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ABSTRACT The ‘‘Bathymodiolus’’ childressi group is the most geographically diverse assemblage of deep-seamussel species. In

this paper we consider several possible hypotheses to explain the present biogeographic distribution of the ‘‘B.’’ childressi species

complex. Mussels were collected for the first time from mud volcanoes in the Gulf of Cadiz (NE Atlantic Ocean) during the

training through research (TTR) 16 research expedition in 2006. Preliminary observations of the shell features indicate that they

belong to the ‘‘B.’’ childressi species complex, which has been recognized as morphologically and genetically distinct from other

Bathymodiolus species.Molecular analyses of twomitochondrial genes (COI-5 andND4) were used to characterize the newmussel

population from the Gulf of Cadiz (GOC) and to determine their phylogenetic relationships with other members of the ‘‘B.’’

childressi group. The results indicate that the GOC mussels are conspecific with ‘‘Bathymodiolus’’ mauritanicus Cosel (2002),

described from West Africa margin, and support a previous hypothesis that ‘‘B.’’ mauritanicus is an amphi-Atlantic species
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INTRODUCTION

Exploration of chemosynthetic environments during the
past three decades has contributed substantially to the known

biodiversity of deep-sea ecosystems, with more than 600
morphological species being described from hydrothermal
vents and cold seeps worldwide (Van Dover et al. 2002). The

mytilid genus BathymodiolusKenk &Wilson, 1985, and related
genera Gigantidas and Tamu within the subfamily Bathymo-
diolinae (Mollusca: Bivalvia), are among the most widespread

of the vent and seep taxa (Fig. 1), comprising 23 named species
and six genetically distinct entities distributed in the Atlantic,
Pacific and Indian Oceans (Kenk & Wilson 1985, Cosel et al.
1994, Hashimoto & Okutani 1994, Cosel et al. 1997, Cosel et al.

1999, Cosel & Olu 1998, Gustafson et al. 1998, Cosel 2002,
Cosel & Marshall 2003, Hashimoto 2001, Hashimoto &
Yamane 2005, McKiness & Cavanaugh 2005, McKiness et al.

2005, Sasaki et al. 2005). Long distance dispersal capabilities of
bathymodiolins is inferred from observations of small oocytes
(40–80 mm), large embryonic shells (100–120 mm) and larval

shells (380–520 mm), and from their reproductive dynamics,
which together suggest a planktotrophic larval phase that
extends for five to six months (Turner et al. 1985, Comtet

et al. 2000, Le Pennec & Beninger, 2000, Colacxo et al. 2006,
Dixon et al. 2006, Kádár et al. 2006, Tyler et al. 2007). Most
bathymodiolins are known to host symbiotic methanotrophs,
thiotrophs, or both types of bacteria simultaneously in their gill

tissues, but they still retain a filter-feeding ability (Fisher et al.
1987, Page et al. 1991, Pile & Young 1999). Together, these
reproductive and feeding strategies may explain the broad

ecological success of bathymodiolin species in chemosynthetic
environments.

Morphological and molecular phylogenetic studies have

identified several natural groupings among species that have
been assigned to Bathymodiolus, showing that the genus con-
stitutes a paraphyletic taxon and needs systematic revision

(Gustafson et al. 1998, Cosel, 2002, Iwasaki et al. 2006, Jones
et al. 2006). Gustafson et al. (1998) first suggested that a new
genus name could be used for ‘‘Bathymodiolus’’ childressi and
recommended enclosing the genus name in quotation marks

until its relationships with other bathymodiolins is better
resolved. Researchers have since recognized that ‘‘Bathymodio-
lus’’ childressi is the first described member of a species complex

that is morphologically and genetically distinct from the other
Bathymodiolus species. Based on morphological criteria, Cosel
(2002) includes three Atlantic species in the ‘‘B.’’ childressi

species complex: ‘‘B.’’ childressi, ‘‘B.’’ sp. B (Barbados) and
‘‘B.’’ mauritanicus, as well as one NW Pacific species: ‘‘B.’’
platifrons. Molecular phylogenetic analyses (Jones et al. 2006,

