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Abstract: Mathematicians have been discussing about the existence (and the meaning) of
derivatives and integrals of fractional order since the beginnings of differential calculus.
Various concepts of fractional calculus have been developed and some of them were already
applied to dynamical systems. In particular, the author already proposed a way to consider
systems defined by linear differential equations of fractional order within the so-called
behavioral approach.
In this paper, it is shown how to generalize, analogously, discrete-time linear systems by
defining a certain type of difference equations of fractional order. Some of the ideas and
techniques which will be used belong to the theory of dynamical systems on time scales.
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1. INTRODUCTION

At the end of the 17th century, while differential cal-
culus was still a recent discovery, Leibniz, Bernoulli,
L’Hôpital and other mathematicians were already talk-
ing about its generalizations. They asked themselves
which could be the meaning of a derivative of or-
der 1

2 , whence the name fractional calculus (which,
nowadays, is a misnomer because the order may be a
complex number).

Since then, that idea has been developed, leading
to a great variety of definitions of not integer order
derivatives and integrals. Indeed, as it usually happens
in these cases, there is no unique way of extending the
ordinary integer calculus. In a certain sense, different
solutions were given to different problems.

In particular, the goal of this paper consists in finding
a suitable framework for studying linear fractional
dynamical systems (i.e., defined by linear fractional
equations) using the so-called behavioral approach —
which will be described in Section 2.
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Aveiro, Portugal.

One possible definition of fractional derivative for
continuous-time systems, which has been sketched by
the author at the MTNS conference in 2008, will be
summed up in Section 3.

However, this contribution is mainly concerned with
the analogous problem for discrete-time systems. In
this case too, many notions of fractional differences
have been introduced. Nevertheless, they all have one
common property: they give fractional derivatives as
the step length tends to zero.

Having this in mind, some basic ideas of time scales
theory, which unifies and extends continuous and dis-
crete analysis, will be presented in Section 4.

Using these concepts, a fractional difference operator
will be defined in Section 5, which represents the
discrete-time version of the aforementioned fractional
differential operator.

2. BEHAVIORS

Linear systems will be defined following the behav-
ioral approach, as introduced by Jan C. Willems at
the end of the eighties (Willems, 1986–1987; Willems,



1989; Willems, 1991). In this framework, the follow-
ing is the main definition.

Definition 1. A dynamical system is given by a time
set T, a signal space W, and a behavior B, which is a
set of functions, called trajectories, having domain T
and codomain W.

In other words, once time and signal sets have been
fixed, a dynamical system is characterized by its be-
havior

B ⊆WT = {w : T→W}.
In the linear case, the signal space is a vector space,
usually W = Rq with q ∈ N, and the time space is
T = R for continuous-time or T = Z for discrete-
time systems.

The classical theories of dynamical systems deal with
mathematical models (input/output or state space, for
instance) which correspond to equations that exhibit
some particular structure, while the behavioral point
of view focuses on their solutions. Therefore, a be-
havior may be given as a set of solutions of a system
of equations, but this is just one of many possible
representations.

To be more concrete, a behavior may be defined as the
set of functions w : R→ Rq which satisfy a system of
differential equations like

∑n
i=0Riw

(i)(t) = 0, where
Ri ∈ Rp×q are matrix coefficients. By writing the i-
th derivative of w as di

dtiw instead of w(i), we obtain
the equation

∑n
i=0Ri

di

dtiw(t) = 0 that expresses w
as an element of the kernel of the differential operator
R
(

d
dt

)
=
∑n
i=0Ri

di

dti . Thus, we obtained

B = kerR

(
d

dt

)
, (2.1)

which is the so-called kernel representation of the
behavior B. For example, the state space equation
x′ = Ax is a kernel representation, being equivalent
to d

dtx−Ax = (I d
dt −A)x = 0.

This is a rather general representation, but it is not the
only one. A very important concept, which has been
introduced in this approach, is the image representa-
tion B = imM

(
d
dt

)
, meaning that for any w ∈ B

there exists some function v such that w = M
(

d
dt

)
v,

where M
(

d
dt

)
=
∑m
i=0Mi

di

dti .

One of the goals of the behavioral theory consists in
the characterization of analytical properties of B. For
example, a behavior is controllable (i.e., the past of
any trajectory can be linked to the future of any other
one, obtaining again an element of the behavior) if and
only if it admits an image representation.

