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resumo 
 

 

As células estaminais distinguem-se dos outros tipos de células pela sua 
capacidade de auto-regeneraração e simultaneamente diferenciação em 
diferentes tipos celulares. Estas células dividem-se em duas categorias: 
células estaminais embrionárias e somáticas. As que se enquadram no 
primeiro grupo originam todos os tipos celulares de um determinado organismo 
(pluripotentes), enquanto as células estaminais somáticas originam apenas 
alguns tipos celulares (multipotentes). Atualmente, células diferenciadas 
podem no entanto ser geneticamente reprogramadas para um estado 
indiferenciado através da indução de expressão de genes específicos que 
estão altamente expressos em células estaminais embrionárias (células 
estaminais de pluripotência induzida). 
A possibilidade de estudar neuropatologias utilizando modelos baseados em 
células estaminais tem sido amplamente explorada nos últimos anos. Como 
tal, os principais objetivos desta dissertação foram o isolamento e proliferação 
de células estaminais da mucosa olfativa e a sua posterior diferenciação em 
células derivadas de neuroesferas olfativas (ONS) e células tipo neuronal 
(NLC). A caracterização do sistema modelo ONS foi igualmente realizada. 
Sequencialmente, foram utilizadas duas enzimas (Dispase e Colagenase) para 
isolar as células estaminais da mucosa olfativa. Células estaminais da lâmina 
própria e do epitélio da mucosa olfativa foram isoladas e proliferaram no meio 
DMEM/F12. Ambos os tecidos foram diferenciados em neuroesferas (utilizando 
meio DMEM/F12 suplementado com ITS-X, EGF e FGF2) e posteriormente em 
células derivadas de neuroesferas olfativas (utilizando meio DMEM/F12 
suplementado com FBS) e em células tipo neuronal (usando meio neurobasal 
suplementado com B27, glutamina e glutamato). Os nossos resultados indicam 
que estabelecemos com sucesso culturas primárias de células estaminais 
olfativas a partir da mucosa olfativa de rato. A eficiência dos processos de 
isolamento e proliferação foi comprovada pela presença do marcador de 
estaminalidade nestina. A diferenciação das células estaminais em células 
derivadas de neuroesferas olfactivas (ONS) também for realizada com 
sucesso. A caracterização bioquímica dessas células revelou que, 
relativamente aos níveis de expressão da proteína precursora de amiloide de 
Alzheimer (PPA) e da proteína Tau, o sistema modelo em estudo apresenta 
resultados semelhantes aos obtidos com alguns sistemas modelo do tipo 
neuronal previamente caracterizados, nomeadamente as linhas celulares 
PC12 e SH-SY5Y. No entanto uma caracterização mais pormenorizada deve 
ser realizada.  
Os resultados obtidos fortalecem a hipótese de este modelo poder vir a ser 
utilizado para estudo dos mecanismos moleculares subjacentes a diversas 
neuropatologias, como a doença de Alzheimer. 
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abstract 

 
Stem cells are distinguished from other cell types by their ability to both self-
renew and to differentiate into a diverse array of specialized cell types. 
Naturally occurring stem cells are divided into two categories: embryonic stem 
cells and somatic stem cells. While embryonic stem cells are able to generate 
all the differentiated cells of the developing soma (pluripotent stem cells), 
somatic stem cells assume increasing degrees of fate restriction as they 
specialize into specific tissue lineages (multipotent stem cells). Specialized 
cells can also be genetically reprogrammed to a stem cell-like state through the 
induced expression of key genes that are highly expressed in embryonic stem 
cells. 
The possibility to investigate neuropathologies using stem cells based systems 
has been widely explored in the last years. Therefore the main objectives of 
this dissertation were isolation and proliferation of olfactory mucosa stem cells 
that were further differentiated in olfactory neurospheres derived cells (ONS) 
and neuron-like cells (NLC). Characterization of the ONS model system was 
also performed. We sequentially used Dispase and Collagenase to isolate 
olfactory mucosa stem cells that further proliferate in DMEM/F12 medium. The 
stem cells of either lamina propria and epithelium of olfactory mucosa were 
isolated and proliferated. Both tissues were further differentiated in 
neurospheres (using DMEM/F12 supplemented with ITS-X, EGF and FGF2), 
and finally in olfactory neurospheres-derived cells  (using DMEM/F12 medium) 
and neuron-like cells (using neurobasal medium supplemented with B27, 
glutamine and glutamate). Our results indicate that we successfully established 
primary cultures of olfactory stem cells from rat olfactory mucosa. The 
efficiency of the isolation/proliferation procedure was accomplished by positive 
immunostaining using the stemness marker nestin. The differentiation of the 
olfactory stem cells into olfactory neurospheres derived cells (ONS) was also 
effective. The preliminary morphological and biochemical characterization of 
the ONS models system was achieved and revealed that our ONS model 
system in term of APP and Tau expression levels behaves similarly to 
neuronal-like model systems previously characterized including PC12 and SH-
SY5Y cell lines. However, additional characterization should also be performed.  
Our results strength the hypothesis of using stem cells based model systems to 
study the cellular and molecular mechanisms underlying several 
neuropathologies, including Alzheimer’s disease. 
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ABBREVIATIONS 

 

AOB Accessory olfactory bulb 

AON Anterior olfactory nucleus 

APP Amyloid Precursor Protein 

BC Basal cells 

BCA Bicinchonic acid 

BM-MSCs Bone marrow mesenchymal stem cells 

BSA Bovine serum albumin 

CSCs Cancer stem cell 

CX Cortex 

DMEM Dulbecco's Modified Eagle Medium 

EC Entorhinal cortex 

ECL Enhanced chemiluminescence 

ECM Extracellular matrix 

EDTA Ethylenediamine tetraacetic acid 

EGCs Primordial germ cells 

EGF Epidermal growth factor 

EPI Epithelium 

epi SCs Epiblast stem cells 

ER Enzymatic reaction 

ESCs Embryonic stem cells 

FBS Fetal bovine serum 

FGF2 Basic fibroblast growth factor 

GBCs Globose basal cells 

GFAP Glial fibrillary acid protein  

H Hipothalamus 

HBCs Horizontal basal cells 

HLA Human Leukocyte antigen 

HSCs Hematopoietic stem cells 

iPSCs Induced pluripotent stem cells 

ITS-X Insulin Tranferrin Selenium Ethanolamine Solution 

LA Lateral amygdala 

LB Loading buffer 

LP Lamina propria 

LTP Long term potentiation 
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MAB Monoclonal antibody 

MAP2 Microtubule-associated protein  

MOE Main olfactory epithelium 

MSCs Mesenchymal stem cells 

NB Neurobasal medium 

NLCs Neuron like cells 

NS Neuroespheres 

NSCs Neural stem cells 

OB Olfactory bulb 

OD Optical density 

OECs Olfactory ensheating cells 

OE-MSCs Olfactory ecto-mesenchymal stem cells 

OM Olfactory mucosa 

ONS Olfactory neurospheres-derived cells 

ORNs Olfactory receptor neurons 

OSCs Olfactory stem cells 

OT Olfactory tubercle 

PAGE Polyacrylamide-gel electrophoresis 

PBS Phosphate buffered salin 

PC Progenitor cell 

PD Parkinson's Disease 

Pen Penicillin 

PN Passage number 

RMS Rostral migratory stream 

ROS Reactive oxigen species 

RT Room temperature 

SDS Sodium dodecy sulfate 

SGZ Subgranular zone 

ST Stem cell 

Strep Streptomycin 

SUS Sustentacular supporting cells 

SVZ Subventricular zone 

SZ Schizophrenia 

TBS Tris buffered saline 

TBS-T Tris buffered saline - tween 

TDC Terminally differentiated cell 

VA vomeronasal organ 

VNO vomeronasal organ 

WR Working reagent 
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1.1   STEM CELLS 
 

The human body comprises over two hundred different cell types that are 

organized into tissues and organs to provide all the functions required for viability and 

reproduction (Watt and Driskell, 2010). It is generally the case that cellular potency is 

progressively restricted as development proceeds from a fertilized egg to the adult. 

Nevertheless, stem cells are an exception to this rule in that they retain, to varying 

extents, the potential for multi-lineage differentiation (Daley, 2010). Additionally, one of 

the most significant properties of this distinct class of cells is their ability to self-renew 

(Preston et al., 2003). To achieve these two remarkable tasks, the cells can undergo an 

asymmetric cell division whereby they generate both self-renewing and differentiating 

daughter cells known as progenitor cells (PC; Fig.1) (Neumuller and Knoblich, 2009). A 

progenitor, also named precursor cell, represents an intermediary stage during the 

differentiation process which is capable of undergoing cell division and further 

specialization in order to generate terminally differentiated cells (TDC; Fig.1). 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 1 – Differentiation of stem cells into specialized cells. Stem cells can divide 
asymmetrically to generate both (1) self-renewing and (2) progenitor cells (PC). During 
stem cells differentiation process, progenitor cells can undergo cell division and further 
specialization to become a terminally differentiated cell (TDC).   
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Independently of stem cells type, both self-renewal and the potential for multi-

lineage differentiation are strongly affected by their local micro-environment, known as 

stem cell niche. The niche is generally composed of stem cells and supporting cells 

(neighboring cells) which are responsible for maintaining homeostasis within the stem 

population. There are some aspects of the stem cell niche that are known to influence 

self-renewal and stem cell fate are adhesion to extracellular matrix proteins, direct 

contact with supporting cells, exposure to secreted factors (such as growth factors) (Watt 

and Driskell, 2010) and reactive oxygen species (ROS) in stem cells (Li and Bhatia, 2011) 

(Fig.2).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 2 – The stem cell niche. Stem cells are maintained in a specialized 
environment that is characterized by the presence of supporting cells. Stem cells 
can undergoing asymmetric division to produce (1) a stem cell that remain in 
contact with the support cells and (2) a progenitor cell (PC) that does not receive 
cellular signals from the supporting cells and thus begin their differentiation 
process to produce terminally differentiated cells. Different components of the 
stem cell niche are illustrated: supporting cells, extracellular matrix (ECM), secreted 
factors and reactive oxygen species (ROS). 
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Another critical concept for the understanding of the function and potential 

clinical applications of stem cells is the developmental potency. This ranges from the 

totipotency (ability to form the embryo and the trophoblast of the placenta) of the 

fertilised oocyte, to the pluripotency (ability to differentiate into almost all cells that arise 

from the three germ layers) of embryonic stem cells, to the multipotentiality (ability of 

producing a limited range of differentiated cell lineages appropriate to their location) of  

somatic  stem cells (Daley, 2010). 

 

1.1.1 Embryonic stem cells 

  

In 1981, it was discovered that embryonic stem cells could be derived from the 

inner cell mass of the mouse blastocysts (Evans and Kaufman, 1981; Martin, 1981) (Fig. 

3). In 1998, it was first reported that these cells could be derived from human blastocysts 

(Thomson et al., 1998) and be differentiated into all cells types composing human body 

(Kim and Jin, 2012) trough sequential differentiation of the ectoderm, endoderm, and 

mesoderm germ layers (Verma and Verma, 2011).  

 

 

 

 

 

Figure 3 – Origin of the pluripotent embryonic stem cells. ECS cells could be derived from the inner cell mass (ICM) of 
the blastocysts, from the post-implantation epiblast and from primordial germ cells. ESCs, Embryonic stem cells; epiSCs, 
Epiblast stem cells; EGCs, Embryonic germ cells Adapted from Watt and Driskell, 2010.  
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However, blastocysts are not the only source of pluripotent embryonic stem cells. 

Epiblast stem cells (epiSCs) can be derived from the post-implantation epiblast of mouse 

embryos (Brons et al., 2007; Tesar et al., 2007). Moreover, pluripotent embryonic stem 

cells can also be derived from primordial germ cells (EGCs), progenitors of adult gametes, 

which diverge from the somatic lineage at late embryonic to early fetal development 

(Kerr et al., 2006).  

So far, embryonic stem cell lines have been generated from other species beyond 

human and mouse; such as chicken, hamster, rabbit, rat and monkey (Wobus and 

Boheler, 2005).  

In January of 2009, just over 10 years after they were first isolated, the US Food 

and Drug Administration approved the first clinical trial involving human embryonic stem 

cells in which the safety of ES cell-derived oligodendrocytes in repair of spinal cord injury 

will be evaluated (Daley, 2010). Nevertheless, the use of embryonic stem cells create legal 

and ethical problems of destroying embryos (derived from the discarded fertilized ovum 

during in vitro fertilization) and problems after transplantation sine cells derived from 

ESCs may be rejected from the recipient patients and immunosuppressants are required 

to be administered after transplantation.  

 

1.1.2 Somatic stem cells 

 

Somatic stem cells (also known as adult stem cells, which invite confusion because 

they can be extracted from newborns and adolescents and therefore not strictly adult 

sources) are similar to embryonic stem cells in their ability to terminally differentiate and 

to self-renew; however, unlike embryonic stem cells, somatic stem cells have a multiple 

tissue-restricted developmental potency. Nevertheless, somatic stem cells are emerging 

as particularly strong candidates for cellular therapies; since they overcome barriers 

concerning to the controversial embryo manipulation as well as the tumorigenicity of 

embryonic stem cells (Daley, 2010). 

Somatic stem cells are tissue-resident undifferentiated cells located in a stable 

micro-environmental niche which is responsible for maintaining a balance of stem cell 
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quiescence and activity (Rakesh Sharma Ka, 2009). The quiescent state appears to be 

necessary for preserving self-renewal capacity of somatic stem cells. Therefore, somatic 

stem cells are maintained in a quiescent state (out of cell cycle and in a lower metabolic 

state) but are able to exit quiescence and rapidly expand and differentiate. This 

remarkable feature is crucial for physiological tissue renewal and regeneration after injury 

(Li and Bhatia, 2011).  

A clear understanding of the intrinsic and extrinsic regulatory mechanisms that 

control somatic stem cells quiescence and activity is crucial to optimize delivery of stem 

cell therapies. One area that the study of somatic stem cell quiescence is highly relevant is 

the cancer therapy. There is mounting evidence that a subset of cells, termed cancer stem 

cells (CSCs), are responsible for long-term maintenance of tumor growth in several 

cancers (Dalerba et al., 2007), such as acute leukemia (Wang and Dick, 2005) and solid 

tumors, including brain, breast and colon tumors (Ailles and Weissman, 2007)). Once 

quiescent CSCs are often resistant to both conventional chemotherapy and targeted 

therapies (Li and Bhatia, 2011), it becomes clear that improved understanding of 

mechanisms of stem cell quiescence is important not only for directed manipulation of 

normal stem cells function, but also for development of approaches to therapeutically 

target quiescent CSCs. 

According to their own features, somatic stem cells have been divided into different 

subgroups.  From these, the cell types that are well studied and characterized to improve 

stem cells based therapies are: hematopoietic, mesenchymal, epithelial and neural stem 

cells. 
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1.1.2.1 Hematopoietic stem cells  

 

The Hematopoietic stem cells (HSCs) are the archetypal stem cell, from which 

much of knowledge on stem cells has arisen (Preston et al., 2003). These cells, which 

were primarily found in the bone marrow, are also present in other tissues including 

umbilical cord blood and peripheral blood. HSCs are responsible to generate all of the 

mature blood cells in the body (red blood cells, platelets, and a variety of lymphoid and 

myeloid cells) and surprisingly, several reports in the last few years suggest that these 

type of stem cells are able to differentiate into nonhematopoietic cells including 

hepatocytes, muscle cells, epidermal cells, islet cells, neurons, myocardium, and other 

lineages under the right environmental conditions (Smith, 2003).  

In 1968, the first major landmark in stem cells transplantation from bone marrow 

occurred with successful allogeneic transplantations. They are performed in infant with X-

linked lymphopenic immune deficiency and for another with Wiskott-Aldrich syndrome 

(Gatti et al., 1968; Bortin, 1970). Lately, due to advances in histocompatability testing and 

development of marrow donor registries, there is a growing number of patients who can 

receive transplants (Koo and Ahn, 2012) for treatment of high-risk or recurrent 

hematologic malignancies, bone marrow failure syndromes, selected hereditary 

immunodeficiency states, and metabolic disorders (Wagner and Gluckman, 2010). 

However, only approximately 30% of the patients can receive transplantation from a 

human leukocyte antigen (HLA)-matched sibling donor. In the absence of such a donor, 

the search for an unrelated volunteer adult donor is currently performed and the HLA-

matched unrelated donors are found for only approximately 50% of the patients. 

Additionally, the search for donors can take weeks or months (Koo and Ahn, 2012).  

In the absence of better treatment strategy, it was considered a new source of 

hematopoietic stem cells namely, umbilical cord blood (Wagner and Gluckman, 2010). 

The first human cord blood transplant was performed in 1988 and therefore cord blood 

banks have been established worldwide for the collection and cryopreservation of 

umbilical cord blood for allogeneic hematopoietic stem cell transplantation. 

