 

forward their stored packet. As the destination node receives the stored packet, it will send 

the ACK message to inform the source node and potential relay nodes to discard the 

successful transmitted packet. In order to avoid collisions between active relays, a 

distributed back-off mechanism is applied at the beginning of the cooperation phase. The 

results demonstrate that the PRCSMA protocol outperforms the IEEE 802.11g when using 

the ARQ scheme ‎[28]. 

3.3.3 Back-off Target Cooperation (BTC) 

The protocols in this category employ cooperative techniques to determine which node has 

more priority to access the medium.  The main objective of these protocols is to exploit 

cooperation for fairness improvement in IEEE 802.11 MAC protocol. Since the size of the 

back-off window determines the priority of every node to access the medium, priority-

based cooperative protocols exploit cooperation concepts by dynamically adjusting back-

off timers. This modification can be defined based on application service as in SD-MAC 

‎[29], or high priority of access to the medium for collided nodes in as C-MAC ‎[30]. The 

main difference of this category and the two previous ones is the lack of a relay node: 

cooperation is a local action in neighbourhood nodes to improve medium access. However, 
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in every protocol of this category we can still map the cooperation operation ( in light of 

this, an argument can be constructed that the regular DCF back-off mechanism would also 

be a cooperative potential. However, this is not as an unusual view). 

Cooperative Medium Access Protocol for Dense Wireless Networks (C-

MAC) 

The C-MAC protocol ‎[30] is introduced for both infrastructure and ad hoc networks in the 

context of IEEE 802.11. Short term fairness and throughput degradation are the two main 

challenges of dense wireless networks addressed by this protocol. The C-MAC protocol 

relies on the principle that the collided nodes should have a higher priority than other 

nodes in terms of packet transmission. Toward this, first the non-collided nodes give 

permission to collided nodes to transmit their packets. Then the successful nodes select the 

larger back-off counter to allow non-collided nodes to transmit their packets. 

In C-MAC, there are two types of back-off counter: 1) Back-off counter of collided nodes 

and 2) Back-off counter of non-collided nodes. Because there is a gap of 4 Slot Times (Slot 

Time duration is 20µsec) between DIFS (110µsec) and PIFS (30µsec), collided nodes 

choose their back-off counters from the range [0, 3]. Therefore, the collided nodes can 

choose at most 3 as a back-off counter, while in normal 802.11 DCF, the maximum 

counter value is 63 in the first retransmission. This new back-off procedure allows the 

collided nodes to transmit in the next contention period while others postpone their 

transmission until they detect two consecutive successful transmissions. The results of the 

C-MAC protocol show that it achieves short term fairness via collaboration of nodes while 

IEEE 802.11 is a long-term fair protocol. It also outperforms the IEEE 802.11 DCF in term 

of throughput performance even when the number of users increases ‎[30]. 

 

Service Differentiation Medium Access Control (SD-MAC) 

The SD-MAC protocol ‎[29] proposed a new dynamic 802.11 MAC protocol which 

addresses service differentiation mechanisms for infrastructure and ad hoc networks. In 

IEEE 802.11e, service differentiation is applied based on different classes called Access 

Categories (ACs) ‎[10]. The category with a higher AC number has more priority to access 

the medium. However IEEE 802.11e does not perform efficiently with high network loads. 

The SD-MAC protocol solves this problem by using a cooperative technique. The key 
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strategy of SD-MAC is that every node changes its back-off counter window based on both 

its own packet's priority level and the level of the transmitted packet. To this end, each 

node will decrease its back-off counter exponentially with a lower priority (than its own) 

packet transmission and increase it linearly with a higher priority (than its own) packet 

transmission. For applications with diverse performance requirements, SD-MAC achieves 

better throughput and short term fairness for WLAN and wireless ad hoc networks when 

compared to static and dynamic MAC protocols. 

3.4 Architectural reference model for Cooperation  

Generally cooperation can be understood as a joint action for mutual benefit. This 

definition is valid in wireless networks and due to the broad diversity in possible 

interacting entities the concept of cooperation can be wider. Different cooperating entities 

within and across the OSI layers provide various cooperative techniques and algorithms. In 

order to present these cooperative techniques, we need to define an architectural model. 

The main feature of all systems using cooperation is that they are able to adjust their 

operation according to changes in their environment. In this case, cooperation concepts 

share some characteristics with concepts from Autonomic Systems ‎[100], as both are based 

on feedback information. Therefore, an architectural reference model is proposed based on 

feedback information.  

As depicted in Figure ‎3.4, cooperation consists of four phases: Monitor, Analyze, Plan, 

Execute (MAPE). In this reference framework, a cooperative protocol employs sensing 

methods to monitor the environment and to monitor neighbour nodes (Monitor). The 

observations acquired by the Monitor action will be further used to Analyze data according 

to key metrics. The values obtained are used to Plan the cooperation strategy including the 

using a relay channel or a direct channel, and if using the relay channel, which specific 

relay stations to use. The final phase is carried out by sending appropriate control packets 

for initiating the cooperative transmission and then data packets are exchanged (Execute). 

Then packets are exchanged accordingly. 

There are several aspects which determine the operation of each phase in the MAPE 

model. These aspects include cooperation objectives, inter-layer or intra-layer schemes of 

OSI model and capabilities of each wireless technology. For instance, if the cooperation 
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aims for minimizing delay, the parameters to be monitored, the analysis process and the 

decision methods differ from the case where cooperation is concerned with power issues. 

In addition, different environments such as WLAN, WSN and WMN have particular 

requirements, which can be mapped to the operation of all states in the MAPE model. 

Moreover, the requirements of cooperation in the MAC protocol of WMN are different 

from cooperative schemes in the network layer of WMN, as well as from cross- layer 

cooperative approaches. Therefore, the combination of various cooperation objectives, 

different wireless environments and inter-layer or intra-layer approaches can address a 

spectrum of features in system design of cooperative protocols while all of them are 

mapped in the MAPE model.  

 
 

 

Figure ‎3.4 MAPE model 

 

The MAPE model can cover most cooperation strategies, as long as they are properly 

mapped. Furthermore, it provides a standard terminology for studying any cooperative 

protocol and algorithm. Since the focus of this thesis will be on cooperative MAC 

protocols of IEEE 802.11, the aforementioned phases of MAPE model are described in the 

context of IEEE 802.11. 

Monitor: In IEEE 802.11, each station not only transmits and receives data for its own 

applications but it can also monitor (overhear) the communication of the nearby 

neighbours. For instance, in normal operation of IEEE 802.11 in Distributed Coordination 
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Function (DCF) mode, by overhearing the ongoing DATA packet and control packets 

exchanged between two given nodes, the neighbours can compute the duration of time for 

which the shared channel is busy. This mechanism is performed by the help of the duration 

field in DATA packet and RTS-CTS control packets and by calculating the distributed 

Network Allocation Vector (NAV) timer which is explained in detail in Appendix I. 

Inspired by this monitor operation, information required for every cooperative MAC 

protocol can usually be obtained by monitoring data, control and management frames. The 

header of these frames has some information regarding the bit rate, packet failure and 

sometimes their reserved fields can be used for some extra information in accordance with 

the cooperative objective.  

Depending on the cooperative objectives, the monitor phase uses different parameters. 

These parameters are used in the analysis phase and can be classified in the following 

categories:  

— Explicit parameters: This category comprises parameters that are measured or 

achieved explicitly by overhearing the fields in the MAC header. These parameters 

can be used in the Analysis phase to compute required performance metrics. For 

instance, the bit rate of every data packet can be achieved by sensing the SIGNAL 

field in the Physical Layer Convergence Procedure (PLCP) header of that data 

frame. Another example of explicit sensing parameters can be obtained by 

overhearing the value of Received Signal Strength Indication (RSSI) (e.g. ‎[15], 

CoopMAC ‎[17] and CoopMACA ‎[20]). Moreover, explicit parameters can be 

presented as a logical variable of YES or NO according to occurrence of some 

events. These events can be packet delivery failure ‎[25]‎[26]‎[27]‎[28] and the 

occurrence of collisions ‎[30]. These logical variables mostly operate as trigger 

parameters for cooperation protocols. 

— Implicit parameters: Some monitoring parameters can be obtained by applying 

some computations to explicit sensed parameters, and also user information itself. 

As an example, from the RSSI measurement of RTS and CTS control frames, 

between a pair of source and destination, each neighbour node can implicitly 

discover the potential bitrates and delay transmission between itself and source-

destination pair. This monitoring method is used ‎[15] ‎[17] to estimate the 
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transmission delay. User feedback can also be considered when users provide an 

indication about the Quality of Experience (QoE) they are having ‎[29], or the 

willingness to cooperate. 

— Piggybacked parameters: Some information used by cooperative MAC protocols is 

not achieved by explicitly and implicitly sensed information. Thus, in order to 

allow the whole network to know about this information, protocols make use of 

reserved fields in data and control packets. For example, the priority level of the 

relay nodes in ‎[22] can be determined by mapping the priority to a binary number 

of n-bits in reserved fields of RTS or CTS frames. 

Analyse: In order to achieve effective cooperation, two important questions should be 

answered: when to cooperate and with whom? Towards answering these questions, several 

aspects have to be taken into consideration in the Analyse phase. First, cooperation 

protocols should use the appropriate metrics based on the cooperative objective and the 

available monitor parameters, and then build a database to maintain the corresponding 

metric for each candidate relay node. The database can help the nodes to rank their 

neighbours according to the defined relay selection metric. Clearly, the relay selection 

metric should be mapped to the expected performance improvements provided by the 

intended candidate relay node. Selection of an appropriate metric depends on the OSI 

layers where cooperation takes place and also the capabilities of wireless technology. 

Plan: The relay selection algorithms should be designed based on the information obtained 

by Analyse phase (e.g. metrics and relay node ranking), and other aspects of user and 

network. In case of the user, its willingness to participate in cooperation is the main 

concern. This willingness can be defined by internal parameters of each user which are 

relevant for its own behaviour in a cooperative scenario, most commonly related to energy 

and load. The energy source, if running from battery, and its remaining charge, are basic 

parameters that should be considered in every cooperative scheme. Nodes plugged into the 

grid have little energy constraints. When powered by a battery, if the remaining energy 

level is low, its cooperation with the other nodes in the network will lead to an inefficient 

use of the equipment, as it reduces network survivability (and potentially reduces overall 

capacity in the long term). Also, the transmission power selected by the candidate relay 

node will be a key factor in the total energy consumption of each node and overall network 
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performance, together with sleep intervals. Thus, one node with low energy level has less 

opportunity to be selected as a relay even though its other metrics may suggest a 

potentially good performance increase.  The effectiveness of each node to cooperate can 

also be evaluated by the input and output traffic. One node with too much input traffic 

cannot be a good candidate for the cooperation since its participation in the cooperation 

can reduce network performance, due to its inherent performance limitations in packet 

processing and medium access. 

Besides the user internal parameters, application traffic services and cooperative scenarios 

can determine polices applied to the Plan phase. For instance, in a cooperative scenario 

which needs bandwidth improvement for handling the traffic service, the Plan phase is 

different from the scenario which is concerned with high reliability of traffic service. 

Moreover, the mobility should be taken into consideration in the Plan phase. In some 

cooperative scenarios, the mobility operates as a parameter which increases the complexity 

of cooperation algorithms. In contrast, the mobility can be operated in the direction of 

cooperative performance improvement especially for cooperation scenarios such as robotic 

networks which have the capability of commendable movement.  