Jones & Vrijenhoek 2006) added more species to this complex:
‘‘B.’’ japonicus, ‘‘B.’’ hirtus and ‘‘B.’’ securiformis from the seeps
and vents near Japan, ‘‘B.’’ tangaroa from the Kermadec Arc,
SW Pacific and Edison Seamount, and ‘‘B.’’ n. sp. from Edison

Seamount. Based on phylogenetic analyses, it remains unclear
whether Gigantidas gladius from the Kermadec Arc should also
be considered a member of the ‘‘B.’’ childressi complex, or its

closest relative. Further phylogenetic analyses involving addi-
tional morphological and molecular characters are needed to
resolve the generic status of this grouping, so for now we con-

tinue to refer to members of this complex as ‘‘Bathymodiolus.’’
A new population of bathymodiolin mussels was discovered

during the TTR16 research expedition in 2006 to cold seeps and

mud volcanoes in the Gulf of Cadiz (GOC), Northeast Atlantic
Ocean. A preliminary examination of shell features of the GOC
mussels suggested that they are members of ‘‘Bathymodiolus’’

childressi species complex. The geographically closest known

members of this complex are ‘‘B.’’ mauritanicus (Cosel, 2002),*Corresponding author. E-mail: l.genio@see.leeds.ac.uk
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from cold seeps along the Angola margin off W. Africa (WAF),

and ‘‘B.’’ childressi (Gustafson et al. 1998), fromGulf ofMexico
(GOM) hydrocarbon seeps. Genetically related ‘‘Bathymodio-
lus’’ populations also occur on the Barbados Accretionary
Prism (BAP) and have been referred to as ‘‘Bathymodiolus’’

sp. B (Cordes et al. 2007, Olu-Le Roy et al. 2007). Molecular
studies have revealed that the Barbados mussels are closely
related to ‘‘B.’’ mauritanicus from the W. Africa margin and are

probably conspecific, leading Olu-Le Roy et al. (2007) to hypo-
thesize an amphi-Atlantic distribution for these populations.
Here we characterize the GOCmussels genetically andmorpho-

logically and examine current hypotheses about the taxonomic
status and biogeographic distribution of theAtlantic ‘‘Bathymo-
diolus’’ species at seep sites.

MATERIALS & METHODS

Study Area

The GOC is located westwards of the Strait of Gibraltar and
is under the influence of the eastern end of the cross-Atlantic
zonal jet and the Mediterranean inflow/outflow, which strongly

influences the local circulation features, particularly because of
the generation of the intermediate depth (750–1,250 m) Med-
iterranean outflow water mass and the Mediterranean water

eddies (Peliz et al. 2006). The GOC (Fig. 2) is presently the most
extensive cold seepage area known from the European margins,
including a total of over 30 mud volcanoes at depths between

200 and 4,000 m (Pinheiro et al. 2003, Van Rensbergen et al.
2005). To date, biological samples have been collected from 18
of these mud volcanoes, but living mussels are only known from
the Darwin mud volcano (1,115 m), which is covered by large

carbonate slabs and crusts. The fissures among the slabs and

depressions with scattered crust are filled by abundant shells of
‘‘Bathymodiolus’’ and Neptunea contraria and occasional small
clumps of living ‘‘Bathymodiolus.’’ Soft corals and other
epifauna are occasionally present on the rocks and sediment

surface. The extensive mussel graveyards found on the Darwin,
Ginsburg (910 m), Student (955 m) and Yuma (975 m) mud
volcanoes in the westernMoroccan field suggest that this was an

area of very active seepage, which has now waned. The geo-
logical characteristics of the study area are still being investi-
gated (Gutscher et al. 2002, Medialdea et al. 2004, Duarte et al.

2005), but one of the most important structures is a thick (more
than 5 km) Mio-Pliocene sedimentary sequence emplaced on
the structurally complex convergent tectonic setting of the

African and Eurasian plate boundary (Hensen et al. 2007).
Mud volcanism is triggered mainly by the compressional stress
along this boundary. Fluid geochemistry indicates a deep
thermogenic source of the fluids caused by clay mineral

dehydration followed by fluid mobilization along deeply rooted
fault systems (Van Rensbergen et al. 2005, Hensen et al. 2007).
The fluids are, on average, highly enriched in methane, but

concentrations in the upper 30-cm layer of the sediment vary
widely from site to site, and even locally (e.g., Nuzzo et al. 2005).
However, the sulphide/methane gradient is usually located at

more than 30-cm depth in the sediment and methane concen-
trations at the sediment/water interface are usually very low.

