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José Carlos Esteves Duarte Pedro e de Pedro Miguel da Silva Cabral, Pro-
fessores do Departamento de Electrónica, Telecomunicações e Informática
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Resumo Recentemente tem-se feito um esforço no sentido de aumentar a
eficiência em aplificadores de RF, no entanto, o transistor é um
dispośıtivo intrinsecamente ineficiente. Utilizando amplificadores
paramétricos pode-se teoricamente chegar a 100% de eficiência mesmo
operando em modo linear.

A razão desta elevada eficiência é o dispositivo activo utilizado, já que
os amplificadores paramétricos utilizam uma reactância controlada, que
não consome potência. Esta mudança de elemento activo modifica
completamente o pinćıpio de funcionamento dos amplificadores.

Neste trabalho este tipo de amplificação é estudado, relações e trans-
formações conhecidas são examinadas primeiro para obter propriedades
limite gerais. Depois é feita análise de pequeno sinal para se obterem
outras caracteŕısticas importantes. Finalmente, um novo modelo de
grande sinal é derivado e apresentado. Este modelo é capaz de prever
algumas caracteŕısticas do amplificador, tal como o AM/AM.

Utilizando o modelo de grande sinal apresentado projecta-se um am-
plificador, sendo este posteriormente simulado.





Keywords Non-Linear Systems, Parametric Amplification, RF Amplifier, Varactor
Applications

Abstract In recent years a significant effort has been made towards efficiency
increase in RF amplifiers. The transistor is, however, an intrinsically
inefficient device. Parametric amplification can theoretically be 100%
efficient even operating in linear mode.

The reason behind this efficiency is the active device. These amplifiers
forget the transistor to use a controlled reactance, which cannot con-
sume power. This switch in active element changes the whole principle
of operation of the amplifiers.

In this work this type of amplification is studied. Known relations and
transformations are first examined to obtain general limit properties of
the used elements. Then small-signal analysis is performed to obtain
other important characteristics. Finally, a novel large signal model is
developed and presented. This model is capable of accurately predict-
ing the non-linear responses of the amplifier, such as the AM/AM.

Using the presented large-signal model, an amplifier is designed and
simulated.
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Chapter 1

Introduction

1.1 Motivation and Context

In recent years, a significant effort has been made towards improving efficiency in
electronic devices. The study of, so called, ”Green Technology” has been increasing and
the continued search for better energy usage is everlasting.

In communications, the need for a rise in efficiency has also been felt, not only for
mobile devices (which are dependent on a restrictive amount of energy), but also for base
stations (due to the high energy cost). Raising the efficiency in signal amplification is,
therefore, very important, as it is at this stage that the highest powers are handled.

Current-mode topologies of Radio Frequency (RF) Power Amplifiers (PAs) have inher-
ently low efficiencies for small signal inputs. However, modern communication systems
use modulation techniques which possess a high Peak-to-Average Power Ratio (PAPR), as
defined in equation 1.1. If the amplifier is intended to be linear, it will operate mainly in
the back-off region, which means reduced efficiency.

PAPR =
max0<t<+∞ |x(t)|2

limT→+∞
1
T

∫ T
0 |x(t)|2 dt

(1.1)

To better understand the efficiency dependence with the PAPR, please examine fig-
ure 1.1. The figure shows typical efficiency dependence on the input amplitude. The
envelope’s amplitude Probability Distribution Functions (PDFs) of a signal with a high
PAPR and a signal with a low PAPR are also represented. Both signals have been adjusted
to drive the PA at maximum efficiency without saturating it. The signal whose PDF peak
is closer to maximum amplifier drive will obtain a better average efficiency.

To raise the efficiency, but keep linearity, modern topologies make use of efficiency
boosting techniques, such as load modulation or power supply modulation. These tech-
niques allow the PA to operate at higher efficiency for lower inputs and include: Envelope
Tracking (ET) and Envelope Elimination and Restoration (EER), for the power supply
modulation, and the Doherty (DHT), for the load modulation.

1
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Figure 1.1: Influence of the PAPR on the Efficiency

The techniques based on power supply modulation operate by reducing Direct Cur-
rent (DC) power consumption. This can be done by separating the phase and amplitude
information that is contained in the input signal. The amplitude information is used to
modulate the power supply, while the phase information is maintained in the input wave.
This is exemplified in figure 1.2 where the characteristic curves of a transistor are plotted
for a varying power supply.
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Figure 1.2: Effect of Power Supply Modulation In the Transistor Load Line

The techniques based on load modulation operate by designing the amplifier for a higher
load resistance(which means it will saturate for lower input powers). Then some technique
is used to reduce the load (another amplifier, in the DHT architecture) when the input
power drives the PA too much into saturation. This is exemplified in figure 1.3 where the
characteristic curves of a transistor are plotted for a varying load.
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Figure 1.3: Effect of Load Modulation in the Transistor Load Line

There is, however, another option to raise the efficiency. While the traditional PAs are
based on the transistor, which is a controlled conductance, there is the possibility to create
a PA based on a controlled reactance. Reactances cannot dissipate energy and so the
efficiency should be much higher than the transistor based PAs. This type of amplification
is already known and called parametric amplification. This name was given because it is
based on the variation of a parameter of the system. Parametric amplification using non-
linear reactances has already been investigated and the cornerstones that make possible the
practical implementation of this type of amplifiers have been researched. Unfortunately,
most of them have been tried in the high-frequency low-noise field up to the 1970’s or
1980’s where high gain low-noise Galium Arsenide (GaAs) Field Effect Transistor (FET)
transistors almost completely replaced this technology. However, very recently, parametric
amplification received a renewed attention due to its potential high efficiency. This Thesis
aims to further research this type of amplification, clarifying the behaviour of the circuits
and the physical operation of the systems. In fact, and throughout this Thesis, the identifier
”Parametric Amplification” will signify ”Efficient, Power, Parametric Amplification”.

1.2 Objectives

The main objective of this Thesis is to study the possibility of implementing reactance
based RF PAs. To evaluate this possibility, a number of secondary objectives should be
accomplished. First, the basic working methodology of these type of amplifiers should be
well understood. Second, methods to extract the system characteristics must be studied
and understood, or developed, if needed. Finally, a proof of concept amplifier should be
developed, this way proving a test of feasibility.

These objectives should be accomplished sequentially since each one is mounted on the
back of the previous.

• Understand basic behaviour

3
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The mechanisms by which power is transferred to the output must be well understood.
This applies to the most basic governing relations as well. This first step provides
the proof of possibility, providing an answer to the question: ”Is it possible?”.

• Extract system characteristics

This part consists of system modelling and the extraction of characteristics through
the models. This objective provides proof of usability, which means that, it answers
the question: ”Is it useful?”.

• System implementation

This last objective should fill the gap between theory and practice, serving as a proof
of concept. The objective gives the proof of practicality, providing an answer to the
question: ”Can it be done in practice?”.

1.3 Structure

In the first chapter (chapter 1), the motivation and the context of this Thesis is made
clear and the objectives are presented. Furthermore, the structure of this work is also
explained. This first chapter serves as a broad overview over the work developed further
on.

The work starts with some notes on amplification (chapter 2). This serves the purpose
of explaining, exploring and broadening some concepts such as linearity and modelling.
After this, an overview and a closer look at transistor based amplifiers is given to point out
limitations in current amplification techniques and state the motivation for this Thesis.

Then, a closer look at non-linearities and their modelling techniques is given (chapter 3).
This is needed because the type of amplification suggested in the Thesis requires non-linear
components. This chapter is, therefore, the mathematical cornerstone of this Thesis.

The work continues on to a chapter on parametric amplification (chapter 4) where the
amplification technique is explained and the used components are modelled. After this,
small-signal circuit analysis is applied to the system to extract some characteristics and
develop small-signal design rules. Finally, large signal analysis is performed under more
restrictive conditions to optimize the proposed design methods and extract large signal
behaviour.

The next chapter is dedicated to the parametric amplifier development (chapter 5), it
includes simulations using both the developed models and a circuit level simulator.

The final chapter of this Thesis is dedicated to the drawn conclusions (chapter 6) and
some final remarks.
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Chapter 2

Notes on Amplification

2.1 Definition

Amplification is a technique through which energy from a source is modulated to pro-
duce a signal possessing some wanted characteristics dependent on some other signal.
However, it is intended that this modulator provides more power at the output than that
provided at it’s input, thus amplifying the signal driving it.

Usually, modulation, mixing and amplification can be achieved separately, and so,
amplifiers are wanted to be linear and also time invariant. Even if the same device achieves
amplification, mixing and modulation, the processes which generate each effect can usually
be separated. From a system point of view, what we would have are several blocks that
comprise the final device, as shown in figure 2.1, where the graphics represent the spectrum
of the signal at each point.

Modulator Mixer Gain

Figure 2.1: The Several Blocks Comprising an Amplifier

The modulator takes the input information and changes it into some other form, the
mixer changes the frequency and finally the gain changes the power. Usually it is not
wanted that the amplification process changes the modulation, linear amplifier. If the
amplifier does not change the frequency then it is also time-invariant.
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2.2. LINEARITY CHAPTER 2. NOTES ON AMPLIFICATION

2.2 Linearity

2.2.1 Definition

An amplifier that modulates a power source into a copy of the original signal is linear.
If this copy occurs at the same frequency, than it is also time-invariant. This aspect of
amplification defines one of the most important characteristics of system analysis.

This work will focus on linear amplification. Note that this does not mean that the
used components are linear, or even that the output will be a linear copy of the input, it
only means that linearity will be a characteristic under observation, more details are given
in section 2.2.2.

For further purposes the definition of linearity is described in equation (2.1), and ex-
plained in the next paragraph.

F [αx+ βy] = αF [x] + βF [y] F is a mathematical operator (2.1)

Notice how F is described as a mathematical operator (further on, functions are rep-
resented with low case letters) and not a function in itself. This is done so that implicit
definitions of systems, such as the differential equation, can be used to prove linearity. Also,
note how the output is not necessarily the input multiplied by some constant, defining the
gain of the system, but is indeed a transformation through some operator. For instance,
the sampling operation is linear, as shown in equation 2.2.

F [x (t)] = x (t)
+∞∑

n=0

δ (t− nTs)

F [αy (t) + βz (t)] = [αy (t) + βz (t)]
+∞∑

n=0

δ (t− nTs)

F [αy (t) + βz (t)] = αF [y (t)] + βF [z (t)]

(2.2)

Parametric differential equations, such as equation 2.3 are also linear, in the case of
equation 2.3 the proof is included in appendix A.1.

F [x (t)]→ f (t) y (t) + g (t)
dy (t)

dt
= x (t) (2.3)

Linearity is thus very broad and should be approached carefully. A good example is the
sampling, even though a sampling system is linear, as proved before, this does not mean
that the original signal can be recovered from the output. In fact, interference between
the frequencies generated by each input frequency can make the process irreversible, this
is what happens when the Nyquist condition is violated, as shown in figure 2.2.

Usually, linear systems are also considered to be time-invariant, this is the condition
for not generating new frequencies at the output. There is a simple proof that can be
considered as evidence to this: for a system to be time-invariant none of the characteristics

6



CHAPTER 2. NOTES ON AMPLIFICATION 2.2. LINEARITY
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Figure 2.2: Frequency Interference in a Linear System - Sampling Example

defining the system can vary in time. However, for a system to produce new frequencies at
the output, either the system varies in time or there is some non-linear mechanism. This
means that a system both linear and time-invariant cannot generate new frequencies [1].

2.2.2 Restrictions

As shown in the previous section the concept of linearity is very broad and, unless it
is paired with time-invariance, can produce output frequencies that are not of interest. It
follows that some restrictions to linearity should be applied so that it only includes the
researched systems.

In this work it is intended that the output of the amplifier is a copy of the input,
that can occur at a different middle frequency. Therefore, the system’s linearity will be a
comparison against the response of the system shown in figure 2.3 which has the response
described by equation 2.4.

A

cos (ωmidt)

x (t) y (t)

h (t)

Figure 2.3: Reference System

y (t) = A [x (t) cos (ωmidt)] ∗ h (t) (2.4)

In the system from figure 2.3 A is a gain, and h (t) is a normalized, linear, time-invariant,
filter, the only frequency generation mechanism is the mixer. With this type of system the
output can only be a filtered copy of the input at a different frequency, as it is intended in
the devices developed in this work.
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2.2.3 Measuring Non-Linearity

Every system in existence ends up being intrinsically non-linear when operated under
general conditions. A resistor will end up burning for high powers, the gain of an amplifier
will end up compressing for lack of an infinite power source. Linearity is, therefore, a
luxury that exists only for a restricted set of conditions, the quality of the observations
amongst them.

Since the systems are inherently non-linear there must be some methods to quantify
non-linearity. This is so because, while linearity is very well defined, non-linearity is defined
only as its inverse which will forcibly be vast.

In this section some methods for quantifying non-linearity in amplification are ex-
plained.

1dB Compression Point

The 1dB compression point is a measure of the non-linearity based on the gain of the
amplifier. As it was said before, due to the limitations on available power, the gain of an
amplifier will compress for higher input powers. When the gain compresses 1dB the output
power at that point is said to be the 1dB compression point.

The 1dB compression point can be regarded as the transition zone between small-signal
operation and large-signal operation. In figure 2.4 the concept is illustrated.

Pin

Pout

−20 −15 −10 −5 0

−10

−5

0

5

10

1dB
P1dB

Figure 2.4: 1dB Compression Point

Intermodulation

The inter-modulation is usually measured in terms of Intermodulation Ratio (IMR).
The IMR is the ratio between the power at the fundamental and the Intermodulation Dis-
tortion (IMD), the IMD are the mixing products that fall inside the band of the amplified
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signal. If we imagine a two tone signal, these components would be of the type 2ω1 − ω2

and 2ω2−ω1. To avoid confusion the IMR is usually taken with the worst IMD component.

IMR =
Pfundamental
PIMD

(2.5)

To better understand the concept, figure 2.5 shows a typical output spectrum of a
non-linear system excited by two input sine waves of different frequencies.
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Figure 2.5: Two Tone Output Spectrum from Non-Linear System

The IMD generates in- and out-of-band frequency components. The out-of-band com-
ponents are easily filtered out, the in-band components will pass through to the output
endangering linearity. The IMR is calculated with an IMD component in-band, typically
the third modulation product as it usually has the most power.

Adjacent Channel

The Adjacent-Channel Power Ratio (ACPR) is the equivalent of the IMR for continuous
signals in the frequency domain. When this is the case, and there is no clear frequency
marker to measure IMR, the ACPR must be used. The ACPR integrates the power along
all of the adjacent channel and ratios it in relation to the main channel power. As in the
IMR, the adjacent channel may be considered anywhere, usually the worst case is taken.
In some cases, the ACPR may be measured for more than one adjacent channel. The
bandwidth of the adjacent channel may not be the same as the main channel. Figure 2.6
illustrates the concept.

The ACPR can be calculated by integrating the adjacent channels to infinity or in a
limited bandwidth, or even subdividing the adjacent channels and calculating an ACPR
for each. A general formula to calculate the ACPR is shown in equation 2.6

ACPR =

∫
Bw
Sadjacentdω∫ ωhigh

ωlow
Smaindω

(2.6)
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ω

Pout

Non-Linearity

ω

Pout

Adjacent AdjacentMain

Figure 2.6: Continuous Output Spectrum from Non-Linear System

Error to Linear Equivalent

So far, the presented techniques to measure non-linearity with signal data have been
frequency based. The error can be used to measure the difference between the expected
output of the system, if it were linear, and the true output of the system, thus providing
a measure of non-linearity. To obtain a single quantity the error is usually integrated
and normalized. Furthermore, to avoid cancelling positive errors with negative, the error
is usually squared. This is known as the Normalized Mean Square Error (NMSE). The
NMSE is calculated using equations 2.7.