Execute: In order to complete the MAPE model the Execute phase should be defined. The 

main actions of Execute phase are Initiation, Control and Notification. After the relay(s) is 

selected based on related metric and Plan phase policy, it is very important to know which 

node initiates the cooperation. In some protocols, source node initiates the cooperation 

while there are many protocols in which cooperation initiates by relay node(s) or 

destination node. The Control action determines whether a centralized or distributed 

mechanism is employed for controlling the cooperation procedure and the Notification 

action defines the required signalling and modified control packets for exchanging between 

source, relay and destination nodes. In addition, the Execute phase of one cooperative 

protocol should address the legacy compatibility as well as the practical implementation 

aspects. Therefore, the design of Monitor, Analyze and Plan phases depends not only on 

the environment and cooperative objectives but it can also be affected by practical 

limitations imposed by the Execute phase. 
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3.4.1 Deployment Overview 

In this section, we classified the cooperative MAC protocols in three categories according 

to their main operational concept: Minimum Transmission (Min-TX), Caching and 

Waiting for Failure (CWF) and Back-off Target Cooperation (BTC). The key objective of 

every category and cooperative operation of each protocol were also described.  

Besides these key operational aspects of each protocol, according to the MAPE framework, 

other aspects should be also emphasized. In order to implement the cooperative MAC 

protocols in 802.11 networks, there are some limitations and properties imposed by 

operational aspects. Some of the protocols are designed only for ad hoc of infrastructure 

architectures, while others can operate in both of them. The compatibility of cooperative 

algorithms with the legacy of 802.11 MAC algorithm may (or may not) permit the protocol 

to operate in cooperation mode without fundamental changes in normal 802.11 modes. 

Furthermore, the additional control messages and inter frame time spaces required, as well 

as PHY modifications proposed by a cooperative protocol determine the complexity degree 

of that protocol. 

Although these aspects are not easily quantified, Table ‎3–3 and Table ‎3–4 summarize some 

relative comparison of existing cooperative MAC protocols in terms of MAPE model 

phases and operational issues already discussed. 

3.5 Concluding Remarks 

In this chapter, the PHY and MAC specifications of IEEE 802.11 standards and their 

respective issues to cooperative schemes have been studied. Three objectives of 

cooperation were presented in cooperative MAC protocols: Minimum Transmission (Min-

TX), Caching and Waiting for Failure (CWF) and Back-off Target Cooperation (BTC). In 

addition, multiple cooperation protocols in the context of IEEE 802.11 were presented with 

a brief description of operation. In order to have a generic architectural framework for 

cooperative protocols, the MAPE model was presented. This model covers all phases of 

cooperation strategies when the four actions of Monitor-Analysis-Plan-Execute are applied 

for completion of each cooperative scheme or protocol. As a case study, the MAPE model 

is explained in the context of IEEE 802.11 MAC protocol. Deployment issues and MAPE 

phases of the protocols are also provided in last section of this chapter. 
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Table ‎3–3 Cooperative MAC protocols and their operational issues 

Protocols Architecture Compatibility Complexity 

rDCF Ad Hoc High Moderate 

CoopMAC Infrastructure/Ad Hoc Moderate Low 

CoopMACA Infrastructure Low High 

CCMAC Infrastructure Moderate High 

RAMA Ad Hoc Moderate Low 

EMR Ad Hoc Moderate Moderate 

ORP Infrastructure Low Low 

CODE Ad hoc High High 

UTD MAC Ad Hoc Moderate Moderate 

CMAC Infrastructure/Ad Hoc Low Low 

CD-MAC Ad hoc Low High 

NCSW Ad Hoc Low High 

PRCSMA Ad Hoc High Low 

C-MAC Infrastructure/Ad Hoc High low 

SD-MAC Infrastructure/Ad Hoc High low 
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Table ‎3–4 Mapping of cooperative MAC protocols on MAPE model 

Protocols Monitor 

Analyse/Plan Execute 

Relay 
Relay 

Selection 
Initiation Control Notification 

rDCF RSSI Single 
Maximum 

transmission rate 
Source Distributed Modified RTS(s) 

CoopMAC 
RSSI, 

PLCP 
Single 

Maximum 

transmission rate 
Source Distributed RTS/HTS 

CoopMACA 
RSSI, 

PLCP 
Single 

Maximum 

transmission rate 
Source/Relay Distributed RTS-HTS 

CCMAC 
RSSI, 

PLCP 
Single 

Maximum 

transmission 

rate+ caching 

Source/Relay Distributed RTS/HTS 

RAMA 
RSSI, 

PLCP 
Single 

Maximum 

transmission rate 
Relay Distributed CFC 

EMR 
RSSI, 

PLCP 
Single 

Maximum 

transmission 

rate-priority 

based 

Source and 

relay 
Distributed 

Relay-RQST/Relay-

RES 

ORP Data rate Single Random Source Distributed 
Relaying data 

transmission 

CODE 
RSSI(s), 

Data rate 
Multiple 

Maximum 

transmission rate 
Receiver Distributed 

Cooperative- RTS 

(CRTS) 

UTD MAC 
Packet 

Failure 
Single Random Source Distributed Invitation by relay 

CMAC 
Packet 

Failure 
Single Random Relay 

Central/ 

Distributed 
N.A. 

CD-MAC RSSI Single 
Maximum 

transmission rate 
Source Distributed CRTS / CCTS 

NCSW 
Packet 

Failure 
Multiple Random Relay Distributed N.A. 

PRCSMA 
Packet 

Failure 
Multiple Random Receiver Distributed CFC 

C-MAC 
Collision 

occurrence 
Single Random Source Distributed N.A. 

SD-MAC 
Priority of 

traffic flow 
Single 

Service 

differentiation 
Source Distributed N.A. 
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CHAPTER 4  COOPERATIVE PERFORMANCE 
METRICS FOR IEEE 802.11 MAC PROTOCOLS 

 

 

 

 

 

 

 

Summary 

 

The efficiency improvement of network resources in IEEE 802.11 

wireless networks when using cooperative schemes is the main issue 

which should be tackled. This chapter considers several protocols of 

Min-TX category and evaluates their performance in terms of 

cooperation issues. A system model for Min-TX category and a metric 

for bandwidth improvement are also presented. The potential area of 

the relay node called the relay area is computed theoretically and 

practically for different data rates and transmission ranges of IEEE 

802.11b/g/n. The performance bounds of bandwidth obtained by 

cooperative protocols are also discussed and presented for Min-TX 

category protocols when applied in IEEE 802.11b/g/n. The limitation 

imposed by high layer requirements is also considered for different 

amendments of IEEE 802.11. 
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4.1 Introduction 

Cooperative communications have emerged as the promising approach in order to improve 

communication performance. The advantages of cooperative communications are 

appraised by considering the performance improvements. Moreover, analysis of achievable 

performance bounds indicates the potential of cooperative schemes in the context of the 

objectives for which they have been designed. As discussed in ‎CHAPTER 2 , there are 

several works which analyse the performance bounds of cooperation techniques at the 

PHY layer. In most of these works, the performance bounds are obtained when the analysis 

is limited to ideal assumptions and theoretical aspects. However, these performance 

bounds are affected by some limitations when cooperation is applied in practical scenarios 

with specifications imposed by wireless technology standards. 

In this chapter, the practical performance bounds of two cooperative objectives in IEEE 

802.11 are considered: 1) spectrum efficiency and 2) energy efficiency. Min-TX category 

protocols have been selected as a case study of spectrum efficiency approach where the 

system model and some practical issues limiting the expected performance bounds are 

addressed. The performance bounds of energy efficiency approach are considered by 

taking into account several aspects such as wireless channel properties and transmission 

power.  

The remainder of this chapter is organized as follows: in Section ‎4.2, a system model, 

performance metric and performance bounds of the Min-TX category are presented. This 

section also provides a mathematical analysis to find the minimum packet size leading to 

useful cooperation. Moreover, the theoretical and practical computations of geographical 

area for potential relay nodes are presented in context of IEEE 802.11bgn. In Section ‎4.3, a 

system model of cooperative schemes with objective of energy efficiency in IEEE 802.11 

is presented. This section demonstrates the potential of cooperative schemes in overall 

energy saving when practical issues of IEEE 802.11 are taken into account. The analysis 

model is applied for IEEE 802.11bgn. Section 4.4 concludes this chapter. 
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4.2 Analysis of bandwidth improvements schemes 

Bandwidth improvement is one of the cooperative objectives which can be achieved by 

Min-TX category. As discussed before, the condition of efficient cooperation in the Min-

TX category is based on the low transmission delay of the cooperative path compared to 

the direct path. Transmission delay is the time a data packet takes to be transmitted over 

the medium. Different values of transmission delay are available due to the multi-rate 

capability of the PHY specification of the IEEE 802.11 standards. Therefore, a practical 

monitor method should be employed to obtain the data rates between neighbours as the 

potential relays and a given destination node. According to this monitor method, a 

performance metric can be defined. This metric is used to select the potential relay nodes 

in accordance with the cooperative objective of throughput improvement. It is also useful 

for ranking the relay nodes and determining the best relay node(s). 

 

 

 

Figure ‎4.1 Example of cooperation with one relay node 

 

4.2.1 System Model  

All protocols in Min-TX category employ a common practical monitor method to define a 

metric for relay selection. Generally, this metric is related to the delay of direct and 

cooperative path. For simple scenario depicted in Figure 4.1, node Ri is a candidate relay 

between source (S) and destination (D). MAC header of IEEE 802.11 frame or in more 

detail, the PLCP sub-header, contains a field named SIGNAL, which denotes the bit rate of 
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every data packet sent to the network (Annex I). Thus, Ri explicitly obtains the actual data 

rate between S and D from overhearing data frames exchanged between them. Ri can also 

estimate the potential data rate between itself and source-destination pair. Node Ri can 

measure the RSSI of RTS and CTS and ACK frames issued by nodes S and D, and 

compute the corresponding data rates of obtained RSSI(s). After obtaining the three data 

rates between these three nodes, a general metric of Delay Ratio (DR) can be defined. DR 

is the ratio between the transmission delay of relay path, and that of the direct path. If the 

relay node supports data rates of      and      to S and D, respectively, and the direct 

transmission data rate between S and D is    , the delay ratio estimated by Ri can be 

expressed as: 

    
      

  
       

  

       
 (‎4.1) 

The value of     can be obtained by each of the relay source and destination nodes. 

Clearly, if the value of the calculated delay ratio is less than 1, the relay channel may 

provide better transmission characteristics than the direct channel, due to the resulting 

effective higher bandwidth and lower transmission delay for end-to-end communication. It 

is noted that source and destination nodes can obtain the same delay ratio estimation of 

using Ri as the relay when they do the same Monitor method and computation. 

The average transmission delay between a pair of source and destination       can be then 

expressed as (‎4.2): 

                         
       

    
       

 (‎4.2) 

Where, the        and     are the transmission delays of the cooperative path and the direct 

path respectively, and     is the probability of finding a relay node        with delay 

ratio of    . The value of     can be estimated by considering relay areas. The relay area 

is the location of relay nodes and will be discussed in more detail later in this paper.     is 

the set of relays    which satisfies the relay condition of the Min-TX category to guarantee 

a reduction in the transmission delay. 
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                    (‎4.3) 

       and     can be expressed as (‎4.4) and (‎4.5): 

                                       (‎4.4) 

                          (‎4.5) 

 

where                and             are the transmission delay of a data packet with 

length of L bytes respectively using the relay and direct paths. The protocol overhears of 

these two modes are denoted by           and        respectively.     is the average time 

for relay selection, which varies between different relay selection algorithms.  

By rewriting the delay ratio of equation (‎4.1) as a function of                and        in 

(‎4.6), and substituting (‎4.6) into (‎4.4), it yields (‎4.7). 