Sample Collection

Samples from the top of the Darwin mud volcano (Table 1)
were collected with a TV-assisted grab during the TTR16 cruise
aboard the RV Prof. Logachev, and with a suction sampler with

Figure 1. Distribution of described species of the bathymodiolin genus Bathymodiolus (Kenk &Wilson 1985),Gigantidas (Cosel &Marshall 2003) and

Tamu (Gustafson, Turner, Lutz & Vrijenhoek 1998) in cold seeps (square symbols) and vent sites (round symbols). Adapted and modified from Tyler &

Young (1999).
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container mesh size of 2 mm, on Isis ROV Dive 41 during the
JC10 cruise aboard the RSS James Cook. Shell morphological
observations were made of 15 specimens and compared with

previously described species.
For the purposes of this report, we apply the following

placeholder names to the operational taxonomic units (OTUs)

examined in this study (Table 2): ‘‘B.’’ sp. GOC, ‘‘B.’’ childressi
GOM (‘‘B.’’ childressi from the Louisiana Slope and Alaminos
Canyon), ‘‘B.’’ mauritanicus WAF (West Africa margin), and

‘‘B.’’ sp. BAP (¼ ‘‘B.’’ sp. B from the Barbados Accretionary
Prism).

Molecular Methods

Genomic DNA was isolated with the Qiagen DNeasy DNA
extraction kit (Qiagen Inc., Valencia, CA) from adductor
mussels from 18 ethanol-preserved specimens. Bathymodiolus-

specific primers were designed by C. Braby (Univ. of Oregon) to
amplify a ;600 bp region of the 5# end of mitochondrial cyto-
chrome c oxidase subunit I (COI-5), the region commonly used

for DNA barcoding of invertebrate species (Hebert et al. 2003):

COIG: 5#-GTATTGAATTAGCACGTCCTGGAA-3#
COIH: 5#-ATACTATTCCAAACCCGGGTAAAAT-3#.

We also amplified a ;710 bp region of mitochondrial
NADH dehydrogenase subunit 4 gene (ND4):

ArgBL:5#-CAAGACCCTTGATTTCGGCTCA-3# (Bielawski&
Gold 1996)

NAP 2H: 5#-TGGAGCTTCTACGTGRGCTTT-3# (Arevalo

et al. 1994).

PCR was conducted in a 25 mL solution that included 30–
100 ng of template DNA, 2.5 mL of 3 1 of PCR buffer (supplied

by manufacturer), 2.5 mL of 2.5 mMMgCl2, 1 mL of each primer
(10 mMfinal conc.), 2.5 units Taq polymerase (AmpliTaq Gold,
Applied Biosystems Inc., Foster, CA), 2.5 mL of 2 mM stock

solution of dNTPs, and sterile water to final volume and
occurred with a Cetus 9600 DNA Thermal Cycler (Perkin-
Elmer Corp. CT). We used an initial denaturation of 95�C/10
min, followed by 35 cycles of 94�C/1 min, 55�C/1 min, and
72�C/1 min, and a final extension at 72�C/7 min. PCR products
were diluted in 40 mL sterile water and cleaned withMultiscreen

HTS PCR 96 Filter plates on a vacuum manifold (Millipore

Figure 2. Location of Gulf of Cadiz mud volcanoes (white circles). Living specimens (black) of ‘‘Bathymodiolus’’ sp. were found in Darwin (Da) and

empty shells (grey) were observed in Student (St), Yuma (Yu) and Ginsburg (Gi) mud volcanoes.

TABLE 1.

Gulf of Cadiz station data.