NMSE =

∫+∞
−∞

∣∣∣y(t) − ˆy(t)

∣∣∣
2
dt

∫+∞
−∞

∣∣∣y(t)

∣∣∣
2
dt

(2.7)

The approximation of y, ŷ, can be anything, if it is the Best Linear Approximation
(BLA) then the NMSE provides a measure of linearity.

2.3 System Modeling

The devices in this work are modelled from a linear, time-invariant point of view,
using the BLA. The BLA is calculated by shifting the input to the output’s ωmid in the
frequency domain, in accordance to the reference system. This is actually called the Best
Mixer Approximation (BMA) [2]. The BMA gives the frequency response of the output
filter h (t) and also the system gain A shown in figure 2.3. Note that the BMA is extracted
for the upper side band and lower side band, independently.

2.4 Efficiency

For PAs, the efficiency is usually measured in two different ways, one is the classical
efficiency, denoted by η throughout this Thesis, that is calculated in this work according
to equation 2.8.
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η =
[Pout]RF

[Pin]PS + [Pin]RF
(2.8)

The other, is the Power Added Efficiency (PAE) which is defined in equation 2.9.

PAE =
[Pout]RF − [Pin]RF

[Pin]PS
(2.9)

These measurements represent efficiency in two different ways. While η represents the
global efficiency of the system, meaning, how much power it let’s out versus how much
power goes in. The PAE measures the efficiency in relation to the power that is added to
the input, meaning, how much power is added versus how much power the supply gets in.

The PAE is usually regarded as a better Figure of Merit (FoM) than η.

2.5 Transistor Based Amplifier

2.5.1 Overview

Modern amplifiers are all ultimately based in the transistor. The transistor is, however,
intrinsically inefficient as it is a controlled resistance, be it in current (Bipolar Junction
Transistor (BJT)) or in voltage (FET). The implications of this is that it is impossible to
take an ideal transistor amplifier to 100% efficiency unless it is operated in a switching
mode. This can be proved for single ended amplifiers with the help of figures 2.7, 2.8 and
equations 2.10, 2.11. In this case, the voltage is taken as the input and output of the sys-
tem. In the equations, the usual nomenclature is followed, small letters with capital letter
subscripts symbolize the signal plus the bias, capital letters with capital letter subscripts
symbolize the bias and small letters with small letter subscripts symbolize the signal as
seen in table 2.1.

Style Meaning
Mx Signal+Bias
MX Bias
mx Signal

Table 2.1: Nomenclature

A transistor amplifier can be represented as seen in figure 2.7. In this figure, the con-
trolled current source is the transistor core, ZT is the lumped equivalent of the transistor’s
parasitic elements, ZD is the lumped equivalent of the elements connecting to the power
source, and ZL is the load.

The power flowing into each component can be described as seen in equation 2.10 where
Yx = 1

Zx
.
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VD

ZD

gm(vIN ) ZT ZL

vOUT

Figure 2.7: Equivalent Transistor Amplifier Output Circuit for Calculating the Efficiency

PL ∝
∫
real (YL) |Vout|2 dω

PT ∝
∫
vOUTgm(vIN )dt+

∫
real (YT ) |Vout|2 dω

PD ∝
∫
real (YD) |VD − Vout|2 dω

η =
PL

PD + PT

(2.10)

Looking at equation 2.10 we can maximize the output power and minimize all the other
powers. To do this, let’s consider the following ideal case: ZD is an infinite impedance at
every frequency except DC, ZT is infinite at every frequency and ZL is an infinite impedance
at DC and purely resistive at all other frequencies, also, gm(vIN ) = gmvIN to ensure linearity.
This case is described in figure 2.8.

VD

ω
=

0

gmvIN RL

ω 6= 0
vout

Figure 2.8: Idealized Equivalent Transistor Amplifier Output Circuit for Calculating the
Efficiency

12



CHAPTER 2. NOTES ON AMPLIFICATION 2.5. TRANSISTOR BASED AMPLIFIER

The efficiency depends heavily on the input signal, as shown in equation 2.11, but it
can never be 100% with the exception of a square wave input signal, even considering this
idealized scenario.





PT = lim
T→∞

1

T

∫ T

0
(VD + vout) gmvINdt

PL = lim
T→∞

1

T

∫ T

0
−voutgmvindt





PT = lim
T→∞

1

T

∫ T

0
VDgmVINdt+ lim

T→∞
1

T

∫ T

0
voutgmvindt

PL = lim
T→∞

1

T

∫ T

0
−voutgmvindt

η =
limT→∞

1
T

∫ T
0 v2

indt

VINvinmax

(2.11)

Using this formula, one can calculate the efficiency for some waveforms. A full swing
sine wave reaches 50% efficiency, a full swing triangular wave reaches 33% efficiency and
a full swing square wave reaches 100% efficiency. It is easier to understand these numbers
by looking at the waveforms shown in figure 2.2.

Note that, with this setup, the voltages can go above the output voltage source. The
filters can be interpreted as an infinite inductance (to filter the signal) and an infinite
capacitor (to filter the bias), the capacitor can, therefore, double the voltage after it is
fully charged. A way to implement something similar to this is to use a transistor coupled
load as shown in figure 2.9.

The limitations to the efficiency happen because the amplifier works as a transconduc-
tance (FET) or a current gain (BJT). One cannot help but wonder if there is the possibility
to obtain the same results by controlling a reactance, either inductive or capacitive. If this
could be done with a pure reactance, the restrictions to efficiency would not apply, as the
reactance cannot dissipate power. This Thesis aims at investigating this possibility.

There are many known techniques to reduce the power dissipation in the transistor and
thus augment the efficiency. A common technique is to reduce the conduction angle of the
transistor, generally compromising a bit of linearity.

Another technique is reducing the DC voltage at the output dynamically when it is not
needed, this has been done both continuously and in steps.

A brief study of each amplification class is included hereafter. This serves to better
understand the limitations of the transistor technology, as these are what make the work
done in this Thesis appealing. First, the classes based on the reduction of the conduction
angle are examined from an ideal point of view, then, some classes that use switching are
examined.
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Transistor Voltage Output Voltage Dissipated Power

t

v

0 T

2VD

t
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0 T

VD
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0 T

Pmax

t
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2VD

t
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VD
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v

0 T
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t

v

0 T

2VD
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0 T
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t

v
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Table 2.2: Waveforms at the Transistor and Output Terminals and the Instantaneous
Dissipated Power

VD

gmvIN

RL

Figure 2.9: A transistor with coupled load
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2.5.2 Class A

This class is the least efficient. The transistor is biased in conduction, which means that
it is consuming power even when no signal is being amplified. The maximum efficiency for
a sinusoidal signal is 50%, which is rather low. The power considerations for this class of
operation have been developed in the overview, however, here the analysis is deepened to
better understand the class A operation.

A class A amplifier would have the equivalent circuit shown in figure 2.10. The coil
and capacitor harmonically tune the load, they create a tank circuit resonant at the carrier
frequency.

VD

CLLL RL

vi + VB

Figure 2.10: Current-Mode Transistor Amplifier Equivalent

To analyse this class more simply, let’s assume a linear transconductance FET tran-
sistor with an abrupt cut-off, of course, such a transistor cannot exist because it would
imply abrupt changes in the derivatives of the transconductance. Nonetheless, this greatly
simplifies analysis and, as such, this model will be used. Figure 2.11 shows the current
output as a function of the voltage at the transistor’s gate as well as a typical class A
quiescent current point.

If we take this ideal transistor and expand the concept to the output we would have
the characteristics shown in figure 2.12.

With the use of these figures the perturbations can be propagated from the gate to
the drain graphically to understand the work of the class A transistor. This is shown in
figure 2.13.

If we analyse the graphics carefully, the strengths and weaknesses of the class A con-
figuration come to light. First, notice how the amplifier is very linear when in this con-
figuration, the transistor is always in conduction in a zone where the transconductance is
linear and, therefore, the output is a scaled replica of the input. Because the transistor
is always in conduction, there is always some power dissipating through it, as seen in the
overview. For a full-swing sinusoid, the power consumed in the transistor is the same as
the output power, which means that, if there is no other other dissipation source, the
maximum efficiency is 50%. This can be extracted from the graphics using equation 2.12.
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Figure 2.11: Transistor Output Current Vs Input Voltage
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Figure 2.12: Transistor Output Current Vs Output Voltage





PT =
vDSmaxiDSmax

2
= VQIQ −

VQIQ
2

PL =
vdsmaxidsmax

2
=
VQIQ

2

η =
PL

PL + PT
= 50%

(2.12)
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Figure 2.13: Class A Behaviour

2.5.3 Class B

The only difference from a class A to a class B amplifier is the input bias. This means
that the circuit in figure 2.10 shown before, also applies to the class B case.

The class B amplifier is biased just before conduction starts, this means that the tran-
sistor is cut-off if there is no input signal but starts conduction has soon as there is some
positive signal variation. The transistor is therefore working in a non-linear way: in cut-off
for every negative signal excitation and in conduction for positive signal excitations. The
figure 2.14 shows the bias point for a class B amplifier.

vGS

iDS

0

QIQ

VB

Figure 2.14: Transistor Output Current Vs Input Voltage

We can use the same methodology as before to obtain the approximate behaviour of
the class B amplifier. To do this, first we need figure 2.15 to relate the transistor current
with the output voltage.
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Figure 2.15: Transistor Output Current Vs Output Voltage

Then we can simply project input variations onto the output to obtain the behaviour,
as shown in figure 2.16.

vGS

iDS

0

QIQ

VB
vDS

iDS

0

QIQ

VQ

Figure 2.16: Class B Behaviour

Notice how the output is not a copy of the input. However, because the harmonic
distortion is even, this is of little matter in RF, since the load is harmonically tuned and
the only surviving component would be the original excitation signal’s frequency, there is,
however, consequences to the gain.

If we calculate the Fourier series of the class B output it is possible to calculate the gain
loss in relation to the class A, this is done in equation 2.13. Notice how the fundamental
only has one half of the total current swing. This means that, in relation to the class A
amplifier, the class B has half the current gain.

Looking at the Fourier series in equation 2.13, we also confirm that there exists no odd
harmonics at the output which confirms that the distortion is even and thus should be
easily filtered out in RF frequencies.
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ids(t) =





0, (2k − 1)T < t < (2k + 1) T
2

Isin (ωpt) , (2k + 1) T
2
< t < (2k + 1)T

Ids(ω)
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1

Tp

∫ Tp
2

0
Isin (ωpt) e

jkωptdt =





I
4j
, k = −1

− I
4j
, k = 1

I
π

1
1−k2 , k = 2n, n ∈ Z

0, others

(2.13)

Class B amplifiers can also be used in push-pull configurations to solve the linearity and
gain problem. In this case, two transistors are used, one conducts from 0 to 180 degrees
and the other from 180 to 360 degrees. This means that the output will be a copy of the
input if both transistors have the same gain. This type of configuration can suffer from
some distortion problems if the transistors do not start conduction at the expected angles
or if they possess different gains.

The efficiency of a class B amplifier can also be calculated using the Fourier series but
applying it to the current. The efficiency can be calculated using equation 2.14.





PDC =
Imax
π

VD

PL =
1

2

Imax
2

VD

η =
PL
PDC

=
π

4
≈ 78.5%

(2.14)

2.5.4 Class AB

In practice, transistor based power amplifiers end up being operated either in class
AB or class C. True Class B amplifiers are impossible to create, because there is no such
point at which the transistor can be biased from which it would start conducting at some
minimal disturbance. Class A amplifiers can be created but are too inefficient to use in
power amplification. What we end up with is an amplifier that conducts with no input
signal but not from 0 to 360 degrees.

If we make use of the previous figures, the polarization point would be somewhere after
class B and before class A, as shown in figure 2.17 and the behaviour is shown in figure 2.18.

In the case of the class AB, the amplifier will have more gain and less efficiency then
the class B, depending on the conduction angle, and vice-versa for the class A. Again,
a push-pull type of operation can be arranged to make the amplifier more linear. Both
transistors will be conducting in a small region of the signal. The efficiency of this class can
be calculated in terms of the conduction angle and considering that only the fundamental
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Figure 2.17: Transistor Output Current Vs Input Voltage
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Figure 2.18: Class AB Behaviour

delivers power to the load. This is done in equation 2.15. For a class AB θmin can be
calculated as −θmax for θmax ∈

[
π
2
, π
]
, the first limit being a class B and the last a class A.

The conduction angle is rearranged to ease the calculation of the Fourier series coefficients.
Imax is the maximum current minus the bias.
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|F [iDS]| =
{

Imax(sin(θmax)−sin(θmin)−θmaxcos(θmax)+θmincos(θmax))
2π

, f = 0

−Imax sin(2θmax)−θmax+θmin
2π

, f = fundamental

PDC = VDImax
sin(θmax)− θmaxcos(θmax)

π

PL = −1

2
VDImax

sin(2θmax)− 2θmax
2π

η =
1

4

2θmax − sin(2θmax)

sin(θmax)− θmaxcos(θmax)
=

1

4

θcond − sin(θcond)

sin( θcond
2

)− θcond
2
cos( θcond

2
)

(2.15)

2.5.5 Class C

To finalize the study of this group of amplifiers, in which the operation mode is con-
trolled by a change in the bias (thus varying the conduction angle), the class C amplifier
is the only missing link. The same methodology as before can be used to extract the crude
behaviour of the amplifier and some characteristics, figures 2.19 and 2.20 can help. The
amplifier distorts the output yet again, but if we consider that only the fundamental fre-
quency remains at the load, the same equation as in the class AB can be applied to obtain
the efficiency.
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Figure 2.19: Transistor Output Current Vs Input Voltage
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Figure 2.20: Class C Behaviour

2.5.6 Wrap Up

We can use to unit circle to show the classes of operation for several conduction angles,
this is shown in figure 2.21. Notice how class A and class B are only points in the circle
but class C and class AB are zones.
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Figure 2.21: Amplifier Classes Vs Conduction Angle

The efficiency for any conduction angle in these classes of amplification can be shown
to be the one described in equation 2.16. Here, θmax is half the conduction angle, this is
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the same equation as in the class AB case, which can be used for any conduction angle.





|F [iDS]| =
{

Imax(sin(θmax)−sin(θmin)−θmaxcos(θmax)+θmincos(θmax))
2π

, f = 0

−Imax sin(2θmax)−θmax+θmin
2π

, f = fundamental

PDC = VDImax
sin(θmax)− θmaxcos(θmax)

π

PL = −1

2
VDImax

sin(2θmax)− 2θmax
2π

η =
1

4

2θmax − sin(2θmax)

sin(θmax)− θmaxcos(θmax)
=

1

4

θcond − sin(θcond)

sin( θcond
2

)− θcond
2
cos( θcond

2
)

(2.16)

It is evident that there is a close relation between the gain, efficiency and linearity in
the transistors operated in this mode. Some of these aspects can be brought to light with
the simple study that was executed in this section. In figure 2.22, the maximum efficiency
and the gain have been plotted versus the conduction angle.
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Figure 2.22: Efficiency and Current Gain Vs Conduction Angle

It can be extracted from figure 2.22 that, as said before, the transistor is an inherently
resistive device and cannot operate at high efficiency in typical configurations. Some
techniques make use of the efficiency peak by operating with switching, these are briefly
studied hereafter.

2.5.7 Class D

The class D amplifier works with a square wave at its input. The output is then filtered
through an harmonically tuned filter. The concept amplifier is shown in figure 2.23 where
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a push-pull configuration was used.