    
              

           
 (‎4.6) 

                                        (‎4.7) 

Since           and     are often constant values in every cooperative MAC protocol, 

       mostly depends on    , data packet size ( ) and the direct data rate between source 

and destination. Thus, for a packet size L, direct data rate    , and delay ratio     

equation (‎4.7) can be expressed as (‎4.8): 

                                               

                       
 

   
               

(‎4.8) 

 

From the perspective of the MAC layer, the throughput for direct transmission (   ) and 

cooperative transmission (      ) for the simple scenario of Figure 4.1 can be written 

respectively as (‎4.9) and (‎4.10). 
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 (‎4.9) 

                  
 

                                        
 (‎4.10) 

where      and      are the average idle time and the average time wasted on the channel 

due to collisions in direct transmission.            and             denote the average idle 

time and collision time in the cooperative scenario. The average idle time is a function of 

the back-off timer and the collision time can be fixed or variable depending on the 

saturated and non-saturated scenarios ‎[103].  

Theoretical Performance bounds: In order to find the success level of cooperative 

schemes, the throughput performance bound of Min-TX protocols should be determined as 

a function of delay ratios. It can be concluded that for a fixed packet size (L) , fixed direct 

data rate (   ) between S and D and constant value of idle time and collision time, the 

throughput bounds (      
    and       

   ) can be obtained by minimum and maximum values 

of     as expressed in (‎4.11) and (‎4.12). 

      
    

 

                
                           

 (‎4.11) 

      
    

 

                
                           

 (‎4.12) 

 

4.2.1 Practical Issues and Performance Bounds 

In theoretical analysis, we considered a system model with some assumptions. These 

assumptions are limited when the cooperation is applied to real scenarios. The limitations 

are imposed by design features of cooperative protocols and standard specifications of 

wireless technologies. Here, we consider these limitations in terms of beneficial data 

packet size for cooperation and geographical area for relay nodes.  
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4.2.1.1 Beneficial data packet size  

The duration of packet transmission over the wireless medium is a function not only of the 

bit rate, but also of the packet length (L), which varies in different application services. In a 

cooperative scenario and for a specific cooperative MAC protocol, we can calculate the 

minimum packet length which can reduce the transmission time compared to the direct 

transmission. As indicated in (‎4.7), the maximum transmission delay, in cooperative cases, 

is obtained when the relay node provides the maximum delay ratio. Therefore, for the 

maximum delay ratio, we can express the inequality (‎4.13): 

                
                    (‎4.13) 

By replacing        and     into (‎4.13), we obtain (‎4.14) and then (‎4.15). 

   
                                 

                        (‎4.14) 

             
                    

      
    

 (‎4.15) 

 

For a data packet with length of L and data rate of    ,                  and it yields 

(‎4.16): 

   
                         

      
    


(‎4.16) 

and the lower bound of packet length can be expressed as (‎4.17): 

     
                         

      
    


(‎4.17) 

This means that there is a minimum useful size of packet for cooperation to be useful. In 

Section ‎4.2.2, we will evaluate the lower bound of packet size for specific cooperative 

protocols of Min-TX category.  
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Figure ‎4.2 Relay area of Min-TX category 

4.2.1.2 Relay area 

The multi rate capability of IEEE 802.11 provides different data rates for different 

transmission ranges. According to the location of the relay node, it can sense various delay 

ratios and the cooperative throughput will change. According to the cooperation objective 

in Min-TX category and for a data packet with length L, we can write the equation (‎4.18): 

                  (‎4.18) 

Potential useful relay area is the location area of Ri when the inequality (‎4.18) will be 

satisfied. There are two methods for determining this relay area, based either on theoretical 

or practical analysis.  

Theoretical approximation :In a theoretical analysis and for the scenario of Figure 4.1, 

we can consider the Shannon formula and a simple path loss wireless propagation model as 

expressed in (‎4.19) and (‎4.20), between two nodes (S,D). 

                      (‎4.19) 

    
  
  

 (‎4.20) 
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where     is the achievable data rate,     is the bandwidth;       is the signal to noise 

ratio;   ,    are received and transmitted power;   is the distance between the   and  ;   

is the constant; and   is path loss coefficient of the environment.  

By applying the inequality (‎4.18) and substituting (‎4.19) and (‎4.20) into (‎4.18), we obtain 

the equation (‎4.21). 

                                                (‎4.21) 

 

If      and     are corresponding achievable data rates between S, Ri and D nodes, by 

substituting                and             as a function of data packet length (L) and 

corresponding data rates, we can have: 

 

    
 

 

    
 
         

 
 

 

   
 
      

 


(‎4.22) 

For large packet sizes, we can assume                             , and the 

inequality (‎4.22) can be approximated by (‎4.23). 

 

    
 

 

    
 

 

   
 

(‎4.23) 

It should be noted that inequality (‎4.23) is compatible with the definition of the delay ratio 

(as expressed in (‎4.2) and demonstrates that if the delay ratio is less than one it satisfies the 

cooperative condition of Min-TX category. 

If     ,     ,     are devoted to the distances between S, Ri and D, by assuming   

         and           , we can obtain the inequalities of (‎4.24). 

 
 

 
 

                
 

 

                
  

 

             
 

     

      

(‎4.24) 
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(a)  

 
(b)  

 

 
 (c)  

 

 
(d)  

Figure ‎4.3 Relay area of path loss coefficient (n=4) and different SNR:(a) SNR=1, (b) SNR= 
3, (c) SNR=6 and (d) SNR=10 

 

In Figure 4.3, these inequalities with a path loss coefficient n= 4 (an usual value) and 

different SNR´s were solved. The shadow area is the useful relay area and theoretically 

shows the probability for the existence of a useful relay node for random position of Ri. 

The relay area depicted in Figure 4.3 indicates that as the SNR of direct transmission 

increases, the probability of finding relay nodes will decrease when the uniform node 

density is assumed. With the help of this analysis, the whole useful relay area for a pair of 

S and D was computed. However, the percentage of the relay areas corresponding to a 

specific delay ratio cannot be computed. 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

X

Y



 

 

Cooperative Performance Metrics for IEEE 802.11 MAC Protocols 

 

67  
 

Geometrical approximation: By following a pragmatic approach which will be discussed 

in the remainder of this section, the relay area corresponding to a specific value of delay 

ratio can be computed. If the transmission ranges of every data rate are known, the relay 

area corresponding to its delay ratio will be determined. Figure 4.4 (a) shows different 

relay area of a direct transmission with data rate of 1Mbps between source (S) and 

destination (D). The transmission ranges corresponding to each data rate are represented 

with circles with radius of RD, where D is the data rate supported in IEEE 802.11b. The 

corresponding delay ratios are indicated in Figure 4.4 (b). In order to calculate the relay 

area, we need to obtain the overlap area between two circles. The overlap area of two 

circles with radii of    and    and distance   between the centres can be written as (‎4.25). 

        
               

                    (‎4.25) 

where,   
                                  

  
. The relay area of Figure 4.4 (a) can be 

computed as (‎4.26): 

 
 
 

 
 

                    

                                         
                                    

                                             

                                                 

                       (‎4.26) 

 

By applying the recursive calculations in (‎4.26), the total area estimated in the previous 

theoretical analysis can be obtained by adding the area of the geometrical approximation 

for all possible delay ratios. 
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(a) 

 

 (b)  

 

Figure ‎4.4 (a) Relay area of Min-TX category in IEEE 802.11b (b) Delay ratio 
corresponding to relay area 
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Table ‎4–1 Data rates and transmission ranges and corresponding Min-SNR of 802.11 

802.11n 

Data rate (Mbps) 7.2 14.4 21.7 28.9 43.3 57.8 65 72.2 

Typical Range (meter) 115 91 78 62 46 34 31 29 

Min-SNR (dB) 11 14 16 19 23 27 28 29 

802.11g 

Data rate (Mbps) 6 9 12 18 24 36 48 54 

Typical Range (meter) 122 107 96 85 75 61 42 31 

Min-SNR (dB) 8 9 11 13 16 20 24 25 

802.11b 

Data rate (Mbps) 1 2 5.5 11 

 
Typical Range (meter) 180 150 130 100 

Min-SNR (dB) 2 2.9 5.4 10 

 

Table ‎4–2 MAC layer parameters 

Parameters 802.11b 802.11g 802.11n 

Slot Time (µs) 20 9 9 

SIFS (µs) 10 16 10 

DIFS(µs) 50 34 28 

RTS (µs) 352 46.7 38.89 

CTS (µs) 304 38.7 32.23 

HTS (µs) 304 38.7 32.23 

ACK(µs) 304 38.7 32.23 

PLCP (µs) 192 20 16.67 

MAC header(bits) 272 272 272 

Basic date rate (Mbps) 1 6 7.2 

CWmin 

(SlotTime) 
31 15 15 

CWmax 

(SlotTime) 
1023 1023 1023 

Maximum Transmission 

Unit (MTU) (bytes) 
2272 2272 7935 
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4.2.2 Discussion on Model 

The geometrical model presented in Figure 4.4 provides a rate adaptation mechanism 

beyond the MAC layer operation. The existing rate adaptation schemes in MAC layer 

operate based on parameters such as SNR values and number of successful packets during 

the specific period of time. These parameters are dynamically changing due to channel 

variations and resulting in performance degradation. However, the proposed geometrical 

model operates based on the outcome of the channel variation impact by exploiting the 

diversity of two independent channels. The relay area corresponding to every delay ratio 

value is varied according to source-destination distance, and number of relay nodes in each 

relay area depends on the node density and its distribution in coverage area.  

4.2.3 Evaluation of Min-TX protocols in IEEE 802.11bgn 

In this section, some cooperative protocols of the Min-TX category are evaluated in terms 

of throughput. The relay area and the lower bound of useful packet size for every protocol 

are also presented. The simple scenario depicted in Figure 4.1 is applied for all Min-TX 

protocols in three amendments of 802.11b ‎[6], 802.11g ‎[7] and 802.11n ‎[8]. In the case of 

802.11n MAC layer, the study is limited to the legacy mode without special features such 

as aggregation, High Throughput PHY (HTP) and Block-ACK ‎[8].  

 

 

Table ‎4–1 indicates the data rates supported, corresponding minimum SNR and maximum 

transmission ranges of different amendments when BER=10
-5

 and bandwidth 20 MHz. For 

802.11n, we assume one spatial data stream and short Guard Interval (GI) of 400 ns to 

transmit and receive the packet. Table ‎4–2 summarizes typical operational parameters of 

IEEE 802.11b/g/n. 

4.2.3.1 Delay ratio and relay area  

As discussed in Section ‎4.2.1 and according to the data rate and considering the 

approximated maximum transmission range of Table ‎4–1, the delay ratio of Min-TX 

category and corresponding useful relay area percentage (Table ‎4–3) are calculated.  

Table ‎4–3 presents the possible scenarios leading to delay ratio values less than one. For 
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802.11b, the relay area corresponding to every delay ratio value is presented in detail. For 

802.11g and 802.11n, due to the many possibilities for delay ratios less than one, the delay 

ratio bounds and corresponding relay area are presented. Table ‎4–3 indicates that in 

802.11g, which supports data rates from 6 Mbps to 54 Mbps, the cooperation of Min-TX 

category is beneficial for direct data rates between 6 Mbps to 24 Mbps. As the direct data 

rate increases, the probability of finding a useful relay node will decrease. Similarly, the 

delay ratio less than 1 is obtained for direct data rate in the range of 7.2 Mbps and 28.9 

Mbps in 802.11n while 802.11n can support data rates from 7.2 Mbps to 72.2 Mbps in one 

spatial data stream. It is noted that for 802.11n with two, three and four spatial streams, we 

have the same delay ratio and relay area, while the data rates are multiplied respectively by 

two, three and four. 