However, the importance of the theory is a conse-
quence of the following idea: to study the polyno-
mial matrix R(s) =

∑n
i=0Ris

i instead of the differ-
ential operator R

(
d
dt

)
. This makes sense (the prod-

uct P (s)R(s) corresponds with the composition of
P
(

d
dt

)
and R

(
d
dt

)
, since di

dti
dj

dtj = di+j

dti+j ) and im-

portant conditions may be obtained. For example, it
can be proved that B = kerR

(
d
dt

)
is controllable if

and only the (constant) matrices R(λ) have the same
rank for any λ ∈ C.

In this paper, we shall just show how it is possible
to extend this setup to systems defined by differential
or difference equations of fractional order. Before
doing this, we recall some definitions for discrete-time
behaviors.

When T = Z, the most general linear (finite) differ-
ence equation is

n∑
i=m

Riw(t− i) = 0, (2.2)

wherem ≤ n are integers, w(t) ∈ Rq , with t ∈ Z, is a
sequence of vectors, and Ri are suitable matrix coef-
ficients. In order to transform Equation (2.2) as in the
continuous case, the following operator is introduced.

Definition 2. The backward shift operator is denoted
by στ , with τ ∈ R. It acts on a real function w as
follows:

(στw)(t) = w(t− τ), for any t ∈ R.

Thus, Equation (2.2) is equal to
∑n
i=mRiσ

iw(t) = 0,
whence w belongs to the kernel of the difference op-
erator R(σ) =

∑n
i=mRiσ

i. More concisely, as in the
continuous case (2.1), we have the kernel representa-
tion

B = kerR(σ). (2.3)

Observe that, in the discrete case, R may be not
polynomial. However, the behavior is time invariant,
i.e., w ∈ B ⇔ σtw ∈ B for any t ∈ Z and, therefore,
kerR(σ) = kerR(σ)σt, allowing to consider, without
loss of generality, m = 0 in the difference equation.
Consequently, the matrix R(s) may be polynomial,
with no negative powers of the variable.

In this case too, the polynomial matrix R(s) may
be studied instead of the difference operator R(σ).
Indeed, from an algebraic point of view, the product
P (s)R(s) corresponds to the composition of P (σ)
and R(σ), being σiσj = σi+j .

3. CONTINUOUS-TIME FRACTIONAL
SYSTEMS

We briefly review a setup for behaviors defined by
fractional order differential equations. In what fol-
lows, all the missing necessary hypotheses (e.g. differ-
entiability or integrability of functions) will be tacitly
assumed.

The linear operator (definite integration)

D−1
c : f 7→

∫ t

c

f(τ) dτ



can be extended to the n-th iterated integration
(Cauchy’s formula)

D−nc : f 7→
∫ t

c

(t− τ)n−1

(n− 1)!
f(τ) dτ. (3.1)

Recalling that Γ(n) = (n − 1)! for any positive
integer n, it is easy to generalize the operator (3.1)
to a positive non integer order, getting one of the
definitions of fractional integral of real order α > 0

D−αc : f 7→
∫ t

c

(t− τ)α−1

Γ(α)
f(τ) dτ. (3.2)

This is usually applied to functions f defined on
the positive real axis, thus giving the operator D−α0

which corresponds to a convolution. Indeed, if we
let d−α(t) = 1

Γ(α) t
α−1 for t > 0 and 0 elsewhere,

then (3.2) may be written

D−α0 f(t) =

∫ t

0

d−α(t− τ)f(τ) dτ = d−α ∗ f(t).

As is well-known, the Laplace transform of d−α is
L [d−α](s) = s−α and so, if F (s) is the Laplace
transform of f , then

L [D−α0 f ]=L [d−α ∗ f ]=L [d−α]L [f ]=s−αF (s).

As concerns fractional derivatives, i.e., the operator
Dα
c with α > 0, different definitions have been given.

If m − 1 < α < m, with m ∈ N, then we could
consider the Riemann-Liouville derivative dm

dtmD
α−m
c

(fractional integration followed by an integer order
derivative) or the Caputo derivative Dα−m

c
dm

dtm (the
order is here reversed). See Gorenflo and Mainardi
(1997) for more details.

As a first observation, note that the order of derivation
matters: the Caputo derivative of a constant is zero, but
the Riemann-Liouville derivative is not! Therefore, we
loose the connection with the product of powers of the
variable s that holds for integer order derivatives.

Then, the Laplace transform of the order α derivative
of f is not sαF (s) (with different expressions for the
Riemann-Liouville and the Caputo derivatives).