Cruise Dive Station Latitude Longitude Depth Date

TTR16 AT608GR 35�23.531#N 07�11.475#W 1,115 m 05/31/2006

JC10 Isis 41 Stn 076-SUS2 35�23.523#N 07�11.479#W 1,109 m 06/01/2007
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Corp. Billerica, MA). Purified PCR products were sequenced
bidirectionally with the same primers used in PCR on an

ABI3100 capillary sequencer using BigDye terminator v3.1
chemistry (Applied Biosystems Inc., Foster, CA). DNA sequen-
ces were proofread using SEQUENCHER v4.7 (Gene Codes Corp.
Inc., Ann Arbor, MI) and edited by eye using MACCLADE v4.08

(Maddison & Maddison 2004, Maddison & Maddison 2005).
Statistical analyses were conducted using DNASP v4.0 (Rozas
2003).

Phylogenetic Analysis

Phylogenetic analyses were conducted with the programMR.

BAYES v3.1.3 (Huelsenbeck&Ronquist 2001). Appropriate sub-
stitutionmodels forCOI-5 andND4were determined with stan-
dard procedures in PAUP (Swofford 1998) using MRMODELTEST

(www.ebc.uu.se/systzoo/staff/nylander). Bayesian analyses

used six chains and were conducted separately for each gene
and then in a combined analysis. The combined analyses were
partitioned for each gene. After a burn-in period of 2,500

iterations, each analysis was run for 50 million generations and
sampled at intervals of 1,000. Each analysis was repeated
five times. Output data were visualized using TRACER v1.3

(Rambaut & Drummond 2003) to determine the appropriate
burn-in interval and ensure that the data had reached conver-
gence. Trees were visualized using FIGTREE v1.0 (www.tree.

bio.ed.ac.uk). Prior phylogenetic analysis of the ‘‘Bathymodio-
lus’’ childressi complex (Jones and Vrijenhoek 2006) revealed
that the most appropriate outgroups for our analyses are ‘‘B.’’
platifrons and ‘‘B.’’ tangaroa, for which COI-5 and ND4

sequences were already available (Table 2).

RESULTS

Morphological Observations of Shells

The Gulf of Cadiz mussels, ‘‘Bathymodiolus’’ sp. GOC,
exhibit shell features (Fig. 3) that generally characterize the
‘‘B.’’ childressi group, as provisionally defined by Cosel (2002).

They have terminal umbones, a rather narrow anterior margin
and a broad posterior part that give the valves a wedge-shaped
outline. They have a very small anterior adductor scar, a

continuous posterior byssus retractor scar and an anterior
retractor scar that is situated in the posterior part of the umbo-
nal cavity behind the beaks. ‘‘B.’’ sp. GOC possesses a thick and
solid shell, much like ‘‘B.’’ mauritanicus and ‘‘B.’’ sp. BAP,

whereas ‘‘B.’’ childressiGOM and ‘‘B.’’ platifrons have thin and
fragile shells. Like ‘‘B.’’ mauritanicusWAF and ‘‘B.’’ platifrons,
‘‘B.’’ sp. GOC possesses an anteriorly situated terminal umbone

with the distance from anterior shell margin to anterior edge of
umbo being <1 mm in small specimens and 1–2 mm in larger
specimens. In contrast, ‘‘B.’’ childressiGOM and ‘‘B.’’ sp. BAP

have slightly subterminal umbones. In addition to their anterior
location, the umbones of ‘‘B.’’ sp. GOC are broad and some-
what flattened, a characteristic shared by ‘‘B.’’ mauritanicus

WAF and ‘‘B.’’ sp. BAP.

Mitochondrial DNA Analyses

Our genetic analyses of 18 ‘‘B.’’ sp. GOC mussel specimens
generated 14 novel COI-5 sequences of ;531 bp length
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(GenBank accession numbers EU288159 to EU288172). For
comparative purposes (Table 2), we trimmed our sequences to
372 bp to match the length of published sequences for other

‘‘Bathymodiolus.’’ This length of COI-5 exhibited 18 polymor-
phic sites, four as singletons and 14 as parsimony-informative

sites. The same 18 specimens generated eight novel ND4
sequences that we trimmed to 456 bp length for comparative

purposes (GenBank accession numbers EU288176 to
EU288179). The ND4 sequences exhibited 43 polymorphic
sites, 25 as singletons and 18 as parsimony-informative sites.
The best-fit substitution model, according to the AIC criterion

(Akaike 1974), was the HKY + SS for both COI-5 and ND4,
when treated separately. But for the combined analyses, GTR +
I + G provided the best fit.