4.2.3.2 Throughput performance 

In order to compute the throughput, which is possible to obtain by every cooperative 

protocol, the simple scenario depicted in Figure 4.1 is considered, and the different 

cooperative protocols of the Min-TX category applied. Therefore, their overhead, average 

idle time and average collision time should be computed. For simple scenario with three 

nodes, the average collision time is neglected, while the average idle time is calculated 

according to back-off time (  ).    can be expressed as expressed in (4.27). 

   
                      

 
 (‎4.27) 

As shown in Table ‎4–4 and Table ‎4–5, the overhead and average idle time (TIdl) of the 

protocols in different amendments for basic access and 4-way handshaking modes  are 

computed respectively. TPLCP is time duration of PLCP header; TDIFS and TSIFS are 

respectively DIFS and SIFS interval times; TACK is ACK frame duration time; TB is average 

back-off time and TRS is average relay selection time.  
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Table ‎4–3 Delay ratio and relay area of 802.11b, 802.11g and 802.11n 

 

S to D 

Data rate 

(Mbps) 

S to Ri 

Data rate 

(Mbps) 

Ri to D 

Data rate 

(Mbps) 

Delay ratio 

 

(Relay area/ 

Coverage area)% 

802.11b 

1 

11 11 0.18 1.2~4.5 

19~22.3% 

11 5.5 0.27 7.2 

5.5 5.5 0.36 1.8 

2 11 0.59 6.4 

2 5.5 0.68 2.4 

2 

11 11 0.36 4.5~7.3 

11.2~14% 11 5.5 0.54 4.9 

5.5 5.5 0.72 1.8 

802.11g 

6 
24 36 min:0.42 

13~16% 
12 18 max:0.83 

9 
36 36 min:0.5 

7.4~13% 
18 24 max:0.88 

12 
36 54 min:0.55 

3.3 ~4.6% 
24 36 max:0.83 

18 
48 54 min:0.7 

1.2~4.3% 
36 48 max:0.88 

24 
54 54 min:0.89 

2~3.6% 
48 54 max:0.94 

802.11n 

7.2 
43.3 86.7 min:0.5 

15.8~24.5% 
28.9 43.3 max:0.83 

14.4 
57.8 144.4 min:0.7 

8.6~12% 
43.3 115.6 max:0.92 

21.7 86.7 115.6, 130 0.87 0.1~1.5% 

28.9 
115.6 144.4 min:0.9 

0.1~1.5% 
115.6 130 max:0.94 
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Table ‎4–4 Overhead and average idle time in basic access mode 

Protocols TOH+TIdl 
802.11b 

(µs) 

802.11g 

(µs) 

802.11n 

(µs) 

rDCF 2TPLCP+TDIFS+3TSIFS+2TACK+TB 1088 255.7 206.57 

CoopMAC 2TPLCP+TDIFS+3TSIFS+2TACK+TB 1088 255.7 206.57 

RAMA 2TPLCP+TDIFS+4TSIFS+2TACK+TB 1402 310.4 248.8 

EMR 2TPLCP+2TDIFS+2TSIFS +2TACK+TB 1432 312.4 256.8 

ORP 2TPLCP+TDIFS+TSIFS +TACK+TB1+TB2 1218 373.7 336.57 

CODE 2TPLCP+TDIFS+4TSIFS +2TACK+TB 1108 287.7 226.57 

CoopMACA 
2TPLCP+TDIFS+4TSIFS+2TACK+TB+ 

*
TRS 

*
TRS =90+TSIFS 

1208 393.7 326.57 

CCMAC 2TPLCP+TDIFS+3TSIFS+2TACK+TB 1088 262.4 218.8 

Normal-DCF TPLCP+TDIFS+TSIFS+TACK+TB 856 171.7 149.9 

 

 

 

Table ‎4–5 Overhead and average idle time in 4-way handshaking mode 

Protocols TOH+TIdl 
802.11b 

(µs) 

802.11g 

(µs) 

802.11n 

(µs) 

rDCF 
2TPLCP+TDIFS+5TSIFS+TRTS+2TCTS 

+TACK+TB 
2048 379.8 309.92 

CoopMAC 
2TPLCP+TDIFS+5TSIFS+TRTS+2TCTS 

+TACK+TB 
2048 379.8 309.92 

RAMA 
2TPLCP+TDIFS+6TSIFS+ TRTS+TCTS 

+2TACK+TB 
2058 395.8 319.92 

EMR 
2TPLCP+3TDIFS+4TSIFS +TRTS+TCTS 

+2TACK+TB 
2138 431.8 355.92 

ORP 
2TPLCP+TDIFS+3TSIFS +TRTS+TCTS 

+TACK+TB1+TB2 
1874 459.1 407.69 

CODE 
2TPLCP+TDIFS+7TSIFS  

+TRTS1+TRTS2+TRTS3+TRCTS+TACK+TB 
2468 466.5 375.47 

CoopMACA 

2TPLCP+TDIFS+6TSIFS+TRTS+2TCTS 

+TACK+TB+
*
TRS 

*
TRS =90+TSIFS 

2158 501.8 419.92 

CCMAC 
2TPLCP+TDIFS+5TSIFS+TRTS+2TCTS 

+TACK+TB 
2048 379.8 309.92 

Normal-DCF 
TPLCP+TDIFS+3TSIFS+TRTS+TCTS 

+TACK+TB 
1532 289.1 241.02 
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As presented in equations (‎4.11) and (‎4.12), we can obtain the throughput performance 

bounds of every cooperative protocol according to delay ratio bounds. Figure 4.5 depicts 

the throughput bounds of these Min-TX protocols for the basic access mode of 802.11b, 

802.11g and 802.11n when the data packet size changes from 500 to 3000 bytes. Two 

direct data rates with high probability (according to their relay area) of being useful for 

cooperation in each amendment are considered. This evaluation is also extended to 4-way 

handshaking mode: the results are depicted in Figure 4.6. Comparison of throughput 

bounds with the average DCF throughput (also presented in the same figures) in these two 

modes demonstrate the gain obtained for every direct data rate. It is concluded that 

throughput gain will improve for larger data packets, with rDCF/CoopMAC/CCMAC 

protocols presenting the higher bounds. The cooperative protocols cannot obtain 

throughput gains in the case of small data packet size since the extra overhead imposed by 

a cooperative scheme has a negative impact on the performance of Min-TX protocols 

which are based on delay reduction especially for small packet size. In some cases the 

lower bound or upper bound of throughput is less than the normal 802.11 DCF when the 

direct data rates varied. Therefore, for each protocol it is necessary to assess the lower 

bound of the data packet size which results in beneficial cooperation in term of throughput 

gain for each protocol.  

Figure 4.7 shows the lower bound of data packets in two modes of basic access and 4-way 

handshaking and different amendments of 802.11b, 802.11g and 802.11n. The lower bound 

of data packet size is compared with the Maximum Transmitted Unit (MTU) (Table ‎4–2) 

in each amendment. These figures illustrate in each protocol which direct data rates cannot 

have any possibility for cooperation. Those protocols which have the lower bound of the 

data packet size higher than the corresponding MTU for a given direct data rate, cannot 

actually provide effective cooperation at that particular direct data rate. 

The results indicate for direct data rates of 24 Mbps in 802.11g, that is no possible option 

for the cooperation in any of cooperative MAC protocols considered, and in 802.11n, ORP 

and CoopMACA also provide no effective cooperation when the direct data rate is 28.9 

Mbps. 

In practice, for 802.11g and 802.11n, it can be expected that a randomly positioned relay 

will be in a useful position only when the direct data rates are in the minimum possible. 
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Otherwise, the useful relay areas are very small and according to the computed minimum 

useful packet size, the situations with beneficial cooperation will be very special. 

Moreover, as the direct data rate increases the corresponding relay area will increase. This 

evaluation provides a practical view which demonstrates that the performance gain and 

high probability of cooperation are provided for low data rates of direct transmission with 

large packet size.  
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a. 802.11b, R=1 Mbps 

 
b. 802.11b, R=2 Mbps 

 

 
c. 802.11g, R=6 Mbps     

 

 
d. 802.11g, R=9 Mbps 

 

 
e. 802.11n, R= 7.2 Mbps    

 

 
f. 802.11n, R=14.4 Mbps 

 
 

Figure ‎4.5 Throughput performance bounds of Min-TX protocols in basic access mode of 
DCF 



 

 

Cooperative Performance Metrics for IEEE 802.11 MAC Protocols 

 

77  
 

 
a. 802.11b, R=1 Mbps 

 
b. 802.11b, R=2 Mbps 

 

 
c. 802.11g, R=6 Mbps     

 

 
d. 802.11g, R=9 Mbps 

 

 
e. 802.11n, R= 7.2 Mbps    

 

 
f. 802.11n, R=14.4 Mbps 

 

 
 

Figure ‎4.6 Throughput performance bounds of Min-TX protocols in 4-way handshaking 
mode of DCF 
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a.  802.11b-basic access 

 
d.  802.11b-4way handshaking 

 

 
b.  802.11g-basic access 

 

 
e.  802.11g-4way handshaking 

 

 
 

c. 802.11n-basic access 

 

 
f. 802.11n-4 way handshaking 

 
 

Figure ‎4.7 Lower bound of data packet size of Min-TX protocols in basic access mode (a, 
b, c) and 4-way handshaking mode (d, e, f) 
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4.3 Energy efficiency and cooperation 

Energy efficiency is one of the objectives which can be obtained by cooperation. The main 

idea behind this type of cooperation is that splitting the distance between source and 

destination by relay nodes, we can consume less power for packet transmission, if the 

transmission delay is not concerned. In IEEE 802.11 networks, energy efficiency is 

affected by factors such as the transmit power, processing power required for forwarding 

packets by mobile nodes. In real scenarios, evaluating the required SNR to support multi-

rate communications results in the mutual effects between spectrum efficiency and power 

efficiency. In this section, we present a system model and mathematical analysis to 

demonstrate the potential of IEEE 802.11 networks in providing energy efficiency.  

 

 

Figure ‎4.8 Example of cooperation with energy efficiency  

4.3.1 System model 

The multi rate nature of IEEE 802.11 standards provides different transmission delays 

based on received SNR. A higher SNR value results in a higher data rate with low Bit 

Error Rate (BER). The SNR value is a function of several parameters such as power 

transmitted, path loss, wireless environment and the distance between transmitter and 

receiver. Here, we consider a scenario that by reducing the transmitted power in source and 

relay two purposes are followed: 1) to overcome the path loss of source-relay and relay-

destination channels and 2) to provide a twice data rate of direct transmission for S-R and 
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R-D links. The second purpose is the equivalent of unit delay ratio (DR=1). By this 

technique, we have a cooperation scenario with the same delay as direct one while the 

energy efficiency can be achievable. In direct transmission depicted in Figure ‎4.8, the SNR 

of received signal at destination with noise power of    can be expressed as: 

       
    

        
 (‎4.28) 

Where      is the power radiated by the source in a direct transmission,       is channel 

path loss between source and destination with distance of   and can be expressed as 

        with constant of   and path loss coefficient of  . The SNR of received signals 

at relay and destination in cooperation scenario can be expressed as  

       
    

           
 (‎4.29) 

       
    

           
 (‎4.30) 

Where      and      are transmitted power by source and relay and        and 

      . By assuming a symmetric scenario (   ) and applying Shannon’s formula 

and considering unit delay ratio (i.e.             ), corresponding received SNR in 

three links can be expressed as (‎4.31) and (‎4.32).The       value can be computed based 

on two expressions of (‎4.33). By substituting of       and       based on equations 

(‎4.28) and (‎4.29), we can obtain the relation of transmitted power of direct and cooperative 

transmissions as expressed in (‎4.35).  