VD

vi
C L

RL

Figure 2.23: Transistor in Class D

The voltage accumulated in the parasitic capacitance of the transistor will hold the
output voltage in the transistor transition forcing power dissipation, much like a logic
CMOS gate. This is the main problem with the class D amplifier and the reason it cannot
reach the theoretic 100% efficiency, the problem aggravates for higher frequencies [3].

2.5.8 Class E

The class E amplifier solves the problem of the class D amplifier. The amplifier uses
only one switch, initially the switch is turned on and charges a coil serving as a Radio
Frequency Choke (RFC) maintaining zero output voltage, then the transistor is switched
off and a pulse of current is applied to the output filter, this filter then determines how
the system will behave. The amplifier is shown in figure 2.24. This class of operation was
first presented in [4].

VD

L1

vi

C2 L2

RLC1

Figure 2.24: Transistor in Class E

In a class E amplifier the filter must obey two conditions. The first is that the voltage
must be zero when the switch is turned on again, the second is that its derivative must
also be zero.
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The conditions in the class E amplifier minimize the efficiency loss making this amplifier
type very efficient. The parasitics of the transistor are absorbed into the output filter which
eliminates the problem of the class D. The main problem with the class E amplifier is the
high non-linearity and the design of the output filter.

2.5.9 Class F

The class F is not really a switching amplifier, however it was included here due to
the desired square wave in the output, either in voltage or in current. The class F uses
harmonic control techniques to make different types of terminations for each harmonic, the
load is only seen at the fundamental, odd and even harmonics see either a short and open
circuit or an open and short circuit, respectively. This means that a square wave in voltage
or current is generated at the transistor output. This class was first presented in [5].

Typically a voltage square wave is chosen for ease of implementation, this means short
circuits for the even harmonics and open circuits for the odd harmonics (the parasitic
impedances of the transistor end up in parallel with short-circuits, making them negligible).
An example of a circuit tuned this way is shown in figure 2.25.
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Figure 2.25: Transistor in Class F

The problem with the class F is that the circuit behaviour at the higher harmonics
is not always as expected. This leads to waveforms that are not exactly squared and,
therefore, dissipation. Also it is impossible to develop the infinite number of filters that
are necessary to obtain a square wave. Still, this technique allows for a high gain in
efficiency. The desired waveforms at the transistor output are shown in figure 2.26.
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Figure 2.26: Class F Ideal Waveforms

2.5.10 Wrap Up

Switching mode power amplifiers can achieve higher efficiencies than classical topolo-
gies. They require however a more complex design, analysis and modelling of the transistor.

2.5.11 Efficient Architectures

To further raise the efficiency the amplifier may make use of several architectures which
use more transistors that cooperate to obtain the output signal. These techniques work
by reducing the DC power consumption, as explained in the introduction. Some of these
architectures are explained lightly here.

Previously, when the efficiency was calculated, optimum operating points were always
considered. For instance, if we look at the conduction angle based amplifiers more closely,
it’s possible to see that the efficiency also varies with output’s envelope. If we recalculate
the general efficiency equation taking into account that the amplifier may not be working
at full capacity we get equation 2.17. In the equation α is the value of the envelope in
relation to the maximum and θalpha is the conduction angle allowed by the value of the
envelope.
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|F [iDS]| =
{
Imax

αsin(θα)−θαcos(θmax)
π

, f = 0

Imax
2αθα+αsin(2θα)−4cos(θmax)sin(θα)

2π
, f = fundamental

PDC = VDImax
αsin(θα)− θαcos(θmax)

π

PL =
1

2
αVDImax

2αθα + αsin(2θα)− 4cos(θmax)sin(θα)

2π

η =
1

4

α (2αθα + αsin(2θα)− 4cos(θmax)sin(θα))

αsin(θα)− θαcos(θmax)

(2.17)

The conduction angle allowed by the envelope can be expressed as a function of α and
θmax, the efficiency can then be plotted as a function of α and θmax. To determine this
function note that there are three possible states, the transistor is always in conduction,
the transistor is never in conduction or the transistor conducts partially. The first case
happens when −α− cos(θmax) > 0, the second when α− cos(θmax) < 0 and the third when
αcos(θα) − cos(θmax) < 0 has a solution. In figure 2.27 the ideal efficiency curve for two
amplifier classes is shown.
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Figure 2.27: PA Efficiency Vs Relative Output Voltage

Envelope Tracking

The ET architecture modules the amplifier’s power supply so that it can always operate
at maximum efficiency, [6]. The transistor is used in a linear mode, such as class B, but has
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an overall higher efficiency. Figure 2.28 shows the block diagram of the ET architecture.
An interesting explanation of this architecture can be consulted in [7].
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DC-DC
Modulator

Envelope
Detector

Delay
Linear
RF PA

Figure 2.28: ET Block Diagram

If we take the previous equations, this modulation of the power supply would mean
that the power at DC would be additionally multiplied by α which would mean that a
class B amplifier would have a constant efficiency of π

4
. In fact, the power supply always

has a small voltage drop across the modulator which would mean that the multiplication
factor would be α+β

1+β
. This β factor is a function of the minimum DC voltage attainable

β =
VDmin

VD−VDmin
. The closer the β factor is to zero the more quickly the efficiency rises.

Figure 2.29 shows the efficiency for several β factors for a class B amplifier.
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Figure 2.29: ET Efficiency in Class B
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Envelope Elimination and Restoration

The EER architecture is similar to ET but a switching mode amplifier is used, such as
a class D amplifier, [8].Figure 2.30 shows the block diagram of the EER architecture.
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Envelope
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Limiter Delay
Switching
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Figure 2.30: EER Block Diagram

A switching mode PA does not have the same problems at lower input powers that the
linear PA does since it is always operated with a square input wave. Instead, the losses of
switching PAs are connect to the switching times of the voltage and current, these losses
are proportional to the energy stored in the parasitic capacitance across the transistors
when switching occurs, in turn this energy is proportional to the square of the power
supply voltage, to which the output power is also proportional. This means that the drop
in efficiency for lower inputs does not happen, instead we would have the same efficiency
across the whole input power variation.

Doherty

The DHT amplifier was presented in [9]. The DHT architecture differs greatly from the
other two. In this case, instead of modulating the power supply, the load is modulated. To
do this, another amplifier is used to boost the current when the input power rises above a
certain limit. Because of this, the main amplifier is applying only some of the current that
the load is consuming, effectively seeing it as a smaller load. Figure 2.31 shows the DHT
block diagram.

This type of architecture is more efficient because the carrier amplifier can be designed
for a smaller load, meaning it will reach optimum efficiency quicker. In an evenly split
two-way Doherty, the optimum efficiency of the carrier is reached at half power, then the
peaking amplifier will start conduction and drop the efficiency a little to recover it for
higher powers. Nonetheless, a high improvement in the overall efficiency is achieved. This
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Figure 2.31: DHT Block Diagram

efficiency can be calculated using the following method, consider both amplifier in class B,
take the previous formulas and make α1 = 2α and α2 = 2α − 1 and in both cases restrict
α to the interval [0, 1], figure 2.32 shows a characteristic efficiency curve.
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Figure 2.32: Doherty Example Efficiency Curve
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2.5.12 Conclusions

The transistor is an intrinsically inefficient device because it is a controlled conductance
and thus consumes power except in zero or infinite state. Because of this, the transistor
may be regarded as a bad choice for highly efficient applications.

To raise the efficiency we are forced to use techniques that put the transistor working
as closely to a switching mode as possible. This requires more advanced modelling and
design techniques. Raising the efficiency is also accomplished using efficient architectures
that make use of power supply modulation or load modulation.

The use of parametric amplification with the help of controlled reactances may be a
possible solution to raise the efficiency and work with easier topologies and design tech-
niques. The allure of this technique is that the basic device is in itself efficient, contrary
to the transistor.
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Chapter 3

Properties of Non-Linear Elements

3.1 Representation of Non-Linearity

To be able to analyse the system correctly, the non-linearities must be described in
some way. This section is given to describe and explain several methods of non-linearity
representation. The methods are more thoroughly explained in [1].

Before presenting the methods it is convenient to divide the non-linearities into cate-
gories, usually the non-linearities are said either strong or weak. A weak non-linearity can
be described using a series, either a power series (such as the Taylor approximation) or a
convolutive series (such as the Volterra series). A strong non-linearity cannot be accurately
described using the series method, usually harmonic-balance and time-domain methods are
used to analyse such circuits.

The non-linearities can also be divided in two-terminal and transfer. A two-terminal
non-linearity is a capacitance, inductance or resistance, a transfer non-linearity would be,
for instance, a non-linear FET transconductance.

In this Thesis two main techniques are used to represent the non-linearity. As a first
step a polynomial approximation of the non-linearity is used for both small-signal and
large-signal analysis. Then, frequency techniques are used to develop models for both
analysis. In the small-signal case the conversion matrix is used, for the large-signal a
technique similar to harmonic balance is used. The Volterra series are also presented here
for the purpose of completeness.

This section lays the basis for the analysis performed onward.

3.1.1 Series

Series are a common form of non-linearity representation. Series are used when non-
linearities are weak and do not cause great impact on the system’s linear response. Never-
theless, they cause sufficient impact to be worth the study. Series are not usually used for
strong non-linearities because the number of necessary coefficients would be so high the
resulting relations, even if accurate, would provide little information on the behaviour of
the system.
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Power Series

The power series forces the restriction that no non-linearity possesses memory. When
using this type of representation it is assumed that the memory can be represented as a lin-
ear filter and the non-linearity as a static polynomial. This is very comfortable because the
system can then be divided in two blocks, the linear filter and the non-linearity, figure 3.1.

h (t) f (z)x (t) y (t)
z (t)

Figure 3.1: Power Series Equivalent System

Equation 3.1 shows the non-linear power series general formula. The ways in which
the coefficients can be extracted are numerous. If there is empirical data a method for
minimizing the NMSE can be used to obtain the best power series approximation. If there
is an analytical description of the circuit another process is to use known mathematical
constructs such as the Taylor series.

f(z (t)) =
N∑

n=1

knz(t)n (3.1)

The method to approximate the non-linearity is dependent on the excitation. The
Taylor series is the best punctual approximation, the NMSE minimization provides the
best approximation giving all points the same weight. Between these two extremes there
are other weighting functions that can be used to obtain the coefficients for the polynomial.

The use of polynomials is helpful because there is a direct translation to the frequency
domain. This is very useful because the frequency domain analysis is usually favoured
over a time domain analysis. Equation 3.2 shows the translation of the power series into
frequency when the input is a multi-tone excitation.

z(t) =
M∑

m=−M
Zme

jωmt

knz(t)n = kn




M∑

m=−M
Zme

jωmt



n

=

= kn
M∑

m1=−M

M∑

m2=−M
...

M∑

mn=−M
Zm1Zm2 ...Zmne

jωm1 tejωm2 t...ejωmn t

(3.2)

If the number of coefficients is small, this kind of analysis can give precious insight into
the system. If the number of coefficients is high, the effort and the mixing of effects makes
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this kind of analysis too laborious and complex to provide useful information.
If we take equation 3.2 and put it as a function of x, the filter h (t) will reveal its

influence on the output, this is shown in equation 3.3.

knz
n
(t) = kn




M∑

m=−M
Zme

jωmt



n

=

= kn
M∑

m1=−M
...

M∑

mn=−M
H (ωm1) ...H (ωmn)Xm1 ...Xmne

jωm1 t...ejωmn t
(3.3)

This form is important as an introduction to the Volterra series.

Volterra Series

The Volterra series eliminates the restriction of separating the memory from the non-
linearities, maintaining only the basic problem of the series representation: it is useful only
for describing weak non-linearities. In the Volterra series the non-linearity is considered a
black box that can be described by this series, figure 3.2.

Weak
Non-Linearity

x (t) y (t)

Figure 3.2: Volterra Series Equivalent System

In the time domain the Volterra series takes on the appearance of a series of convolu-
tions to describe the non-linear memory. This representation is of little practical use for
analogue systems analysis, a frequency domain representation is of much higher value. In
the frequency domain the series can be described by a group of non-linear transfer functions
called the Volterra kernels.

If we look at the form of equation 3.3 we can identify the kernels of the power series,
in this case they have the form:

knH (ωm1) ...H (ωmn) (3.4)

Because the non-linearity was considered memoryless, the kernel is simply the multi-
plication of the linear transfer function for each frequency. If we generalize the problem
and want to include memory in the non-linearities, then the kernels need to be generalized
to become any function of the frequencies. The Volterra series can therefore be described
as the summation of the general terms shown in equation 3.5, where H (ωm1 , ..., ωmn) are
the Volterra kernels.
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M∑

m1=−M
...

M∑

mn=−M
H (ωm1 , ..., ωmn)Xm1 ...Xmne

jωm1 t...ejωmn t (3.5)

Again, this analysis is only beneficial for a small number of kernels, otherwise it provides
little information on the working of the system.

3.1.2 Frequency Based

There are several frequency based methods to analyse non-linear systems, amongst
these, the conversion matrix using large signal/small signal analysis is focused here. This
analysis provides valuable information on the circuits analysed henceforth.

Conversion Matrix

Conversion matrix is a method by which it is possible to calculate the behaviour of a
system to a small signal and a large signal excitation. The large signal is considered the
driver of the system and establishes an operating point. The small signal does not drive
the non-linearities and will simply operate in a linear mode with frequency conversion.

To understand this effect consider a function of a large signal X and an incremental
small signal x. This function can be expanded around the operating point forced by the
large signal as a Taylor series:

F (X + x) = F (X) +
dF (X)

dX
x+

1

2

d2F (X)

dX2
x2 + ... (3.6)

The response of the system to the small-signal should be found by removing the system’s
response to the large signal (f (X)). Additionally, if the small signal is small enough the
polynomial terms beside the first order are negligible. The remaining term is simply a
linear transformation of the small-signal through the driven non-linearity:

f (x) ≈ dF (X)

dX
x (3.7)

This is much the same as is done when analysing the small-signal response of the
transistor with the large signal acting as the bias. The big difference of this large signal is
that it varies over time, this means that it will produce non-linear distortion when driving
the non-linearity and new frequency components are generated. The small signal is mixed
with all the frequencies and generates new components at the sum and difference of each
one.

To analyse this effect, consider that both the large and small signals are sinusoids of in-
commensurate frequencies, such that x = Acos(ω0t) and X = Bcos(ωpt), incommensurate
quantities zk can be defined as seen in equation 3.8.

K∑

k=0

nkzk = 0,∀nk ∈ Z (3.8)
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Assume as well that the function F (u) is a non-linearity being driven by the large
signal. As seen before the response of the system to the small signal will be equation 3.7.
The spectrum of the function dF (X)

dX
is similar to the spectrum shown in figure 3.3.

ω

A

ω
p

2ω
p

−
ω
p

−
2ω

p

Figure 3.3: Non-Linearity Spectrum

When a small-signal is added to the system, the spectrum of the output will take the
form of the one shown in figure 3.4.
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Figure 3.4: Conversion Output Spectrum

Because the small signal is purely real, this response can be fully reconstructed using
only one of the terms around each multiple of ωp. Using this fact we can express the
equation of the conversion in the form of a double series as shown in equation 3.9.

f (x) ≈ dF (X)

dX
x =

+∞∑

n=−∞
Fne

jnωpt
+∞∑

m=−∞
xme

jω0t =
+∞∑

n=−∞

+∞∑

m=−∞
Fnxme

jωm+nt (3.9)
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Finally, this series can also be expressed in the matrix form (when truncated) which
effectively describes the circuit as an N-port network at each frequency, as seen in equa-
tion 3.10.




f ∗−N
f ∗−N+1

...
f0

f1

...
fN−1

fN




=




F0 F−1 ... F−2N

F1 F−1 ... F−2N+1

... ... ... ...
FN FN−1 ... F−N
FN+1 FN ... F−N+1

... ... ... ...
F2N−1 F2N−2 ... F−1

F2N F2N−1 ... F0







x∗−N
x∗−N+1

...
x0

x1

...
xN−1

xN




(3.10)

Note that the negative frequency components have been shown as conjugates, this
happens to avoid the negative frequency. It is a simple change in definition, the components
are defined as phasors that represent the negative frequency. This can be done because
the signal is real and therefore the equation x∗−n = xn is true.