Pairwise comparisons of sequence divergence between dif-
ferent OTUs (db; Table 3) revealed that ‘‘B.’’ sp. GOC was very
similar to both ‘‘B.’’ mauritanicusWAF (db ¼ 0.04% for COI-5

and db ¼ 0.65% for ND4) and ‘‘B.’’ sp. BAP (db ¼ 0.42% for
COI-5). These divergence values were comparable with the
values seen within OTUs for which we had adequate sample
sizes: ‘‘B.’’ childressi GOM, dw ¼ 1.06% for COI-5 and dw ¼
0.39% forND4; ‘‘B.’’ sp. BAP, dw¼ 0.70% forCOI-5. Sequence
divergence among other OTUs was higher among the named
OTUs, ‘‘B.’’ tangaroa, ‘‘B.’’ platifrons, ‘‘B.’’ childressi GOM,

and ‘‘B.’’ mauritanicus WAF, which differed minimally by
1.41% for COI-5 and 3.83% for ND4. The two Pacific species
‘‘B.’’ tangaroa and ‘‘B.’’ platifrons were the most divergent taxa

with respect to ND4.
The three phylogenetic trees yielded essentially the same

topologies, therefore we show the combined tree of COI-5 and

ND4 genes (Fig. 4). Phylogenetic analyses identified a well-
supported grouping that included all the Atlantic OTUs: ‘‘B.’’
childressi GOM, ‘‘B.’’ mauritanicus WAF, ‘‘B.’’ sp. BAP and
‘‘B.’’ sp. GOC. Within this grouping, ‘‘B.’’ childressi GOM is

clearly differed from theW. Atlantic species, which all clustered
together. ‘‘B.’’ sp. GOC could not be discriminated from ‘‘B.’’
mauritanicus WAF or ‘‘B.’’ sp. BAP.

DISCUSSION

In addition to the morphological observations of the shell

features, mitochondrial DNA sequences from two genes (COI-5
and ND4) showed that the GOC mussels are essentially
identical with ‘‘Bathymodiolus’’ mauritanicusCosel (2002), from

Figure 3. Gulf of Cadiz ‘‘Bathymodiolus’’ sp. (a) Exterior and interior

view of left valve, (b) exterior and interior view of right valve, (c) dorsal

view. Scale bar 1 cm.

TABLE 3.

Mean sequence divergence within (on diagonal) and between ‘‘Bathymodiolus’’ Operation Taxonomic Units (OTUs).

Names are followed by 3-letter abbreviations for sample locality: GOC, Gulf of Cadiz; WAF, West Africa margin; BAP,

Barbados Accretionary Prism; GOM, Gulf of Mexico; SAG, Sagami Bay; KER, Kermadec Arc. Sample sizes are given

in parentheses after each gene.

‘‘Bathymodiolus’’

species

sp.

GOC

mauritanicus

WAF

sp.

BAP

childressi

GOM

platifrons

SAG

tangaroa

KER

COI-5 (15) (2) (16) (10) (4) (1)
sp. GOC 0.0008

mauritanicus WAF 0.0004 0.0000

sp. BAP 0.0042 0.0038 0.0070

childressi GOM 0.0498 0.0494 0.0533 0.0106

platifrons SAG 0.0145 0.0141 0.0180 0.0605 0.0040

tangaroa KER 0.0697 0.0693 0.0701 0.1045 0.0586 0.0000

ND4 (15) (2) (0) (10) (4) (1)

sp. GOC 0.0019

mauritanicus WAF 0.0065 0.0000 —

childressi GOM 0.0383 0.0402 — 0.0039

platifrons SAG 0.0669 0.0704 — 0.0863 0.0000

tangaroa KER 0.2555 0.2554 — 0.2513 0.2602 0.0000
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the W. Africa margin. These DNA sequences also confirmed
that the mussels from the Barbados Accretionary Prism (‘‘B.’’

sp. B of Olu-Le Roy et al. 2007) are very close to ‘‘B.’’
mauritanicus. All pairwise distances among the three OTUs
were comparable with sequence divergence within adequately
sampled OTUs. Consequently, we consider the Gulf of Cadiz

and Barbados populations of these mussels as conspecific with
‘‘B.’’ mauritanicus, a result that clearly supports the hypothesis

of Olu-Le Roy et al. (2007) that ‘‘B.’’ mauritanicus is an ‘‘amphi-
Atlantic species’’.