 

http://emedicine.medscape.com/article/888939-overview
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 The main practical advantages of using cord blood as an alternative source of 

stem cells are the absence of risk for mothers and donors, reduced likelihood of 

transmitting infections (particularly cytomegalovirus) and the ability to store fully tested 

transplants. The human leukocyte antigen (HLA) typed transplants are frozen and are 

available for immediate use (Gluckman et al., 2011).  

Another type of hematopoietic stem cells transplantation is performed from 

peripheral blood. Intense research have revealed that the low number of circulating stem 

cells (comprising only 1/10000 to 1/100000 of total blood cells) (Preston et al., 2003) can 

be increased by injecting the donor with a cytokine such as granulocyte-colony 

stimulating factor (G-CSF), which forces the stem cells to migrate from bone marrow to 

peripheral blood (Korbling and Freireich, 2011). 

 

1.1.2.2 Mesenchymal stem cells  

 

Mesenchymal stem cells (MSCs) are nonhematopoietic stromal cells that possess 

the capacity of self renew and multilineage differentiation, thereby contributing to the 

regeneration of mesenchymal tissues during lifespan (Chamberlain et al., 2007).  

For several reasons, MSCs are emerging as particularly strong candidates for cellular 

therapies. Firstly, they can be isolated from a wide range of autologous sources (bone 

marrow (Gnecchi and Melo, 2009; Hao et al., 2010), adipose tissue (Gronthos et al., 

2001), peripheral blood (Kuznetsov et al., 2001; Miura et al., 2003), umbilical cord blood 

(Rosada et al., 2003), tendon (Salingcarnboriboon et al., 2003), ligaments (Seo et al., 

2004), olfactory mucosa (Tome et al., 2009; Delorme et al., 2010) and deciduous teeth 

(Miura et al., 2003); some of which are readily accessible, using robust, well-established 

techniques (Pittenger et al., 1999; Gronthos et al., 2001; da Silva Meirelles et al., 2006).  

Secondly, their high proliferative potential allows rapid MSCs expansion ex vivo, 

while maintaining multipotentiality. Finally these cells are potentially suitable for use in 

allogeneic as well as autologous transplantation (Aggarwal and Pittenger, 2005). 

 

javascript:reportglosspop('GCSF')
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For all the reasons presented MSCs have deserved further attention as potential 

candidates for the reparative/regenerative treatment of diseases affecting mesodermal 

tissues (e.g. bone, cartilage, muscle and kidneys). Additionally, in recent years it become 

evident that MSCs could be useful for neurological treatments, based on evidence that 

their transplantation results in functional recovery in various animal models of 

neurological disorders; even if  the mechanism responsible remains unclear (Maltman et 

al., 2011). 

 

1.1.2.3 Epithelial stem cells 

 

Epithelia are continuous sheets of tightly linked cells that constitute the surfaces 

(e.g. epidermis and corneal epithelium) and linings (e.g. digestive, respiratory, and uro-

genital epithelia) of the body; providing a protective envelope against the external 

environment and also regulating water and nutrient absorption as well as glandular 

secretions (Blanpain et al., 2007). Epithelial stem cells located in different adult tissues are 

essential to sustain tissue turnover and repairment of epithelia upon injuries. Therefore, 

different populations of epithelial stem cells can generate tissues (e.g. intestine, 

epidermis, mammary gland and cornea) that display several cellular architectures and 

distinct functions. The epithelial stem cells niches that have been better characterized 

are: intestinal crypt, corneal limbus, hair-follicle bulge and mammary gland terminal end 

bud.  

Cases of eye damage have been successfully treated by first culturing limbal stem 

cells and then transplanting the autologous corneal epithelial sheets (Wylegala et al., 

2008; Ahmad et al., 2010) 
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1.1.2.4 Neural stem cells 

 

It is now widely accepted that in mammals, including humans, newly born neurons 

are continuously generated from neural stem/progenitor cells, and then incorporated 

into the functional network of the adult brain. In the adult brain, neural stem cells (NSCs) 

exist principally in two regions: the subventricular zone (SVZ) of the lateral ventricles and 

the subgranular zone (SGZ) of the hippocampal dentate gyrus (Imayoshi et al., 2011).  

In the SVZ of the lateral ventricle, a large number of neurons generated from stem 

cells, migrate through the rostral migratory stream (RMS) into the olfactory bulb to 

differentiate into local interneurons (Fig. 4).  

 

 

 

Figure 4 – Generation of new interneurons in the olfactory bulb from neural stem cells. a) Frontal section of the brain 
that shows the subventricular zone along the lateral ventricles b) Sagittal section through the lateral ventricle that 
shows the larger area of adult neurogenesis, the subventricular zone (SVZ). Adult neurogenesis in the SVZ undergoes 
four developmental stages. Stage (1) Proliferation: stem cells (red) in the SVZ of the lateral ventricles give rise to 
transient amplifying cells (green). Stage (2) Fate specification: transient amplifying cells differentiate into neuroblasts 
(yellow) Stage (3) Migration: migrating neurons migrate with each other in chains through the rostral migratory stream 
(RMS) to the olfactory bulb (OB). Once reaching the bulb, new neurons then migrate radially to the outer cell layers. 
Stage (4) Synaptic integration: migrating immature neurons differentiate into either periglomerular neurons or granule 
neurons. Adapted from Vescovi et.al.,  2006  
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During the differentiation process, multipotent type-B astrocytes, which have been 

identified as the bona fide SVZ stem cells, give rise to fast-cycling transiently proliferating 

precursor cells that are called type-C precursors and that, in turn, generate mitotically 

active type-A neuroblasts. The type-A cells, while dividing, migrate towards the olfactory 

bulbs where they integrate as new interneurons (Ming and Song, 2005). 

Within the subgranular zone of the hippocampal dentate gyrus (Fig. 5) neural stem 

cells give rise to transient amplifying cells (immature neuron) that migrate a short 

distance into the dentate gyrus granule cell layer. During the differentiation process, 

immature neurons extend their axonal projections to the CA3 pyramidal cell layer and 

their dendrites in the opposite directions toward the molecular layer to generate new 

granule neurons. These newly born granule neurons receive inputs from the entorhinal 

cortex and send outputs to the CA3 and hilus region.  

 

 

Figure 5 - Generation of new granular neurons in the dentate gyrus of the hippocampus from neural stem cells in the 
subgranular zone (SGZ) a) Frontal section of the brain that shows the SGZ in the dentate gyrus of the hippocampus. b) 
Sagittal section through the dentate gyrus. Adult neurogenesis in the dentate gyrus undergoes five developmental 
stages. Stage (1/2) Proliferation/Differentiation: Stem cells with their cell bodies within the SGZ give rise to transient 
amplifying cells that differentiate into immature neuron (purple). Stage (3) Migration: immature neurons (green) 
migrate a short distance into the granule cell layer. Stage (4) Axon Dendrite targeting: Immature neurons (orange) 
extend their axonal projections to the CA3 pyramidal cell layer. They send their dendrites in the opposite direction 
toward the molecular layer (ML). Stage (5) Synaptic integration: New granule neurons (red) receive inputs from the 
entorhinal cortex and send outputs to the CA3 and hilus regions. Adapted from Vescovi et.al, 2006 
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Since the discovery of neural stem cells and their involvement in adult 

neurogenesis, they have been intensively studied. However, their functional importance 

on brain activities has just begun to be revealed; and thus, further understanding of 

postdevelopmental neurogenesis is necessary to develop stem cell-based therapies for 

nervous system functional recovery, after disease, trauma or pathological aging(Imayoshi 

et al., 2011).  

 

1.1.3 Induced pluripotent stem cells 

 

Although the somatic stem cells possess a tissue-restricted range of 

differentiations options, they can be genetically reprogrammed to an embryonic stem 

cell-like state through the forced expression of key reprogramming transcription factors. 

One of the first studies involving somatic nuclear transfer (Gurdon et al., 1958) indicated 

that somatic cells can be reprogrammed to pluripotency.  

However, the mechanisms and practical applications of inducing pluripotency in 

somatic cells have only become apparent in the last years (Watt and Driskell, 2010).  

The original report (Takahashi and Yamanaka, 2006), demonstrated that 

retrovirus-mediated transduction of mouse fibroblasts with four transcription factors 

highly expressed in ESCs (Oct-3/4, Sox2, KLF4 and c-Myc) could induce the fibroblasts to 

become pluripotent. Since then, rapid progress has been made in these area and induced 

pluripotent stem cells (iPSCs) were generated from human somatic cells (Takahashi et al., 

2007; Yu et al., 2007; Aasen et al., 2008; Park et al., 2008); cells from a range of tissues 

were reprogrammed (Aasen et al., 2008; Aoi et al., 2008) and iPSCs were generated from 

patients with specific diseases (Dimos et al., 2008; Park et al., 2008; Jang et al., 2012).  

One of the attractions of transplanting iPSCs is that patient’s own cells can be 

used, obviating the need for Immunosuppression (Watt and Driskell, 2010). Nevertheless, 

iPSCs technology is not yet ready for human trials. The current induced pluripotency 

protocols cannot efficiently eliminate residual and unwanted undifferentiated cells 

(Verma and Verma, 2011).   
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Furthermore, most patient-specific iPSCs have been generated using integrating 

vectors that could disrupt endogenous genes (Stadtfeld and Hochedlinger, 2010).  

 

1.2 MAMMALIAN OLFACTORY SYSTEM  

 

The olfactory system, which sits at the interface of the environment and the 

central nervous system, is responsible for discriminate and recognize thousands of 

chemical signals (odorous stimuli) presents in the environment. Therefore, this system 

regulates a wide range of multiple and integrative functions, such as emotional responses 

(e.g., anxiety, fear and pleasure), reproductive functions (e.g., sexual and maternal 

behaviors), and social behaviors (e.g., recognition of family, clan, or outsiders). To achieve 

this large varieties of functions, two anatomically and functionally separate sensory 

organs are required, the vomeronasal organ (VNO) and the main olfactory epithelium 

(MOE). In the VNO, sensory neurons project axons to the accessory olfactory bulb (AOB) 

and information provided by chemical compounds (i.e. pheromones) is then transmitted 

to the vomeronasal amygdala (VA) before reaching specific nuclei of the hypothalamus 

(H). Through this accessory olfactory system (Fig. 6), animals recognize evidences about 

the social and sexual status of other individuals (Lledo et al., 2005).  

 

 

 

 

 

 

 

 

 

Figure 6 - Schematic sagittal view of the rat head that shows the accessory 
olfactory system. Axons of sensory neurons in the vomeronasal organ (VNO) project 
to the accessory olfactory bulb (AOB). Information is then transmitted to the 
vomeronasal amygdala (VA) before reaching specific nuclei of the hypothalamus. 
VNO, vomeronasal organ; AOB, accessory olfactory bulb; V.Amyg, vomeronasal 
amygdala. Adapted from Dulac and Torello, 2003  
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The human vomeronasal cavities can still be observed by endoscopy in some 

adults, but they lack sensory neurons and nerve fibers. In addition, no accessory olfactory 

bulbs are found and the genes which code for vomeronasal receptor proteins and the 

specific ionic channels involved in the transduction process are mutated and 

nonfunctional. Thus, the vomeronasal sensory function is nonoperational in humans 

(Trotier, 2011). 

The second sensory organ is the main olfactory epithelium (MOE). This 

neuroepithelium is connected to the next central station for processing olfactory 

information: the main olfactory bulb (MOB). The output projections of the MOB target 

the primary olfactory cortex that include the anterior olfactory nucleus (AON), the 

piriform cortex (PC), the olfactory tubercle (OT), the lateral part of the cortical amygdala 

(LA), and the entorhinal cortex (EC). 

Through this main olfactory system (Fig. 7), animals recognizes more than a 

thousand different odorants (Lledo et al., 2005). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 - Schematic sagittal view of the rat head that shows the main olfactory system. The 
presence of turbinates in the main olfactory epithelium (MOE) increases the surface area of 
the sensory organ. Axons of sensory neurons in the main olfactory epithelium (MOE) project 
to the main olfactory bulb (MOB). The output projections of the MOB target the primary 
olfactory cortex that include the anterior olfactory nucleus (AON), the piriform cortex (PC), the 
olfactory tubercle (OT), the lateral part of the cortical amygdala (LA), and the entorhinal cortex 
(EC). Adapted from Dulac and Torello, 2003  
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1.2.1 Olfactory mucosa 

 

The olfactory mucosa (Fig. 8) is the sense organ of smell and consists of two 

tissues - olfactory neuroepithelium and lamina propria – separated by a thin basement 

membrane. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In recent years, olfactory mucosa has attracted the interest of investigators as a 

potential marker for early diagnosis of neurological diseases. This growing interest 

emerged because the ability to identify and discriminate the odors, as well as the odor 

threshold can be altered in neurological diseases, such as Parkinson's disease, Alzheimer's 

disease, multiple sclerosis, Huntington's disease and motor neuron disease (Escada et al., 

2009; Barresi et al., 2012). Additionally, olfactory mucosa has achieved a particular 

attention since numerous studies reported the existence of stem cells niches in its 

composition (Mackay-Sim, 2010). 

Figure 8 – a) Rat septum showing the position of the olfactory mucosa (OM). The yellow color of the OM allows 
distinguishing OM from respiratory mucosa (RM). b) Schematic structure of the olfactory mucosa. The olfactory 
mucosa is made up of two tissues - olfactory epithelium and olfactory lamina propria - separated by a thin 
basement membrane. Cellular composition of olfactory epithelium: olfactory receptor neurons (blue), 
sustentacular supporting cells (purple), globose basal cells (yellow) and horizontal basal cells (orange). Cellular 
composition of lamina propria: olfactory ensheathing cells (green), ecto-mesenchymal stem cells (maroon). (a) 
Adapted from Tharion et al., 2011  
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1.2.1.1 Olfactory Epithelium  

 

The olfactory epithelium is the most superficial layer of the olfactory mucosa and 

is comprised of three main cell types: olfactory receptor neurons (ORNs), sustentacular 

supporting cells (SUS) and basal cells (Fig.8). At the surface of the epithelium, olfactory 

receptor neurons have a single dendrite that ends with a small knob (Wetzig, 2006). 

Projecting from this knob and embedded in the mucus layer are the olfactory non-motile 

cilia with membrane olfactory receptors where odor molecules bind (Escada et al., 2009). 

Olfactory receptors belong to the family of the G protein-coupled seven-transmembrane 

proteins that are encoded by the largest gene families known to exist in a given animal 

genome (Mombaerts, 1999; Mombaerts, 2001; Harkema et al., 2006). 

The single axon of the olfactory receptor neurons passes through the basal lamina 

to join axons from other ORNs forming non-myelinated nerve fascicles, or bundles, in the 

lamina propria. These olfactory nerves perforate the boney cribriform plate, that 

separates the nasal cavity from the brain, and form the outer olfactory nerve layer of the 

olfactory bulb (Harkema et al., 2006). In the olfactory bulb, axons of the ORNs synapse 

within mitral cells and interneurons, some of which are generated by neurogenesis in the 

subventricular zone (SVZ) of the lateral ventricles (Mackay-Sim, 2010). The sustentacular 

supporting cells (SUS) surround olfactory receptor neurons, presumably contributing to 

regulating and maintaining the appropriate ionic milieu around the ORNs for olfactory 

transduction to occur.  

Furthermore, there are known to be two distinct types of basal cells in the 

olfactory epithelium that do not project to the epithelial surface: horizontal basal cells 

(HBCs) and globose basal cells (GBCS) (Escada et al., 2009). HBCs are flat cells and lie 

along the basal lamina, whereas GBCs are round cells that are situated superficially to the 

HBCs. 
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1.2.1.2 Olfactory Lamina propria  

 

The olfactory lamina propria is the tissue through which axons extend in order to 

synapse in the olfactory bulb. This mesenchymal tissue, lining the nasal cartilage, is 

composed of numerous blood vessels, nerve bundles, Bowman’s glands and most of the 

cellular components of connective tissue (e.g., fibroblast, macrophages, leukocytes and 

mast cells) (Wetzig, 2006). In addition, lamina propria includes two type of cells: olfactory 

stem cells (OSCs) (Chuah and Au, 1991; Delorme et al., 2010; Girard et al., 2011) and 

olfactory ensheathing cell (OECs) (Wetzig, 2006). The OECs are specialized glial cells that 

guide the regeneration of non-myelinated olfactory axons from the peripheral nasal 

epithelium through the cribriform plate and into the olfactory bulb. By producing 

neurotrophic factors, neurite promoting factors and extracellular matrix molecules, OECs 

allow these axons to elongate and migrate (Guerout et al., 2011). Therefore, several 

studies have demonstrated the great potential of OECs to improve functional recovery 

and axonal re-growth after lesions of the central nervous system (spinal cord injury) or 

peripheral nervous system (peripheral nerves lesion) (Franssen et al., 2007; Radtke et al., 

2009; Radtke and Vogt, 2009; Guerout et al., 2011; Tharion et al., 2011).  