Third, going back to behaviors, trajectories are usually
defined also for negative values — while starting at
t = 0 is perfectly suitable for the state space model.

Therefore, a different definition was proposed by the
author. Consider trajectories f ∈ D+, where D+ is the
set of smooth functions with compact support on the
left. Then d−α may be thought of as a distribution on
D+, i.e., d−α ∈ D ′+, by defining the linear functional∫ ∞

−∞
d−α(−t)f(t) dt.

According to the properties of D ′+ (Schwartz, 1966),
d−α admits a convolutional inverse dα ∈ D ′+ such
that d−α ∗ dα = δ, which is the Dirac delta.

Thus, fractional integrals and derivatives, acting on
D+, may be defined as follows: as before, for any
α > 0,

D−αf(t) = d−α ∗ f(t) =

∫ t

−∞
d−α(t− τ)f(τ) dτ,

where the integral converges, being restricted to a
finite interval by the supports of d−α and of f , and

Dαf(t) = dα ∗ f(t), with dα ∗ d−α = δ.

Note that the Laplace transform of the distribution dα
is L [dα] = sα, whence it follows that the compo-
sition of the fractional operators Dα and Dβ corre-
sponds with the product sαsβ = sα+β .

Resuming, the fractional equation
∑n
i=0RiD

αiw(t),
where αi ∈ R and w ∈ Dq

+, may be studied through
the matrix function R(s) =

∑n
i=0Ris

αi .

4. TIME SCALES

In this contribution, the theory of time scales will not
be used in its full generality. The interested reader may
find more information in the books by Bohner and
Peterson (2001) and Bohner and Peterson (2003).

Time scales theory aims at unifying continuous and
discrete analysis by defining calculus on any closed
set T ⊆ R, called time scale. Obviously, T = Z and
T = R are just two particular cases — in general, T
may contain both intervals and isolated points.

As usual, there are many concepts of derivative which
generalize to time scales the continuous time deriva-
tive. In this paper we only make use of the so-
called nabla derivative (Bohner and Peterson, 2003,
Ch. 3), which will be shortly defined. Observe that
the Laplace transform is an integral transform, thus
depending on the chosen derivative. Therefore, in the
next section, we shall give a definition of Laplace
transform, which is consistent with the following
derivative for the time scale T = Z.

Definition 3. The backward jump operator is the
function ρ : T → T, such that t 7→ sup{τ ∈ T :
τ < t}.

Definition 4. The nabla derivative of a function f :
T → R at t ∈ T is the number f∇(t), provided it
exists, such that for any ε > 0 there is a neighborhood
U of t such that for any τ ∈ U ,

|f(τ)− f
(
ρ(t)

)
− f∇(t)

(
τ − ρ(t)

)
| < ε|τ − ρ(t)|.

When T = R, ρ(t) = t and f∇(t) = f ′(t) is the
classical derivative of f . On the other hand, if T = Z
then ρ(t) = t−1 and f∇(t) = ∇f(t) = f(t)−f(t−
1) is the backward difference. Using the backward
shift operator as in Definition 2, we have f(t)− f(t−
1) = f(t)− σf(t) = (1− σ)f(t), and so the iterated
nabla operator is

∇n = (1− σ)n. (4.1)



5. DISCRETE-TIME FRACTIONAL SYSTEMS

Consider now discrete-time systems with time set
(scale) T = Z. As we wrote, the (chosen) derivative
of a sequence will be f∇ = ∇f = (1 − σ)f and
therefore, as we showed, derivatives of any integer
order are given by ∇n = (1− σ)n.

As for negative powers of ∇, a formula can be
given, which is equivalent to the continuous-time scale
Cauchy formula (3.1). Before showing it, we have to
introduce the necessary concepts and notation.

Definition 5. For any n ∈ N, let

tn = t(t+ 1)(t+ 2) · · · (t+ n− 1),

which is called rising factorial or also Pochhammer
symbol. The latter is usually denoted by the different
notation tn = (t)n (Knuth, 1992).

Theorem 6. (Bohner and Peterson, 2003, Th. 3.99)
The expression

∇−nc+1f(t) =

t∑
τ=c+1

(t− τ + 1)n−1

(n− 1)!
f(τ) (5.1)

is the solution of the discrete-time Cauchy problem
∇ny(t) = f(t) with initial conditions ∇iy(c) = 0,
for any i = 0, . . . , n− 1.