The conversion matrix is very helpful because it allows the use of the frequency domain
properties with non-linear components. The conversion matrix works as an N-dimensional
component across the several frequencies guiding the frequency translations of the input
components to the output. As an example let’s apply the conversion matrix to a non-linear
capacitor.

Imagine a non-linear capacitor such that its capacitance is described by the function
C (v), where v is the voltage across its terminals. If this is the case, then we can write the
following equations:

dq (v)

dv
= C (v)

q (vss) = C (Vls) vss

(3.11)

where Vls is the large signal operation point and vss is the small signal increment.
Here, C (Vls) is dF (X)

dX
, to determine the coefficients needed for the conversion matrix the

capacitance function would need to be specified, instead Cn will be used to mark the
capacitance coefficients.

If we build the matrix with the Cn coefficients the result is:




Q∗−N
Q∗−N+1

...
Q0

Q1

...
QN−1

QN




=




C0 C−1 ... C−2N

C1 C−1 ... C−2N+1

... ... ... ...
CN CN−1 ... C−N
CN+1 CN ... C−N+1

... ... ... ...
C2N−1 C2N−2 ... C−1

C2N C2N−1 ... C0







V ∗−N
V ∗−N+1

...
V0

V1

...
VN−1

VN




(3.12)
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Where Vn are the small signal voltage coefficients, Cn the capacitance large signal
coefficients and Qn the charge coefficients.

To obtain the current we need to differentiate the charge, since we are in the frequency
domain a simple multiplication by jω would suffice. In the case of the matrix with each
row belonging to one frequency this multiplication is also done in the matrix form, using:

j




ω−N 0 ... 0
0 ω−N+1 ... 0
... ... ... ...
0 0 ... ωN


 (3.13)

The final result is the well known form I = jΩCV in the matrix form. The conversion
matrix is therefore a very helpful construct to analyse small signal behaviour in a large
signal driven non-linearity.

3.2 Manley-Rowe Relations

Manley and Rowe described some properties of the interaction of signals applied to
non-linear components [10]. These properties were extracted with very broad conditions,
the only assumption was that the characteristic of the non-linear device is unitary and,
if not, that the hysteresis loop be only double valued. In their work it is described that
energy can be extracted from sources interacting in a non-linear reactance and given to a
signal generated in the non-linearity, with the power loss equal to the area of the hysteresis
loop. In the remainder of this work the devices are considered to have no hysteresis to
simplify the relations.

The relations can be extracted in a simpler, more understandable way through sim-
ple transformation of the power balance equations, this procedure is shown in equa-
tions 3.14, 3.15, 3.16 and 3.17 ,it as been extracted from [11, p. 804 - p. 807].

In a non-linear capacitance excited by two periodic signals the power conservation can
be expressed, in the frequency domain, as:

+∞∑

n=−∞

+∞∑

m=−∞
Pn,m = 0 (3.14)

If we multiply and divide Pn,m by nω1 + mω2 where ω1 and ω2 are the fundamental
frequencies of the excitation signals we can write:

ω1

+∞∑

n=−∞

+∞∑

m=−∞
n

Pn,m
nω1 +mω2

+ ω2

+∞∑

n=−∞

+∞∑

m=−∞
m

Pn,m
nω1 +mω2

= 0 (3.15)

Taking into account that Pn,m = Vn,mI
∗
n,m and Qn,m = −j In,m

nω1+mω2
we can conclude that

the series do not depend on the frequency, but only on the voltage and the capacitance.
If this is true, then, for arbitrary ω1 and ω2, each of the series must vanish independently
and we can write:
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+∞∑

n=−∞

+∞∑

m=−∞
n

Pn,m
nω1 +mω2

= 0

+∞∑

n=−∞

+∞∑

m=−∞
m

Pn,m
nω1 +mω2

= 0

(3.16)

Finally, knowing that Pn,m = P−n,−m the series can be simplified to the common
Manley-Rowe power relations.

+∞∑

n=0

+∞∑

m=−∞
n

Pn,m
nω1 +mω2

= 0

+∞∑

n=−∞

+∞∑

m=0

m
Pn,m

nω1 +mω2

= 0

(3.17)

The relations can also be extracted for a non-linear inductance by observing that Φn,m =

−j Vn,m
nω1+mω2

, which is completely controlled by the current and the inductance, leaving us
in the same conditions as before.

3.2.1 Uses and Limitations

The Manley-Rowe power relations can be used to easily estimate the power gain of a
parametric amplifier based on non-linear capacitances or inductances. The power gain is,
however, a very restrictive FoM to evaluate a PA, in fact, the PA can have a good power
gain but be near useless if it cannot take any power input.

An example of how to extract the power gain from the Manley-Rowe relations is the
following, imagine that there exists such a circuit in which only the fundamental frequencies
of the excitation ω1 and ω2 can survive, as well as their sum. If this is the case, then the
relations can be reduced greatly, as shown in equation 3.18.

P1,0

ω1

+
P1,1

ω1 + ω2

= 0

P0,1

ω2

+
P1,1

ω1 + ω2

= 0
(3.18)

Simple transformations result in the power gain from each power input to the output,
equation 3.19.
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−P1,1

P1,0

=
ω1 + ω2

ω1

−P1,1

P0,1

=
ω1 + ω2

ω2

(3.19)

Notice how the power gain says nothing about the capacitance type. In fact, one could
use a linear capacitance and the power gain would be the same. This is strange because,
if the capacitance is linear, there should be no power input to the system nor generation
of new frequencies. What happens is that, in this case, the power gain is obtained at the
cost of a 0

0
indetermination (both P1,1 and P1,0 are zero).

The conclusion one can draw from this is that the Manley-Rowe relations is an im-
portant tool to estimate the optimal gain of an amplifier but it fails to describe several
important characteristics: transducer gain, input power, sensitivity to non-linearity, etc..
To estimate these the system must be analysed at a deeper level.
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Chapter 4

Parametric Amplifier

4.1 Definition

A Parametric Amplifier (ParAmp) is one in which the characteristics of some component
vary over time periodically. This variation is usually attained through excitation of a
non-linear reactance with a strong periodic signal, this strong signal is called the pump.
Amplification is achieved by perturbing the pump’s excitation with some other signal,
which is the input. Because both signals vary over time, the output of a ParAmp occurs at
some other frequency, usually at the sum or difference of the fundamentals of each signal.
Figure 4.1 shows the concept of a ParAmp. In a real ParAmp the gain is not only a
function of the pump excitation, but also of the input.

The pumping can be done either in current or in voltage, the ParAmp is said cur-
rent pumped or voltage pumped, respectively. The choice for pumping is dependent on
the characteristics of the used devices, benefits and losses should be well pondered when
choosing the pumping excitation.

Another important characteristic of ParAmps is whether or not the input and the pump
have commensurate frequencies. When they do, the ParAmp is said to be degenerate and
it has some special properties because the pump’s and input’s energies can be converted
into each other without interacting with the output. This process does require that the
frequencies are commensurate which does not make much sense if the input is a modulated
signal, because it would mean that the pump would also need to be modulated inducing a
logic loop (amplification of a modulated signal would need an amplified modulated signal
from which to extract energy). In this Thesis degenerate ParAmps will be mentioned when
some energy considerations are derived but are not the main focus.

Finally a non-degenerate ParAmp can either be inverting or non-inverting (this nomen-
clature relates to gain considerations), inverting ParAmps can be proved to be always
unstable, while the non-inverting have stable operating points. Because of this, the non-
inverting case is more thoroughly explored.
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ParAmpx(t) y(t)

p(t)

A
(
p(t)

)

h(t)

y(t)x(t)

Figure 4.1: Conceptual Parametric Amplifier

4.2 Energy Considerations

Before setting out to discover more about ParAmps, it is useful to look more deeply
into the energy relations of non-linear components. As it was explained before, Manley
and Rowe deduced in [10] the energy conversion relations that can be achieved using a
non-linear reactance, this deduction was restricted to incommensurate frequencies and two
sources but very relaxed in terms of the reactance function form.

It would be interesting to restrict the reactance’s form more and obtain more insight
into the energy conversion process under these restrictions, as far as the author knows, such
demonstration has never been done before. To do this, one can begin by assuming that
the reactance is a capacitance and that it must be possible to describe as a polynomial,
such as the one shown in equation 4.1.

c(v) =
+∞∑

k=0

Ckv
k (4.1)

Even though this restricts the analysis, at least in some operating point the capacitance
should be able to be described as a polynomial, if nothing more this will allow for analysis
of linearly varying capacitances.

If we assume that the capacitance can be described as the polynomial (shown in equa-
tion 4.1) then it is possible to calculate the charge using equation 4.2 and thus the current.
More important than that, however, is that the form of the energy can also be extracted
using equation 4.3 (noting that dq = cdv).
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q =
∫ v

0
c(v)dv =

∫ v

0

+∞∑

k=0

Ckv
kdv =

+∞∑

k=0

Ck

∫ v

0
vkdv =

+∞∑

k=0

Ck
k + 1

vk+1 (4.2)

e =
∫ q

0
v(q)dq =

∫ v

0
vc(v)dv =

∫ v

0

+∞∑

k=0

Ckv
k+1dv =

+∞∑

k=0

Ck

∫ v

0
vk+1dv =

+∞∑

k=0

Ck
k + 2

vk+2

(4.3)
Equation 4.3 gives the energy that is stored in the capacitance in terms of the voltage,

this should be averaged to obtain the general trend. When more energy is stored in the
capacitance it means that the charge and voltage waves are in-phase and the capacitance
behaves as such. When less energy is stored, it means that the charge has begun to spin out
of phase with the voltage and thus actual power is given and taken from the capacitance.
This behaviour can be plotted in the trigonometric circle for a better understanding as
shown in figure 4.2.
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Figure 4.2: Trigonometric Circle of Energy

To keep the analysis simple we will advance up until a linearly varying capacitance. Note
that, because the energy is also described as a polynomial of the voltage the energy terms
can be analysed for each of the voltage powers. Therefore, we can begin with a constant
capacitance for k = 0 and follow with the analysis of a linearly varying capacitance with
k=1, this method could be followed up to any order, but each term is more complex to
analyse because more frequency components arise.
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First let’s define the voltage waveform. If we define the voltage waveform as a sum of
cosines of the form shown in equation 4.4, we maintain some generality and a relatively
simple analysis, it’s also assumed that, if x > y then ωx > ωy.

vx(t) = Vxcos (ωxt+ φx) (4.4)

Let’s begin with the analysis of a constant capacitance, in this case the energy is

reduced to one term, e(t) = C0
v(t)2

2
, if the developments thus far have been correct then

it is expected that it would be impossible to transfer energy for this capacitance type, it
should only be possible to store it. To analyse the energy we need to develop the square,
this is done in equation 4.5.

v2
(t) =

(
n=N∑

n=1

Vncos (ωnt+ φn)

)2

=

1

2

n=N∑

n=1

V 2
n +

1

2

n=N∑

n=1

V 2
n cos (2ωnt+ 2φn) +

n=N∑

n=1

m=N∑

m=1,m 6=n
vn(t)vm(t)

(4.5)

Looking at equation 4.5 it’s possible to observe that the only DC term will be the first
of the expansion, all the other terms will be at some frequency because all frequencies are
different for each voltage index. If we take the average of the energy we quickly see that the
average energy stored in the capacitor will be 1

2

∑n=N
n=1 V

2
n , which is provided by each source.

There is no way to reduce the stored energy, and therefore raise the transferred energy. We
conclude that with a constant capacitance there is no possible energy transference between
sources.

Now we look at the linearly varying capacitance, in this case the energy has two terms,
the first is similar to the linear capacitance and so the result is the same, the second is

related to the linear variation, C1
v(t)3

3
. Again, we need to expand the power to obtain a

treatable expression because it is difficult to know what the average power will be in this
case, this is shown in equation 4.6.

v(t)3 =

(
n=N∑

n=1

Vncos (ωnt+ φn)

)3

=

n=N∑

n=1

v3
n(t) + 3

n=N∑

n=1

m=N∑

m=1,m 6=n
vn (t)2 vm (t) +

n=N∑

n=1

m=N∑

m=1,m 6=n

k=N∑

k=1,k 6=n,k 6=m
vn (t) vm (t) vk (t)

(4.6)

Now we analyse each term of equation 4.6, the first term cannot generate an average
value, the second and third terms however can, equation 4.7 shows the DC components
that can be generated by these.
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3

4

n=N∑

n=1

m=N∑

m=1,ωm=2ωn

V 2
n Vmcos (2φn − φm)

3

2

n=N∑

n=1

m=N∑

m=n+1,ωm 6=2ωn

k=N∑

k=1,ωk=ωn±ωm
VnVmVkcos (φn ± φm ∓ φk)

(4.7)

The interesting part is that the average energy stored is controlled by the phase of
the input frequencies in relation to one another. If we control the phase, we can diminish
the stored energy, thus augmenting the energy transference between sources, if we look
at figure 4.2 we can conclude that, if the energy stored in the capacitor is described by
equation 4.7, the transferred energy should be described by equations in quadrature with
these, shown in 4.8.

3

4

n=N∑

n=1

m=N∑

m=1,ωm=2ωn

V 2
n Vmsin (2φn − φm)

3

2

n=N∑

n=1

m=N∑

m=1,m 6=n

k=N∑

k=1,ωk=ωn±ωm
VnVmVksin (φn ± φm ∓ φk)

(4.8)

As a more practical example let’s assume that the voltage has three sources, the input,
the pump and the output, vin, vp and vout, respectively. Its frequencies are defined as
follows, ωin for the input, ωp for the pump and ωout = ωin + ωp for the output.

The input, pump and output would transfer energy according to equation 4.8, this
equation describes the amount the energy that is transferred through the capacitance.
The conservation of energy requires that the sum of the energies consumed and provided
be zero, because equation 4.8 only describes the energy that is transferred this does not
happen here, however when we look from the side of the sources some are taking energy
while others are giving it, or even doing both at the same time. The sources work at
different frequencies and so balancing the energies is more complex than balancing the
power, because the energy transference occurs at different time rates. Equation 4.9 shows
the total energy transferred through the capacitance considering the pump as the phase
reference, the first term is only valid for degenerate ParAmps.

Etransfer =
[
C1

4
V 2
inVpsin (2φin)

]

ωp=2ωin

+
C1

2
VinVpVoutsin (φin − φout) (4.9)

Using the charge equation we can see the flow of energy for each source, knowing this
it is then possible to evaluate how the energy shifts between them. In equation 4.10 the
charge formula is expanded for better examination, the charge due to the linear component
has been suppressed and the terms important at each frequency have been isolated.
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q =
C1

2

(
v2
in + v2

p + v2
out + 2vinvp + 2vinvout + 2vpvout

)

ωin → C1 (vinvp + vpvout)

ωp →
C1

2

(
v2
in + 2vinvout

)

ωout → C1vinvp

(4.10)

The terms are then multiplied by each of the corresponding voltages taking into account
a 90◦ shift in the charge for power to be transferred, and we obtain equation 4.11 that
indicates the flow of energy and also that the pump and input provide the same energy
amount when they have incommensurate frequencies, the output is the source working
opposite. When the pump and input are commensurate there are other two important
terms shown in equation 4.12.