  

1.3 OLFACTORY MUCOSA-DERIVED STEM CELLS  
 

1.3.1 Epithelium-derived stem cells: HBCs and GBCs  

 

In 1940, it was first observed mitotic activity in the basal cells of the olfactory 

epithelium of adult mice (Nagahara, 1940) and soon after, regeneration of olfactory 

receptor neurons (ORNs) was observed in monkey after toxic damage (Schultz, 1941). 

Some years later, numerous reports confirmed this observation in frog (Smith, 1951), fish 

(Westerman and von Baumgarten, 1964), cat and dog (Andres, 1966), lamprey (Thornhill, 

1970), mouse (Smart, 1971), monkey (Graziadei et al., 1980) and human (Wolozin et al., 

1992; Murrell et al., 1996).   
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 However, there was a long-running debate over the identity of the true olfactory 

stem cell population responsible for adult neurogenesis in the olfactory epithelium 

(Duggan and Ngai, 2007; Delorme et al., 2010; Mackay-Sim, 2010). While some studies 

have shown that the horizontal basal cells (HBCs) can generate neurons and glial cells in 

vitro (Feron et al., 1999; Carter et al., 2004), in parallel, convincing evidence 

demonstrated that globose basal cells (GBCs) give rise to neurons and sustentacular 

supporting cells (SUS) (Jang et al., 2003; Chen et al., 2004). Fortunately, this controversy 

over the identity of the neuroephithelioid stem cells came recently to a close (Delorme et 

al., 2010) with the publication of a study revealing that both basal cell types contribute to 

the neurogenic process and horizontal basal cells can fully reconstitute the olfactory 

neuroepithelium after an extensive injury (Leung et al., 2007). However, these cells 

exhibit a relatively poor proliferation rate in vitro and further investigation is required to 

improve their use either for comparative molecular studies or cell-based therapies 

(Wetzig et al., 2011).   

 

1.3.2 Lamina propria-derived stem cells: OE-MSC 

 

Since their discovery in (Tome et al., 2009), some studies have been focusing their 

attention in the lamina propria-derived olfactory stem cells (Delorme et al., 2010; Girard 

et al., 2011). Although their biological function remains to be revealed (Nivet et al., 2011), 

it is known that there is a strong association between these cells and the olfactory 

epithelium. Molecular signaling between lamina-propria and olfactory epithelium 

influences the olfactory pathway development (LaMantia et al., 2000); and during 

adulthood, cells migrating from one compartment to another can be observed, especially 

after an induced lesion. Hereupon, it can be surmised that the lamina-propria-derived 

stem cells are capable of crossing the basement membrane in order to differentiate into 

neurons and, possibly, replenish the olfactory epithelium after an extensive peripheral 

damage.   
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Delorme and co-workers have shown for the first time that lamina propria-derived 

stem cells can be considered as a mesenchymal cell subtype with specific traits associated 

to their location in an ectodermal tissue. Therefore, the open list of mesenchymal stem 

cells (MSCs) sources was updated with the inclusion of the lamina propria-derived stem 

cells, named as olfactory ecto-mesenchymal stem cells (OE-MSCs).  

Transcript and membrane protein analyses have shown that OE-MSCs are closely 

related to bone marrow mesenchymal stem cells (BM-MSCs). When the expression of 21 

cell surface proteins (know for portraying bone BM-MSCs) was assessed, only 3 markers 

were found differentially expressed in OE-MSCs.  The CD9, that is consider a pluripotency 

marker (Hannan and Wolvetang, 2009) involved in cell motility, metastasis, 

osteoclastogenesis, neurite outgrowth, oligodendrogenesis, myotube formation, 

angiogenesis and cell proliferation is overexpressed; whereas CD146 and CD200 are 

clearly underexpressed in olfactory stem cells. Furthermore, when compared to BM-

MSCs, lamina propria-derived stem cells also display a penchant for differentiating into 

cells with osseous phenotype. However, these cells rarely give rise to chondrocytes and, 

to a lesser extent, to adipocytes (Delorme et al., 2010). 

Interestingly, OE-MSCs display a high proliferation rate in vitro (nearly 3-fold 

increase in population doubling time at week 2 post-plating) and were still able to 

proliferate in long-term cultures (over 15 weeks) whereas BM-MSCs failed to self-renew 

(Delorme et al., 2010). Additionally, when compared to BM-MSCs, lamina propria-derived 

stem cells display a high level expression of genes involved in neurogenesis, which clearly 

indicates that OE-MSCs are inclined to run along neural pathways (Delorme et al., 2010).  

 

1.3.2.1 Isolation and proliferation of lamina-propria derived stem cells  

 

Regarding the collection procedure, olfactory mucosa is easily accessible in every 

living individual and, even in humans, it can be safely collected by an ear, nose and throat 

(ENT) specialist under local anesthesia and without any loss of sense of smell (Feron et al., 

1998; Girard et al., 2011).   
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 Moreover, the procedure that follows to olfactory mucosa collection is relatively 

straightforward (Fig. 9) and is minutely described in a previous report (Girard et al., 2011). 

 Firstly, the olfactory lamina propria must be separated from the contiguous 

neuroepithelium by an enzymatic treatment (Dispase II enzyme; Fig. 9); and then, this 

purified tissue is dissociated by enzymatic (Collagenase IA enzyme; Fig. 9) and mechanic 

procedures (MP; Fig. 9) to release the OE-MSCs. Once established in a serum-containing 

culture medium, primary cell cultures rapidly proliferate as adherent monolayers (Girard 

et al., 2011). 

 

 

 

 

 

 

 

 

Figure 9 – Schematic procedure of olfactory ecto-mesenchymal stem cell (OE-MSCs) isolation from olfactory lamina-
propria. OM, olfactory mucosa; LP,  lamina propria; Epi,  epithelium;  ER,  Enzymatic reaction; MP, mechanic procedure. 
Real Images Adapted from  Girard et al., 2011  
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When grown in a serum-free culture medium supplemented with mitogens and on 

lysine substrate, olfactory stem cells give rise to three-dimensional spheres in suspension 

(Girard et al., 2011) (Fig. 10).  

As well as the expression of stemness markers (i.e. Nestin), the neurospheres 

formation has also been extremely important during stem cells identification. OE-MSCs 

share this ability with stem cells from other neural tissues (e.g., spinal cord (Weiss et al., 

1996), hippocampus (Shetty and Turner, 1998) and olfactory bulb (Ahn et al., 2008)) and 

from non-neuronal tissues (e.g., breast (Shackleton et al., 2006), heart (Tomita et al., 

2005) and trachea (Rock et al., 2009)).  

In non-neuronal tissues, the formation of spheres in culture was valuable in 

determining the ability of their stem cells to differentiate into neural cells types (Wetzig, 

2006).  

 

 

 

 

Figure 10 - Schematic procedure of the olfactory neurospheres-derived (ONS) cells and neuron-like cells generation. 
Olfactory ecto-mesenchymal stem cells (OE-MSCs) express the stemness marker nestin.  IMF,  immunofluorescence 
technique. Real Images Adapted from Girard et al., 2011 
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The growth factors that have been used to induce the highest number of 

neurosphere in OE-MSCs primary cultures are the epidermal growth factor (EGF) and the 

basic fibroblast growth factor (FGF2) (Girard et al., 2011);  since they act as mitogens for 

neural stem cells and  have been used in combination to expand neural stem cells 

(Kilpatrick and Bartlett, 1995; Weiss et al., 1996; Gritti et al., 1999). However, their role in 

determining the neural fate of OE-MSC is still unknown (Wetzig et al., 2011).   

When the olfactory neurospheres reached about 100 µm in diameter they 

detached from the culture dish surface and becoming free-floating neurospheres 

(Matigian et al., 2010).  

Then, these free-floating neurospheres should be collected, enzimatically or 

mechanically dissociated and re-plated. When the neurosphere are dissociated and re-

plated in a serum-containing culture medium they give rise to olfactory neurospheres-

derived (ONS) cells which growth as an adherent monolayer and exhibit some 

heterogeneity in their immunophenotype in culture (GFAP-expressing cells [~50%], β-

tubulin III-expressing cells [~10-15%] and O4-expressing cells [~2-5%]). However, when 

the cells are re-plated in Neurobasal culture medium supplemented with B27, glutamine 

and glutamate their fate is modified and they differentiate into neuron-like cells 

expressing β-tubulin III  and MAP2 (Girard et al., 2011).  

 

1.3.2.2 Diagnostic and therapeutic uses for OE-MSCs 

 

In the last 3 years, OE-MSCs have attracted the interest of investigators since they 

have taken advantage of their advantageous localization, high proliferation rate, ability to 

proliferate in long-term cultures, as well as their tendency to differentiate into neural 

cells; in order to perform comparative molecular studies or cell-based therapies for brain 

diseases (Girard et al., 2011). 
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 With the evidence for olfactory mucosa alterations  that depend from 

neurological diseases (including schizophrenia [SZ] (Brewer et al., 2003) and Parkinson´s 

disease [PD](Haehner et al., 2009)), a pioneering study by Matigian et al. 2010 

hypothesized that the olfactory neurospheres-derived (ONS) cells from  SZ and PD 

patients would exhibit disease-specific alterations. This comparative molecular study was 

performed using human ONS cells lines from patients (SZ, n=9; PD, n=19) and controls 

(control, n=14) and provided significant disease-specific alterations in gene expression, 

protein and cell function, namely dysregulated neurodevelopment pathways in SZ ONS 

cell lines and dysregulated mitochondrial function, oxidative stress and xenobiotic 

metabolism in PD ONS cell lines. 

 In a prior comparative molecular study performed using lymphocytes and skin 

fibroblasts (Matigian et al., 2008), the patient-control differences were modest both in SZ 

and PD, perhaps because these cell types do not reflect tissue-specific differences 

important for brain function (Wang et al., 2010).  

These evidences revealed that cells collected from primary sources that have been 

subjected to signals appropriate for the pathological specificity are crucial to mirror the 

disease human neural cells (Boone et al., 2010).  Therefore, human ONS cells lines provide 

a neural tissue-specific cellular model for neurological diseases, which can be easily 

accesible from patients, grown in standardized conditions, frozen, banked, thawed, and 

re-grown in quantity for gene and protein expression analyses, functional studies and 

high-throughput drug screening (Matigian et al., 2010).  

So far, human OE-MSCs allowed to unveil new candidate genes and cell pathways 

involved in schizophrenia (Matigian et al., 2010), Parkinson’s disease (Matigian et al., 

2010; Cook et al., 2011), and familial dysautonomia (Boone et al., 2010).  However, it is 

important to note that, since ONS cells exhibit a relatively undifferentiated state, the 

disease-related differences might be magnified or altered if these cells were 

differentiated into the relevant cells of the nervous system (Matigian et al., 2010). Thus, 

there is an urgent need for comparative molecular studies using both ONS cells lines and 

olfactory neurospheres-derived differentiated neural cells.  
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In the National Centre for Adult Stem Cell Research (Griffith University; Australia), 

frozen aliquots of ONS cells from healthy controls and patients with nervous system 

disorders (including Parkinson’s disease, schizophrenia, motor neuron disease, hereditary 

spastic paraplegia, multiple sclerosis and mitochondrial mutation disease) are available; 

subject to patient consent, an Appropriate Material Agreement, and payment of shipping 

and handling fees.  Hereupon, these patient-derived, disease-specific cell lines can be 

compared to identify the gene networks and biochemical pathways that contribute to 

disease and to investigate gene-environment interactions. Furthermore, these cell lines 

can also be used in the drug development process for assessing the toxicity of new drug 

candidates and for assessing their efficacy. 

In addition to its value as a starting point to establish a stem cell based model 

system to study neuropathologies, some studies have also reported the value of the OE-

MSCs as a promising candidate for stem cell-based therapies. A previous study  reported 

that the transplantation of adult human OE-MSCs into the cochleae of a mouse model of 

early-onset sensorineural hearing loss, contribute to a reduction in hearing loss when 

compared with sham-treated animals (Pandit et al., 2011). In parallel, a second report 

demonstrates that the engraftment of human OE-MSCs into mouse damaged 

hippocampus also holds therapeutic value; since the exogenous stem cells migrate 

toward the inflamed areas, exhibit in situ neuronal differentiation, stimulate endogenous 

neurogenesis, restore defective learning and memory abilities, and enhance physiological 

function (i.e., long-term potentiation [LTP])(Nivet et al., 2011).  
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2. AIMS OF THE DISSERTATION 
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The possibility to investigate neuropathologies using stem cells based models systems 

has been widely explored in the last years. Recently, lamina propria-derived stem cells 

from olfactory mucosa have attracted interest among the scientific community. The 

innovation of this novel model is the advantage of easily accessible location, high 

proliferation rate, ability to proliferate in long-term cultures and tendency to differentiate 

into neural cells. Nonetheless, the main reason for the upcoming interest in this specific 

cell type is their ability to demonstrate disease-related differences in gene expression, 

protein expression and cell function (i.e.: schizophrenia, Parkinson’s disease, and familial 

dysautonomia).  

 

Therefore, the main objectives of this dissertation were:  

 Isolation and proliferation of olfactory stem cell from rat olfactory mucosa; 

 Differentiation of olfactory stem cells into olfactory neurospheres derived cells 

(ONS) and neuron like cell (NLC); 

 Characterization of olfactory neurospheres-derived cells (ONS) model system. 

 

The methodology used to achieve these goals was based on very recent 

publication of Girard and co-workers.  
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3. MATERIALS AND METHODS 
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3.1 ISOLATION AND PROLIFERATION OF OLFACTORY MUCOSA-DERIVED   

STEM CELLS  

 

3.1.1 Isolation of olfactory mucosa from rats 

 

 Olfactory mucosa was obtained from Wistar female rats (9-15 weeks) handled 

according to the European Union guidelines (86/609/EEC). These animals were obtained 

from IBMC (Instituto de Biologia Molecular e Celular) and housed under controlled 

environment (26°C under a 12 hour light/dark cycle) with food and water available ad 

libitum. 

 Animals were sacrificed by rapid cervical stretching followed by decapitation and 

skin removal.  Facial muscles were eliminated on both sides and the lower jaw was 

removed with the help of scissors and a rongeur. Then, the bone that covered one of the 

nasal cavities was removed starting from the back incisors. When the olfactory turbinates 

appeared in the back of the nose, they were carefully tweezed and the olfactory mucosa 

was exposed. Most of the olfactory mucosa was transferred to a Petri dish filled with 

culture medium (DMEM/HAM F12). 

In order to collect olfactory mucosa lysates, a short fragment of 2 mm x 2 mm was 

transferred to a microtube and 1ml of culture medium was added. The sample was 

centrifuged at 1000 rpm for 3 minutes and the supernatant removed and olfactory 

mucosa resuspended in 150µl of boiling 1% SDS. The sample was further sonicated five 

times during 10 seconds, boiled during 10 minutes and then stored at -20°C. Protein 

content of the sample was determined using the BCA assay (as described below).  
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3.1.2 Establishment of primary stem cell cultures from olfactory mucosa  

 

 Olfactory mucosa from both sides were washed three times in DMEM/HAM F12 

and then incubated in a 35 mm cell Petri dish with 1ml of dispase II solution (2.4 IU/ml), 

for 1 hour at 37°C (Fig. 11).  

 

 

Then, under a dissecting microscope with a diffracted inverted light and over a 

black background, the lamina propria was carefully separated from the underlying 

olfactory epithelium. The lamina propria, that seemed striped orange/brown, was 

tweezed with the help of a micro spatula to a new culture dish filled with DMEM/HAM 

F12; while the thinner and translucent epithelium was transferred to a second culture 

dish also filled with DMEM/HAM F12 (Fig. 12). 

Figure 11 – Overall scheme of the experimental procedure to establish primary stem cells cultures from olfactory 
mucosa. LP: lamina propria; EPI: Epithelium. Real images from (Girard et al., 2011)Girard et al., 2011 
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  Using two 25 gauge needles, lamina propria and epithelium were fragmented into 

small pieces, and then the culture medium with the floating fragments was transferred to 

15 ml tubes. The tubes were then centrifuged at 1000 rpm for 3 minutes at room 

temperature (RT). Next, the supernatants were discarded and 1ml of collagenase IA 

(2,5mg/ml) added to each pellet (Fig. 11). The pellets were then dissociated using a sterile 

plastic pipette and incubated with collagenase IA solution for 10 minutes at 37°C.  To 

terminate the dissociation, the tubes were gently rocked and 9ml of Ca-free and Mg-free 

PBS was added in each tube. The tubes were then centrifuged at 1000 rpm for 5 minutes 

and the supernatants were discarded. The cell pellets in each tube were resuspended in 

2ml of DMEM/HAM F12 culture medium (supplemented with 10% fetal bovine serum 

[FBS] and 1% penicillin/streptomycin [Pen/Strep] solution) and then plated on 35 mm cell 

culture petri dishes.  All cultures were grown under standard conditions at 37°C and 5% 

CO2 and for either tissue type the culture medium was totally renewed every 2 days. 