Since tn = (t+n−1)!
(t−1)! = Γ(t+n)

Γ(t) , we may generalize
Formula (5.1) to any real order α > 0, obtaining
the discrete equivalent of the operator D−αc defined
in (3.2):

∇−αc f(t) =

t∑
τ=c

(t− τ + 1)α−1

Γ(α)
f(τ). (5.2)

Analogously to the continuous-time case, the (nabla)
derivative ∇αc of order α > 0 has been defined (Atıcı
and Eloe, 2009) as ∇m∇α−mc where m ∈ N and
m−1 < α < m, using formula (5.2) for∇α−mc . Here
we choose a different definition, which is similar to
the one proposed in Section 3 for the continuous-time
case.

Definition 7. Let S+ be the set of sequences with left
compact support, i.e., f ∈ S+ if and only if there
exists tf ∈ Z such that f(t) = 0 for t < tf .

Next, convolution of sequences in S+ has to be de-
fined.

Definition 8. The convolution of d, f ∈ S+ is

d ∗ f(t) =
∑
τ∈Z

d(t− τ + 1)f(τ).

Note that convolution is well-defined. Indeed, the sum
is always finite, since d(t − τ + 1)f(τ) = 0 when
τ < tf or τ > t+1− td. Moreover, it is commutative,

i.e., d∗f = f ∗d, as can be easily seen by substituting
n = t− τ + 1 (that is, τ = t−n+ 1) in its definition.

As for functions in D+, also the derivative of se-
quences in S+ may be defined by a convolution, lead-
ing to a formula similar to (5.2).

Definition 9. Let δ−α = 1
Γ(α) t

α−1 for t > 0 and zero
elsewhere. Then the derivative of order −α < 0 of
f ∈ S+ is

∇−αf(t)=δ−α ∗ f(t)=
∑
τ≤t

(t− τ + 1)α−1

Γ(α)
f(τ).

For any α, β > 0, we have that δ−α ∗ δ−β = δ−(α+β)

(Atıcı and Eloe, 2009, Lemma 2.3), thus

∇−α∇−βf = ∇−(α+β)f = ∇−β∇−αf, ∀f ∈ S+.

Define δ0(t) = δ1t, 1 and observe that it is the unit
of convolution, i.e., δ0 ∗ f = f ∗ δ0 = f for any
f ∈ S+. Note that, since there is a unit, it is possible
to define the convolutional inverse of f ∈ S+, being
that sequence g ∈ S+ such that f ∗g = δ0. It is easy to
show that every sequence in S+ has an inverse and so,
in this way, we obtain a definition of fractional nabla
derivative for any real value.

Definition 10. If α > 0, let δα be the convolutional
inverse of δ−α. Then the nabla derivative of order
α ∈ R of f ∈ S+ is

∇αf = δα ∗ f.

Note that, unlike the continuous-time case where, for
α > 0, dα is a distribution, in the discrete-time case
δα is a sequence in S+ for any α ∈ R.

Let us investigate the use of the Laplace transform
which, as we said, depends on the definition of the
derivative. In this case, the so-called nabla Laplace
transform has been introduced in Atıcı and Eloe
(2009). Until now, no definition has been given in
the literature for the bilateral nabla Laplace transform,
which we will need in this context. However, using
some general definitions (see, for instance, Bohner
and Peterson (2003), Davis et al. (2007), and Davis et
al. (2010)), we propose the following transformation.

Definition 11. The nabla Laplace transform of the se-
quence f ∈ S+ is

L∇[f ](s) =
∑
t∈Z

(1− s)t−1f(t). (5.3)

Transformation (5.3) is the bilateral version of the N -
transform presented in Atıcı and Eloe (2009). Since
the interest of the transform in this paper lies in its
formal properties, we will not discuss here issues
related to its region of convergence.

1 δij is the Kronecker’s symbol, equal to 1 when i = j and to 0

when i 6= j



Notice that, even if it is not equal to the more common
z-transform Z[f ](z) =

∑
τ∈Z f(τ)z−τ , the discrete

Laplace transform (5.3) is related to it by

z−1Z[f ](z−1) = L∇[f ](1− z).

Some properties of L∇ follow.

Theorem 12. Let f, g ∈ S+. Then

(1) L∇[δ−α](s) = s−α, α ≥ 0;
(2) L∇[f ∗ g](s) = L∇[f ](s) ·L∇[g](s);
(3) L∇[στf ](s) = (1− s)τL∇[f ](s), τ ∈ Z.