       
   
    (‎4.31) 

             
    
    (‎4.32) 

 
      

    
           

        
   
      

   
                   

  (‎4.33) 
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    (‎4.34) 

Here, we define a metric of Power Gain (PG) for this scenario as expressed in (‎4.35). In 

order to achieve power efficiency, the condition of      should be satisfied. This 

condition results in the lower bound of      for direct transmission as expressed in (‎4.36). 

The value of PG is a function of       and can be expressed as equation (‎4.35). 

   
    

                       
            

    

    
    

        
   

 (‎4.35) 

          
 

 
    

 
        


(‎4.36) 

This theoretical analysis provides the power gain and conditions leading to power 

efficiency by cooperative schemes. However, in a practical scenario the minimum SNR 

corresponding to each data rate is determined by vendors ( Table 4-1). Therefore, it is 

necessary to modify the PG formula based on the required minimum SNR. Equations 

(‎4.37) and (‎4.38) provide this modification in absolute form and logarithmic form versus 

dB. Lets suppose                       , Therefore,      can be expressed as 

(‎4.39) Equation (‎4.39) can determine the range of path loss coefficient (n) as computed in 

(‎4.40). This condition indicates the relation between the location of relay node (   , the 

required SNR (   and wireless environment ( ) when energy efficiency is achievable.  

   
                

                   
 

     
        

 (‎4.37) 

                                   (‎4.38) 

                 (‎4.39) 

         
   

      
 (‎4.40) 
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Table ‎4–6 Data rate set and power gain in 802.11/b/g/n 

 

Data 

rate 

(Mbps) 

Min(SNR) 

(dB) 

Data rate set 

(Delay ratio≈1) 
PG(dB) 

            n= 4 n=6 

802.11n 

7.2 11 - - - - - 

14.4 14 7.2 14.4 3 6 12 

21.7 16 - - - - - 

28.9 19 14.4 28.9 5 4 10 

43.3 23 21.7 43.3 7 2 8 

57.8 27 28.9 57.8 8 1 7 

802.11g 

6 8 - - - - - 

9 9 - - - - - 

12 11 6 12 3 6 12 

18 13 9 18 4 5 11 

24 16 12 24 5 4 10 

36 20 18 36 7 2 8 

48 24 24 48 8 1 7 

802.11b 

1 2 - - - - - 

2 2.9 1 2 0.9 8.1 14.1 

5.5 5.4 2 5.5 2.5 6.5 12.5 

11 10 5.5 11 4.6 4.4 10.4 
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4.3.2 Evaluation of energy efficiency in IEEE 802.11 

To evaluate the energy efficiency achieved by a cooperative scheme, an indoor 

environment with obstructed communication paths (i.e. a normal building with walls and 

furniture). The path loss coefficient of this environment varies between 4 and 6 ‎[104]. 

Table ‎4–6 indicates the data set rates which provide the delay ratio close to 1, the value of 

  and the power gain (  ) as discussed in Section ‎4.3.1. Figure ‎4.9 presents the power 

gain obtained for minimum and maximum value of path loss coefficient for data rates 

supported in 802.11b/g/n. In cooperative scenarios, if communicating with a lower data 

rate, we can achieve higher energy efficiency, when compared to the higher data rate. The 

energy efficiency of 802.11b in a cooperative scenario outperforms 802.11g/n when the 

main purpose of cooperation is energy saving with no improvement over throughput. This 

has to do with the communication range provided by the lowest data rate of both protocols. 

In the case of 802.11b, this range is much higher, thus leading to a more energy efficiency 

communication.  

4.4 Concluding Remarks 

In this chapter, a system model and performance metrics for the Min-TX class of protocols 

were presented. Due to the importance of transmission delay, a performance metric, delay 

ratio, was proposed to evaluate the operation of Min-TX protocols and their performance 

gain. An analysis was developed for effective relay area along theoretical and geometrical 

aspects. This allowed the evaluation of Min-TX protocols and the calculus of throughput 

performance bound for 802.11b, 802.11g and 802.11n in the two modes supported by the 

DCF method. Furthermore, the useful relay area corresponding to every data rate and 

lower bound of data packet size of each protocol were also computed.  

 This chapter also addresses performance bounds, and not average value since these would 

depend on multiple factors (such as application). Nevertheless, the bounds estimated in this 

paper suffice to indicate that cooperation techniques may provide a useful contribution to 

802.11 communication challenges, but these are somewhat limited. The multiple protocols 

analyzed show some common weakness. For many communication scenarios, these 

protocols would only be useful for jumbo frames, packets larger than the 802.11 normal 

MTU. Only for direct data rates near the minimum values of the specific 802.11 
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amendment do clear advantages seems to exist. However, note that this usually 

corresponds to bad coverage areas prone to disconnections in most deployments, and  as 

such wireless network designers try to avoid them at the planning stage. Also, it should be 

noticed that for random deployments of nodes, the probability of finding a node in a useful 

location is reasonably low for all stations except those with the same low direct data rate 

connections. Although the literature already presents many different cooperative protocols, 

with different performances, this weakness seems inherent to all protocols in the Min-TX 

class. As such, the selection of a specific cooperative protocol has to be carefully made, 

and should include aspects which are scenario dependent, such as application usage and 

implementation complexity. 

 

 
(a) 

 
(b)  

 
 (c) 

Figure ‎4.9 Power gain versus data rate and path loss coefficient (n) in (a) 802.11b, (b) 
802.11g and (c) 802.11n 
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CHAPTER 5  CROSS LAYER METRICS IN IEEE 
802.11 COOPERATIVE MAC PROTOCOLS 

 

 

 

 

 

 

 

Summary 

 

There has been great concern over cooperation algorithms and 

protocols in lower layers especially physical and MAC layers. 

However, the characteristics of application service types and overall 

aspects of wireless network such as mobility impose novel situations 

on cooperation design algorithms. Definitions of new metrics for 

analysing the sensing information and applying it to relay selection 

are the main objective of this chapter. This chapter introduces a new 

metric for cross layer design approaches when reliability, stability and 

mobility of the relay nodes are the main components of the metric. 
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5.1 Introduction 

In the MAPE framework explained in  Section ‎3.3, Analysis and Plan are two important 

phases which make use of information obtained during the Monitor phase and determine 

whether the cooperation is beneficial or not. When the cooperation is applied in the MAC 

layer, cross layer issues are one of the main aspects in designing an appropriate protocol. 

Cross layer issues include application service requirements from higher layer, mobility 

aspects of the nodes on the whole networks and reliability of selected cooperative links. 

With the aim of providing enhanced performance, the idea of cross layer issues is extended 

to design a cooperative metric. In the rest of this chapter, cooperation and cross layer 

issues are discussed in Section‎5.2. A new metric called CoopMetric (CM) is proposed for 

cross layer cooperation in Section ‎5.3. In Section ‎5.3, a system model based on CM is 

analysed and it is discussed how the CM improves the relay selection algorithm. The 

evaluation of CoopMAC protocol enabled by CM metric for different types of traffic 

service is presented and discussed in Section ‎5.5. Section 5.6 concludes this chapter. 

5.2 Cooperation and cross layer issues 

As discussed in the MAPE framework, the goals of the cooperation process can adjust the 

operation of each phase. For instance, if the cooperation purpose is to increase the 

bandwidth efficiency, the Monitor, Analysis and Plan phases operate in the direction of 

reducing transmission delay by using the selected relay node(s). In this case, by using the 

appropriate sensing methods, the Monitor phase discovers the relays which reduce the 

transmission delay while the Analysis and Plan phases exploit the criteria and metrics to 

determine which relay node(s) can provide more efficiency in term of bandwidth. Then the 

Execute phase starts to apply the cooperation to selected relay node(s). The cooperative 

protocols of the Min-TX category follow this cooperation purpose. 

Nonetheless, there are some aspects which have not been taken into consideration. 

Application service properties and their mutual effects on MAC and physical layer 

parameters can also be important in cooperative scenarios. As an example, in a direct 

transmission scenario, if the bandwidth provided at the physical layer is more than the data 

rate generated at the application service layer, there is no need to improve the bandwidth 

efficiency by using cooperative schemes. Therefore, the goal of bandwidth efficiency 
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provided by cooperation is useful for applications with high data rate generated compared 

to bandwidth provided by the direct path at lower layers. 

Moreover, some applications may benefit more from reliability and stability (Voice over IP 

(VOIP)) rather than bandwidth efficiency. As an example, for a real time UDP traffic, jitter 

reduction and low packet loss have a high order of importance. In addition, mobility can 

impact remarkably on relay links and subsequently on cooperation performance, although 

VOIP applications usually do not require much bandwidth. Therefore, respective mobility 

aspects should be taken into consideration for relay selection algorithms. In the next 

section, a metric for relay selection algorithms is presented in which all the above 

mentioned aspects including bandwidth, reliability, stability and mobility aspects are taken 

into consideration. 

5.3 CoopMetric for relay selection 

In order to find the appropriate set of relay nodes providing the required throughput 

improvement and reliability, a metric called CoopMetric is proposed. This metric has two 

main components corresponding to delay reduction and reliability of the cooperative path: 

Delay Ratio (DR) and Reliability (RE). In this section, we explain how to obtain these 

components and then we discuss their compositions in CoopMetric. Delay Ratio was 

described in detail in Section‎4.2. 

Reliability: Besides the transmission delay which is indicated by delay ratio, a parameter 

is needed to relate the reliability of cooperative path including source-relay and relay-

destination links. By using a practical sensing method, the total number of transmitted 

packets (NT) and number of acknowledgment packets (NACK) can be overheard. Then, the 

corresponding reliability of source-relay (RESRi) and relay-destination (RERiD) can be given 

as (‎5.1). 

      
        

      
       

        

      
 (‎5.1) 

The reliability of cooperative path of S-Ri-D is the product of       and       can be 

expressed as (‎5.2): 
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                 (‎5.2) 

CoopMetric: In order to select the best relay node, the source node needs to evaluate the 

delay ratio and reliability values of all neighbours in a table called RelayTable. The 

RelayTable contains instantaneous value of DRi and REi for a specific period of time called 

observation window (Wobs.). In order to calculate the average of delay ratio and reliability, 

the source node calculates the exponential moving average (EMA) of DRi and REi as 

expressed in (‎5.3) and (‎5.4).  

                                     (‎5.3) 

                                     (‎5.4) 

where              and              are the observed values at time t,           and 

          are EMA values obtained by the previous sample, and   and    are the constant 

values. The EMA values provide the decision based on the overall variation trend of delay 

ratio and reliability values. When source node has a data packet to send, it should 

determine which relay node has less variation of delay ratio and reliability. Low variation 

of delay ratio may indicate lower mobility of the relay node in respect to the source and 

destination locations. Similarly, a relay node with low variation of reliability presents a 

cooperative path with more stable links and constant value of packet loss. Therefore,       

and      are selected as standard deviation of delay ratio and reliability for a relay node Ri 

for samples registered during t and t- Wobs.. Clearly           and           refer to the 

stability of relay node respectively in delay ratio and reliability. 

According to the above discussion, it is concluded that the CoopMetric is directly 

proportional to reliability (RE) and inversely proportional to delay ratio (DR). CoopMetric 

is also directly proportional to the stability of a relay node including reliability and delay 

ratio values. All these relations are expressed as (‎5.5) to (‎5.7). 
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 (‎5.5) 

                    (‎5.6) 

                                                  
(‎5.7) 

We can finalize the CM as expressed in (‎5.8): 

                                
   
   

 (‎5.8) 

 
and since the coefficient (           is a constant value and it only presents a scale of 

CoopMetric, it can be eliminated and the CoopMetric summarized as (‎5.9): 

    
   
   

                    (‎5.9) 

 
Table ‎5–1 RelayTable and CoopMetric 

Relay Time                                           
                                        

 

R1 

t     

  
 

CM1 

t-1     

...     

t-Wobs.     