 

 

 

 

 

Figure 12 – Olfactory mucosa under a dissection 
microscope. The putative barrier between lamina 
propria (LP) and epithelium (EPI) is depicted (red 
dashed line).Adapted from Girard at al., 2011. 
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3.1.3 Propagation of stem cells 

 

 Nearly one month after the establishment of the primary cell cultures in 35 mm 

plastic culture dishes, stem cells were confluents. At this time, the culture medium was 

aspirated and cells were washed with PBS (1X). Then, the cells were incubated with 1ml 

of trypsin-EDTA solution for 3 minutes at 37°C. To stop the trypsin action, 2ml of culture 

medium supplemented with FBS (DMEM/HAM F12 supplemented with 10% FBS and 1% 

Pen/Strep) were added to culture dishes. Culture medium with the resuspended stem 

cells was then transferred to 15ml tubes that were centrifuged at 1000 rpm for 3 minutes.  

After the removal of supernatants the cell pellets were resuspended in 2ml of culture 

medium supplemented with FBS.  

Then, the cell suspensions were equally distributed for 2 plastic culture dishes (60 

mm) that were filled with 3ml of serum-containing culture medium. Whenever the cells 

reached the confluence state, this cells passage procedure was repeated.  

In order to collect stem cells lysates, cells from confluents 60mm cell culture petri 

dishes were detached with trypsin and then centrifuged at 1000 rpm for 3 minutes. Then, 

the supernatants were removed and the cell pellets resuspended in 1 ml of serum-

containing culture medium. The cell suspensions were transferred to microtubes and 

centrifuged at 300g for 3minutes. The supernatants were removed and then 150µl of 

boiling 1% SDS were added to the microtubes that were immediately placed on ice. The 

samples in the microtubes were sonicated five times during 10 seconds, boiled during 10 

minutes and then stored at -20°C. Protein content in the samples was determined using 

the BCA assay (as described below). 
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3.2 OLFACTORY NEUROSPHERES FORMATION AND GROWING  

 

Primary cultures from olfactory lamina propria and epithelium were expanded as a 

monolayer in culture medium supplemented with FBS. To form neurospheres, the culture 

medium was aspirated and cells were washed with PBS (1X).  

Then, the cells were incubated with trypsin-EDTA solution for 3 minutes at 37°C. To 

stop the trypsin action, culture medium supplemented with FBS was added to culture 

petri dishes. Culture medium with the resuspended stem cells was then transferred to 

15ml tubes that were centrifuged at 1000 rpm for 3 minutes. After the removal of 

supernatants the cell pellets were resuspended in serum-free culture medium 

(DMEM/HAM F12 supplemented with insulin, transferrin, selenium [ITS-X 1%]; EGF 

[50ng/ml]; FGF2 [50ng/ml] and 1% Pen/Strep) and plated on poly-D-lysine-coated 60mm 

cell culture petri dishes. Every two days, half of the medium was changed.  

In order to collect olfactory neurospheres lysates, the culture medium with the 

floating neurospheres was transferred to 15ml tubes (first step). Then, 2ml of serum-free 

culture medium were added to the dishes and with a micropipette, fluxes and refluxes 

were performed to release the neurospheres that were still adherents. This neurospheres 

in suspension were added to the tubes that were used in the first step. The tubes were 

centrifuged at 1000 rpm for 3 minutes, the supernatants were removed and the cell 

pellets resuspended in 1 ml of serum-free culture medium. The cell suspensions were 

transferred to microtubes and centrifuged at 300g for 3minutes. The supernatants were 

removed and then 150µl of boiling 1% SDS were added to the microtubes that were 

immediately placed on ice. The samples in the microtubes were sonicated five times 

during 10 seconds, boiled during 10 minutes and then stored at -20°C. Protein content in 

the samples was determined using the BCA assay (as described below). 
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3.3 ONS CELLS FORMATION AND  PROLIFERATION  

 

Culture medium with the floating neurospheres was transferred to 15ml tubes 

(first step) and then, 2ml of serum-free culture medium were added to the dishes and 

with a micropipette, fluxes and refluxes were performed to release the neurospheres that 

were still adherents. This neurospheres in suspension were added to the tubes that were 

used in the first step. The tubes were centrifuged at 1000 rpm for 3 minutes and the 

supernatants were removed.  

Then, the cell pellets were resuspended in 1 ml of trypsin and incubated for 1 

minute at 37°C. Culture medium supplemented with FBS was added to the tubes to stop 

the trypsin action and then, the tubes were centrifuged at 1000 rpm for 3 minutes. After 

the removal of supernatants, the cell pellets were resuspended in 2ml of serum-

containing culture medium. Then, the cell suspensions were re-plated on poly-D-lysine 

coated 60mm cell culture petri dishes that were filled with 2ml of serum-containing 

culture medium. Olfactory neurospheres-derived (ONS) cells were grown under standard 

conditions at 370C and 5% CO2 the culture medium was totally renewed every 2 days. 

Whenever the cells reached the confluence state, the cells passage procedure described 

in section 3.1.3 was repeated.  

In order to collect ONS cell lysates, cells from confluents were detached with 

trypsin and then centrifuged at 1000 rpm for 3 minutes. Then, the supernatants were 

removed and the cell pellets resuspended in 1 ml of serum-containing culture medium. 

The cell suspensions were transferred to microtubes and centrifuged at 300g for 

3minutes. The supernatants were removed and then 150µl of boiling 1% SDS were added 

to the microtubes that were immediately placed on ice. The samples in the microtubes 

were sonicated five times during 10 seconds, boiled during 10 minutes and then stored at 

-20°C. Protein content in the samples was determined using the BCA assay (as described 

below). 
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3.4 NEURON-LIKE CELLS FORMATION AND PROLIFERATION 

 

 Culture medium with the floating neurospheres was transferred to 15ml tubes 

(first step) and then, 2ml of serum-free culture medium were added to the dishes and 

with a micropipette, fluxes and refluxes were performed to release the neurospheres that 

were still adherents. This neurospheres in suspension were added to the tubes that were 

used in the first step. The tubes were centrifuged at 1000 rpm for 3 minutes and the 

supernatants were removed. Then, the cell pellets were resuspended in 1 ml of trypsin 

and incubated for 1 minute at 37°C.  

Culture medium supplemented with FBS was added to the tubes to stop the 

trypsin action and then, the tubes were centrifuged at 1000 rpm for 3 minutes. After the 

removal of supernatants, the cell pellets were resuspended in Neurobasal medium 

(Gibco), containing B-27 (1X), glutamine (2mM), glutamate (0,025mM), 1% Pen/Strep and 

phenol red; and then plated on poly-D-lysine-coated 60 mm cell culture petri dishes. All 

cultures were grown under standard conditions at 370C and 5% CO2 and half of the 

medium was changed every 2-3 days. 

 

3.5 IMMUNOCYTOCHEMISTRY 

 

 Cells grown on poly-D-lysine-coated coverslips were fixed with a 4% 

paraformaldehyde solution. Thus, the culture medium was aspirated and then, 1,5ml of 

serum-containing culture medium and 1,5ml of 4% paraformaldehyd solution were added 

to the dish. After 10 minutes, the medium/paraformaldehyde solution was aspirated and 

3ml of 4% paraformaldehyde solution were added to the dish for 20 minutes. After that 

period the cells were washed 5 times with PBS and permeabilized with a 0,2% Triton 

solution during 2 minutes. After permeabilization, cells were washed 5 times and then 

blocked with a solution of 3% BSA in PBS solution for 1 hour.  

The cells were then incubated with the primary antibodies diluted in 3% BSA in 

PBS (the adequate dilutions are present in Table. 1) for 4 hours at room temperature.  
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The primary antibodies were removed by washing 3 times with PBS and the 

specific secondary antibodies were added for 2hours at room temperature (see Table. 1). 

After 3 washes with PBS and one with deionised water, the cells were mounted with 

VECTASHIELD® mounting medium with DAPI. 

 

 

 

 

3.6 BCA PROTEIN QUANTIFICATION ASSAY 
 

The bicinchoninic acid (BCA) assay (Pierce) is a biochemical assay used to 

determine total protein content in a test sample. This method consists in a color change 

of the sample solution from green to purple in proportion to protein concentration. This 

assay is performed in two reactions. Firstly, Cu2+ is reduced to Cu+ by protein in an 

alkaline medium, which results in a light blue complex - biuret reaction (temperature 

dependent reaction). This reaction occurs with high sensitivity. Then, the colorimetric 

detection is allowed through the colorimetric detection of Cu+ cation, that was formed in 

step one, by BCA. More precisely, the reaction of two molecules of BCA with one Cu+ ion, 

results in an intense purple-colored reaction product. The BCA/Cu+ complex is water-

soluble and exhibits a strong linear absorbance at 562nm with increasing protein 

concentrations (over a working range between 20μg/ml to 2000 μg/ml). 

Target Protein Primary antibody Secondary antibody 

Nestin 
Monoclonal Rat (MAB-353; Millipore) 

Dilution (1:100) 

Texas Red®-X goat anti-mouse 

IgG (LifeTechnologies) 

Dilution (1:300) 

β-Tubulin III 
Monoclonal Rat (MAB-1637; Millipore) 

Dilution (1:500) 

Texas Red®-X goat anti-mouse 

IgG (LifeTechnologies) 

Dilution (1:300) 

Table 1: Primary and secondary antibodies used for detection of nestin and β-Tubulin III. Specific 

immunocytochemistry dilutions are indicated of both primary and secondary antibodies.  
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 The standards were prepared in duplicate as described in Table 2. The final volume 

for each standard and sample was equal to 25μl. 

 

  

 

  

Standards BSA (μl) 1% SDS (μl) Protein mass (μg) 

P0 0 25 0 

P1 1 24 2 

P2 2 23 4 

P3 5 20 10 

P4 10 15 20 

P5 20 5 40 

 

 

After prepare BCA standards, the samples were prepared also in duplicate, using 

5μl of the collected lysates and 20 μl of 1% SDS (final volume of 25 μl). Then, 200 μl of 

Working reagent (WR) were added to both standards and samples. WR was prepared 

adding 50 parts of reagent A to 1 part of reagent B. After that, the microplate was stirred 

slowly for 1min at RT and incubated at 370C during 30 minutes. Then, the plate were 

cooled at room temperature during 2 minutes and the absorbances were measured at 

562 nm using the microplate reader Infinite® M200 (Tecan) and the i-control TM software. 

A standard curve was prepared by plotting the optical density (OD) value for each 

BCA standard against its concentration, which allowed the determination of protein 

concentration of each sample. 

 

 

 

 

 

Table 2: Summary of BCA standards preparations. BSA, bovine 

serum albumin; SDS, Sodium dodecyl sulfate 
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3.7 SDS-POLYACRYLAMIDE GEL ELECTROPHORESIS (SDS-PAGE)   AND 

ELECTROTRANSFERENCE 

 

Sodium dodecyl sulfate – polyacrilamide gel electrophoresis (SDS-PAGE) is an 

analytical technique commonly used to separate proteins based on their molecular 

weight and negative net charge due to SDS-amino acid binding. SDS is an anionic 

detergent that denatures proteins by wrapping around the polypeptide backbone, which 

results in an unfolding and individual polypepetide.  

This reaction occurs in presence of SDS when the samples are heated to 100°C. SDS-

PAGE can thus be used to estimate relative molecular mass, to determine the relative 

abundance of major proteins in a sample and to determine the distribution of proteins 

among fractions. The migration of heavy molecules is slower, while the migration of light 

molecules is fast.  

After preparing the samples, they were subjected to a 5% - 20% gradient SDS-PAGE. 

First, gradient gels were prepared and then allowed to polymerize between two glasses 

plates for 45 minutes at room temperature. Subsequently, the stacking gel solution was 

prepared and loaded on the top of gradient gel. Then, a comb was inserted and the gel 

was left to polymerize for at least 30 minutes at RT.  

During the polymerization time, the samples were prepared by adding Loading 

buffer (LB) to each tube. Then they were boiled for 10 minutes and a spin down was done 

to each sample. After that, the samples were carefully loaded into the wells. A molecular 

weight marker was also loaded (Kaleidoscope Prestained Standards and Dual Colour 

Prestained Standards – Broad range, Bio Rad) and resolved side-by-side with the samples. 

Gels were run at 90 mA during approximately 3 hours. After running the proteins, they 

were electrotransferred to a solid support (nitrocellulose membranes, Whatman®) for 18 

hours at 200 mA. After electrotransference the detection of the protein of interest was 

carried out by immunoblotting (as described below).  
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3.8 IMMUNOBLOTTING 

 

During the electrotransference, transferred proteins become immobilized on the 

surface of the nitrocellulose membrane in a pattern that is an exact replica of the gel. 

After that, the detection of proteins is carried out using specific antibodies (primary 

antibodies) against the proteins of interest. The following primary antibodies were used: 

rabbit polyclonal C-TERM antibody (Invitrogen), which detects all APP isoforms (holo-

APP), mouse monoclonal Tau-5 antibody (Millipore) to detect all phosphorylated and non 

phosphorylated isoforms of Tau (total-Tau) and mouse monoclonal antibody (Millipore) 

against Nestin (Table 3.).  

 

 

 

Antibody Target Isotype Dilution 
Expected band size 

(KDa) 

C-TERM holo-APP 
Rabbit 

(polyclonal) 
1:1000 100 - 140 

Tau - 5 total-tau 
Mouse 

(monoclonal) 
1:500 56 - 68 

Nestin Nestin 
Mouse 

(monoclonal) 
1:1000 200-220 

 

 

As secondary antibodies, Horseradish peroxidase anti-rabbit and anti-mouse (GE 

Healthcare) were used both with a dilution of 1:5000. 

Once the immunoblotting protocol is antibody specific, the protocols used were 

summarized in the Table 4. 

Immunoblotting was performed by initially soaking the membranes in 1X TBS for 5 

minutes and then blocking non-specific binding sites of the primary antibody by 

incubating the membrane with 5% non-fat dry milk/5% BSA in 1x TBS-T (during 2 or 4 

hours). This step allows that unoccupied protein binding sites on the membrane were 

saturated to prevent non-specific binding of antibodies.  

Table 3: Summary of primary antibodies used, as well, the respective target, isotype, 

dilution and the expected band size 
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Then, the membranes were further incubated with the specific primary antibody 

solution (previously prepared according to the respective dilution), during 2 or 4 hours 

with agitation and then sit overnight at 4°C (Table. 4). After the incubation period, 

membranes were washed with 1x TBS-T; incubated with secondary antibody during 2 

hours under agitation at room temperature. The secondary antibody solution (specific for 

the primary antibody) was used at 1:5000 and is diluted in 3% non-fat dry milk in 1x TBS-T 

or 3% BSA in 1X TBS-T. Membranes were then washed three times with 1X TBS-T, during 

10 minutes each.  

 

 

 

Antibody Hydration 
Blocking 

agent 

Primary 

antibody 
Washings 

Secondary 

antibody 
Washings 

Detection 

Method 

C-TERM 
-1x TBS 

-5 min 

- 5% low 

fat milk 

in 

1x TBS-T 

-4h at RT 

-3% BSA 

in 

1x TBS-T; 

-4h at RT 

+ 

ON at 4oC 

-1x TBS-

T; 

-3times; 

-10min 

each 

-3% BSA in 

1x TBS-T; 

-2 h at RT 

-1x TBS-T; 

-3times; 

-10min 

each 

ECL  

Tau 5 
-1x TBS 

-5 min 

-5% BSA 

in 1x 

TBST; 

-2h at RT 

-3% BSA 

in 

1x TBS-T; 

-2h at RT 

-1x TBS-

T; 

-3times; 

-10min 

each 

-3% BSA in 

1x TBS-T; 

-2h at RT 

-1x TBS-T; 

-3times; 

-10min 

each 

ECL 

Nestin -1x TBS 

-5 min 

- 5% low 

fat milk 

in 

1x TBS-T; 

-2h at RT 

-3% low 

fat dry 

milk in 1x 

TBS-T; 

-2h at RT 

-1x TBS-

T; 

-3times; 

-10min 

each 

-3% low 

fat dry 

milk in 1x 

TBS-T; 

-2h at RT 

-1x TBS-T; 

-3times; 

-10min 

each 

ECL 

 

 

Then, the membranes were incubated for 1 minute at RT with ECL detection kit 

(GE Healthcare) in a dark room and then placed on an x-ray film cassette with a sheet of 

film on top of it.  

Table 4: General immunoblotting protocol used for each antibody. ON, overnight; RT, Room Temperature; min, 

minutes; h, hours 
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The cassette was closed during an appropriate time to obtain signal and then the 

film was developed and fixed with appropriate solutions. Films were dried and quantified 

subsequently.  