ωin →
C1

4
VinVpVoutsin (φout − φin)

ωp →
C1

4
VinVpVoutsin (φout − φin)

ωout → −
C1

4
VinVpVoutsin (φout − φin)

(4.11)

ωin → −
C1

4
V 2
inVpsin (2φin)

ωp →
C1

8
V 2
inVpsin (2φin)

(4.12)

Notice that the energies do not balance, this happens because the energy is transferred
in different amounts of time. To avoid this issue the quantity to be analysed should be the
power. The power measures the amount of energy per unit of time, each of the sources
transfers the described amount of energy per wave period, this means that the power will
be described by equations 4.13 and 4.14
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ωin → fin
C1

4
VinVpVoutsin (φout − φin)

ωp → fp
C1

4
VinVpVoutsin (φout − φin)

ωout → −fout
C1

4
VinVpVoutsin (φout − φin)

(4.13)

ωin → −fin
C1

4
V 2
inVpsin (2φin)

ωp → fp
C1

8
V 2
inVpsin (2φin)

(4.14)

As we can see the power balance is verified. Analysing the expressions we can observe
that they meet the Manley-Rowe power relations. They also provide some more information
such as the importance of the phase for power transference.

4.3 Searching for the Active Element

As seen before, in a normal PA the transistor is used as the active component, that is
able to modulate the power source according to the input. Through energy considerations
it can be proved that a transreactance cannot present itself has an infinite impedance in
any of the ports. This happens because a variation of a reactance implies the variation of
the stored energy, while a variation of a conductance only implies the variation of energy
consumption.

The energy stored in a reactance is intimately connected to the value of the reactance.
Let’s take a capacitance for example. The energy stored in a capacitance can be calculated
using the formula deduced in equation 4.15.

E =
∫ V

0
qdv =

∫ V

0
Cvdv =

1

2
CV 2 =

1

2

Q2

C
(4.15)

Now imagine that some charge has been accumulated in the capacitance, this means
that there is some amount of energy stored and, furthermore, if the value of the capacitance
changes then the energy changes. If the capacitance can be controlled by some signal then
the amount of energy stored in the capacitance is also controlled by that same signal.
What this means is that to control the capacitance some amount of energy must also be
provided.

Using non-linear reactances it is known, through the Manley-Rowe Relations[10], that
gain can be achieved. Knowing this there is a device that comes to mind to be used as
the active element of the developed amplifiers, this device is the diode. A problem occurs

49



4.3. SEARCHING FOR THE ACTIVE ELEMENT CHAPTER 4. PARAMETRIC AMPLIFIER

when using two-terminal devices: the excitation is applied at the same terminal for all
signals; this problem can be bypassed due to the nature of the parametric amplifiers: all
excitations occur at different frequencies and can be filtered out to avoid power exchange
between sources. Another way to accomplish this is to use balanced topologies to create
virtual short-circuits at the other sources’ excitation points. The diode is the typical active
element in RF ParAmps and was the one investigated in this Thesis.

In more recent years, the Metal-Oxide-Semiconductor Varactor (MOSVar) as also been
used as an active element in ParAmps both for RF and other applications, such is the
case of the studies made in [12, 13]. The MOSVar has a different variation characteristic
than the common diode but the design theory suffers only small variations. There is a
very interesting device that is also a MOSVar but possesses three terminals, this means
that the pump and the input can be separated without recurring to filtering, a look at this
device is included in this Thesis.

4.3.1 The Diode

The diode is a thoroughly studied device and is thus well modelled, when a reverse
voltage is applied, the diode is known to exhibit a voltage dependent capacitance. The
capacitance is usually modelled by equation 4.16, the capacitance curves with varying
grading coefficients are shown in figure 4.3. As it can be seen, the capacitance depends on
few parameters, v is the reverse voltage applied to the device, Vj is the built in junction
voltage, Cjo is the junction capacitance at zero bias and m is the grading coefficient.

C(v) =
Cjo(

1 + v
Vj

)m (4.16)

m

v

Vj

C(v)

Cjo
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1
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Figure 4.3: Variation of the Diode Capacitance with the Applied Voltage

An interesting fact about the diode is that its elastance can vary linearly with both
the current or the voltage, depending on the grading coefficient m but its capacitance can
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never exhibit this behaviour. The elastance is the inverse of the capacitance, while the
capacitance is defined as the derivative of the charge over the voltage, the elastance is
defined as the derivative of the voltage over the charge.

By analysing equation 4.16 it can be noticed that for a linear variation with the voltage
the grading coefficient would need to be negative, which is impossible. However, if we
invert the function, a unitary grading coefficient would yield a linear expression. The same
analysis can be made in terms of the charge (and the current, therefore). To do this, first
lets write the elastance in terms of the charge, this is done in equation 4.17.

c(v) =
Cjo(

1 + v
Vj

)m

q(v) =
VjCjo
1−m

(
1 +

v

Vj

)1−m
+Q0

v(q) = Vj

(
1−m
VjCjo

(q −Q0)

) 1
1−m

− Vj

s(q) =
Vj

1−m

(
1−m
VjCjo

) 1
1−m

(q −Q0)
m

1−m

(4.17)

Looking at expression 4.17 if we make m = 0.5 the elastance varies linearly with the
charge, however, if we invert the expression notice that there is no grading coefficient
that makes the capacitance vary linearly with the charge, figure 4.4 shows the elastance
variation with the charge, in this case the expression was redesigned into new parameters,
the plotted expression is shown in equation 4.18, Sm is the maximum elastance and Qm

the maximum charge. This characteristic of the elastance is used in [14].

s(q) = Sm

(
q

Qm

) m
1−m

(4.18)

In reality the capacitance does not tend to zero but to some residual value which can
be modelled as a parasitic linear capacitance in parallel with the non-linear capacitance.
In fact, a reverse biased diode should be modelled using more parasitic components, of
major importance amongst these is the Equivalent Series Resistor (ESR). The ESR of the
diode will determine the efficiency of the parametric amplifier. A more detailed model for
the diode is shown in figure 4.5 on the left, usually the parasitic parallel resistor can be
ignored or included in the ESR, when an elastance based ParAmp is to be designed the
parallel capacitance can be turned into a series capacitance, this is the model shown on
figure 4.5 on the right.
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Figure 4.4: Variation of the Diode Elastance with the Stored Charge (Normalized)
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Figure 4.5: Diode Varactor Model

4.3.2 The 3-Terminal MOSVar

Even though the focus of this Thesis is not the MOSVar based ParAmp, the concept
behind this device is very interesting and also enables a controlled reactance. The fact
that the MOSVar possess one input port and one control port is a big improvement over
the diode. The MOSVar effectively implements a transreactance, controlled electronically.
Because of this, a small section explaining how the device works as been included.

This type of MOSVar can be seen as a Metal-Oxide-Semiconductor Field-Effect Tran-
sistor (MOSFET) in which the source and drain have been shunted, for further purposes
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this terminal (source+drain) will be called source, figure 4.6.

Gate

Bulk

DrainSource SourceMOSV ar
Metal
Insulator
Inversion Layer
Depletion Layer

Substrate
Drain and Source

Figure 4.6: The 3-Terminal MOSVar

The MOSVar is therefore a three terminal component: the gate, the source and the
bulk. Between the gate and the bulk there is a thin film of isolating material therefore
creating a parallel plate capacitor. When a positive voltage is applied from gate to drain,
the holes from the bulk are forced back from the gate and a depletion layer is formed in the
semiconductor. If the voltage is high enough an inversion layer will form, in a MOSFET
this would allow current to circulate from source to drain. When an inversion layer forms
in the semiconductor, the source can be used to control the charges there, thus creating a
varactor, figure 4.7 exemplifies the behaviour of the MOSVar using an N-channel Metal-
Oxide-Semiconductor (NMOS) in discrete time for a better understanding. Note that,
contrary to the behaviour of the MOSFET the inversion layer will be uniform, because the
source and drain have the same voltage, there exists no pinch-off. The capacitance variation
is due to the augmentation of the dielectric thickness when the charges are removed from
the inversion layer.

Notice that, even though the example is based on a discrete time operation, this is
only because the concept is easier to understand this way. This MOSVar should be able
to be operated in continuous time, in this case, the input would modulate the depth of the
inversion layer, and the pump would modulate the amount of charge in it. Note that this
is not the common MOSVar, which has only two-terminals.

53



4.4. SMALL-SIGNAL ANALYSIS CHAPTER 4. PARAMETRIC AMPLIFIER
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Figure 4.7: MOSVar Behaviour, adapted from [13]

4.4 Small-Signal Analysis

In the case of the parametric amplifier, small signal excitation is such that the input
does not significantly influence the behaviour of the pump. Frequency-wise the spectrum
would be something like the one shown in figure 4.8, of course, the output would be chosen
from one of the mixed frequencies.

f−fp fp−fin fin

Input

Mixed

f−3fp −2fp −fp fp 2fp 3fp

Output

Figure 4.8: Small Signal Input and Output Frequencies

In [15] Rowe determines and describes some of the characteristics for capacitance based
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ParAmps. Even though extremely restrictive, small signal operation can give interesting
insight into the behaviour of diode based parametric amplifiers.

One of the important specifications that the small-signal analysis can contribute to is
which frequency mix to extract at the output. This determines the type of the ParAmp
that will be designed. For the sake of reducing the analysis, the considered possible output
frequency mixes were the sum and difference of the input frequency around the pump
frequency. In fact sub-harmonic pumping is used sometimes, to more easily isolate the
pump from the output, in this case, the output is extracted around some higher harmonic
of the pump’s fundamental frequency (usually the second), [12], but this case was not
studied in this Thesis.

This next analysis has been adapted from [15, 11], while, in [15], Rowe does not describe
the capacitance dependence on the voltage, assuming the capacitance description is known
frequency-wise, in [11], Collin derives the frequency terms using the series diode model
shown in figure 4.5. Let’s begin by taking Rowe’s approach.

4.4.1 General Considerations

Let’s assume that some non-linear component possesses a charge that, at any given time
can be calculated from the voltage across it through a function, q = f(v), this component is
surrounded by linear networks and is excited by two signals one of which can be considered
very small in relation to the other. The large signal will be henceforth called the pump
signal, and the small signal the input; this is illustrated on figure 4.9, where Mx represents
the linear networks.

+−vin(t) Min
c(v) Mout RL

Mpump

+−vpump(t)

Figure 4.9: Non-Linear Capacitance Concept ParAmp

Because the signal at vin is very small, for the non-linear analysis we can assume that
the only frequencies that exist are the pump’s fundamental and its harmonics. This means
that the method of the conversion matrix can be applied, non-linear analysis is used to
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determine the conversion matrix and N-port network theory can be used to analyse the
rest of the behaviour.

To calculate the conversion matrix, first we differentiate the non-linear component’s
characteristic equation (in relation to the independent variable), this yields dq

dv
= f ′(v),

which is the capacitance, this is then converted to the frequency domain, shown in equa-
tion 4.19.

dq

dv
= c(v) =

+∞∑

n=−∞
Cne

jωpt

Cn =
1

T

∫ T
2

−T
2

c(t)e−jnωpt
(4.19)

With the series terms we then construct the conversion matrix that relate the small
signal voltage Fourier series terms to the small signal charge Fourier series terms, this is
the usual capacitance law but in the matrix form shown in equation 4.20.

Q = CV




Q∗−K
...
Q0

...
Q+K




=




C0 ... C−K ... C−2K

... ... ... ... ...
C+K ... C0 ... C−K
... ... ... ... ...

C+2K ... CK ... C0







V ∗−K
...
V0

...
V+K




(4.20)

Of course the series needs to be truncated for some K, it’s assumed that the circuit
must ultimately be low pass for some frequency. This condition is necessary and true for
every circuit even if only to accommodate the second law of thermodynamics.

To determine K we assume that the linear networks only allow energy to propagate
at the fundamental of each source and that the output is extracted at either the sum or
difference of the fundamentals. If this is the case, the conversion matrix can be simplified
to a two-port for each case, the sum and difference. First we can simplify it to a form that
fits both cases, shown in equation 4.21.



Q∗p−in
Qin

Qp+in


 =



C0 C−1 C−2

C1 C0 C−1

C2 C1 C0






V ∗p−in
Vin
Vp+in


 (4.21)

Because the charge, the voltage and the capacitance are real values in time, the condi-
tion X−k = X∗k must also be fulfilled which can further simplify the conversion matrix.
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4.4.2 Inverting ParAmp

The ParAmp is said to be inverting if the frequency difference is chosen as the output.
This comes from the fact that the gain will be negative which can be directly extracted
from the Manley-Rowe power relations as shown in equation 4.22, where the first index
of the power series is the small-signal’s frequency index and the second is the pump’s
frequency index.

P1,0

ωin
+

P1,−1

ωin − ωp
= 0⇒ −P1,−1

P1,0

= −ωp − ωin
ωin

P0,1

ωp
+

P−1,1

ωp − ωin
= 0⇒ −P1,−1

P0,1

=
ωp − ωin
ωp

(4.22)

Looking at the equations there is an interesting notion that arises, if there is power input
at the small-signal’s fundamental then there’s power input at the output’s fundamental and
vice-versa. To better analyse this result let’s turn to the conversion matrix. In the inverting
case the conversion matrix can be simplified in the way shown in equation 4.23, if the linear
networks supress the voltage at the frequency sum.



Q∗−
Qin

Q+


 =



C0 C−1 C−2

C1 C0 C−1

C2 C1 C0






V ∗−
Vin
V+


⇒

[
Q∗out
Qin

]
=

[
C0 C−1

C1 C0

] [
V ∗out
Vin

]
(4.23)

If we take the phase reference at the non-linearity, the value C1 would be purely real,
which would mean that C−1 = C1. It’s more interesting to have the conversion matrix
described in terms of currents and voltages to extract the input and output impedances
and the transducer gain, to do this we simply differentiate (in order to time) the conversion
matrix in the frequency domain to obtain equation 4.24.

[
I∗out
Iin

]
=

[
−jωoutC0 −jωoutC1

jωinC1 jωinC0

] [
V ∗out
Vin

]
(4.24)

With this conversion matrix we have a two-port description in terms of Y-Parameters.
Note however that this description hides the behaviour of the circuit towards the pump,
this must be analysed separately. The circuit is now the one shown in figure 4.10, the
complete circuit will have the linear networks, the source and the load connected.

The circuit can now be analysed through classical linear analysis. If we calculate the
input impedance of this circuit we quickly conclude that the circuit is unstable because
the input conductance is negative, as shown in equation 4.25.
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jωinC1V
∗
outC0 −jωoutC1Vin C0

ωin ωout = ωp − ωin

Figure 4.10: Equivalent Small-Signal Circuit, Inverting ParAmp

Yin = Y11 −
Y12Y21

YL + Y22

Yin = jωinC0 −
ωinωoutC

2
1

YL + jωoutC0

= −ωinωoutC2
1

GL

|YL + Y22|2
+ jBin

(4.25)

In [15], Rowe suggests the use of a circulator to deliver power to loads both at the
frequency difference and at the input’s fundamental. This approach was not chosen for
this Thesis however, the preferred design was the non-inverting ParAmp described next.

4.4.3 Non-inverting ParAmp

The non-inverting case has the frequency sum at the output. In this case the gain is
positive, which can again be extracted from the Manley-Rowe power relations, as shown
in equation 4.26.

P1,0

ωin
+

P1,1

ωin + ωp
= 0⇒ −P1,1

P1,0

=
ωp + ωin
ωin

P0,1

ωp
+

P1,1

ωp − ωin
= 0⇒ −P1,1

P0,1

=
ωp + ωin
ωp

(4.26)

The same train of thought can be applied as in the inverting ParAmp, however, because
the frequency is the sum the conversion matrix variables will now be on the positive side
of the spectrum. This means that, on differentiation, there will be no negative coefficients
on the Y-parameter matrix. In turn this will yield a positive input conductance, contrary
to the previous case scenario. The final form of the conversion matrix is shown in equa-
tion 4.27, again, the assumption that the voltage at other frequencies is suppressed was
made.