 

R2 

t     

  CM2 

t-1     

...     

t-Wobs.     

 

... 

 

t     

  …. 
t-1     

...     

t-Wobs.     

RN 

t     

  CMN 

t-1     

...     

t-Wobs.     
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Table ‎5–1 depicts the RelayTable created by the source node in which CoopMetric at time 

t is computed based on the EMA values and standard deviation values of delay ratio and 

reliability in duration of (t , t- Wobs). 

5.4 System model 

Similar to the system model discussed in Section ‎4.2.1, a new system model can be 

presented based on CoopMetric. The primary condition of the cooperation is lower 

transmission delay of cooperation scenario compared to direct transmission. Equations 

(‎5.10) to (‎5.12) present the system model and lower bound of CM. 

                                 (‎5.10) 

 

   
                              

                       

(‎5.11) 

        
                         

 
 

  


(‎5.12) 

 

 

Figure ‎5.1 Threshold of CooMetric versus the packet size for different direct 
data rates in IEEE 802.11b 
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Figure ‎5.1depicts the CMthr for different packet sizes and direct transmission of 1Mbps and 

2 Mbps in IEEE 802.11b. As can be seen in Figure ‎5.1, the probability of cooperation for 

larger packets is higher than for smaller packets. Because, with higher packet size, the 

value of CMthr is remarkably reduced and the possibilities for cooperation will be 

increased. 

5.5 Evaluation and results 

In this section, CoopMetric is employed as a metric for relay selection in CoopMAC 

protocol. Two versions of CoopMAC protocol are implemented in OMNET++ based on 

delay ratio and CoopMetric. A simulation scenario is set up to evaluate the performance 

provided by these metrics. 

5.5.1 Simulation scenario 

In this section, CoopMetric is employed by CoopMAC protocol for relay selection metric. 

An implementation of CoopMAC protocol is presented in OMNET++ when delay ratio 

and CoopMetric are considered as two relay selection metrics. Figure ‎5.2 depicts a 

cooperation scenario, where one static node (R1), and two mobile nodes (R2 and R3) with 

speed of 10 m/s and 5 m/s respectively can be the potential relay nodes for a pair of source 

(S) and destination (D) nodes. Node R1 is placed in a relay area which provides the delay 

ratio of 0.36 while R2 and R3 could sense different delay ratios as depicted in Figure 5.2.b. 

Since R2 and R3 have different speeds, they would not sense similar variation rate. We 

select VOIP as a UDP traffic type and Video on Demand (VOD) as a TCP traffic type for 

application services with the characteristics presented in Table ‎5–2, Table ‎5–3 and Table 

‎5–4 present simulation parameters. 
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(a) 

 

(b) 

 

Figure ‎5.2 (a)cooperation scenario with three relay nodes ,(b) Delay ratio profile  
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Table ‎5–2 VOIP traffic characteristics 

Codec 

Voice 

Payload Size 

(ms) 

Voice 

Payload 

Size 

(Bytes) 

Data packet 

rate 

(kbps) 

RTP 

header+IP+UDP 

(bytes) 

G.711 
20  (default) 160 16 40 

30 240 64 40 

G.729 
20  (default) 20 8 40 

30 30 8 40 

G.723 30  (default) 24 /20 6.4/5.28 40 

 

 

Table ‎5–3 TCP traffic- Video on demand (VOD) characteristics 

Video on demand  

Video Payload Size 

(Bytes) 

Data packet rate 

(Mbps) 

Header(IP+UDP) 

(Bytes)  

500-2250  4  28  

 

 

Table ‎5–4 Simulation parametrs 

parameters values 

IEEE standard  802.11b 

Data rates (Mbps) 1,2,5.5,11 

Simulation time 

(Sec.) 

60  

Delay ratio [0.18,0.27,0.36,0.59,0.68] 

5.5.2 UDP traffic-VOIP 

In UDP traffic services, parameters such as jitter and packet loss are the two main concerns 

in performance evaluations. Figure ‎5.3 and Figure ‎5.4 present jitter values and packet loss 

in the cooperation scenario of Figure ‎5.2, where the direct transmission is 1 Mbps and 2 

Mbps. As depicted in Figure ‎5.3, the average jitter value of CoopMAC protocol using CM 

is reduced compared to metric DR and normal 802.11b. In addition, the variation range of 

jitter value when using CM is lower than the situation using DR and also 802.11b. For 

packet loss, the performance of CoopMAC is improved when using CM as a selection 

metric.  
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Figure ‎5.3 Jitter value of UDP VOIP when using CM and DR as metric compared to 
802.11b  

 

 

 

Figure ‎5.4 Packet loss percentage of UDP VOIP when using CM and DR as metric 
compared to 802.11b 

 

 

Figure ‎5.5 presents throughput of VOIP traffic when the direct transmission is 1Mbps and 

2Mbps. Since there is much difference between application service rate and existing 

bandwidth provided by the physical layer, it is not expected to have remarkable 
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improvement in throughput when using cooperation regardless of relay selection metric 

applied. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 

Figure ‎5.5 Throughput of CoopMAC for VOIP when using CM and DR as metric 
compared to 802.11 for direct transmission (a) 1Mbps and ( b) 2Mbps 
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(a) 

(b) 
 

Figure 5.6 Throughput of CoopMAC for VOD when using CM and DR as metric 
compared to 802.11 for direct transmission ( a. 1Mbps and b. 2Mbps 
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5.5.3 TCP traffic-Video On Demand  

Using TCP, throughput and end-to-end delay are the two most important performance 

parameters. In this section, the traffic service type is Video On Demand (VOD) with 

characteristics of Table ‎5–3 and the performance metric of CoopMAC protocol with 

metrics of CM and DR is considered and compared to normal 802.11b. Figure 5.6 (a) 

presents the throughput of CoopMAC when direct transmission is 1Mbps. This figure 

demonstrates the improvement of using CM especially when the packet size is increased. 

The stability of relay links are improved by using CM, while using DR selects the relay 

links without the consideration of stability. Figure 5.6 (b) depicts the results of CoopMAC 

with 2Mbps as a direct transmission.  

Figure 5.7 presents End-to-End delay performance of IEEE 802.11b when using 

CoopMAC with CM, DR and normal 802.11b when direct transmission is 1 Mbps and 

2Mbps. As can be seen, variation of delay when CoopMAC using CM is very low due to 

the provision of stable relay links compared to CoopMAC using DR and also normal 

802.11b. 

5.6 Concluding remarks 

In this chapter, cross layer issues are discussed for cooperation when higher layer 

requirements are well suited to lower layer specification monitored by sensing parameters 

and performance metrics. The concerning parameters in UDP traffics (e.g. jitter and packet 

loss) and TCP traffics (e.g. delay and throughput) are considered as the main components 

in CoopMetric. CoopMetric exploits the geometric model of delay ratio and relay area as a 

tool to provide instantaneous throughput improvement. It also used ACK frames 

monitoring to determine the relative link reliability. The stability of relay nodes is 

measured by considering the variations of reliability and delay ratio. Therefore, 

CoopMetric presents a robust criteria comprising cross layer aspects and mobility aspects 

of IEEE 802.11 networks in order to provide optimum performance in cooperative 

communications 
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(b) 
 

Figure 5.7 End-to-End delay of CoopMAC for VOD when using CM and DR as metric 
compared to 802.11 for direct transmission a. 1Mbps and b. 2Mbps 
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CHAPTER 6  CONCLUSIONS AND FUTURE 
WORKS 

 

 

 

 

 

 

Summary 

 

This final chapter presents the most important conclusions on 

theoretical and practical aspects of cooperative IEEE 802.11 MAC 

protocols. Some guidelines for future research works are also 

recommended. 
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6.1 Summary of the works and Contributions 

Throughout the different chapters we presented several aspects of practical issues in 

cooperative relay protocols using IEEE 802.11 standards. We started with cooperation 

concepts in wireless networks to address different theoretical techniques providing the 

performance improvement in physical and MAC layers. It was concluded that cooperation 

at physical layer is inspired from the MIMO systems with relay node as a virtual element 

in a distributed antenna system. In contrast, cooperation in MAC layer and higher layers is 

based on the new function of the relay node as a repeater to forward the original packet 

from source to destination nodes. The cooperation performance at physical layer can be 

improved by using the powerful coding schemes in source-relay and relay-destination links 

while the overhearing mechanism provides useful information of many aspects in MAC 

layer leading to optimized cooperative resource allocation algorithms. 

The next step was to classify the existing cooperative MAC protocols of IEEE 802.11 

based on the parts of the DCF transmission cycle which are exploited by cooperation 

techniques. According to the analytical and simulation results performed by number of 

contributions in cooperative MAC protocols, the Min-TX and CWF protocols result in 

spectrum efficiency while BTC protocol improves fairness. The study and classification of 

existing protocols enabled us to propose an architectural framework for cooperation model 

in wireless networks. This model draws the consequence of different phases during each 

cooperation algorithm and protocol. This model also provides a guideline to compare 

different cooperative protocols according to their operation during the cooperation. The 

comparison of Min-TX category led to define a common metric to model their operation 

analytically.  

Delay ratio was the common metric and a system model of Min-TX protocols was 

proposed based on this metric. The performance bounds of Min-TX protocols were 

computed as a function of delay ratio and a geometric model was also modelled to 

determine the area corresponding to each delay ratio values. Moreover, by considering the 

range of delay ratio values and overhead of cooperative MAC protocols, it was concluded 

that packet size can be critical in some cases of cooperation scenario. High value of delay 

ratio and extra overhead of cooperative MAC protocols result in the transmission delay 
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more than non-cooperation mode. Therefore, a lower bound of packet size was defined as a 

threshold for beneficial cooperation. In practice and according to IEEE 802.11 standards, 

there is limitation for data packet size which is known as MTU. The analytical results 

indicated that the lower bound of packet size is more than MTU in some cooperation cases. 

Thus, those cooperation cases cannot be implemented in real scenarios and the expected 

cooperation gains were not obtained, even in number of scenarios specially for IEEE 

802.11g/n, the upper bounds of cooperation performance were not able to reach to non-

cooperation performance.  

The evaluation of Min-TX protocols demonstrated that delay ratio is a good metric for 

cooperation objective of spectrum efficiency and its purpose is to reduce the packet 

transmission delay. Therefore, the spectrum efficiency of Min-TX is beneficial for those 

traffic services requiring bandwidth more than bandwidth provided by direct transmission. 

However, there are some traffic services with low bit rate and delay ratio metric cannot 

provide extra performance for them. This is motivated by the need for some improvements. 

Moreover, the reliability of cooperation links and stability of relay nodes specially in 

mobile scenarios cannot be obtained by delay ratio. These shortcoming motivated other 

contributions based on cross layer approach and mobility aspects. The CoopMetric was 

constructed based on two main components of delay ratio and reliability of channels. The 

stability of relay nodes was defined as the variation of these two components. The stability 

of relay nodes affects the protocol performance specially in mobile scenarios. The 

simulation results of CoopMAC protocol using CoopMetric demonstrated the fine 

coordination of traffic service requirements, mobility aspects and extra resources provided 

by overhearing of PHY layer characteristics. 

6.2 Main Challenges and Future Works 

The existing cooperative MAC protocols addressed a number of significant issues such as 

throughput and fairness. However many other key issues have not been covered by these 

protocols. Some of these issues are listed below and require further investigation.  