 

3.7 QUANTIFICATION 

 

Quantitative analysis of immunoblots was performed using the Quantity One GS-

800 densitometry software (Bio-Rad). This software allows the quantifications of band 

intensity and correlates it to protein levels. 
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4. RESULTS 
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4.1 ISOLATION AND PROLIFERATION OF OLFACTORY STEM CELLS FROM 

RAT OLFACTORY MUCOSA   

 

The experimental procedure to isolate and establish primary cell cultures of 

olfactory stem cells from rat olfactory mucosa is still being optimized for several research 

groups. In our laboratory this procedure had never been made before and all the 

experiments were based mainly on a study published very recently (Girard et al., 2011) 

that presented a detailed protocol to isolate, proliferate and differentiate olfactory stem 

cells. 

To isolate and establish primary cell cultures from rat olfactory mucosa, two 

animals were sacrificed (named Rat 1 and Rat 2). The olfactory mucosa from both rats 

was dissected out as described in the section 3.1.1.  

 Briefly, the nasal bone (N.B) was removed and then, the olfactory turbinates (O.T) 

appeared in the back of the nose (Fig. 13). The olfactory turbinates easily come into sight 

as orange/brown organs however they must be carefully tweezed because the underlying 

olfactory mucosa (O.M) tends to cling to the olfactory turbinates, leading to an 

undesirable loss of biological material. The exposed olfactory mucosa (Fig.13) was then 

transferred to a 35 mm Petri dish filled with culture medium (DMEM/HAM F12). 

 

 

Figure 13 – Outline of the experimental protocol to isolate olfactory mucosa from rats. N.B: nasal bone; O.T: olfactory 
turbinates and O.M: olfactory mucosa. Real images from O.T and O.M adapted from Girard at al., 2011. 
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After washing, the olfactory mucosa was incubated with dispase II solution 

(2,4U/ml) for 1 hour at 37°C. Next, under a dissecting microscope and over a black 

background, the lamina propria (LP) was separated from the contiguous olfactory 

ephitelium (EPI) based on their color and thickness (Fig. 14). Compared to lamina propria, 

which is striped orange/brown, the olfactory epithelium is thinner and looks white or 

translucent (Fig. 14).  

 

 

 

 

 

 

 

 

 

 

 

 

 

After LP and EPI preparation they were both dissociated for 10 minutes at 37°C in 

collagenase IA solution (2,5mg/ml) and plated on 35 mm cell culture petri dishes filled 

with DMEM/HAM F12 medium supplemented with 10% fetal bovine serum (FBS) and 1% 

penicillin/streptomycin solution (Pen/Strep).  

All cultures were grown under standard conditions at 37°C and 5% CO2 to 

propagate any potential stem cell populations.  

For both tissue type (LP and EPI) the culture medium was totally renewed every 2 

days and divided when they were 90% confluents. Passage number (PN) and their 

respective day in culture were always registered over the time and the results are 

presented in Figure 15. 

Figure 14 – Olfactory mucosa under a dissection 
microscope. The putative barrier between lamina 
propria (LP) and epithelium (EPI) is depicted (red 
dashed line).Adapted from Girard at al., 2011. 
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We can observe that primary cultures established from rat 1 were subject to 9 

passages and remained in culture during 50 (LP-derived cells) and 59 days (EPI-derived 

cells); while primary cultures from rat 2 were subject to 6 passages and remained in 

culture during 30 (lamina propria-derived cells) and 43 days (epithelium-derived cells). 

 

                                                   

The confirmation that the isolation procedure was achieved and that the primary 

cells cultures from LP and EPI are proliferating, their morphological appearance was 

observed. These cells have been previously described as elongated cells that proliferate 

as adherent monolayers (Delorme et al., 2010). Thus, to examine these cells, phase-

contrast microphotographs were taken on primary cultures established from rats 1 and 2 

at several passages (PN) and the results presented in Figure 16. Primary cultures were 

composed mainly of elongated adherent cells and there were no significant 

morphological differences between lamina propria and epithelium derived olfactory cells. 

Additionally, we could observe that their elongated morphology, as well as their ability to 

grow as adherent monolayers, was maintained during the time course. 

Figure 15 – Passage number and respective days in culture for both primary cultures isolated from LP and EPI. LP: 
lamina propria, EPI: epithelium  
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Although the morphological analyses of LP and EPI derived cultures suggests that 

we successfully isolated and established primary cell cultures from rat olfactory mucosa, 

we had to verify whether stem cells were present in these primary cell cultures. Thus, 

lamina propria and epithelium-derived cells from rats 1 and 2 were immunolabeled with 

anti-nestin monoclonal antibody (stemness marker), while their nuclei were labeled with 

DAPI, and the results are presented in Figure 17.  

From the immunofluorescence images obtained, we could observe that primary 

cultures from rats 1 (Fig. 17) and rat 2 (Fig. 18) expressed the stemness marker nestin; 

either in lamina propria (Fig. 17; A, D and Fig. 18; A, D) or epithelium derived cultures (Fig. 

17; G, J and Fig. 18; G, J).  

Figure 16 – Morphological examination of stem cells morphology. Phase-contrast microphotographs taken from 
primary cultures isolated from rat 1 (left) and rat 2 (right). For each type of culture (Lamina propria and Epithelium), 
microscopic examination was done during time course and the results presented after passage number 2 (A, B and E, 
F) and 4 (C, D and G, H).  PN: passage number   
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Figure 17 - Nestin immunolocalization in lamina propria (A, D,) and epithelium derived stem cells (G, J) isolated from 
rat 1. Cell nuclei were simultaneously stained with DAPI.  
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Figure 18 - Nestin immunolocalization in lamina propria (A, D) and epithelium derived stem cells (G, J) isolated 
from rat 2. Cell nuclei were simultaneously stained with DAPI.  
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 A more detailed view of the nestin expressing cells is presented in Figure 19.                 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 19 – Nestin immunolocalization in Olfactory stem cells. Cell nuclei were simultaneously stained with DAPI.  
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4.2 DIFFERENTIATION OF OLFACTORY STEM CELLS INTO OLFACTORY 

NEUROSPHERES DERIVED CELLS (ONS) AND NEURON LIKE CELL (NLC) 
 

4.2.1 Establishment of the conditions for neurospheres formation 

 

Since we detected that our cultures of both lamina propria and epithelium have 

olfactory stem cells we carried on with for several experiments. 

First of all, conditions for rat olfactory neurospheres formation were examined 

through three consecutive experiments that were carried out using olfactory derived 

stem cells isolated from rat 1. To assay the potential of olfactory stem cells for generate 

neurospheres, they were plated onto poly-D-lysine coated 60 mm cell culture petri dishes 

filled whit DMEM/HAM F12 supplemented with ITS-X (1%), EGF (50ng/ml) and FGF2 

(50ng/ml).  

As it was reported by Girard et al., 2011; the cells were plated at a density of 16.000 

cells per square centimeter. To ensure an accurate estimate of cell number, cell counting 

was carried out in triplicate using a haemocytometer. For either culture type (lamina 

propria and epithelium) 4 culture dishes were established and every two days, half of the 

medium was changed. However, contrary to what has been stated by Girard et al., 2011; 

olfactory neurospheres were not formed after 2-5 days in culture. Two days after being 

subjected to neurospheres forming conditions, it is noted that most of the olfactory 

derived-cells failed to attach to the culture dishes. Comparing to the cells that attached to 

the culture dishes (elongated and bright cells), cells in suspension were altered in their 

morphology (round/oval) and color (darker); indicating that they were already dead or 

dying.  At this point, half of the medium was changed in all culture dishes, thereby 

removing most of these cells.    
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As seen in Figure 20 (A, C), during approximately 14 days, there were no hints of 

neurospheres formation either for lamina propria or epithelium derived cultures and the 

cells remain elongated. The first cell aggregates were visualized in lamina propria (Fig.20; 

B) and epithelium (Fig.20; D) derived cultures at day 20 and 25. Beyond these cell 

aggregates (~3 aggregates/dish), a very few number of elongated cells remain dispersed in 

culture.   

                           

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20 - Phase-contrast microphotographs taken on Lamina propria (A, B) 
and epithelium (C, D) derived cell cultures. The cells were plated at a density 
of 16.000 cells per square centimeter on 60mm culture dishes coated with 
poly-D-lysine and filled with DMEM/HAM F12 supplemented with ITS-X, EGF 
and FGF2. Scale bar = 100 µm 
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From the phase-contrast photomicrographs (Fig. 21; A, D) taken on lamina propria 

and epithelium derived cultures, we could  observe that nearly one week after its 

appearance, the cell aggregates were still the same size (< 100 µm) , indicating a low 

proliferation rate under neurosphere forming conditions. At that moment, the average 

number of aggregates reached its peak (~ 5 aggregates/dish); however, a few days later, 

we could observe that these cell aggregates started to degenerate (Fig. 21; B, C, E, F). 

 

 

As previously described, our experimental procedures were based in a report 

performed by Girard et. al. which established that 16.000 cells per square centimeter is 

an optimal plating density to generate olfactory neurospheres. However, using this 

density, we did not obtained good results.  

 

Figure 21 – Formation of olfactory neurospheres from lamina propria and epithelium derived stem cells. The cells 
were plated in DMEM/HAM F12 supplemented with ITS-X (1%), EGF (50ng/ml) and FGF2 (50ng/ml) at a density of 
16.000 cells per square centimeter on 60mm culture dishes coated with poly-D-lysine. Phase-contrast 
microphotographs taken on lamina propria derived cultures at day 25 (A), day 27 (B) and day 28 (C), as well on 
epithelium derived neurospheres at day 32 (D), day 34 (E) and day 34 (F).  PN: passage number; Scale bar = 100µm 



Establishing stem cell based model systems to study neuropathologies 

58 
 

The initial cell plating density was always decreasing over the time (most of the cells 

failed to attach to the culture dish after being plated and the few cells that attached to 

the dish surface failed to proliferate and started to die in culture) and thus, the cells 

remained scattered throughout the dish surface and failed to produce cells aggregates 

during approximately 20 days. This observation suggested that was not possible to 

preserve a favorable environmental niche (i.e.: cell-cell contact) to form olfactory 

neurospheres.  

In order to verify whether the initial cell plating density was too low to allow the 

formation of neurospheres, we decided to perform a new neurosphere forming assay 

where the initial cell density was altered and the olfactory neurospheres forming 

conditions were maintained [poly-D-lysine coated plastic culture dishes (60mm) filled 

whit DMEM/HAM F12 supplemented with ITS-X (1%), EGF (50ng/ml) and FGF2 (50ng/ml)].  

The new value of plating cell density was chosen based on previous studies which 

established that the optimal cell plating density for olfactory neurospheres formation 

should be 50.000cells/cm2 (Fig. 22).  

 

Figure 22 – Formation of olfactory neurospheres from lamina propria and epithelium derived stem cells. The cells were 
plated in DMEM/HAM F12 supplemented with ITS-X (1%), EGF (50ng/ml) and FGF2 (50ng/ml) at a density of 50.000 cells 
per square centimeter on 60mm culture dishes coated with poly-D-lysine. Phase-contrast photomicrographs taken on 
lamina propria and epithelium derived cultures at day 2 (A,E), day 3 (B,F), day 4 (C,G) and day 5 (D,H). PN: passage 
number; Scale bar = 100µm 
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For either culture type (i.e., lamina propria and epithelium) 2 culture dishes were 

established and every two days, half of the medium was changed. From the phase-

contrast photomicrographs taken on both cultures (Fig. 22 A,E), we could observe that 

immediately after being plated, olfactory cells displayed a clear tendency to aggregate 

and form ‘islets’.  At day 2, most of the cells (~95%) that have been plated under 

neurospheres forming conditions readily attached to the culture dish and arranged 

themselves into flat clumps that rapidly proliferate in culture. As seen in Figure 22 (C, G), 

at day 4 the cells had begun to proliferate at the centre of these flat clumps and had given 

rise to neurospheres (~ 40 neurospheres/dish), either in lamina propria or epithelium 

derived cultures. At that moment, the neurospheres  were spherical and optically dense 

with a diameter very similar among them (100-150µm). One day later, (Fig. 22 D,H) about 

half of the neurospheres floated in the medium while the rest remained attached to the 

dish surface. Moreover, either free floating or attached neurospheres had a well-defined 

sphere countour and a diameter slightly smaller compared to the previous day.  

Thus, 5 days after being plated, olfactory neurospheres (~ 40 neurospheres/dish) 

derived from rat 1 were collected for subsequent experiments. 

To assess whether neurospheres varied their number and morphological appearance 

at higher cell plating densities; the entire cell content on a 100mm culture dish in the 

higher confluent state (95-100%) , was transferred to a 60mm culture dish coated with 

poly-D-lysine and filled whith DMEM/HAM F12 supplemented with ITS-X (1%), EGF 

(50ng/ml) and FGF2 (50ng/ml) (Fig. 23). For either culture type, 2 dishes were established 

and every two days, half of the medium was changed. 

Comparatively to the previous assay (50.000cells/cm2 for cell plating density), we 

observed that the cells tend to form larger aggregates (>100µm) at this higher cell plating 

density (Fig.23 A, E, B, F); however the de number of aggregates decrease. Furthermore, 

we detected significant differences in the aggregates morphology. 
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Indeed, the aggregates formed during the last cell plating density assay, were more 

compact and had and heterogeneous shape; such as arc-shaped (Fig.23 B, D), spoon-

shaped (Fig 23. H) or s-shaped (Fig.23 H). Beyond this, there were no spherical aggregates 

in culture which could be classified as neurospheres. Significant differences between 

lamina and epithelium derived cultures were not registered once again. 

In order to confirm our ability to form neurospheres, we performed additional 

experiments (rat 2). Olfactory derived cells  were plated onto poly-D-lysine coated 60 mm 

cell culture petri dishes filled whit DMEM/HAM F12 supplemented with ITS-X (1%), EGF 

(50ng/ml) and FGF2 (50ng/ml). Regarding to their plating density, the cells were plated at 

50.000 cells per square centimeter; whereas that appeared to be the most favorable 

plating density for neurospheres formation (Fig. 24). Cell counting was carried out in 

triplicate using a haemocytometer and based in all subsequent experiments  5 culture 

dishes were established for either culture type (i.e.: lamina propria and epithelium). 

 

Figure 23 – Formation of olfactory neurospheres from lamina propria and epithelium derived stem cells. After 
reaching a confluent state of 95-100% on 100mm culture dishes, the entire cell contents in a 100mm culture dish was 
plated in DMEM/HAM F12 supplemented with ITS-X (1%), EGF (50ng/ml) and FGF2 (50ng/ml) on 60mm culture dishes 
coated with poly-D-lysine. Phase-contrast photomicrographs taken on lamina propria and epithelium derived cultures 
at day 2 (A,E), day 3 (B,F), day 4 (C,G) and day 5 (D,H). PN: passage number; Scale bar = 100µm 
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As seen in Figure 24 (A, B, I, J); 24 hours later, olfactory cells from rat 2 were already 

attached to the culture dish and organized into clumps that rapidly proliferate either in 

lamina propria or epithelium derived cultures. Cell aggregates within lamina propria-

derived cultures had given rise to neurospheres at day 3 (Fig. 24 E, F); while in epithelium-

derived cultures, neurospheres appeared at day 4 (Fig. 24 O, P). For both cultures, the 

neurospheres  were spherical and optically dense with a diameter very similar among 

them (100-150µm).  

 

 

 

 

Figure 24 - Phase-contrast photomicrographs taken on lamina propria and epithelium derived cultures at day 1 (A, B, I, 
J), day 2 (C,D, K, L), day 3 (E, F, M, N) and day 4 (G, H, O, P). PN: passage number; Scale bar = 100µm 
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At day 5, both in lamina propria and epithelium derived cultures had about half of the 

neurospheres floating in the medium. At that time, either free-floating or attached 

neurospheres had a well-defined countour and a darkest tint.  Moreover, their diameter 

appeared to be stable. Thus, 5 days after being plated, olfactory neurospheres (~ 32 

neurospheres/dish) derived from rat 2 were also collected for subsquent experiments. 

 

4.2.2 Establishment of the conditions for neurospheres differentiation  

 

As it was previously reported by Girard et al., 2011, olfactory neurospheres-derived 

cells (ONS) should proliferate as an adherent monolayer from the recently re-plated 

neurospheres in serum containing culture medium; while the neuron-like cells (NLC) 

should appear in Neurobasal culture medium after two to three weeks in culture. Thus, in 

order to assay their ability to differentiate into olfactory neurospheres-derived cells (ONS) 

and neuron-like cells (NLC), olfactory neurospheres derived from rat 1 were collected and 

re-plated in serum containing culture medium (DMEDM/ HAM F12 supplemented with 

10% FBS and 1% Pen/Strep) and Neurobasal medium containing 1X B-27; 2mM glutamine; 

0,025mM glutamate; 1% Pen/Strep and phenol red. 