‘‘Bathymodiolus’’ childressi from the Gulf ofMexico (Louisi-
ana Slope and Alamiños Canyon off Texas) does differ from the
three ‘‘B.’’ mauritanicusOTUs. However, divergence levels were
relatively low (COI-5: 4.94–5.3%; and ND4: 3.83–4.02%)

compared with divergence between pairs of other named
bathymodiolin species, which typically are greater than 10%

Figure 4. Bayesian tree of COI-5 and ND4 combined dataset. Scale bar indicates percent sequence divergence. Bayesian posterior probabilities (BPP)

are shown.
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(Jones & Vrijenhoek 2006). Yet, the COI-5 divergence level
between ‘‘B.’’ mauritanicus and ‘‘B.’’ childressi was very similar

to that found between the sister-species Bathymodiolus thermo-
philus and B. aff. thermophilus (;4.4%) from the East Pacific
Rise vent sites (Won et al. 2003). Although Olu-Le Roy et al.
(2007) reported the same pattern of mitochondrial divergence

between their ‘‘B.’’ sp. B (Barbados) and ‘‘B.’’ childressi, they
puzzled over the identity of these taxa because they shared
identical nuclear ribosomal ITS2 sequences. However, ongoing

comparisons of sister-species pairs of mussels for ITS2 (B.
azoricus versus B. puteoserpentis and B. thermophilus versus B.
aff. thermophilus) have also failed to find divergence (Y. J.Won,

personal communication). This untranscribed spacer region of
the nuclear ribosomal operon is conserved in many taxa, and
appears not to be a reliable marker of species divergence in
mussels.

Several genetic studies have investigated gene flow among
deep-sea mussel populations at chemosynthetic provinces
(Craddock et al. 1995, Vrijenhoek 1997, Comtet & Desbruyères

1998, O’Mullan et al. 2001,Won et al. 2003, Carney et al. 2006),
but the mechanisms that lead to the observed diversity of
bathymodiolins are not yet fully understood. Won et al.

(2003) suggested that the formation of the Easter Microplate
could have created a geographical barrier between mussel
populations along the East Pacific Rise (EPR), leading to the

evolution of the sister species B. thermophilus and B. aff.
thermopilus north (7�C–17�S) and south (31�C–32�S) of the
microplate, respectively. However, Won et al. (2003) found no
evidence for isolation-by-distance between Galapagos Rift and

EPR (13�N to 11�S) populations, which appear to be genetically
homogeneous. A similar study of the mussel populations
distributed along the Mid-Atlantic Ridge vent sites revealed a

hybrid zone between the two mussel species, B. azoricus and B.
puteoserpentis (O’Mullan et al. 2001). The recent study by
Carney et al. (2006) of ‘‘B.’’ childressi populations occurring at

hydrocarbon and brine seeps in the Gulf of Mexico revealed
that these populations are not differentiated genetically, despite
the broad range of depths at which they occur (540–2,200 m).
Moreover, trans-Atlantic larval dispersal across the equatorial

belt region was suggested to explain the occurrence of geneti-
cally related ‘‘Bathymodiolus’’ populations at West Africa and
Barbados seeps (Cordes et al. 2007, Olu-Le Roy et al. 2007). A

limited analysis of the GOC population shows that mussels
were undergoing reproduction and that all specimens examined
were in the early stage of gametogenesis (P. Tyler, unpublished

data). These observations suggest a seasonal pattern correlated
with surface primary production, as seen in ‘‘B.’’ childressi
(Tyler et al. 2007) and B. azoricus (Colacxo et al. 2006, Dixon

et al. 2006). Such reproductive patterns give further support to
the high dispersal capabilities of the planktotrophic larvae of
bathymodiolin species. Together, these studies show that there
is not a single pattern for species differentiation among

chemosynthetic mussels and that habitat specific biotic and
physical characteristics may play important roles, leading to
population divergence at vents and seeps and subsequent

speciation events.
The discovery of ‘‘B.’’ mauritanicus at the Gulf of Cadiz mud

volcanoes not only constitutes the northernmost record for this

species in the NE Atlantic, but also gives new insights into the
biogeographic distribution of ‘‘B.’’ childressi group of mussels.
The current phylogeny of ‘‘B.’’ childressi group (Jones &