 Security: Overhearing packets to obtain the necessary sensing parameters can increase the 

risk of security attacks and vulnerability in cooperative MAC protocols rises. Cooperative 
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security schemes can increase the reliability of networks as well as the performance gain 

due to cooperation, but this is an area not yet properly developed.  

Power control: The issue of power control in cooperative MAC protocols can be analyzed 

based on two aspects. 1) The relay node consumes more energy due to relaying 

transmission and 2) replacing a long distance transmission with two small distance 

transmissions can decrease the interference and improve energy efficiency. These two 

aspects can pose an optimization problem with energy constrains from PHY layer up to 

MAC and higher layers, in terms of the decision to cooperate or not, opening a new 

research direction.  

Incentives and fair relay selection: the incentives and motivation of nodes to participate 

in cooperation and introduce themselves as relay nodes can improve the relay selection 

algorithms to choose the optimum relay node. Moreover, current relay selections which are 

mostly based on available rates, may result in the use of one relay node for a long time. 

This would reduce the energy efficiency of the protocols for specific mobile nodes. Thus, 

in the design of efficient and fair relay selection algorithms, potential relay nodes should 

be selected based on incentives, energy consumption and network throughput together. 

Once again this is an area full of open challenges. 
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Annex I IEEE 802.11 specifications 
 

This annex summarizes 802.11 features which are relevant to understand the cooperation 

techniques described  

I-1 Architecture of PHY 

The architecture of PHY in 802.11 standards is depicted in Figure I.1. It consists of two 

sub-layers: Physical Layer Convergence Procedure (PLCP) and Physical Medium 

Dependant (PMD). The frame exchange between Physical and MAC layers is coordinated 

by PLCP and PMD is responsible for the frame transmission and reception on the wireless 

medium. Communications between the PLCP and MAC layer is performed through a 

Service Access Point (SAP) called PHY SAP, and the PLCP communicates with the PMD 

through the PMD SAP. 

 
Figure I.1 Architecture of PHY in 802.11 standards 

 

 

I-1-1 PHY Frame Format 

In order to be more familiar with 802.11 PHYs, the PHY frame format of IEEE 802.11b is 

explained here. There is a similar frame format in different PHYs with slight changes. The 

transmitted frame on the wireless channel, shown inFigure I.2, is PLCP Protocol Data Unit 

(PPDU) consisting of PLCP preamble, PLCP header, and PSDU fields which are explained 

in detail as follows. 
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(a)  

 

 (b)  

Figure I.2 IEEE 802.11b PHY frame format (a) Long Preamble and (b) Short preamble 

 

PLCP Preamble: There are two types of PPDU frames in the IEEE 802.11b that differ 

only in the length of the preamble. The long preamble is a 144-bit field including a 128-bit 

Sync field that enables the synchronization between receiver and transmitter and a 16-bit 

Start of Frame Delimiter (SFD) field which defines the beginning of a frame. In contrast, 

the short preamble is a 72-bit field consisting of a 56-bit Sync field and 16-bit SFD field. 

The short preamble improves the performance efficiency. By using the Differential Binary 

Phase Shift Keying (DBPSK) modulation technique, data rate of both short and long PLCP 

preambles is 1 Mb/s. 

PLCP Header: This is a 48-bit field and is sent at 1 Mb/s and 2Mb/s respectively under 

long PLCP preamble and short PLCP preamble. It consists of four fields: Signal (8-bit), 

Service (8-bit), Length (16-bit), and CRC (16-bit).  

- Signal: This field identifies the data rate of the 802.11 frame, with its binary value 

equal to the data rate divided by 100Kbps. It describes the type of modulation used 

by transmitter and informs the receiver to employ corresponding demodulation for 

the received signal. Data rates supported by the IEEE 802.11b [5] are 1, 2, 5.5, and 

11 Mb/s and Table I–1illustrates the corresponding Signal field value. 

- Service: This field is always set to 00000000, and the 802.11 standard reserves it 

for future use.  
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- Length: This field is an unsigned twooctet integer specifying the number of 

microseconds that it takes to transmit the MPDU. Given the data-rate, the length of 

the MPDU can be determined at the receiver. 

- CRC: This is two octets in length, and is used for error detection of the physical 

layer header. The MAC Layer also performs error detection functions on the PPDU 

contents. 

PSDU: Physical Layer Service Data Unit (PSDU) is actually the MPDU sent by the MAC 

layer. It has a variable length, and is transmitted at the data rate indicated in the Signal 

field. Table ‎6.2 summarizes the corresponding modulation required for every data rate of 

PSDU supported by 802.11b.  

Table I–1 Digital Modulation and data rate of IEEE 802.11b 

Data rate (Mb/s) Modulation 

1 DBPSK 

2 DQPSK 

5.5 CCK / PBCC 

11 CCK / PBCC 

 

I-2 Distributed Coordination Function  

DCF is the main medium access scheme of the IEEE 802.11 standards, and supports both 

infrastructure and ad hoc modes. DCF operates based on the Carrier Sense Multiple Access 

with Collision Avoidance (CSMA/CA) protocol and it operates according to two modes: 

basic access and 4-way handshaking. 

I-2-1 Carrier Sense Multiple Access with Collision Avoidance 
Mechanism 

In CSMA based protocols, the node senses the medium by measuring the signal level at the 

carrier frequency to check whether it is idle or not. If the medium is idle, the source node 

waits a minimum predefined duration called Distributed Inter-frame Space (DIFS). Along 

DIFS period, if the medium stays idle, the source node starts transmission to the receiving 

node. Otherwise, it defers its transmission after a random back-off delay. The back-off 

time counter is decremented in terms of time slots when the medium is sensed free. The 

counter is stopped once a transmission is detected on the medium. The source node will 

transmit its packet when its back-off counter becomes zero. 
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There are two ways to carry out the carrier sense in CSMA procedure: virtual carrier sense 

and physical carrier sense functions. The physical carrier sense, provided by the IEEE 

802.11 PHY layer, is a logical function implemented called Clear Channel Assignment 

(CCA). The CCA function uses a single fixed power carrier sense method to measure the 

level of Received Signal Strength Intensity (RSSI). If the measured RSSI is less than the 

threshold value, the channel is assumed to be idle, otherwise, the medium is busy and not 

ready for transmission.  

The virtual carrier sense is provided by a timer in IEEE 802.11 MAC layer called Network 

Allocation Vector (NAV). The NAV is maintained by all stations to determine the time 

which the medium is reserved by other stations. There is a duration field in each frame that 

indicates the required time period for exchange of the following frame. The NAV timer 

decrements when‎ the‎ station’s‎CCA‎ function‎ indicates‎ a‎ busy‎medium.‎The‎NAV‎ is‎ set‎

after‎receiving‎a‎frame‎and‎it‎decrements‎when‎the‎station’s‎CCA‎function‎indicates‎a‎busy‎

medium. When the NAV timer of each station reaches zero, they start sensing the medium 

with packets waiting to be transmitted. If the medium is idle, stations can send their data 

packet after a time interval named Distributed Inter Frame Spacing (DIFS). Otherwise they 

generate a random back-off counter.  

I-2-2 Inter-frame Space 

The Inter-frame Space (IFS) plays a key role in coordinating access to the transmission 

medium. There are four different inter-frame spaces to access the wireless medium at 

different priority levels. These are Short Inter-frame Space (SIFS), Point Coordination 

Function Inter-frame Space (PIFS), Distributed Coordination Function Inter-frame Space 

(DIFS), and the Extended Inter-frame Space (EIFS). Some of them are illustrated in Figure 

I.3. 

 

Figure I.3 Inter-frame Space in DCF mode 
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SIFS is the shortest IFS interval time and but it is longer than propagation delay and 

processing the time at PHY and MAC layers. The SIFS is employed as time interval 

between the control packets and data packet in every DCF transmission cycle. The SIFS 

value for the 802.11b is 20 µs, and for the 802.11a, 802.11g, and 802.11n is 16 µs. 

The PIFS is the next shortest IFS interval time. It is employed PCF mode to gain priority 

access to the wireless channel at the beginning of the Contention Free Period (CFP). 

The DIFS is used by the nodes to sense the idle state of the medium before sending a new 

transmission. When the back-off counter of a node reaches zero and the medium is sensed 

as idle for duration of the DIFS, the node immediately access to the medium for packet 

transmission. DIFS is equal to SIFS plus two slot times. 

The EIFS is used by a node in the DCF mode when the received frame is incorrect. A node 

applies the EIFS instead of the DIFS interval when the imperfect channel conditions or 

collision lead to the reception of an erroneous frame. EIFS is the longest IFS which 

allocates the higher priority to the transmit nodes encounter to failure for packet 

transmission. 

Table ‎6.2 summarizes the slot time and IFS values of different IEEE 802.11a/b/g/n. In the 

case of EIFS, TACK is the duration of the ACK frame at the basic data-rate. 

 

Table I–2 IFS values in IEEE 802.11b/g/n 

Parameter Value 

SIFS aSIFSTime = 20 μs (802.11b) and 16 μs (802.11a/g/n) 

PIFS aSIFSTime + aSlotTime 

DIFS aSIFSTime+ 2   aSlotTime 

EIFS aSIFSTime+ ACKTxTime + DIFS 

 

I-2-3 Random Back-off Algorithm 

In DCF mode, collision occurs when two or more stations transmit at the same slot time. 

To avoid the collision, a procedure called back-off is performed before starting 

transmission. If the channel is sensed as busy, a station defers the transmission until the 

channel state becomes idle. According to the previous packet transmission being successful 

(or failed), a node waits for DIFS (or EIFS) idle period and then selects a random back-off 
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periods in terms of slot time, and defers the transmission for that number of slot times. The 

random back-off counter is selected from a uniform distribution over the interval [0, CW-

1], where CW is the Contention Window. The procedure of doubling the CW is called the 

Binary Exponential Back-off (BEB) algorithm. The counter is decremented by one and 

transmission is started when the back-off counter reaches zero. If the current transmission 

is failed due to some reason, the CW is doubled. As shown in Figure I.4, the minimum and 

maximum value of CW can be 31 and 1023 respectively.  

When the CCA function indicates the channel is busy, the back-off counter is stopped until 

the medium becomes idle for a DIFS or EIFS once more again. The node then continues 

decrementing without selecting a new back-off value. When the counter reaches zero, the 

intended node takes a higher priority to access the channel in the following transmission. 

The back-off algorithm reduces the collision probability when multiple nodes are trying to 

access the channel at the same slot time. 

I-2-1 DCF Access Modes 

There are two access modes in DCF scheme: basic access mode and RTS/CTS mode which 

are referred to two-way handshaking and four-way handshaking respectively.  