Since some neurospheres were still adherent, we pipette several times up and down 

to release the maximum number of neurospheres. 

For each culture medium, 1 poly-D-lysine coated 60mm cell culture petri dish was 

established and while the serum containing culture medium was totally renewed every 2 

days, half of the Neurobasal medium were renewed every 3 days. 

 It is important to note that after being mechanically forced to detach from the dish 

surface, neurospheres remained spherical and compacts as before. Furthermore, they 

failed to attach to the dish surface either in serum containing or Neurobasal culture 

medium.  

Since the cells failed to attach to the dish surface, in order to preserve them during 

the medium renewing procedure, both media that we pretended to renew had to be 

firstly centrifuged. Then, while the supernatant medium was removed the cell pellet was 

resuspended in fresh culture media and transferred to the same culture dish.  



Establishing stem cell based model systems to study neuropathologies 

63 
 

Although this procedure seems to be fairly effective to preserve the floating cells in 

culture, these cells failed to attach, proliferate and then differentiate into olfactory 

neurospheres-derived (ONS) and neuron-like cells (NLCs).  

From Figure 25, we could observe that at day 15, floating neurospheres had given 

rise to clumps that was disaggregating in culture and did not seem to proliferate. 

Moreover, the lamina propria and epithelium derived cells maintained their round shape, 

either in serum containing (Fig. 25 A, B) and Neurobasal medium (Fig. 25 C, D). 

                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Approximately 1 month after being re-plated, contrary to what we expected, there 

were no signs of differentiation. At that time, the cells were still in suspension but they 

became smaller and darkest as before. Since this clearly indicated that the cells were 

dying in culture, we decided to discard them. 

Figure 25 - Phase-contrast photomicrographs taken on lamina propria and epithelium derived neurospheres at day 
15.  Neurospheres were collected and immediately re-plated in poly-D-lysine coated culture dishes (60mm) filled with 
serum containing culture medium (left side) and Neurobasal medium (right side). ONS: olfactory neurospheres-derived 
cells; NLC: neuron-like cells. Scale bar = 100µm  
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Once the olfactory neurospheres derived from rat 1 remained spherical and 

compacts, even after being subjected to several fluxes and refluxes of the culture 

medium; we decided to assess whether the maintenance of neurospheres tridimensional 

structure could affect their further differentiation into olfactory neurospheres-derived 

(ONS) and neuron-like cells (NLC). Thus, neurospheres derived from rat 2 were collected 

and ‘forced’ to slightly disaggregate trough trypsin action (1 minute at 37°C) even before 

being re-plated in serum containing culture medium (DMEDM/ HAM F12 supplemented 

with 10% FBS and 1% Pen/Strep) and Neurobasal medium containing 1X B-27; 2mM 

glutamine; 0,025mM glutamate; 1% Pen/Strep and phenol red (Fig. 26).  

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

Immediately after the trypsin action, there were some single cells in suspension 

and the neurosphere seemed to be smaller and less compact than before mainly in their 

periphery. Thus, we have verified that the enzymatic reaction leads to a release of some 

peripheral cells that were part of the olfactory neurospheres.  

Figure 26 – Outline of the experimental procedure for neurospheres 
differentiation.  ONS: olfactory neurospheres derived cells; NLC: neuron-like cells 
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4.2.2.1 Neurospheres differentiation into olfactory neurospheres-derived cells (ONS) 

 

We could observe that neurospheres, after being slightly disaggregated trough 

trypsin action and re-plated in serum containing culture medium, re-attached to the 

culture dishes and start to differentiate (Fig. 27). 

 

 

Figure 27 - Phase-contrast photomicrographs taken on olfactory neurospheres-derived cells (ONS) at day 3 (A, B, G, 
H); day 6 (C, D, I, J) and day 9 (E, F, K, L). Lamina-propria and epithelium derived neurospheres from Rat 2 were 
slightly disaggregated trough trypsin action (1min at 370C) before being re-plated in serum containing culture 
medium ( DMEDM/ HAM F12 supplemented with 10% FBS and 1% Pen/Strep). Scale bar = 100µm 
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At day 3 (Fig. 27 A, B, G, H); both lamina propria and epithelium derived 

neurospheres were flattened and dark mainly in the innermost regions and the 

neurospheres-derived cells (ONS) were proliferating from the neurospheres periphery.  

During the next 6 (Fig 27 C-F and I-L) to 8 days, in the same way as the primary 

cultures, olfactory neurospheres-derived cells (ONS) rapidly proliferated as an adherent 

monolayer to confluency. Then, these elongated cells were collected and expanded in 

culture for further experiments. Regarding to their proliferation rate, a doubling time of 

48h was registered, and in the course of the time, this value remained relatively constant 

for both type of cultures (i.e.: lamina propria and epithelium derived ONS).  

 

4.2.2.2 Neurospheres differentiation into neuron-like cells (NLC) 

 

We have also differentiated neurospheres into neuron-like cells (NLC) using 

Neurobasal medium containing 1X B-27; 2mM glutamine; 0,025mM glutamate; 1% 

Pen/Strep and phenol red.  

 

 

Figure 28 - Phase-contrast photomicrographs taken on olfactory neurospheres-derived cells at day 3 (A, D); day 6 
(B, E) and day 9 (C, F). Lamina-propria and epithelium derived neurospheres from Rat 2 were slightly disaggregated 
trough trypsin action (1min at 370C) before being re-plated in Neurobasal medium containing 1X B-27; 2mM 
glutamine; 0,025mM glutamate; 1% Pen/Strep and phenol red. Scale bar = 100µm 
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From Figure 28, we could observe that 3 days after being slightly disaggregated 

trough trypsin action and re-plated in Neurobasal medium, the dissociated neurospheres 

were completely flattened and their well defined spherical contour was almost 

imperceptibly. Moreover, we observed that elongated cells radially proliferate from the 

‘undone’ neurospheres. Nevertheless, 3 days later (Fig. 28 B, E) the recently formed cells 

seemed to be dying and at day 9 (Fig. 28 C, F) the cell death was accentuated. 

Since it was previously reported by Girard et al., 2011 that neuron-like cells should 

appeared in culture after two to three weeks, we decided to maintain these cells in 

culture.  During the third week, we registered an extremely low cellular density, since in 

the course of time; practically all the cells died in culture and were then discarded during 

the culture medium renewing procedure.     

Nevertheless, as it was previously mentioned by Girard et al., 2011; approximately 

three weeks after the neurospheres re-plating, we observed cells in culture which 

resembled neural cells (Fig. 29). However, a few days later, these neuron-like cells died in 

culture.   

 

 

Figure 29 - Phase-contrast photomicrographs taken on olfactory neurospheres-derived cells at day 25 (A, D); day 30 
(B, E) and day 35 (C, F). Lamina-propria and epithelium derived neurospheres from Rat 2 were slightly disaggregated 
trough trypsin action (1min at 37

0
C) before being re-plated in serum containing Neurobasal medium containing 1X B-

27; 2mM glutamine; 0,025mM glutamate; 1% Pen/Strep and phenol red. Scale bar = 100µm 



Establishing stem cell based model systems to study neuropathologies 

68 
 

4.3 CHARACTERIZATION OF OLFACTORY NEUROSPHERS-DERIVED CELLS  

(ONS) MODEL SYSTEM 

 

Since we successful differentiate olfactory stem cells into olfactory neurospheres-

derived cells (ONS) as evidenced by Figure 27; and we would like to use this newly 

isolated cells as a novel model system for studding neuropathologies, we carried on with 

several experiments in order to characterize morphologically and biochemically this 

model.  

Morphologically, ONS cells are elongated cells that grow as monolayer of adherent 

cells (Fig. 30). Regarding to their proliferation rate, a doubling time of 48h was registered, 

and in a time, this value remained relatively constant for both type of cultures (i.e.: 

lamina propria and epithelium derived (ONS).  

 

 

 

 

 

 

 

 

 

Figure 30 - Phase-contrast photomicrographs taken on olfactory neurospheres-derived cells (ONS) at day 9. Lamina-
propria (A and B) and epithelium (C and D) derived neurospheres were slightly disssotiated using trypsin before being 
re-plated in serum containing culture medium ( DMEDM/ HAM F12 supplemented with 10% FBS and 1% Pen/Strep). 
Scale bar = 100µm 

 

These ONS cells were then expanded by passages and several aliquots were 

freezed using freezing medium and stored in liquid nitrogen. 
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In order to confirm whether ONS cells are expressing β-tubulin-III, as previously 

reported from Girard et al., 2011; lamina propria and epithelium derived ONS cells were 

immunolabeled with β-tubulin-III monoclonal antibody, while their nuclei were labeled 

with DAPI. From the immunofluorescence images obtained, we could observe that both 

lamina propria (Fig. 31 A, C) and epithelium derived ONS cells (Fig. 31 D, F) expressed the 

neuronal marker β-tubulin-III.  

 

 

Furthermore, we also performed biochemical analysis of ONS cells that consist in 

the determination of the expression levels of two relevant proteins for neuropathologies - 

APP (Amyloid Precursor Protein) and Tau. The expression levels of the stemness marker 

Nestin were also evaluated. Briefly, we collect cell lysates of isolation/proliferation and 

differentiation procedures in 1%SDS and after protein content determination they were 

analyzed by SDS-PAGE followed by immnunoblotting using the specific antibodies for 

each protein of interest. The results are presented in Figure 32.  

 

Figure 31 - β-tubulin-III expression in lamina propria (A, C) and epithelium derived ONS cells (D, F). Cell nuclei were 
simultaneously stained with DAPI (B, E). LP: lamina propria; EPI: Epithelium. 
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In the left panel (Fig. 32), he have the samples collected during the 

isolation/proliferation and differentiation procedure that consist in nasal mucosa (NM), 

stem cell of lamina propria (SCLP) and epithelium (SCEPI); neurospheres of lamina propria 

(NSLP) and epithelium (NSEPI) and the neurospheres-derived cells (ONS) of Lamina 

Propria (ONSLP) and Epithelium (ONSEPI). In the right panel (Fig. 32) we intent to 

compare the ONS expression levels of the proteins of interest with other model systems 

like cell lines (PC12 and SH-SY5Y), rat primary cultures (PCCX) and Rat tissues (rat Cortex, 

CX and rat hippocampus, H). Regarding APP expressing levels, they were evaluated using 

the C-Term antibody that recognizes all APP isoforms. The three major APP isoforms, 

which predominate in most tissues, are APP695, APP751 and APP770, both in immature and 

mature forms. The APP695 is referred as neuronal APP isoform (immature form ~ 100 KDa 

and mature form ~ 130 KDa). Nasal mucosa expressed high levels of immature APP695, 

while stem cells (SCEPI and SCLP), NS (NSEPI and NSLP) and ONS (ONSEPI and ONSLP) 

express high levels of APP751/770 both in immature (~ 110 KDa) and mature isoforms (~ 140 

KDa) (Fig. 32, Panel I).  

Figure 32 – Comparison of APP, TAU-5 and Nestin expression levels in several samples collected during the 
isolation/proliferation and differentiation procedure (Panel I) and samples from other model systems (Panel II). Cell 
lysates were separated by SDS-PAGE followed by immunoblotting (IB) using specific antibodies against APP and Tau 
isoforms (C-TERM and TAU-5, respectively). An antibody against Nestin was also used. NM, nasal mucosa; SCEPI, Stem 
cells of epithelium; NSEPI, neurospheres of epithelium; ONSEPI, neurospheres-derived cells differentiated from 
epithelium (ONSEPI); SCLP, Stem cells of Lamina Propria; NSLP, neurospheres of lamina propria; OLPI, neurospheres-
derived cells differentiated from lamina propria; CX, rat cortex; Hipo, Rat hippocampus; SH, SH-SY5Y cell line; PC12, PC12 
cell line and rat cortical primary cultures (PCCX). 
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Curiously, the APP expression pattern is very similar between the ONS and the 

neuronal-like model systems previously characterized, namely PC12 and SH-SY5Y cell lines 

Surprisingly, no Tau is observed in olfactory mucosa derived samples (Fig. 32, 

Panel I) including in neurospheres-derived cells (ONS). The Tau protein is highly enriched 

in neuronal systems and therefore abundant in rat cortex and hippocampus samples and 

also in cortical primary cultures (Fig. 32, Panel II). 

Observing the Nestin expression levels in samples collected during the 

isolation/proliferation and differentiation procedure we clearly realize that the levels are 

higher in stem cell samples (SCEPI and SCLP) and also in neurospheres samples (NSEPI and 

NSLP) (Fig. 32, Panel I). In ONS cells the levels of Nestin are very low (Fig. ONS, Panel I) 

and not detected in Figure 32, Panel II.  
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5. DISCUSSION  
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The discovery that neurogenesis continues throughout adult life and the 

identification of neural stem cells in the adult human brain, has opened exciting new 

therapeutic options for a wide range of neuropathologies. These cells, allow to overcome 

most concerns that are usually encountered with other stem cell types, (e.g.: ethical and 

legal problems related with embryonic stem cells). However, due to their intracranial 

location, they require a highly invasive surgery for their removal. Moreover, a further 

understanding of the mechanisms regulating adult neurogenesis under normal and 

abnormal conditions is still required to the development of novel therapies, either for 

functional recovery after neurological disorders or trauma (Imayoshi et al., 2011).  

More recently, olfactory mucosa being a source of adult stem cells and therefore 

useful for establishment of model systems to study either the basic mechanisms that 

contribute to neuropathologies or to develop new diagnostic tools and therapeutic 

agents; have received much more attention for the scientific community. It has been 

demonstrated by several studies that new neuronal cells are continuously being 

generated in this tissue (Duggan and Ngai, 2007; Mackay-Sim, 2010), and contrary to the 

adult intracranial neuronal stem cells, olfactory mucosa-derived stem cells have the 

advantageous of being easily and non-invasively harvested in adult humans under local 

anesthesia (Girard et al., 2011).  

Neurogenesis within the olfactory mucosa, as in other renewing tissues, is 

substantiated by niches of stem cells, located both in the olfactory epithelium and in the 

underlying olfactory lamina propria (Delorme et al., 2010). Within the olfactory 

epithelium two distinct populations of stem cells contribute to the neurogenic process 

throughout life, namely the horizontal basal cells (HBCs) and the globose basal cells 

(GBCs). However, it has been reported that these epithelial stem cells exhibit a relatively 

poor proliferation rate (Delorme et al., 2010) and further investigation is required to 

improve their use either for comparative molecular studies or cell-based therapies 

(Wetzig et al., 2011). On the other hand, the recently discovered lamina propria-derived 

stem cells (Tome et al., 2009), have attracted the interest of the researchers which have 

taken advantage of their easily accessible location, high proliferation rate, ability to 

proliferate in long-term cultures and tendency to differentiate into neural cells.  
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 After being characterized as members of the mesenchymal stem cells superfamily 

(Delorme et al., 2010), olfactory ecto-mesenchymal stem cells (OE-MSC) have been 

emerging as a starting point to establish stem cell based systems to study 

neuropathologies (i.e.: schizophrenia (Matigian et al., 2010), Parkinson’s disease 

(Matigian et al., 2010; Cook et al., 2011) and familial dysautonomia (Boone et al., 2010)). 

Additionally and in parallel, it has been reported that OE-MSCs are a promising candidates 

for stem cell-based therapies; namely after early-onset sensorineural hearing loss (Pandit 

et al., 2011) or  hippocampal lesions (Nivet et al., 2011). 

 In the work here presented we intended to explore the possibility of establishing 

in our laboratory an OE-MSCs based model system to study neuropathologies (i.e.: 

Alzheimer´s disease, Parkinson disease and Dystonia). Based on a very recent study 

(Girard et al., 2011) we first collected rat olfactory mucosa (O.M) in order to establish 

primary cell cultures from this tissue. After removing the bone that covered the nasal 

cavity, the olfactory turbinates (O.T) located above the OM, were easily detected as 

orange/brown organs (Fig. 13). After incubation in a dispase II solution and under a 

dissecting microscope with a black background, we could verify that the olfactory lamina 

propria becomes stripped orange/brown, while the contiguous olfactory epithelium 

becomes thinner and looks white or translucent (Fig. 14). Based on their color and 

thickness, these contiguous tissues were separated/isolated and different cultures of 

each other produced. Nevertheless, and similar to what was previously reported (Murrell 

et al., 2005; Tome et al., 2009), our experiments indicate that due to the small size of the 

biological material (approximately 2 mm x 2 mm), the visual barrier between these 

olfactory tissues is almost imperceptible and thus, the dissection process that should 

occur along the basement membrane does not guarantee that cells from the other tissue 

are not present in culture. Taking this into account, and despite the OE-MSCs are derived 

from olfactory lamina propria; we decided to preserve the putative olfactory epithelium 

during the dissection procedure and use both tissues for the further procedures.  