[
Iin
Iout

]
=

[
jωinC0 jωinC1

jωoutC1 jωoutC0

] [
Vin
Vout

]
(4.27)
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Note that now, re-using equation 4.25 it is possible to see that the result will be the
same but the conductance will be positive. We can analyse the resulting four-pole to
find some interesting characteristics of the ParAmp such as transducer gain, sensitivity to
non-linearity, bandwidth, etc..

The equivalent two-port network of the non-linear capacitance is similar to the previous
case. However, the current gain in the output frequency is positive, the equivalent circuit
is shown in figure 4.11.

jωinC1V
∗
outC0 jωoutC1Vin C0

ωin ωout = ωp + ωin

Figure 4.11: Equivalent Small-Signal Circuit, Non-Inverting ParAmp

Transducer Gain

The transducer gain is usually the chosen FoM for evaluation of the gain. This is
because the transducer gain measures the gain in relation to the power one could extract
by applying the input source directly to the load, unlike the power gain that measures the
gain in relation to the power inserted in the system.

The transducer gain is, therefore, one of the main characteristics of an amplifier and is
defined by equation 4.28.

Gt =
Pout
Pav

(4.28)

If we take the conversion matrix representation and lump the linear input and output
networks into one conductance we would have the equivalent circuit shown in figure 4.12.

IS YS

jωinC0 jωinC1

jωoutC1 jωoutC0

YL

Figure 4.12: Equivalent Small-Signal Circuit, with Admittance Terminations
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From classical two-port network analysis, after defining the terminations, the transducer
gain can be calculated according to equation 4.29 where Gp is the power gain. Notice that,
when YS = Y ∗in maximum gain is achieved, which is exactly the power gain.

Gt = 4Gp
Re (YS)Re (Yin)

|YS + Yin|2
(4.29)

The power gain can be extracted from the Manley-Rowe relations, the input admittance
can be calculated using equation 4.30.

Yin = Y11 −
Y12Y21

YL + Y22

= jωinC0 +
ωinωoutC

2
1

jωoutC0 + YL
=

Yin =
ωinωoutC

2
1gL

g2
L + (ωoutC0 + bL)2 + j

(
ωinC0 −

ωinωoutC
2
1 (ωoutC0 + bL)

g2
L + (ωoutC0 + bL)2

) (4.30)

Putting everything together we obtain the transducer gain expression (equation 4.31),
which is quite complex for general loads.

Gt = 4
ωout
ωin

gS
ωinωoutC

2
1gL

g2
L+(ωoutC0+bL)2

(
gS +

ωinωoutC2
1gL

g2
L+(ωoutC0+bL)2

)2

+
(
ωinC0 + bS − ωinωoutC2

1 (ωoutC0+bL)

g2
L+(ωoutC0+bL)2

)2 (4.31)

To simplify this equation a helpful assumption is that the output load is always tuned.
This assumption is valid because the output frequency is the sum of the input frequency
with the pump frequency, if the pump frequency is high enough the percentage variation
at the output is small. In the case the output is tuned we would have ωoutC0 + bL = 0, and
the transducer gain would simplify to equation 4.32 a much more treatable expression.

Gt =
4ω2

outC
2
1
gS
gL(

gS +
ωinωoutC2

1

gL

)2
+ (ωinC0 + bS)2

(4.32)

The maximum of this expression happens for tuned conditions, ωinC0 + bS = 0, and
gSgL = ωinωoutC

2
1 .

Bandwidth

There are several effects that limit the bandwidth. The first effect is the variation of
the power gain given by the Manley-Rowe Relations. This gain is always reduced because
the percentage change in ωin is always greater than the one in ωout. The second effect is
the detuning of the harmonically tuned filters at the input and the output, this effect is
more severe for lower conductances, since the Q factor of the filter is higher. The third and
final effect is the change of the input impedance of the amplifier due to the change of the
Y-parameters Y12 and Y21 which cannot be included in the source and load conductances.
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The bandwidth can be evaluated by considering the system tuned at a certain frequency
and then observe the change that happens for small variations around that frequency. If
we consider the narrowband approximation then this middle frequency will be much higher
than the perturbation, this is the frequency equivalent of the small signal analysis and the
course taken in [15], it ends up limiting the analysis to the bandwidth of the harmonic
filters. In this work the analysis was broadened a little to include the variations due to the
changes in the transconductances and the power gain, as well as the harmonic filters.

To analyse the bandwidth it is convenient to start with equation 4.29 for the transducer
gain and then note the influence on each admittance and the power gain individually, it
is also convenient to include the Y11 and Y22 parameters in the YS and YL admittances
respectively.

Let’s begin with the evaluation of the power gain fluctuation, this is shown in equa-
tion 4.33, as usual, if the variation is sufficiently small then the power gain is linearly
varying with the frequency shift.

Gp = 1 +
ωp

ωinmid

(
1 + ∆ω

ωinmid

) ≈ Gpmid

(
1− ∆ω

2ωinmid

)
(4.33)

Another influence to the bandwidth is the variation of the source admittance, if we
include the Y11 parameter in this admittance it presents itself as a tank circuit which is
tuned at the center frequency. The bandwidth of such a filter is determined by the Q
factor, which is in turn dependent on the source conductance. This same effect happens at
the output, but the effect on the input is that of a series RLC, this can be seen through
equation 4.30. Equations 4.34 to 4.36 describe some of the properties of parallel resonators,
including the variation of the impedance for small enough ∆ω.

Y = g + jωC − j 1

ωL
= g

(
1 + jQ

(
ω

ωmid
− ωmid

ω

))
≈ g

(
1 + jQ

∆ω

2ωmid

)
(4.34)

Q =
ωmid
2πBw

=
ωmidC

g
=

1

g

√
C

L
(4.35)

Bw =
g

2πC
(4.36)

Mixing the equations shows that some variation of the input impedance does not depend
on the center frequency in contrast with the power gain.

The last effect is the variation of the transconductance parameters, Y12 and Y21. This
variation is felt in the input impedance of the two-port network but cannot be translated
into an equivalent filter as the variation of the load admittance can. In equation 4.30 the
variation of YL including Y22 was explained before, the parameter Y11 was included in YS
leaving only the numerator of the second term which is given by Y12Y21 = −ωinωoutC2

p , the
variation is due to both input and output. Equation 4.37 shows the variation for small
∆ω.
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−ωinωoutC2
1 ≈ −ωinmidωoutmidC2

p

(
1 +

∆ω

ωinmid
+

∆ω

ωoutmid

)
(4.37)

To end this analysis we only need to put everything together, using equation 4.31.
The dependence of the gain with the frequency shift can be expressed through the use of
functions describing each of the effects above as shown in equation 4.38.

A(∆ω) = 4Gp(∆ω)

S(∆ω) = YS(∆ω)

L(∆ω) = YL(∆ω)

T(∆ω) = −Y12(∆ω)Y21(∆ω)

G(∆ω) = A(∆ω)

Re
(
S(∆ω)

)
Re

(
T(∆ω)

L(∆ω)

)

∣∣∣∣S(∆ω) +
T(∆ω)

L(∆ω)

∣∣∣∣
2 =

gSgLA(∆ω)T(∆ω)∣∣∣S(∆ω)L(∆ω) + T(∆ω)

∣∣∣
2

(4.38)

If we take the previous descriptions of the effects and substitute them on the expres-
sion, taking into account that, for maximum gain, ωinmidωoutmidC

2
p = gSgL we can obtain

equation 4.39.

G(∆ω) ≈
4Gpmid

(
1− ∆ω

2ωinmid

)(
1 + ∆ω

ωinmid
+ ∆ω

ωoutmid

)

∣∣∣∣
(

1 + jQS
∆ω

2ωinmid

)(
1 + jQL

∆ω
2ωoutmid

)
+
(

1 + ∆ω
ωinmid

+ ∆ω
ωoutmid

)∣∣∣∣
2 (4.39)

Equation 4.39 as all the effects well separated which is useful from a qualitative point of
view, however, to obtain quantitative information the model needs to be further expanded
to obtain the joint result of all these effects. To simplify the analysis of this case let’s
consider that gS = gL = g, T(∆ω) = 1 in the denominator (where it is a sum term and not
a multiplicative term) and T(∆ω) = 1 + ∆ω

ωinmid
in the numerator. Taking these restrictions,

developing equation 4.39 results in equation 4.40.

G(∆ω) ≈ Gpmid

(
1− ∆ω

2ωinmid

)

1 +
(

1√
2
C0

C1

∆ω
2
√
ωinmidωoutmid

)4 (4.40)

It’s possible to see that three parameters dominate the gain, frequency-wise. First
the percentage variation in relation to the input’s middle frequency, second the geometric
distance between the input’s and output’s frequency and finally the percentage variation of
the capacitance in relation to it’s middle value. To aid in the evaluation of each parameter

62



CHAPTER 4. PARAMETRIC AMPLIFIER 4.4. SMALL-SIGNAL ANALYSIS

figures 4.13 and 4.14 show the variation of the gain with each one, unless otherwise specified
C0

C1
= 200, ωinmid = 100MHz and ωoutmid = 1GHz.
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ωoutmid
= 2ωinmid
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= 7ωinmid
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Figure 4.13: Gain Variation with the Output’s Frequency
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Figure 4.14: Gain Variation with the Capacitance
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Notice how the passage band is not flat but has a slight slope, this is due to the
numerator but, as expected, is not very significant. The output frequency is a system
specification, however, the capacitance variation rate is not which means that it can be
used as a FoM for the bandwidth of the system.

Non-Linearity Sensitivity

The sensitivity to non-linearity describes the gain variation in relation to the compo-
nent’s non-linearity. Through this analysis it is possible to understand whether a highly
non-linear device is needed for higher gain or if some small non-linearity suffices. The
sensitivity can be describe mathematically as the relative change in some quantity due to
the relative change in some parameter, equation 4.41.

Sf =
df(x)/f(x)

dx/x
=
df(x)

dx

x

f(x)
(4.41)

In this case we have seen before that, when the device is matched, the transducer gain
is simply the power gain. The power gain does not depend on the non-linearity, as proved
by Manley and Rowe which means that the device is insensitive to the non-linearity, when
matched. When the device is not matched, it was seen before that, the non-linearity
influences the bandwidth, the device is, therefore, sensitive to it.

The sensitivity to the non-linearity can only have one source, the variation of the
transconductances of the two-port. As it can be seen in equation 4.38, the transconduc-
tances have influence in the numerator and the denominator of the fraction, as seen in
equation 4.42.

Gt (C1) = 4Gp

ωinωoutC
2
1

gSgL(
1 +

ωinωoutC2
1

gSgL

)2 (4.42)

The sensitivity is of the same form as the sensitivity of f(x) = kx2

(1+kx2)2 to x, which is

shown in equation 4.43.

Sf = 2
1− kx2

1 + kx2
(4.43)

For optimum gain kx2 is close to 1 and so the sensitivity is rather low, as shown in
figure 4.15. Notice that for small variations of the non-linearity the sensitivity changes at
double the rate of the non-linearity, this means that small perturbations of the pump bias
may influence the gain greatly.
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Figure 4.15: Sensitivity of the Gain to the Non-Linearity

4.4.4 Extracting the Parameters

Up to this point the conversion matrix has been used without regard has to how the
parameters relate to the capacitance variation. Here, the capacitance function of a diode
is used to obtain the parameters needed for the conversion matrix, this as been adapted
from [11]. To do this we begin by keeping the small-signal approximation and consider
that the diode can only see the pump’s voltage and the DC bias. The capacitance of a
reverse biased diode is described by equation 4.16, when only the pump and the DC bias
influence the capacitance it capacitance can be described as seen in equation 4.44.

C(v(t)) =
Cjo(

1 +
VB+vp(t)

Vj

)m (4.44)

If we assume that the perturbation imposed by the pump is also small compared to the
DC bias, then we can use a Taylor expansion around VB to obtain a linear variation and
build equation 4.45.

C(t) ≈ Cjo(
1 + VB

Vj

)m −
Cjo(

1 + VB
Vj

)m
m
Vj

1 + VB
Vj

vp (t) (4.45)

Now that the equation is linearised C0 is the first term and C1 the second, including the

pump’s amplitude. If we define a parameter M =
m
Vj

1+
VB
Vj

VP then we can write C1 = C0M

and associate the bandwidth’s FoM with this parameter.
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4.4.5 Limitations

Note that with the small-signal approximation no attempts were made to extract the
maximum possible power from the pump, it is simply said that the available power needs
to be high enough. The first problem with this is that the power that is made available
at the pump is not used in the amplification, even though it is not consumed. The second
problem is that it is difficult to know how much available power is enough and this power
can also be impossible to reach due to bias limitations, since the pump must be small in
relation to the bias.

Another limitation that comes from the small-signal approximation is that the pump is
assumed to maintain a constant voltage for every input as if it is a perfect voltage source.
In real systems, when more power is extracted the pump’s voltage will decrease which
implies a variation of the C1 coefficient changing the system’s characteristics.

To have more insight into the system a large signal theory is necessary, this is addressed
in the next section.

4.5 Large-Signal Analysis

To the author’s knowledge there is no large signal model developed for application in
parametric amplification. This model was fully developed and studied by the author of
this Thesis.

When the system is under large signal excitation, both the input and the pump drive
the non-linearity. This increases the difficulty of analysis because the frequency conversions
now happen for both sources, which means that the conversion matrix technique cannot
be used.

Before going into the large signal analysis, there is a point that needs clarification.
In the small signal analysis the voltages across the diode are assumed to be suppressed
for every frequency except the input’s,pump’s and output’s. However, the excitations are
inserted in parallel with each other, this means that no simple harmonic tuning can be
used to suppress the voltages or it would suppress the voltages from the other sources as
well. If the sources are inserted in parallel it is easier to eliminate the undesired currents,
in this case the capacitance would be current-pumped and the description of the non-
linearity must change to a current dependent formula. To do the same using the voltage,
the excitations need to be inserted in series with each other.

Rowe did not consider this when developing the small-signal analysis on [15]. However,
the characteristics of each form of pumping and the description of the non-linearity should
not change the analysis greatly.

4.5.1 General Considerations

An important consideration for the large signal analysis is the chosen description for
the non-linearity. In this case there are four suitable descriptions: a voltage controlled
capacitance, a voltage controlled elastance, a current controlled capacitance and a current
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controlled elastance. As explained before, to minimize the linear networks, there are two
circuits worth analysing, one in current and the other in voltage. For each one there should
be a chosen non-linearity description. Figure 4.16 can help in this decision, to minimize the
feedback loops, the description should be in capacitance when the excitation is in voltage
and in elastance when the excitation is in current.

V C I Z

V C I Z

I S V Y

I S V Y

V Voltage
I Current
Z Impedance
Y Conductance
C Capacitance
S Elastance

Transformation

Control

Figure 4.16: Dependence and Transformations in the Non-Linear System

The circuits studied for the large signal analysis are shown in figures 4.17 and 4.20 in
the next sections. The LC filters are considered to have a sufficiently high quality factor
that all frequency components are cancelled except for the tuned frequency, the filters
need to be calculated taking the parasitics of the non-linear component into account. The
frequency at the output will be the sum of the pump’s and source’s frequencies.

The large signal analysis preformed on this part of the Thesis is restricted to linearly
varying components. This restriction is necessary to resolve the dependence loop as will
be seen in the next sections.