I-2-2 Basic Access mode 

In the basic access mode, a node having a packet to transmit should sense the medium to 

be idle for a DIFS time interval when the last frame is received correctly, or an EIFS time 

interval when the last frame fails due to collision or imperfect channel conditions. Then, 

the node generates a random back-off interval according to the BEB algorithm. When the 

back-off timer reaches zero, the node transmits its data packet. If the destination receives 

the data packet correctly, it then sends an ACK frame immediately following a SIFS 

period. Otherwise, the medium must be free for the amount of the EIFS. If the transmitting 

node receives no ACK frame within a predefined ACK-timeout, it sets its Retry Count to 

one more for every unsuccessful transmission. Then it applies rescheduling data frame 

retransmission according to BEB algorithms.  After every successful transmission, the CW 

and Retry Count are reset to CWmin and zero respectively. Figure I.5 illustrates the frame 

exchange sequence of the basic access mode. 
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Figure I.4 Minimum and maximum value of Contention Window 

 

Figure I.5 CSMA-Basic Access 

 

The mechanism of the basic access mode is not efficient due to two special problems: the 

hidden node and exposed node. The hidden node is a node which is located outside of the 

carrier sensing the range of the source but is inside the carrier sensing the range of the 

destination. This makes that hidden node unaware of the source’s transmission and may 

cause a collision at the receiver. In the inverse situation, the exposed node appears. The 

exposed node is a node located inside the carrier sensing range while outside the 

destination´s range. Since the exposed node senses the medium busy, it cannot transmit its 

data packet thus leading to low performance. For a scenario depicted in Figure I.6, when 

node A is sending its packet to node B, node C is the hidden node since it unaware of 

transmission originated by node A. In the same configuration, if node B is sending a packet 

to node A, node C is the exposed node because it senses the medium busy and cannot 

transmit the packet to the intended destination (e.g. node D). The hidden node occurs in 

both infrastructure and ad hoc configurations while the exposed node happens in 

infrastructure configuration. In the infrastructure configuration each node cannot send 
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directly to its destination and it first sends to the AP and the AP then sends to the 

destination. The hidden node and exposed node problems cause performance degradation 

in the IEEE 802.11 networks with basic access mode.  

 
Figure I.6 The problems of hidden node and exposed node 

 

I-2-3 RTS/CTS access mode 

To reduce the performance degradation caused by hidden node and exposed node 

problems, another access mode called Request-To-Send/Clear-To-Send (RTS/CTS) 

mechanism is employed by IEEE 802.11 standards. This access mode is also called four-

way handshaking. When source node has a packet to send, it sends out a RTS packet to the 

destination and waits for CTS packet from the destination. The timeout for waiting the 

CTS is CTStimeout. If the CTS packet is received within CTStimeout, the source node 

sends its data packet to the destination and sets a new timeout for ACK the packet called  

ACKtimeout. If the source node receives the ACK packet during the ACKtimeout, it starts 

a new transmission cycle. 

If the destination successfully receives the RTS packet, the destination transmits a CTS 

packet back to the source after a SIFS interval is elapsed. It also sets a DATAtimout for 

receiving the data packet. If the destination receives a data packet within the DATAtimout, 

then the source node sends an ACK packet back to the source following a SIFS interval, 

Otherwise, it concludes that the transmission is terminated and it starts a new transmission 

cycle if it has an empty transmission buffer. 

Table I-3 presents timeout values when using the RTS/CTS mode. 

 

 



 

 

Annex I 

 

111  
 

 

Table I–3 Timeout of control and data packet types 

Parameter Value 

CTStimeout TCTS +2 TSIFS 

ACKtimeout Tdata + TACK + 2 TSIFS 

DATAtimeout Tdata + 2 TSIFS 

 

 

In order to perform the virtual carrier sensing process, the neighbouring nodes of both 

source and destination set their NAV after receiving the RTS, CTS, Data, and ACK 

packets. Every packet includes a duration field that indicates the required time for 

completing the following frame exchange. The duration field values are presented in Table 

I.4. The ACK packet has a duration field which is set to zero as the end of the 

transmission. 

Table I–4 Duration of control and data packet types 

Parameter Value 

RTSduration TCTS + Tdata + TACK + 3 TSIFS 

CTSduration Tdata + TACK + 2 TSIFS 

DATAduration TACK + TSIFS 

 

I-2-4 Frames Format   

Since the MAC layer of IEEE 802.11 standards works on top of a wireless PHY layer, it 

should provide special features to respond the challenges posed by a wireless data link. 

The frame format of the MAC layer provides these features as well as other requirements 

for coordination of the operating communications of higher layers. There is a generic 

format for 802.11 MAC frames whichincludes three main parts: MAC header, variable 

length frame body and frame check sequence. (See Figure I.7) 

 

Figure I.7 Generic 802.11 MAC frame 
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Every 802.11MAC frame starts with a two-byte Frame Control field. As depicted in Figure 

I.8, the Frame Control field comprises the following subfields:  

- Protocol Version: Two bits in length it indicates which version of the 802.11 

MAC is contained in the rest of the frame. The value of the protocol version is 

always set to zero for the current standards. 

 

Figure I.8Format Frame Control 

 
Table I–5 type field value 

b2 b3 Frame type 

00 Management frame 

01 Control frame 

10 Data frame 

11 Reserved 

 

 

- Type and subtype: The type field identifies the category of the frame which 

can be management, control, or data. The subtype field indicates which is the 

associated packet in that category. Table I–5 and Table I–6 indicate the 

function of these fields.  

Table I–6 Subtype field value 

Type (b2 b3) Subtype (b4 b5 b6 b7) Frame function 

 

01 

10111 RTS 

1100 CTS 

1101 ACK 

10 0000 DATA 

 

 

- To DS: a single bit Field and set to 1 for any frame destined to the destination; 

otherwise, it is set to 0 in all other frames. 

- From DS: a single bit Field and set to 1 in any data frame leaving the DS; 

otherwise it is set to 0 in all other frames. Table 2.6 illustrates different 

combinations of both To DS and From DS fields. 
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- More Fragment: a single bit Field which if set to 1, means that another 

fragment of the current data frame follows in a subsequent frame; otherwise it 

is set to 0 in all other frames. 

-  Retry: a single bit Field which set to 1, indicates that the current data frame 

is a retransmission of the earlier frame; otherwise it is set to 0 in all other 

frames. 

-  Power Management: a single bit Field, when the node is in the power-save 

mode, will be set to 1. Otherwise, it is set to 0 to indicate the active mode of 

the intended node. It is also set to 0 in frames transmitted by the AP. 

-  More Data: a single bit Field set to 1 if the AP has at least one additional 

data frame for a station in that is power-save mode; otherwise it is set to 0 in 

the all other frames. 

- Wired Equivalent Privacy (WEP): a single bit Field set to 1 if the Frame 

Body‎ field‎ of‎ a‎ data‎ frame‎ has‎ been‎ processed‎ by‎ the‎ WEP‎ algorithm‎

(encrypted); otherwise it is set to 0 in all other frames. 

- Order: a single bit Field set to 1 to tell the receiving node that the data frames 

must be processed in order. The Order field is set to 0 in all other frames. 

 

 Duration/ID: 16 bits in length and used to set the NAV. The value represents the 

number of microseconds that the medium is expected to remain busy during the 

transmission currently in progress. All nodes monitor the headers of all received 

frames and update their NAV accordingly.  

 Address Fields: There are four addresses used in a 802.11 MAC frame. Every 

address field is 48 bits in length and can be the Destination Address (DA), Receiver 

Address (RA), Source Address (SA), Transmitter Address (TA), and Basic Service 

Set Identifier (BSSID). The DA is the MAC address of the ultimate receiving node 

that will hand the frame to the upper layers. The RA is the MAC address of a node 

that should process the frame. The SA is the MAC address of the original source of 

the frame. The TA is the MAC address of a station that transmitted the frame onto 
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the medium. According to the value of To DS and From DS fields, the content of 

address fields has different meaning (Table I.7). 

 
Table I–7 Address field contents 

To DS From DS Address 1 Address 2 Address 3 Address 4 

0 0 DA SA BSSID N/A 

0 1 DA BSSID SA N/A 

1 0 BSSID SA DA N/A 

1 1 RA TA DA SA 

 

 

 Sequence Control: 16-bit Field is used for both defragmentation and discarding 

duplicate frames. It consists of two subfields which are the Fragment Number 

(the leftmost four bits) and Sequence Number (the next 12 bits). The Fragment 

Number indicates the number of each fragment of a data frame. It is set to zero 

and incremented by one for each succeeding transmission. The Sequence 

Number identifies the sequence number of a data frame. Each data frame is 

assigned a sequence number starting at zero and incrementing by one per data 

frame. The sequence number is not changed for all fragments if fragmentation 

occurs and also for all retransmissions. 

 Frame Body: It has a variable length payload and contains the information to be 

sent. 

 Frame Check Sequence (FCS): 32 bits in length and is used for checking the 

validity of the MAC frame information. The FCS contains a Cyclic Redundancy 

Code (CRC). In sending node, the CRC calculates a checksum of all fields of the 

MAC frame. The receiving node also calculates the CRC of the received frame 

and compares it with the attached CRC. If the two CRCs are the same, the 

receiver verifies that the frame has been received correctly; otherwise the frame 

has been computed and is discussed.  
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Annex II  Analysis of CWF protocols 
 

This annex presents an analytical model for CWF protocols. A new metric is defined based 

on the overhearing of information. The relay area is also calculated theoretically and 

practically based on the geometric model and metric.  

II-1 System model 

The main idea behind the CWF category protocols is to improve reliability and provide 

delay reduction by caching the overheard message and waiting for its failure. In order to 

define a system model for this category, we consider again the scenario of Figure 4.1 when 

the operation of Ri is overhearing, caching and waiting for failure. If failure occurs, Ri will 

retransmit the overheard packet. The average transmission delay between S and D for this 

category can be expressed as (II.1): 

                                          
        

 

                                 

(II.1) 

where      and       
 are the transmission delay of direct path and retransmission path as 

expressed respectively in (II.2) and (II.3),    is the probability of successful transmission 

through the direct path and     is‎probability‎of‎existence‎a‎relay‎node‎Ri‎ε‎    (II.4). 

                     (II.2) 

              
          

             (II.3) 

                           (II.4) 

 

where     is the bit error rate threshold for a successful packet at the MAC layer. To 

consider the cooperative gain provided by CWF category, we can define the performance 

metric as (II.5):  
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    (II.5) 

 

where, j is data rate between relay and destination nodes and k is data rate between source 

and destination. By substituting (II.5) into (II.3)) and applying for the data packet length 

(L) and data rate R, we can obtain (II.6):  

      
                          

             

      
 

 
       

            
(II.6) 

 

We can also define the throughput of CWF category as expressed in (II.7): 

       
        

 

                
                         

   (II.7) 

 

where         and         are the average collision time and average idle time. As 

indicated in (II.7), the performance bounds of throughput are obtained by delay ratio 

bounds. 

II-2 Relay area 

To find the possible location of the relay node (Ri), we can consider again two theoretical 

and practical methods. In theoretical analysis, we apply the condition of cooperation as 

given by (II.8):  

 
 
 

 
 
              
               

               
       

  (II.8) 
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By substituting   
    

   
 and    

    

   
 and applying the path loss equation, we can obtain 

the inequalities of (II.9). We can also consider the equivalent inequality of (II.9) and the 

inequality which yields to new one. 

 
 

 
              

                 
                 

     

     

           
              
              

     

      



(II.9) 

Obviously, because of variable x and y and in order to have the second and third inequality 

consistent to the first one, we obtain the inequality (II.10). Since for all wireless 

environments the value of n is more than unit (n>1), we can express the inequality in 

simple form. 

 

           
    
    
     

       
           
       

 



(II.10) 

As shown in Figure II.1, The shadow area is the relay area of CWF category. 

Although theoretical analysis can provide the relay area for different values of SNRSD and 

path loss coefficient (n), it cannot provide the delay ratio corresponding to the relay area. 

Therefore, we can consider the practical analysis for multi-rate scenario as indicated in 

Figure II.2 (a), when the transmission range of each data rate is available. The 

corresponding delay ratio supported can be indicated in Figure II.2 (b).  

According to the overlap area of two circles, we can calculate the relay area of Figure II.1 

as expressed in (II.11). 

 

                
                          
                       

       (II.11) 
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Figure II.1 Relay area of CWF category 

 
 

 

 
(a) 

 
(b) 

Figure II.2 (a) Relay area of CWF category in IEEE 802.11b (b) Delay ratio corresponding to 
relay area 
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