 In general, from the results obtained we can verify that only slight differences 

between epithelium and lamina propria derived cultures are observed despite their 

identical primary cultures morphological appearance (Fig. 16), expression of the stemness 
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marker nestin (Fig. 17; Fig. 18 and Fig.19) or ability to form neurospheres (Fig. 22 and 

Fig.24) which can subsequently proliferate as olfactory neurospheres-derived cells (Fig. 

27) or terminally differentiate into neuron-like cells (Fig. 28 and Fig. 29). Moreover, there 

were no significant differences in the neurospheres morphology, size or number.  

 Since it has been reported that the stemness marker nestin is expressed both by 

epithelium and lamina propria-derived stem cells and these two distinct cell types 

displaying the same ability to form neurospheres (Tome et al., 2009); to establish a stem 

cell based model system to study neuropathologies in our laboratory, there is an 

additional need of examining the expression of specific cell markers both for olfactory 

lamina propria and epithelium derived stem cells. Based on a previous study (Tome et al., 

2009) it is reasonable to deduce that the future work to determine which types of cells 

are growing in culture will be to assess the expression of two tissue-specific cell markers, 

namely Stro-1 and Cytokeratins. While the mesenchymal stem cell marker Stro-1 was 

expressed by lamina propria-derived cells but not by the cells of the olfactory epithelium; 

Cytokeratins (broad spectrum antibody) were expressed by two types of epithelial cells 

(i.e.: horizontal basal cells and sustentacular cells) but not by lamina propria-derived cells 

(Tome et al., 2009). 

 Once established that primary cultures isolated from rat olfactory mucosa were 

proliferating as adherent monolayers of elongated cells according with previously 

described, we subsequently evaluated the expression of the stemness marker nestin (Fig. 

17; Fig. 18 and Fig 19). The assessment of nestin expression in both cultures revealed that 

we successfully isolated olfactory stem cells and then, several experiments were carried 

out using these olfactory stem cells.  

 First of all, to assay the potential of olfactory stem cells for generate 

neurospheres, olfactory cells from rat 1 were plated at a density of 16.000 cells per 

square centimeter on poly-D-lysine coated cell culture petri dishes filled with 

DMEM/HAM-F12 supplemented with ITS, EGF and FGF2 (Fig. 20 and Fig. 21). As already 

mentioned, these experimental conditions to form olfactory neurospheres were 

previously described by Girard et al.   
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 Nevertheless, contrary to what has been stated in that study; after 2-5 days there 

were no neurospheres in our cultures and even after 2 weeks, there were no hints of 

neurospheres formation (Fig. 20; A, C). After 3 weeks under neurospheres forming 

conditions, small cell aggregates appeared both in lamina propria (Fig. 20; B) and 

epithelium derived cultures (Fig. 20; D); however a few days later we observed that these 

cell aggregates were degenerating and their cells were dying in culture (Fig. 21).    

 Since the study from Girard et al. is focused exclusively on lamina propria derived 

olfactory ecto-mesenchymal stem cells (OE-MSCs), one hypothesis arises to explain the 

failure in the neurospheres formation within lamina propria derived cultures: as we 

suspected, the dissection method to separate the tissues within the olfactory mucosa 

does not guarantee that epithelial cells are not present in lamina propria derived culture. 

This means that the number of OE-MSCs that were available to form neurospheres would 

be less than 16.000cells/cm2
 and thus, the minimum density to generate neurospheres is 

not assured.  

 In order to verify whether the initial cell plating density was too low to allow the 

formation of neurospheres, we decided to perform a new neurosphere forming assay. 

The new value for cell plating density was chosen based on previous studies (Wetzig, 

2006; Wetzig et al., 2011) which established that the optimal cell plating density for 

olfactory neurospheres formation should be 50.000cells/cm2. In this context, it is 

important to note that in these studies, to establish primary cultures from rat olfactory 

mucosa, the lamina propria-derived cells and olfactory epithelium derived cells were 

purposely combined before being plated in serum-containing culture medium. By 

analyzing the phase contrast photomicrographs taken on both cultures during this 

neurospheres forming assay (Fig. 22), it is evident that after being plated at a density of 

50.000cells/cm2
, almost all cells (~95%) attached to the culture dish and arranged 

themselves into flat clumps that rapidly proliferate in culture (Fig. 22; A,E). After 4 days 

under neurospheres forming conditions the cells had given rise to neurospheres 

(~40neurospheres/dish), either in lamina propria or epithelium derived culture (Fig. 22; 

C,G). To assess their ability to differentiate into olfactory neurospheres-derived cells 

(ONS) and neuron-like cells (NLCs); at day 5 (Fig.22; D, H) olfactory neurospheres derived 
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from rat 1 were collected and re-plated either in serum-containing culture medium or 

Neurobasal medium; as will be discussed below. 

 During the last assay to determine the most favorable density to form 

neurospheres from our primary cultures, olfactory cells were plated at higher cell plating 

densities (Fig. 23) under the same neurospheres forming conditions. Our experiment 

revealed that the cells did not form neurospheres; which means that too many cells in 

culture also may create a niche that inhibits neurospheres formation. In order to confirm 

that primary stem cell cultures are able to generate neurospheres, olfactory cells 

previously isolated from rat 2 were also plated under neurospheres forming conditions at 

a density of 50.000 cells/cm2; whereas that appeared to be the most favorable plating 

density for neurospheres formation. As shown in Figure 24, this density proved suitable 

for this neurospheres forming assay; once after 4 days under neurospheres forming 

conditions the cells had given rise to neurospheres either in the lamina propria or 

epithelium derived cultures.  

 Then, like olfactory neurospheres from rat 1, olfactory neurospheres from rat 2 

were collected and re-plated either in serum-containing culture medium or Neurobasal 

medium; also to assess their ability to differentiate into olfactory neurospheres derived 

cells (ONS) and neuron-like cells (NLCs). As previously reported by Girard et al., olfactory 

neurospheres-derived cells (ONS), should proliferate as an adherent monolayer from the 

recently re-plated neurospheres in serum containing culture medium; while the neuron-

like cells (NLC) should appear in Neurobasal culture medium after two to three weeks in 

culture. In the first experiment, which was carried out on olfactory neurospheres from rat 

1; the neurospheres remained spherical and compacts even after being forced to detach 

from the dish surface with medium fluxes and refluxes, and perhaps because of this they 

failed to re-attach, proliferate and subsequently differentiate either in ONS or NLCs (Fig. 

25). Thus, and since the results obtained seemed to indicate that the maintenance of the 

neurospheres tridimensional structure may prevent the attachment of the neurospheres 

to the dish surface both in serum-containing and Neurobasal medium; olfactory 

neurospheres derived from rat 2 were collected and ‘forced’ to slightly disaggregate 

trough trypsin action and then re-plated in both media.  
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 As shown in Figure 27, after being re-plated in serum-containing culture medium, 

these neurospheres successfully re-attached to the new dish surface and from the third 

day, olfactory neurospheres-derived cells (ONS) rapidly proliferated as an adherent 

monolayer from the neurospheres periphery. We have also differentiated neurospheres 

into neuron-like cells (NLC) in Neurobasal medium (Fig. 28 and Fig. 29). Nevertheless, we 

registered an extremely low cell density, since in the course of time; practically all the 

cells died in culture, suggesting that additional experiments should be performed in order 

to optimize the differentiation conditions (e.g: adding nerve growth factor - NGF - to the 

culture medium)   

 Characterization of the ONS model system was also performed. The preliminary 

morphological and biochemical characterization of the ONS models system was achieved 

and revealed that our ONS model system in term of APP and Tau expression levels 

behaves similarly to neuronal-like model systems previously characterized including PC12 

and SH-SY5Y cell lines. However, additional characterization should also be performed.  

 In conclusion, our results strength the hypothesis of using stem cell based model 

systems to study the cellular and molecular mechanisms underlying several 

neuropathologies, including Alzheimer’s disease. 

 

 



Establishing stem cell based model systems to study neuropathologies 

80 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Establishing stem cell based model systems to study neuropathologies 

81 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6. REFERENCES 
 



Establishing stem cell based model systems to study neuropathologies 

82 
 

Aasen, T., A. Raya, M. J. Barrero, E. Garreta, A. Consiglio, F. Gonzalez, R. Vassena, J. 

Bilic, et al. (2008). "Efficient and rapid generation of induced pluripotent stem cells from 

human keratinocytes." Nat Biotechnol 26(11): 1276-84. 

Aggarwal, S. and M. F. Pittenger (2005). "Human mesenchymal stem cells 

modulate allogeneic immune cell responses." Blood 105(4): 1815-22. 

Ahmad, S., C. Osei-Bempong, R. Dana and U. Jurkunas (2010). "The culture and 

transplantation of human limbal stem cells." J Cell Physiol 225(1): 15-9. 

Ahn, J. M., C. H. Lee, D. Y. Kim, C. S. Rhee, Y. G. Min and J. W. Kim (2008). 

"Maintenance of regional difference in cellular composition of neurospheres derived from 

adult mouse olfactory bulb." Eur Arch Otorhinolaryngol 265(4): 429-34. 

Ailles, L. E. and I. L. Weissman (2007). "Cancer stem cells in solid tumors." Curr 

Opin Biotechnol 18(5): 460-6. 

Andres, K. (1966). "Der Feinbau der Regio olfactoria von Makrosmatikern " Z. 

Zellforsch. Mikrosk. Anat. 69: 140 -154. 

Aoi, T., K. Yae, M. Nakagawa, T. Ichisaka, K. Okita, K. Takahashi, T. Chiba and S. 

Yamanaka (2008). "Generation of pluripotent stem cells from adult mouse liver and 

stomach cells." Science 321(5889): 699-702. 

Barresi, M., R. Ciurleo, S. Giacoppo, V. Foti Cuzzola, D. Celi, P. Bramanti and S. 

Marino (2012). "Evaluation of olfactory dysfunction in neurodegenerative diseases." J 

Neurol Sci. 

Blanpain, C., V. Horsley and E. Fuchs (2007). "Epithelial stem cells: turning over 

new leaves." Cell 128(3): 445-58. 

Boone, N., B. Loriod, A. Bergon, O. Sbai, C. Formisano-Treziny, J. Gabert, M. 

Khrestchatisky, C. Nguyen, et al. (2010). "Olfactory stem cells, a new cellular model for 

studying molecular mechanisms underlying familial dysautonomia." PLoS One 5(12): 

e15590. 



Establishing stem cell based model systems to study neuropathologies 

83 
 

Bortin, M. M. (1970). "A compendium of reported human bone marrow 

transplants." Transplantation 9(6): 571-87. 

Brewer, W. J., S. J. Wood, P. D. McGorry, S. M. Francey, L. J. Phillips, A. R. Yung, V. 

Anderson, D. L. Copolov, et al. (2003). "Impairment of olfactory identification ability in 

individuals at ultra-high risk for psychosis who later develop schizophrenia." Am J 

Psychiatry 160(10): 1790-4. 

Brons, I. G., L. E. Smithers, M. W. Trotter, P. Rugg-Gunn, B. Sun, S. M. Chuva de 

Sousa Lopes, S. K. Howlett, A. Clarkson, et al. (2007). "Derivation of pluripotent epiblast 

stem cells from mammalian embryos." Nature 448(7150): 191-5. 

Carter, L. A., J. L. MacDonald and A. J. Roskams (2004). "Olfactory horizontal basal 

cells demonstrate a conserved multipotent progenitor phenotype." J Neurosci 24(25): 

5670-83. 

Chamberlain, G., J. Fox, B. Ashton and J. Middleton (2007). "Concise review: 

mesenchymal stem cells: their phenotype, differentiation capacity, immunological 

features, and potential for homing." Stem Cells 25(11): 2739-49. 

Chen, X., H. Fang and J. E. Schwob (2004). "Multipotency of purified, transplanted 

globose basal cells in olfactory epithelium." J Comp Neurol 469(4): 457-74. 

Chuah, M. I. and C. Au (1991). "Olfactory Schwann cells are derived from precursor 

cells in the olfactory epithelium." J Neurosci Res 29(2): 172-80. 

Cook, A. L., A. M. Vitale, S. Ravishankar, N. Matigian, G. T. Sutherland, J. Shan, R. 

Sutharsan, C. Perry, et al. (2011). "NRF2 activation restores disease related metabolic 

deficiencies in olfactory neurosphere-derived cells from patients with sporadic 

Parkinson's disease." PLoS One 6(7): e21907. 

da Silva Meirelles, L., P. C. Chagastelles and N. B. Nardi (2006). "Mesenchymal 

stem cells reside in virtually all post-natal organs and tissues." J Cell Sci 119(Pt 11): 2204-

13. 



Establishing stem cell based model systems to study neuropathologies 

84 
 

Dalerba, P., R. W. Cho and M. F. Clarke (2007). "Cancer stem cells: models and 

concepts." Annu Rev Med 58: 267-84. 

Daley, G. Q. (2010). "Stem cells: roadmap to the clinic." J Clin Invest 120(1): 8-10. 

Delorme, B., E. Nivet, J. Gaillard, T. Haupl, J. Ringe, A. Deveze, J. Magnan, J. Sohier, 

et al. (2010). "The human nose harbors a niche of olfactory ectomesenchymal stem cells 

displaying neurogenic and osteogenic properties." Stem Cells Dev 19(6): 853-66. 

Dimos, J. T., K. T. Rodolfa, K. K. Niakan, L. M. Weisenthal, H. Mitsumoto, W. Chung, 

G. F. Croft, G. Saphier, et al. (2008). "Induced pluripotent stem cells generated from 

patients with ALS can be differentiated into motor neurons." Science 321(5893): 1218-21. 

Duggan, C. D. and J. Ngai (2007). "Scent of a stem cell." Nat Neurosci 10(6): 673-4. 

Dulac, C. and A. T. Torello (2003). "Molecular detection of pheromone signals in 

mammals: from genes to behaviour." Nat Rev Neurosci 4(7): 551-62. 

Escada, P. A., C. Lima and J. M. da Silva (2009). "The human olfactory mucosa." Eur 

Arch Otorhinolaryngol 266(11): 1675-80. 

Evans, M. J. and M. H. Kaufman (1981). "Establishment in culture of pluripotential 

cells from mouse embryos." Nature 292(5819): 154-6. 

Feron, F., A. Mackay-Sim, J. L. Andrieu, K. I. Matthaei, A. Holley and G. Sicard 

(1999). "Stress induces neurogenesis in non-neuronal cell cultures of adult olfactory 

epithelium." Neuroscience 88(2): 571-83. 

Feron, F., C. Perry, J. J. McGrath and A. Mackay-Sim (1998). "New techniques for 

biopsy and culture of human olfactory epithelial neurons." Arch Otolaryngol Head Neck 

Surg 124(8): 861-6. 

Franssen, E. H., F. M. de Bree and J. Verhaagen (2007). "Olfactory ensheathing glia: 

their contribution to primary olfactory nervous system regeneration and their 

regenerative potential following transplantation into the injured spinal cord." Brain Res 

Rev 56(1): 236-58. 



Establishing stem cell based model systems to study neuropathologies 

85 
 

Gatti, R. A., H. J. Meuwissen, H. D. Allen, R. Hong and R. A. Good (1968). 

"Immunological reconstitution of sex-linked lymphopenic immunological deficiency." 

Lancet 2(7583): 1366-9. 

Girard, S. D., A. Deveze, E. Nivet, B. Gepner, F. S. Roman and F. Feron (2011). 

"Isolating nasal olfactory stem cells from rodents or humans." J Vis Exp(54). 

Gluckman, E., A. Ruggeri, F. Volt, R. Cunha, K. Boudjedir and V. Rocha (2011). 

"Milestones in umbilical cord blood transplantation." Br J Haematol 154(4): 441-7. 

Gnecchi, M. and L. G. Melo (2009). "Bone marrow-derived mesenchymal stem 

cells: isolation, expansion, characterization, viral transduction, and production of 

conditioned medium." Methods Mol Biol 482: 281-94. 

Graziadei, P. P., M. S. Karlan, G. A. Graziadei and J. J. Bernstein (1980). 

"Neurogenesis of sensory neurons in the primate olfactory system after section of the fila 

olfactoria." Brain Res 186(2): 289-300. 

Gritti, A., P. Frolichsthal-Schoeller, R. Galli, E. A. Parati, L. Cova, S. F. Pagano, C. R. 

Bjornson and A. L. Vescovi (1999). "Epidermal and fibroblast growth factors behave as 

mitogenic regulators for a single multipotent stem cell-like population from the 

subventricular region of the adult mouse forebrain." J Neurosci 19(9): 3287-97. 

Gronthos, S., D. M. Franklin, H. A. Leddy, P. G. Robey, R. W. Storms and J. M. 

Gimble (2001). "Surface protein characterization of human adipose tissue-derived stromal 

cells." J Cell Physiol 189(1): 54-63. 