4.5.2 Voltage Pumped Capacitance

In voltage pumped ParAmps the excitations are inserted in series with each other and
the non-linearity. The tuning filters should be parallel, high Q factor, LC filters to cancel
all unwanted voltage frequencies. However, the current at the non-linearity is uncontrolled
because the filters tend to short circuits outside the passage band. Figure 4.20 shows
the circuit to be analysed, inconveniently the bias requires the use of a Direct Current
Choke (DCC) to separate it from the load. The current pumped ParAmp incorporates
this function in the bandpass filters.

Modelling

The first step is to replace the diode with its equivalent model, shown in 4.5. The
linear part of the model can be copied to each branch (source, load and pump), using the
additivity rule, because only one frequency exists in each of the branches. The Thévenin
equivalent of each branch at the corresponding frequency is then calculated, at all other
frequencies the branches are short circuits.

There are three voltages across the non-linearity, one due to the source, one due to
the pump and one due to the load. These three voltages interact with the non-linearity
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Figure 4.17: Voltage Pumped, Voltage Controlled Capacitance

allowing power to be transferred from one frequency to the others. This process can be
described in the time and frequency domain as shown in equation 4.46, where c is the
capacitance.

i (t) = c (t)
dv (t)

dt

I (ω) = C (ω) ∗ jωV (ω)
(4.46)

The capacitance, c (t), can be written as a double Fourier series because it is dependent
on two stimulus of incommensurate frequencies. Because of this, the current across it
and the voltage through it are also double Fourier series and can be written as shown in
equation 4.47.
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c (t) =
+∞∑

n=−∞

+∞∑

m=−∞
Cn,me

j(nωs+mωp)t

v (t) =
+∞∑

n=−∞

+∞∑

m=−∞
Vn,me

j(nωs+mωp)t

i (t) =
+∞∑

n=−∞

+∞∑

m=−∞
In,me

j(nωs+mωp)t

(4.47)

Considering that the employed filters eliminate every voltage component except at the
tuned frequencies. The voltage double series is reduced to three terms. These will be in
ωs → V0,1, ωp → V1,0 and ωs + ωp → V1,1. The voltages through the capacitance generate
currents across it. The currents generated at the same frequency components interact
with the Thévenin equivalents, the other voltage terms may exist but cannot carry power.
According to equation 4.46 the important voltage components can be calculated as shown
in equation 4.48.

I1,1 = jω1,0C0,1V1,0 + jω0,1C1,0V0,1

I1,0 = −jω0,1C1,1V
∗

0,1 + jω1,1C
∗
0,1V1,1

I0,1 = −jω1,0C1,1V
∗

1,0 + jω1,1C
∗
1,0V1,1

(4.48)

Remember that the term C0,0 has been incorporated into the linear admittance of the
Thévenin equivalent at each frequency. Now that we have the voltage at each frequency,
the current flowing into the capacitance can be calculated from the Thévenin equivalent,
equation 4.49.

V1,1 = V T
1,1 + Z1,1I1,1 = Z1,1I1,1

V1,0 = V T
1,0 − Z1,0I1,0

V0,1 = V T
0,1 − Z0,1I0,1

(4.49)

If we assume that the capacitance varies linearly with the charge then both equations
can be simplified, as shown in equation 4.50
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C (ω) = c1V0,1 + c1V1,0 + c1V1,1

I1,1 = jω1,1c1V0,1V1,0

I1,0 = jω1,0C1,1V
∗

0,1

I0,1 = jω0,1C1,1V
∗

1,0

(4.50)

With these simplified relations, we now understand the dependence of each voltage term
with the others. Each voltage depends upon the other two. If we combine the equations it
is possible to write each voltage term as a function of the Thévenin equivalents and C1,1,
equation 4.51.

V0,1 = V T
0,1 + jω0,1Z0,1C1,1V

∗
1,0 =

V T
0,1 + jω0,1Z0,1C1,1V

T ∗
1,0

1− ω1,0ω0,1Z0,1Z∗1,0 |C1,1|2

V1,0 = V T
1,0 + jω1,0Z1,0C1,1V

∗
0,1 =

V T
1,0 + jω1,0Z1,0C1,1V

T ∗
0,1

1− ω1,0ω0,1Z∗0,1Z1,0 |C1,1|2
(4.51)

The solution for the output voltage is the mixture of both the input voltages (source
and pump), equation 4.52.

V1,1 = jω1,1Z1,1c1V0,1V1,0 = jω1,1Z1,1c1

(
V T

0,1 + jω0,1Z0,1C1,1V
T ∗

1,0

) (
V T

1,0 + jω1,0Z1,0C1,1V
T ∗

0,1

)

∣∣∣1− ω1,0ω0,1Z∗0,1Z1,0 |C1,1|2
∣∣∣
2

(4.52)

Even though the equation 4.52 seems to be a closed form, remember that C1,1 is de-
pendent on V1,1. Because of this, the closed solution to V1,1 is the solution to a fifth order
polynomial which lacks an analytical general solution (Abel-Ruffini theorem). Even though
the equations are not a closed form, they converge extremely quickly to the result using a
recursive method.

Model Confirmation

A confirmation of the provided large signal model would be to check if it follows the
Manley-Rowe power relation. This has been proved in equation 4.53.
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Gp =
|V1,1|2

RLRe
(
I0,1V ∗0,1

) =
|V1,1|2

RLRe
(
jω0,1C1,1V ∗1,0V

∗
0,1

) =
|V1,1|2

RLRe
(
jω0,1c1V1,1V ∗0,1V

∗
1,0

)

Gp =
|V1,1|2

RLRe
(
− jω0,1

jω1,1
V1,1I∗1,1

) = −ω1,1

ω0,1

(4.53)

This first proof is purely theoretical, to observe if the model behaves correctly a circuit
level simulation was constructed. The results of the model were obtained using the Newton-
Raphson method and compared to the simulation results. The Newton-Raphson method
was used on equation 4.54.

f(C1,1) = C1,1 − c1V1,1(C1,1) =

f(C1,1) = C1,1 − jc2
1ω1,1Z1,1

(
V T

0,1 + jω1,0Z0,1C1,1V
T ∗

1,0

) (
V T

1,0 + jω0,1Z1,0C1,1V
T ∗

0,1

)

∣∣∣1− ω1,0ω0,1Z∗0,1Z1,0 |C1,1|2
∣∣∣
2

(4.54)

The simulation parameters are shown in table 4.1.

fs = f0,1 100MHz
fp = f1,0 900MHz

fl = f1,0 + f0,1 1GHz
Ps 2mW
Pp 30mW
Rs 50Ω
Rp 50Ω
RL 50Ω

Table 4.1: Test Circuit, Simulation Parameters

Two tests were performed. First, c1 was varied to obtain the gain variation with the
variation of the non-linearity. Second, the input power was varied at the 100MHz to obtain
the characteristic AM/AM of the circuit.

Advanced Design System (ADS) was used as the circuit level simulator and Matrix
Laboratory (MatLab) was used as the numerical calculator. The convergence speed of the
model was also tested.

The circuit used for testing purposes was the one shown in figure 4.18. The diode has
been changed to an equation based capacitor, this is done for simpler testing and circuit
control. The tuning filters have an extremely high Q factor and include compensation for
the capacitor’s average capacitance. The impedance at each frequency is purely real.

The results of the simulations, figure 4.19, show that the model is accurate, the conver-
gence is very quick and the prediction can indeed be extracted in the suggested conditions.
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Figure 4.18: Test Circuit, Circuit Level Simulation

Usage in Design

The developed equations provide a good option to analyse a circuit similar to the one
presented. However, to use in the design of the amplifier they are too complex and require
iteration. This problem can be tackled aside if we consider the following scenario: the
maximum output power will occur either for a perfectly tuned input or a perfectly tuned
pump. This idea has been proved in the small signal case, the power tends to the maximum
for a perfectly tuned input since the pump is not even considered. In the large signal case
it is possible to see that, if the pump lacks power capabilities, the limitation in output
power can come from the pump.

If we consider that the maximum power happens for tuned input or pump, we can
use the equations for V0,1 and V1,0 to obtain the tuning condition. Each of the equations
provides the perfect tuning for the corresponding source. It is unnecessary to provide both
equations since the formulas have the same form. Taking V0,1 we know that perfect tuning

is achieved for V0,1 =
Z∗

0,1

2Re(Z0,1)
V N

0,1. Using this condition we can obtain C1,1, equation 4.55.
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Figure 4.19: Simulation and Model Results for the Test Circuit

Z∗0,1
2Re (Z0,1)

V T
0,1 =

V T
0,1 + jω0,1Z0,1C1,1V

T ∗
1,0

1− ω1,0ω0,1Z0,1Z∗1,0 |C1,1|2

C1,1 =
−j V

T∗
1,0

V T
∗

0,1

±
√(

j
V T

∗
1,0

V T
∗

0,1

)2

− Z∗
0,1Z

∗
1,0

Re(Z0,1)2
ω1,0

ω0,1

ω1,0
Z∗

0,1Z
∗
1,0

Re(Z0,1)

(4.55)

The parameter C1,1 must be purely real to guarantee the condition |C1,1|2 = C2
1,1. For

real admittances the phases of the currents can be calculated using the relations shown
in equation 4.56, for a positive c1. For a negative c1 the first angle must equal (2k + 1)π
which yields the symmetric result.
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− 6 V0,1 − 6 V1,0 −
π

2
= 2kπ

−2
(
6 V0,1 + 6 V1,0 −

π

2

)
= 2kπ

(4.56)

The result is that for real impedances the phases of the voltages should be −π
4
. One

might think that the meaning of this phase is questionable, however, note that it is mea-
sured in relation to the output current which is commensurate with both frequencies.

The phase is only possible to obtain for |V1,0| sufficiently high. In case it is not, there
is no solution for the equation and the tuning should be performed for the pump input.

To choose between the + or − sign we can use the small-signal limit condition. When
the system tends to small-signal operation V1,0 � V0,1 and both V0,1 and V1,1 do not drive
the non-linearity. In this case, C0,1 = C1,1 = 0 and so I1,0 tends to zero, making V1,0 = V T

1,0.
This condition is achieved when the − sign is chosen, for a positive c1 and when the +
sign is chosen, for a negative c1.

After obtaining C1,1, the c1 parameter can be obtained by combining equation 4.52
with C1,1 = c1V1,1. This results in equation 4.57.

c1 = ±
√

C1,1

jω1,1Z1,1V0,1V1,0

(4.57)

Since C1,1 and c1 are real coefficients, V1,1 must undoubtedly be purely real and positive.
Interestingly enough, looking at equation 4.55 it is clear that, when there is no real

solution for V0,1, this solution exists for V1,0 which suggests that the maximum indeed
occurs for one of these tuning situations.

The expressions derived here for V0,1 can be derived for V1,0 bearing similar results, this
is a must since it is not explicit which of these frequency components is the pump’s or the
input’s, only that V1,1 is the output.

4.5.3 Current Pumped Elastance

For current pumped ParAmps the excitations are inserted in parallel with each other
and the non-linearity, therefore the currents are summed. If the tuning filters are series,
high Q factor, LC filters then all currents outside the filters’ tuned frequencies are cancelled.
However, the voltage at the non-linearity is uncontrolled because the filters tend to open
circuits outside the passage band. Figure 4.20 shows the circuit to be analysed.

The modelling of this case is similar to the voltage pumped capacitor since they are
quasi-dual. The only difference is that the elastance is the inverse of the capacitance and
not the dual, which generates minor differences.

An implementation based on the elastance was tried due to the possibility of a truly
linearly varying non-linearity. The uncontrolled voltage at the diode terminals proved to
be a sever problem because breakdown was easily attained when simulating the circuit.
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Figure 4.20: Current Pumped, Charge Controlled Elastance
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Chapter 5

Designing a Parametric Amplifier

5.1 Specifications

The first step in designing an amplifier is to know the specifications. In the particular
case of parametric amplifiers this is even more important because some specifications are
directly and unusually linked. For instance, by specifying a gain and an output frequency
there is immediately a maximum input frequency established through the Manley-Rowe
relations.

It is important to lay out all the wanted specifications initially and verify their pos-
sibility with the basic theory before starting to build the amplifier. For the amplifier to
be developed in this work two restrictions were made. The input’s center frequency is at
100MHz and the output’s at 1GHz allowing for a maximum gain of 10dB.

Because the developed device is intended as a proof of concept high powers are not
going to be used. The target output power is 100mW, to make use of the large signal
theory developed in this work the pump power should be as reduced as possible.

5.2 Pumping Type

Initially the ParAmp was to be pumped in current because of the excellent non-linear
elastance characteristic of some diodes. However, after some testing, it was concluded that
the uncontrolled voltage across the diode poses too great a risk for the ParAmp. The
voltage rises very quickly forcing the device into breakdown which is outside the non-linear
mode which it is intended to work on.

After these tests, voltage pumping was chosen for the developed ParAmp.

5.3 Topology

The topology is very important when designing these types of amplifier, mainly if the
active component is a bipole as is the case. The problem with using bipoles as the active
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components is the leakage between ports. The filtering needs to be extremely potent to
eliminate direct power transmission. When the right topology is chosen the leakage can be
reduced greatly using the symmetries of the circuit.

Leakage from the pump to the output is the most concerning since their frequencies
are very close. As such, the circuit benefits greatly from balanced pumping. If possible,
doubly balanced designs provide isolation from the source as well, and remove the need for
filters. For this reason, a doubly balanced circuit was used in the design of this particular
amplifier.

The doubly balanced topology that works in voltage pumping is the ring.

5.3.1 Ring Topology

The ring topology works by balancing the voltages across four similar components.
These components are arranged in such a way that two pairs of virtual grounds are gener-
ated. In these virtual grounds it is possible to inject signals that will drive the components
but are isolated from each other. If balanced signals are inserted in the virtual grounds,
the generated frequency mixes can be extracted by connecting their center taps. Figure 5.1
exemplifies the concept. In the picture, the arrows symbolize the current phases for each
branch, the dotted and dashed arrows correspond to the dashed and dotted inputs and the
filled arrows to the output.

Figure 5.1: Ring Topology Example, Evidencing the Inherent System Symmetry

The components used in the ring will be the varactors. There is also the need to ground
one of the center taps, usually the pump is grounded because of its higher power and closer
frequency to the output.

To analyse this topology, the power was considered to be split equally amongst all
the diodes, this means that each of the diodes find themselves being driven by a quarter
power source. Of course, the load is also equally shared which means each diode only sees
a quarter load as well. By doing this the ring is now separated into four equal circuits.
To design the ParAmp only one of these circuits needs to be designed, the advantage
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being that there is no further need for filtering out the other frequencies for each branch.
Figure 5.2 shows this circuit. Of course, the generated frequencies across the diode are still
a problem, the diode needs to be tuned to only three frequencies.

Vs

Zs

Zp

Vp

ZL RFC

+−Vbias

RFC

Figure 5.2: Part of the Amplifier to be Designed

From figure 5.2 it is possible to see that the load has a virtual connection to the pump.
However, if we look at the ring topology in figure 5.1 we can see that the load also has a
virtual connection to the 180◦ shifted pump input. This means that the generated currents
cancel each other out. The same is true for the connection to the other source.

5.4 Non-Linearity and Tuning

To reduce the pump power to as little as possible, the large signal model should be used
to calculate the necessary non-linearity. However, we know from the small-signal analysis
that the bandwidth is related to the pump’s voltage. A suitable trade-off must be attained
by careful consideration.