Proof. Property 1) is proved in (Atıcı and Eloe, 2009,
Lemma 3.1) for α > 0 and, for α = 0,

L∇[δ0](s) =
∑
t∈Z

(1− s)t−1δ0(t) = (1− s)0 = 1.

Properties 2) and 3) hold true, since

L∇[f ∗ g](s)=
∑
t∈Z

(1−s)t−1
∑
τ∈Z

f(t− τ + 1)g(τ)

=
∑
n∈Z

(1−s)n−1f(n)
∑
τ∈Z

(1−s)τ−1g(τ)

=L∇[f ](s) ·L∇[g](s),

where n = t− τ + 1, and

L∇[στf ](s) =
∑
t∈Z

(1− s)t−1f(t− τ)

=
∑
n∈Z

(1− s)n+τ−1f(n)

=(1− s)τL∇[f ](s),

where n = t− τ . 2

Corollary 13. L∇[δα](s) = sα for every α ∈ R.

Proof. By Theorem 12, the claimed property is true
for α ≤ 0 and L∇[δα ∗ δ−α](s) = L [δ0] = 1. So,
L∇[δα] =

(
L∇[δ−α]

)−1
= sα for α > 0. 2

Remark 14. Definition 9 could be given for any α
which is not a negative integer, i.e.,−α 6∈ N0 and also
the proof of Theorem 12(1), in (Atıcı and Eloe, 2009),
is given for these values of α. What is missing, in these
cases, is exactly the definition of δn with n ∈ N0,
which gives the integer order derivative∇nf = δn∗f .

However, besides being the convolutional inverse of
δ−n as in Definition 10, we will show that δn may be
seen as the limit of δα as α→ n. First of all, note that,
by (4.1),

∇nf(t) = (1− σ)nf(t) =
n∑
k=0

(
n
k

)
(−1)kσkf(t)

=
n+1∑
τ=1

(
n
τ−1

)
(−1)τ−1f(t− τ + 1)

=
n+1∑
τ=1

n!
(n+1−τ)!Γ(τ) (−1)τ−1f(t− τ + 1).

So, by Definition 8, δn(t) = n!
(n+1−t)!Γ(t) (−1)t−1

when t = 1, . . . , n + 1 and zero elsewhere. By

Definition 9, also δα(t) is zero for t ≤ 0. Therefore,
we just have to calculate its limit for t > 0

Remember (Abramowitz and Stegun, 1984, Formula
6.1.3) that Γ(s) has simple poles at s = −n, where
n ∈ N0, with residue

Res Γ(s)
∣∣∣
s=−n

= (−1)n

n! .

So, the limit of δα(t) = 1
Γ(−α) t

−α−1 = Γ(t−α−1)
Γ(−α)Γ(t) as

α → n ∈ N0 is zero when t > n + 1, because only
Γ(−α), in the denominator, tends to infinity.

On the contrary, when t = 1, . . . , n + 1 the limit of
δα(t) is finite and, as expected, is equal to

δα(t) = Γ(t−α−1)
Γ(−α)Γ(t) →

(−1)t−n−1

(n+1−t)! ·
n!

(−1)n ·
1

Γ(t)

= n!
(n+1−t)!Γ(t) (−1)t−1

= δn(t),

where we considered both the residues of the numera-
tor and of the denominator.

Finally, the main result is obtained.

Theorem 15. For any f ∈ S+ and α ∈ R,

L∇[∇αf ](s) = sαL∇[f ](s).

Proof. By Corollary 13,

L∇[∇αf ](s) = L∇[δα ∗ f ](s) = sαL∇[f ](s),

for any α ∈ R and f ∈ S+. 2

So, since the derivative ∇αf , with α ∈ R, can
be represented by a product of the nabla Laplace
transform of the sequence f ∈ S+ with sα, the power
rule

∇α∇βf = ∇α+βf = ∇β∇αf.
holds for any α, β ∈ R.

6. CONCLUSIONS

Summing up, we showed that a behavior containing
all the sequences w ∈ Sq+ which satisfy a fractional
order difference equation

∑n
i=0Ri∇αiw(t) = 0, with

Ri ∈ Rp×q and αi ∈ R, can be associated, as in the
continuous-time case, to the matrix-valued function
R(s) =

∑n
i=0Ris

αi .

As we saw, R(s) is the nabla Laplace transform of
some matrix sequence R(t) ∈ Sp×q+ . Therefore, the
behavior B can be seen as the solution set of the
convolutional equation R ∗ w(t) = 0.
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