Vrijenhoek 2006) shows that the basal members live in the
West Pacific Ocean, whereas the more derived members live in

the Atlantic, suggesting the group has diversified from the
Pacific to the Atlantic. Here we consider three possible routes
for this diversification. One is via the Tethys seaway, which
previously linked the Indo-Pacific and Atlantic Oceans and

closed during the early Cenozoic by themovement of Africa and
India towards Eurasia. There were plenty of seep habitats in the
western Tethys area during the Cenozoic, as evidenced by the

many Miocene communities in the Apennine region of Italy
(Taviani 2001, 2003). Before theMessinian Salinity Crisis at the
end of the Miocene, these communities strongly resembled

modern seep communities in the West Africa and Gulf of
Mexico, containing large mussels, possibly related to Bathy-
modiolus. However, after the salinity event and the disappear-
ance of deep corridors between the Mediterranean and the

Atlantic basins, Mediterranean seep communities developed a
distinctive character, lacking several representatives of the
typical oceanic cold seep communities, such as the large mus-

sels, large vesicomyid clams, and provannid gastropods (Taviani
2003, Olu-Le Roy et al. 2004, Salas et al. 2004).

A second possible Pacific-to-Atlantic diversification route

for the ‘‘B.’’ childressi group was through the Central America
region before the closure of the Isthmus of Panama, around five
million years ago. This may be supported by the presence of the

oldest known representatives of bathymodiolins fromEocene to
Oligocene seeps in Washington State, USA (Kiel 2006, Kiel &
Little 2006) and bathymodiolin fossils from Paleogene and
Neogene seeps in the Caribbean region (Gill et al. 2005, Kiel &

Peckmann 2007). Finally, a more recent colonization of the
Atlantic seep sites by the ‘‘B.’’ childressi group may have oc-
curred around the African margins, as has been recently sug-

gested for species of Calyptogena (Krylova & Sahling 2006).
As well as being the most geographically diverse assemblage

of the deep-sea mussel species, the ‘‘B.’’ childressi complex

contains species living at both cold seeps and hydrothermal
vents, such as ‘‘B.’’ platifrons and ‘‘B.’’ japonicus. Further
biogeographic analyses and population genetic studies of all
the Pacific and Atlantic populations of the ‘‘B.’’ childressi

species complex will help to understand better their evolution-
ary history and to resolve current systematic problems within
this taxon.
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Magalhães, A. Volonskaya, J. H.Monteiro, L. Somoza, J. Gardner,

N. Hamouni & M. R. Cunha. 2003. Mud volcanism in the Gulf

of Cadiz: results from the TTR-10 cruise. Mar. Geol. 195:131–151.

Rambaut, A. & A. Drummond. 2003. Tracer: a program for analysing

results fromBayesianMCMCprograms such as BEAST&MrBayes.

Oxford, UK. http://evolve.zoo.ox.ac.uk/software.html?id¼tracer
Rozas, J., J. C. Sánchez-DelBarrio, X. Messeguer & R. Rozas. 2003.

DnaSP, DNA polymorphism analyses by the coalescent and other

methods. Bioinformatics 19:2496–2497.

Salas, C., A. Mariotti, J.-P. Foucher & J. Woodside. 2004. Cold seep

communities in the deep eastern Mediterranean Sea: composition,

symbiosis and spatial distribution on mud volcanoes. Deep-sea Res.

I 51:1915–1936.

Sasaki, T., T. Okutani & K. Fujikura. 2005. Molluscs from hydrother-

mal vents and cold seeps in Japan: a review of taxa recorded in

twenty recent years (1984–2004). Venus Jap. J. Malac. 64:87–133.