Guerout, N., A. Paviot, N. Bon-Mardion, C. Duclos, D. Genty, L. Jean, O. Boyer and 

J. P. Marie (2011). "Co-transplantation of olfactory ensheathing cells from mucosa and 

bulb origin enhances functional recovery after peripheral nerve lesion." PLoS One 6(8): 

e22816. 

Gurdon, J. B., T. R. Elsdale and M. Fischberg (1958). "Sexually mature individuals of 

Xenopus laevis from the transplantation of single somatic nuclei." Nature 182(4627): 64-

5. 



Establishing stem cell based model systems to study neuropathologies 

86 
 

Haehner, A., S. Boesveldt, H. W. Berendse, A. Mackay-Sim, J. Fleischmann, P. A. 

Silburn, A. N. Johnston, G. D. Mellick, et al. (2009). "Prevalence of smell loss in Parkinson's 

disease--a multicenter study." Parkinsonism Relat Disord 15(7): 490-4. 

Hannan, N. R. and E. J. Wolvetang (2009). "Adipocyte differentiation in human 

embryonic stem cells transduced with Oct4 shRNA lentivirus." Stem Cells Dev 18(4): 653-

60. 

Hao, Y. Q., N. Lu, H. Li and L. F. Zhao (2010). "[Isolation and in vitro culture of bone 

marrow-derived mesenchymal stem cells]." Zhonghua Gan Zang Bing Za Zhi 18(7): 542-3. 

Harkema, J. R., S. A. Carey and J. G. Wagner (2006). "The nose revisited: a brief 

review of the comparative structure, function, and toxicologic pathology of the nasal 

epithelium." Toxicol Pathol 34(3): 252-69. 

Imayoshi, I., M. Sakamoto and R. Kageyama (2011). "Genetic methods to identify 

and manipulate newly born neurons in the adult brain." Front Neurosci 5: 64. 

Jang, J., J. E. Yoo, J. A. Lee, D. R. Lee, J. Y. Kim, Y. J. Huh, D. S. Kim, C. Y. Park, et al. 

(2012). "Disease-specific induced pluripotent stem cells: a platform for human disease 

modeling and drug discovery." Exp Mol Med 44(3): 202-13. 

Jang, W., S. L. Youngentob and J. E. Schwob (2003). "Globose basal cells are 

required for reconstitution of olfactory epithelium after methyl bromide lesion." J Comp 

Neurol 460(1): 123-40. 

Kerr, C. L., M. J. Shamblott and J. D. Gearhart (2006). "Pluripotent stem cells from 

germ cells." Methods Enzymol 419: 400-26. 

Kilpatrick, T. J. and P. F. Bartlett (1995). "Cloned multipotential precursors from 

the mouse cerebrum require FGF-2, whereas glial restricted precursors are stimulated 

with either FGF-2 or EGF." J Neurosci 15(5 Pt 1): 3653-61. 

Kim, H. J. and C. Y. Jin (2012). "Stem cells in drug screening for 

neurodegenerative disease." Korean J Physiol Pharmacol 16(1): 1-9. 



Establishing stem cell based model systems to study neuropathologies 

87 
 

Koo, H. H. and H. S. Ahn (2012). "Umbilical cord blood transplantation." Korean J 

Pediatr 55(7): 219-23. 

Korbling, M. and E. J. Freireich (2011). "Twenty-five years of peripheral blood stem 

cell transplantation." Blood 117(24): 6411-6. 

Kuznetsov, S. A., M. H. Mankani, S. Gronthos, K. Satomura, P. Bianco and P. G. 

Robey (2001). "Circulating skeletal stem cells." J Cell Biol 153(5): 1133-40. 

LaMantia, A. S., N. Bhasin, K. Rhodes and J. Heemskerk (2000). 

"Mesenchymal/epithelial induction mediates olfactory pathway formation." Neuron 

28(2): 411-25. 

Leung, C. T., P. A. Coulombe and R. R. Reed (2007). "Contribution of olfactory 

neural stem cells to tissue maintenance and regeneration." Nat Neurosci 10(6): 720-6. 

Li, L. and R. Bhatia (2011). "Stem cell quiescence." Clin Cancer Res 17(15): 4936-41. 

Lledo, P. M., G. Gheusi and J. D. Vincent (2005). "Information processing in the 

mammalian olfactory system." Physiol Rev 85(1): 281-317. 

Mackay-Sim, A. (2010). "Stem cells and their niche in the adult olfactory mucosa." 

Arch Ital Biol 148(2): 47-58. 

Maltman, D. J., S. A. Hardy and S. A. Przyborski (2011). "Role of mesenchymal stem 

cells in neurogenesis and nervous system repair." Neurochem Int 59(3): 347-56. 

Martin, G. R. (1981). "Isolation of a pluripotent cell line from early mouse embryos 

cultured in medium conditioned by teratocarcinoma stem cells." Proc Natl Acad Sci U S A 

78(12): 7634-8. 

Matigian, N., G. Abrahamsen, R. Sutharsan, A. L. Cook, A. M. Vitale, A. Nouwens, B. 

Bellette, J. An, et al. (2010). "Disease-specific, neurosphere-derived cells as models for 

brain disorders." Dis Model Mech 3(11-12): 785-98. 



Establishing stem cell based model systems to study neuropathologies 

88 
 

Matigian, N. A., R. D. McCurdy, F. Feron, C. Perry, H. Smith, C. Filippich, D. McLean, 

J. McGrath, et al. (2008). "Fibroblast and lymphoblast gene expression profiles in 

schizophrenia: are non-neural cells informative?" PLoS One 3(6): e2412. 

Ming, G. L. and H. Song (2005). "Adult neurogenesis in the mammalian central 

nervous system." Annu Rev Neurosci 28: 223-50. 

Miura, M., S. Gronthos, M. Zhao, B. Lu, L. W. Fisher, P. G. Robey and S. Shi (2003). 

"SHED: stem cells from human exfoliated deciduous teeth." Proc Natl Acad Sci U S A 

100(10): 5807-12. 

Mombaerts, P. (1999). "Odorant receptor genes in humans." Curr Opin Genet Dev 

9(3): 315-20. 

Mombaerts, P. (2001). "The human repertoire of odorant receptor genes and 

pseudogenes." Annu Rev Genomics Hum Genet 2: 493-510. 

Murrell, W., G. R. Bushell, J. Livesey, J. McGrath, K. P. MacDonald, P. R. Bates and 

A. Mackay-Sim (1996). "Neurogenesis in adult human." Neuroreport 7(6): 1189-94. 

Murrell, W., F. Feron, A. Wetzig, N. Cameron, K. Splatt, B. Bellette, J. Bianco, C. 

Perry, et al. (2005). "Multipotent stem cells from adult olfactory mucosa." Dev Dyn 

233(2): 496-515. 

Nagahara, Y. (1940). "Experimentelle studien uber die histologischen 

Veranderungen des Geruchsorgans nach der olfactorius durchschneidung." Jap. J. Med. 

Sci. V. Pathol., 5: 165. 

Neumuller, R. A. and J. A. Knoblich (2009). "Dividing cellular asymmetry: 

asymmetric cell division and its implications for stem cells and cancer." Genes Dev 23(23): 

2675-99. 

Nivet, E., M. Vignes, S. D. Girard, C. Pierrisnard, N. Baril, A. Deveze, J. Magnan, F. 

Lante, et al. (2011). "Engraftment of human nasal olfactory stem cells restores 

neuroplasticity in mice with hippocampal lesions." J Clin Invest 121(7): 2808-20. 



Establishing stem cell based model systems to study neuropathologies 

89 
 

Pandit, S. R., J. M. Sullivan, V. Egger, A. A. Borecki and S. Oleskevich (2011). 

"Functional effects of adult human olfactory stem cells on early-onset sensorineural 

hearing loss." Stem Cells 29(4): 670-7. 

Park, I. H., N. Arora, H. Huo, N. Maherali, T. Ahfeldt, A. Shimamura, M. W. Lensch, 

C. Cowan, et al. (2008). "Disease-specific induced pluripotent stem cells." Cell 134(5): 877-

86. 

Park, I. H., R. Zhao, J. A. West, A. Yabuuchi, H. Huo, T. A. Ince, P. H. Lerou, M. W. 

Lensch, et al. (2008). "Reprogramming of human somatic cells to pluripotency with 

defined factors." Nature 451(7175): 141-6. 

Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. 

A. Moorman, D. W. Simonetti, et al. (1999). "Multilineage potential of adult human 

mesenchymal stem cells." Science 284(5411): 143-7. 

Preston, S. L., M. R. Alison, S. J. Forbes, N. C. Direkze, R. Poulsom and N. A. Wright 

(2003). "The new stem cell biology: something for everyone." Mol Pathol 56(2): 86-96. 

Radtke, C., A. A. Aizer, S. K. Agulian, K. L. Lankford, P. M. Vogt and J. D. Kocsis 

(2009). "Transplantation of olfactory ensheathing cells enhances peripheral nerve 

regeneration after microsurgical nerve repair." Brain Res 1254: 10-7. 

Radtke, C. and P. M. Vogt (2009). "Peripheral nerve regeneration: a current 

perspective." Eplasty 9: e47. 

Rakesh Sharma Ka, S. C. (2009). "STEM CELLS – THE ULTIMATE BODY REPAIR KIT." 

Journal of Medicine II(2). 

Rock, J. R., M. W. Onaitis, E. L. Rawlins, Y. Lu, C. P. Clark, Y. Xue, S. H. Randell and 

B. L. Hogan (2009). "Basal cells as stem cells of the mouse trachea and human airway 

epithelium." Proc Natl Acad Sci U S A 106(31): 12771-5. 



Establishing stem cell based model systems to study neuropathologies 

90 
 

Rosada, C., J. Justesen, D. Melsvik, P. Ebbesen and M. Kassem (2003). "The human 

umbilical cord blood: a potential source for osteoblast progenitor cells." Calcif Tissue Int 

72(2): 135-42. 

Salingcarnboriboon, R., H. Yoshitake, K. Tsuji, M. Obinata, T. Amagasa, A. Nifuji and 

M. Noda (2003). "Establishment of tendon-derived cell lines exhibiting pluripotent 

mesenchymal stem cell-like property." Exp Cell Res 287(2): 289-300. 

Schultz, E. W. (1941). "Regeneration of Olfactory Cells." Poc. Soc. Exp. Biol. Med. 

46: 41-43. 

Seo, B. M., M. Miura, S. Gronthos, P. M. Bartold, S. Batouli, J. Brahim, M. Young, P. 

G. Robey, et al. (2004). "Investigation of multipotent postnatal stem cells from human 

periodontal ligament." Lancet 364(9429): 149-55. 

Shackleton, M., F. Vaillant, K. J. Simpson, J. Stingl, G. K. Smyth, M. L. Asselin-Labat, 

L. Wu, G. J. Lindeman, et al. (2006). "Generation of a functional mammary gland from a 

single stem cell." Nature 439(7072): 84-8. 

Shetty, A. K. and D. A. Turner (1998). "In vitro survival and differentiation of 

neurons derived from epidermal growth factor-responsive postnatal hippocampal stem 

cells: inducing effects of brain-derived neurotrophic factor." J Neurobiol 35(4): 395-425. 

Smart, I. H. (1971). "Location and orientation of mitotic figures in the developing 

mouse olfactory epithelium." J Anat 109(Pt 2): 243-51. 

Smith, C. (2003). "Hematopoietic stem cells and hematopoiesis." Cancer Control 

10(1): 9-16. 

Smith, C. G. (1951). "Regeneration of sensory olfactory epithelium and nerves in 

adult frogs." Anat Rec 109(4): 661-71. 

Stadtfeld, M. and K. Hochedlinger (2010). "Induced pluripotency: history, 

mechanisms, and applications." Genes Dev 24(20): 2239-63. 



Establishing stem cell based model systems to study neuropathologies 

91 
 

Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. 

Yamanaka (2007). "Induction of pluripotent stem cells from adult human fibroblasts by 

defined factors." Cell 131(5): 861-72. 

Takahashi, K. and S. Yamanaka (2006). "Induction of pluripotent stem cells from 

mouse embryonic and adult fibroblast cultures by defined factors." Cell 126(4): 663-76. 

Tesar, P. J., J. G. Chenoweth, F. A. Brook, T. J. Davies, E. P. Evans, D. L. Mack, R. L. 

Gardner and R. D. McKay (2007). "New cell lines from mouse epiblast share defining 

features with human embryonic stem cells." Nature 448(7150): 196-9. 

Tharion, G., K. Indirani, M. Durai, M. Meenakshi, S. R. Devasahayam, N. R. Prabhav, 

C. Solomons and S. Bhattacharji (2011). "Motor recovery following olfactory ensheathing 

cell transplantation in rats with spinal cord injury." Neurol India 59(4): 566-72. 

Thomson, J. A., J. Itskovitz-Eldor, S. S. Shapiro, M. A. Waknitz, J. J. Swiergiel, V. S. 

Marshall and J. M. Jones (1998). "Embryonic stem cell lines derived from human 

blastocysts." Science 282(5391): 1145-7. 

Thornhill, R. A. (1970). "Cell division in the olfactory epithelium of the lamprey, 

Lampetra fluviatilis." Z Zellforsch Mikrosk Anat 109(2): 147-57. 

Tome, M., S. L. Lindsay, J. S. Riddell and S. C. Barnett (2009). "Identification of 

nonepithelial multipotent cells in the embryonic olfactory mucosa." Stem Cells 27(9): 

2196-208. 

Tomita, Y., K. Matsumura, Y. Wakamatsu, Y. Matsuzaki, I. Shibuya, H. Kawaguchi, 

M. Ieda, S. Kanakubo, et al. (2005). "Cardiac neural crest cells contribute to the dormant 

multipotent stem cell in the mammalian heart." J Cell Biol 170(7): 1135-46. 

Trotier, D. (2011). "Vomeronasal organ and human pheromones." Eur Ann 

Otorhinolaryngol Head Neck Dis 128(4): 184-90. 

Verma, A. and N. Verma (2011). "Induced pluripotent stem cells and promises of 

neuroregenerative medicine." Neurol India 59(4): 555-7. 



Establishing stem cell based model systems to study neuropathologies 

92 
 

Vescovi, A. L., R. Galli and B. A. Reynolds (2006). "Brain tumour stem cells." Nat 

Rev Cancer 6(6): 425-36. 

Wagner, J. E. and E. Gluckman (2010). "Umbilical cord blood transplantation: the 

first 20 years." Semin Hematol 47(1): 3-12. 

Wang, J. C. and J. E. Dick (2005). "Cancer stem cells: lessons from leukemia." 

Trends Cell Biol 15(9): 494-501. 

Wang, L., H. E. Lockstone, P. C. Guest, Y. Levin, A. Palotas, S. Pietsch, E. Schwarz, H. 

Rahmoune, et al. (2010). "Expression profiling of fibroblasts identifies cell cycle 

abnormalities in schizophrenia." J Proteome Res 9(1): 521-7. 

Watt, F. M. and R. R. Driskell (2010). "The therapeutic potential of stem cells." 

Philos Trans R Soc Lond B Biol Sci 365(1537): 155-63. 

Weiss, S., C. Dunne, J. Hewson, C. Wohl, M. Wheatley, A. C. Peterson and B. A. 

Reynolds (1996). "Multipotent CNS stem cells are present in the adult mammalian spinal 

cord and ventricular neuroaxis." J Neurosci 16(23): 7599-609. 

Westerman, R. A. and R. von Baumgarten (1964). "Regeneration of olfactory paths 

in carp (Cyprinus carpio L.)." Experientia 20(9): 519-20. 

Wetzig, A., A. Mackay-Sim and W. Murrell (2011). "Characterization of olfactory 

stem cells." Cell Transplant. 

Wetzig, a. R. (2006). "Olfactory stem cells from adult rats." 

Wobus, A. M. and K. R. Boheler (2005). "Embryonic stem cells: prospects for 

developmental biology and cell therapy." Physiol Rev 85(2): 635-78. 

Wolozin, B., T. Sunderland, B. B. Zheng, J. Resau, B. Dufy, J. Barker, R. Swerdlow 

and H. Coon (1992). "Continuous culture of neuronal cells from adult human olfactory 

epithelium." J Mol Neurosci 3(3): 137-46. 



Establishing stem cell based model systems to study neuropathologies 

93 
 

Wylegala, E., D. Dobrowolski, D. Tarnawska, D. Janiszewska, B. Gabryel, A. Malecki 

and U. Siekiera (2008). "Limbal stem cells transplantation in the reconstruction of the 

ocular surface: 6 years experience." Eur J Ophthalmol 18(6): 886-90. 

Yu, J., M. A. Vodyanik, K. Smuga-Otto, J. Antosiewicz-Bourget, J. L. Frane, S. Tian, J. 

Nie, G. A. Jonsdottir, et al. (2007). "Induced pluripotent stem cell lines derived from 

human somatic cells." Science 318(5858): 1917-20. 

 

 