The minimum pump power required would be 90mW if there were no power losses.
Considering there are power losses and the high influence the pump voltage has in the band-
width (in small-signal operation) it was decided that the pump power would be 400mW,
about four times the required power, to improve the characteristics of the system. This rise
in the pump’s power will, however, reduce the efficiency of the system due to the equivalent
series resistance in the diodes.
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Knowing the pump’s power we can calculate the ideal non-linearity. In the case of
this amplifier the ideal value is −0.2pF/V. To obtain this value, low grading coefficient
diodes were chosen. Low grading coefficient diodes are ideal because they allow for higher
voltage swings across their terminals maintaining a relatively linear capacitance curve.
Unfortunately, the capacitance variation is also smaller which means a higher junction
capacitance is needed to obtain the ideal parameters. This higher junction capacitance
raises the linear capacitance, reducing the bandwidth.

There is a way to profit from the situation. Every branch needs to be tuned to its
specific frequency, to avoid unwanted frequency mixes leaking power. This is especially
true for the output since the mix at the Lower Side Band (LSB) is not cancelled by the
topology. Since the junction capacitance is high, the linear capacitance is high enough
that, when resonating with coils at each input a high Q filter is generated. This effect is
such that no other filtering is needed for the device. The down-side is the effect on the
bandwidth due to the same filters.

The coil can be calculated for each input easily. If we consider that the capacitance
varies linearly, then the average capacitance depends only on the bias and the parasitics of
the used active device. Using the left varactor model from figure 4.5, we can deduce that
the resonance at a given frequency will happen for a coil calculated using equation 5.1.

Ltune =
1

ω2(Cparasitic + Cbias)
− Lparasitic (5.1)

The capacitance Cbias is given by the component’s characteristic capacitance curve,
equation 4.16, for the bias voltage. The obtained filter is not exactly a parallel tank LC
but it serves its purpose. The parasitics will restrict the frequencies because the filter must
be as close as possible to a parallel LC. For this condition to be true equation 5.2 should
be valid.

1

ω(Cparasitic+ Cdc)
� Rparasitic + ωLparasitic (5.2)

This condition will assure that the capacitance will dominate the impedance seen from
the tuning coil onward. The parasitics play an important role in restricting the frequency.
Note that, the higher the parasitics the lower the lower the frequency can be.

An interesting fact is that, because each input is inserted at the other’s virtual ground
the tuning can be done using coils only without the fear of shorting the other frequencies
to ground.

5.5 Simulations

After the circuit was designed it was simulated in ADS at circuit level and in MatLab
to further test the developed model. As expected, as the ADS description approximates
the practical amplifier the more the model shows inconsistencies. This is mainly due
to the fact that some effects were simply not modelled, such as the behaviour of the

80



CHAPTER 5. DESIGNING A PARAMETRIC AMPLIFIER 5.5. SIMULATIONS

parasitics outside the chosen frequency components. To prove this point an ideal circuit
was simulated in ADS where the diode was replaced by a linearly varying capacitance
and lumped parasitic components. The parasitics were extracted from [16] and the linear
coefficients were extracted using the minimization of the NMSE for the maximum input
voltage swing, using the diode’s characteristic capacitance curve.

Recall that, when the circuit was simulated without the parasitics, the model converged
very faithfully to the results of the harmonic balance simulator, figure 4.19. When a similar
circuit is simulated with the parasitic components the model shows some error. Since the
test circuit is similar to the previous one, it is only included in the annexes in figure B.2.
The capacitor was modified to include the parasitics as shown in figure B.1. The simulation
results with and without the parasitics is shown in figure 5.3. Note that the main power
deviation happens at the pump frequency. This hint’s that, due to the pump’s higher
voltage, current mixing products of the type 2ωp and 2ωp+ωs will circulate in the parasitic
components dissipating power.

In the simulations, the tuning coils were adjusted when the parasitics were removed.
Also, the optimum non-linearity was not chosen to show that the model still behaves well
outside the optimum values. Even when the parasitics are eliminated, for very small inputs
the model diverges from the circuit level simulator. This problem seems to occur because
the very small powers at other frequencies that manage to travel across the filters begin
to be comparable to the input powers. The results obtained in MatLab offer, nonetheless,
good information on the behaviour of the circuit.

The ParAmp to be implemented uses diodes, of course. This may be yet another
source of error in relation to the developed model, since higher order coefficients were not
modelled. Figure 5.4 shows the results of the simulations ran in ADS and MatLab. The
ADS schematic was included in the annexes, figure B.3.

Looking at the simulation results using the diodes a more severe error can be noted,
about 2dB maximum error. The increased error is probably due to the poor approximation
to the capacitance curve used by the model, shown in figure 5.5.

When designing the ParAmp the bandwidth of the device was neglected. However, since
it is a parameter of some importance it is important to extract this information, figure 5.6
shows the expected bandwidth according to the large signal model and the circuit level
simulation bandwidth.

Note how the bandwidth is decreased almost to half in the simulation. Again this is
probably due to the unaccounted effects of the higher order capacitance terms. These
terms can have this effect because the even terms will influence the average capacitance
thus detuning the filters quicker. This could also account for the frequency shift that is
observed in the figure for the circuit level simulation.

Both the large signal model and the small signal model show that the pump’s available
power influences the system behaviour. As such, this effect should be analysed to better
understand the pump’s influence over the amplifier, figure 5.7 shows the influence of the
available pump power over the power output.
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(c) Input and Output Power with Parasitics
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(e) Efficiency with Parasitics
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Figure 5.3: Simulation Results Vs Model Results with (left) and without (right) the Par-
asitic Components
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Figure 5.4: Simulation Results Vs Model Results for the ParAmp to be Implemented
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(a) Bandwidth using Diodes
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Figure 5.6: Simulation and Model Bandwidth for the Designed ParAmp Using Diodes (left)
and Using Linearly Varying Capacitances
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Figure 5.7: Simulation and Model Pump Influence over the Gain for the Designed ParAmp
Using Diodes (left) and Using Linearly Varying Capacitances
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5.6 Practical Implementation

The ParAmp is fully designed and can therefore be practically implemented. To do this,
ADS was used to create a layout for the ParAmp which was then transferred to Printed
Circuit Board (PCB). Figure 5.8 shows the practical implementation of the parametric
amplifier.

(a) Top of ParAmp PCB (b) Bottom of ParAmp PCB

Figure 5.8: ParAmp Practical Implementation

Unfortunately, the practical implementation of the parametric amplifier was not tested
due to time constraints.
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Chapter 6

Conclusions and Future Work

6.1 General Aspects

The focus of this work was to study and evaluate parametric amplification. Within
this broad field, this work started with some general aspects, essentially describing energy
transfer between sources through reactive components. These first steps provided solid
ground to move on to more specific areas. To do them the requisites of each type of
amplification were evaluated. It was decided that the type of amplification that would bring
most benefit to study would be non-degenerate, non-inverting parametric amplification.
This type of parametric amplifier has two main advantages: the pump does not need to be
a commensurate frequency with the input and the input impedance of the amplifier can
have a positive resistance (providing stability).

When the type of parametric amplification was chosen, this worked moved on to deepen
the analysis. A small-signal analysis was performed that allowed the extraction of several
important parameters, such as transducer gain, bandwidth and sensitivity to non-linearity.
The transducer gain allowed to clear the ambiguity of the obtained power gain, which
showed a constant gain independent of the non-linearity. When the exploration of the
small-signal model was finished, a disturbing unknown fact remained: how much power
the pump needs for the circuit to operate in small-signal? Since this question is impossible
to be answered accurately with the small-signal model, the hypothesis to build a large
signal model was explored. By observing the feedback of each variable in the system, it
was concluded that this was indeed possible. Limiting the non-linearity to the first order,
the large signal model became sufficiently simple to solve through a Newton-Raphson
iteration process, which showed fast convergence. Furthermore, it was observed that for
normal operation conditions of a parametric amplifier, the model can be used to analytically
extract optimum design values.

With the proper tools investigated or developed, this work set out to design a parametric
amplifier. In this phase it was noted that this type of amplification suffers greatly from
leakage between ports, due to the nature of the active device (bipole). Upon noticing
this downside, the parametric amplifier was changed into a balanced topology to obtain
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good port isolation without resorting to extreme filtering. A doubly balanced topology
was chosen to provide isolation in all ports. Due to the large signal model, the parametric
amplifiers needed to be separated into two more categories, voltage or current pumped.
A current pumped parametric amplifier was the first choice for development, due to the
elastance characteristic of the used devices. However, this proved unsound because the
nature of this type of parametric amplifier allows uncontrolled voltages. These voltages
could rise quickly and easily send the used diodes into breakdown. Due to this, a voltage
pumped parametric amplifier was developed and simulated using both the large signal
model and a circuit level simulator. For linear capacitance characteristics both the model
and the simulator converged to the same values with little error. For other capacitance
shapes the model still provides useful design information but shows some error.

The broad objectives of this work were achieved. Parametric amplification was studied
and the relationships and transformations that exist in this type of amplification were
detailed and explained. Some interesting aspects come to light when these effects are
looked upon all together. First, there seems to be no way to parametrically amplify a signal
while no energy is asked from it. This means that, the input of a parametric amplifier is
never an infinite impedance. That is true for the bipoles but also for the MOSVar tripole.
Second, parametric amplification has its gain and frequencies tied together. This is the
most basic of rules, imposed by the power balance equations. And third, due to the first
aspect, losses in these circuits have a ”double” negative effect, since the amplification is
only accomplished on the power provided to the reactance.

6.2 Comparison to Previous Work

The focus of this Thesis was in efficient power amplification, using parametric amplifiers.
As it was said in the introduction, there has already been work developed in this area,
some of it with practical implementations. Recently, there were two works that would be
interesting to compare with this one. These works were developed in [17, 18] and reveal
some of the same properties intended for the amplifier developed in this work. The common
links that unite the amplifiers developed in [17, 18] to this one are, the power gain (10dB)
and, in one of the cases, the used frequencies.

The amplifier developed in [18] managed a very high gain, close to maximum, but suf-
fered in efficiency. This amplifier worked at lower frequencies than the one developed here
but the ratio ωout

ωin
was the same. The amplifier developed in [17] worked at approximately

the same frequencies as the one developed here. This amplifier did not achieve optimum
gain and still suffered from the efficiency problem. In theory, the amplifier developed in
this work could achieve both a higher efficiency and a higher gain.

The efficiency problem was attenuated in the developed amplifier by using diodes in
parallel, thus reducing the current through each of the diodes. Also, the topology allowed
for a great number of diodes to be used and so, even though all are highly driven in voltage,
the current through each one is very small (which reduces losses). The gain is also raised
with this technique. Note that reducing the losses in the power delivered to the capacitors
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allows the system to apply the constant power gain over a higher power.
Note that these comparisons are model based only since the practical implementation

of the amplifier is yet to be tested.

6.3 Future Work

An important fact is the drop in efficiency due to the ESR of the diodes. This effect
must be studied carefully and evaluated. It would be interesting to find if there is some
way to dim the effect without reducing the pumping voltage.

On the device level, it would be interesting to build some work on methods for reducing
the ESR of the active elements in parametric amplification.

From a purely theoretical point of view, it would be interesting to develop the study
for tripole varactor or transcapacitances; i.e. some kind of device where the control voltage
has an independent port from the pump voltage. This study should focus on whether the
input must, indeed, deliver energy in the process of amplification.

From a system point of view, an analysis of the effects of the higher order capacitance
coefficients could give useful design information. Of some importance in this case is the
shift in bias due to the even terms and the higher order frequency conversion.

It would be interesting to study the application of techniques developed for transistor
based amplifiers in parametric amplifiers. For instance, modulation of the pump voltage
using envelope detection. These techniques might help reducing the consumed power for
lower inputs in the same way the ET and EER techniques do for the transistor.

It would also be very interesting to develop the current pumped parametric amplifier
mentioned in this work. The objective would be to obtain a more linear amplifier by
making use of the linearly varying elastance obtainable with this type of diodes.

6.4 Final Remarks

Parametric amplifications has the potential to change the paradigm of high efficiency
amplification. However, it suffers from many deficiencies. Whether these deficiencies can
be bypassed or are intrinsic to the amplification method is difficult to say, especially with
the lack of tripole varactors. First, there is the problem of having to provide energy to the
amplifier, not only from the power source, but also from the signal source. Second, there
is significant efficiency drop due to the parasitics and higher order reactance coefficients.
Should the conditions change for the devices in which the future systems will be based,
and the parametric amplifier may well be a solution for efficiency hungry engineering.
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Appendix A

Mathematics

A.1 Parametric First Order Linear Differential Equa-

tion

Suppose the first order differential equation of time-varying coefficients defined by the
functions f (t) and g (t) shown in equation A.1.

f (t) y (t) + g (t)
dy (t)

dt
= x (t) (A.1)

A.1.1 Solution

One way to prove this is to solve the differential equation for y (t) and replace x (t)
with the sum of its elements in the solution.

The first step to solve the differential equation is trying to solve the associated Homo-
geneous equation A.2.

f (t) y (t) + g (t)
dy (t)

dt
= 0 (A.2)

The equation is solvable as described below.

• Divide all by f (t) y (t) and subtract 1 to obtain equation A.3.

g (t)

f (t) y (t)

dy (t)

dt
= −1 (A.3)

• Divide all by g(t)
f(t)

to obtain equation A.4.

1

y (t)

dy (t)

dt
= −f (t)

g (t)
(A.4)
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• Integrate in order to t to obtain equation A.5.

∫ 1

y (t)

dy (t)

dt
dt =

∫
−f (t)

g (t)
dt (A.5)

• Replace the integration variable in the first integral from t to vo(t)
to obtain the

solution A.5.

log y (t) =
∫
−f (t)

g (t)
dt (A.6)

• Exponentiate

y (t) = e
∫
− f(t)
g(t)

dt (A.7)

Now that the homogeneous equation is solved, the complete equation can be examined.
The solution can be reached through the following steps.

• Assume the solution is of the form y (t) = h (t) e
∫
− f(t)
g(t)

dt

• Replace the solution in the differential equation obtaining equation A.8

h (t) e
∫
− f(t)
g(t)

dt +
g (t)

f (t)

dh (t)

dt
e
∫
− f(t)
g(t)

dt − g (t) f (t)

f (t) g (t)
h (t) e

∫
− f(t)
g(t)

dt = x (t) (A.8)

• Solve equation A.9 and obtain equation A.10

g (t)

f (t)

dh (t)

dt
e
∫
− f(t)
g(t)

dt = x (t) (A.9)

h (t) =
∫ x (t) f (t)

g (t)
e
∫
f(t)
g(t)

dtdt (A.10)

• Replace equation A.10 in the first solution to obtain equation A.11.

y (t) =
∫ t

0

x (τ) f (τ)

g (τ)
e−(

∫
f(t)
g(t)

dt−
∫
f(τ)
g(τ)

dτ)dτ (A.11)

Notice that the integral above degenerates to the convolution integral if the coefficients
are static. This falls in-line with the expected linear system response.
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A.1.2 Linearity Proof

The differential equation is said linear if the solution for y (t) is the sum of the solution
for each element comprising the signal x (t). The simplest way to prove this is to replace
x (t) with α1x1 (t) +α2x2 (t) and observe that the solution is the sum of the solution for y1

for x1 times α1 and y2 for x2 times α2, this can be seen in equation A.12.

y (t) =
∫ t

0

(α1x1 (τ) + α2x2 (τ)) f (τ)

g (τ)
e−(

∫
f(t)
g(t)

dt−
∫
f(τ)
g(τ)

dτ)dτ =

= α1

∫ t

0

x1 (τ) f (τ)

g (τ)
e−(

∫
f(t)
g(t)

dt−
∫
f(τ)
g(τ)

dτ)dτ + α2

∫ t

0

x2 (τ) f (τ)

g (τ)
e−(

∫
f(t)
g(t)

dt−
∫
f(τ)
g(τ)

dτ)dτ =

= α1y1 (t) + α2y2 (t)
(A.12)
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Appendix B

Circuits

B.1 Parasitics Test
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B.2 Doubly Balanced Voltage Pumped ParAmp
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