Swofford, D. L. 1998. PAUP*. Phylogenetic analysis using parsimony

(*and other methods). Sunderland, MA: Sinauer.

Taviani, M. 2001. Fluid venting and associated processes. In: G. B. Vai

& I. P. Martini, editors. Anatomy of an Orogen: the Apennines and

adjacent Mediterranean basins. Great Britain: Kluwer Academic

Publishers. pp. 351–366.

Taviani, M. 2003. Shaping the biogeography of the Mediterranean

basin: one geologist’s perspective. Biogeographia 14:15–22.

Turner, R. D., R. A. Lutz & D. Jablonski. 1985. Modes of molluscan

larval development at deep-sea hydrothermal vents. Bull. Biol. Soc.

Wash. Bull. 6:167–184.

Tyler, P. A. & C. M. Young. 1999. Reproduction and dispersal at vents

and cold seeps. J. Mar. Biol. Assn. UK. 79:193–208.

Tyler, P., C. M. Young, E. Dolan, S. M. Arellano, S. D. Brooke & M.

Baker. 2007. Gametogenic periodicity in the chemosynthetic

cold-seep mussel ‘‘Bathymodiolus’’ childressi. Mar. Biol. 150:829–

840.

Van Rensbergen, P., D. Depreiter, B. Pannemans, G. Moerkerke, D.

Van Rooij, B. Marsset, G. Akhmanov, V. Blinova, M. Ivanov, M.

Rachidi, V. Magalhaes, L. Pinheiro, M. Cunha & J.-P. Henriet.

2005. The El Arraiche mud volcano field at the Moroccan Atlantic

slope, Gulf of Cadiz. Mar. Geol. 219:1–17.

VonCosel, R. 2002. A new species of bathymodioline mussel (Mollusca,

Bivalvia, Mytilidae) fromMauritania (West Africa), with comments

on the genus Bathymodiolus Kenk & Wilson, 1985. Zoosystema

24:259–271.

Von Cosel, R., T. Comtet & E. Krylova. 1997. Two new species of

Bathymodiolus from hydrothermal vents on theMid-Atlantic Ridge.

Cah. Biol. Mar. 38:145–146.

Von Cosel, R., T. Comtet & E. Krylova. 1999. Bathymodiolus (Bivalvia:

Mytilidae) from hydrothermal vents on the Azores Triple Junction

and the Logatchev Hydrothermal Field, Mid-Atlantic Ridge. Veli-

ger 42:218–248.

Von Cosel, R.,. & B. A. Marshall. 2003. Two new species of large

mussels (Bivalvia:Mytilidae) from active submarine volcanoes and a

cold seep off the eastern North Island of New Zealand, with

description of a new genus. Nautilus 117:31–46.

Von Cosel, R., B. Métivier & J. Hashimoto. 1994. Three new species of

Bathymodiolus (Bivalvia: Mytilidae) from hydrothermal vents in the

Lau Basin and the Fiji Basin, Western Pacific, and the Snake Pit

Area, Mid-Atlantic Ridge. Veliger 37:374–392.

Von Cosel, R. & K. Olu. 1998. Gigantism in Mytilidae. A new

Bathymodiolus from cold seep areas on the Barbados Accretionary

Prism. Animal Biol. 321:655–663.

Vrijenhoek, R. C. 1997. Gene flow and genetic diversity in naturally

fragmented metapopulations of deep-sea hydrothermal vent ani-

mals. J. Hered. 88:285–293.

Won, Y., C. R. Young, R. A. Lutz & R. C. Vrijenhoek. 2003. Dispersal

barriers and isolation among deep-sea mussel populations (Mytili-

dae: Bathymodiolus) from eastern Pacific hydrothermal vents. Mol.

Ecol. 12:169–184.

‘‘BATHYMODIOLUS’’ FROM NE ATLANTIC MUD VOLCANOES 61

JOBNAME: jsr 27#1 2008 PAGE: 9 OUTPUT: Thursday February 21 16:27:19 2008

tsp/jsr/159953/27-1-20


