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Haptic interface data acquisition system





Universidade de Aveiro Departamento de Engenharia Mecânica
2012

Pedro Miguel
Batista Cruz

Sistema de aquisição de dados por interface háptica
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e Robótica do Departamento de Engenharia Mecânica da Universidade de Aveiro.
Agradeço ao Ricardo Godinho e ao António Festas, pela sua disponibilidade. Em
especial destaque, quero deixar um grande agradecimento ao Jorge Almeida, ao
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Resumo Neste trabalho é apresentada uma interface háptica com realimentação de força
para a teleoperação de um robô humanoide e que aborda um novo conceito des-
tinado à aprendizagem por demonstração em robôs, denominado de ensino tele-
cinestésico. A interface desenvolvida pretende promover o ensino cinestésico num
ambiente de tele-robótica enriquecido pela virtualização háptica do ambiente e re-
strições do robô. Os dados recolhidos através desta poderão então ser usados em
aprendizagem por demonstração, uma abordagem poderosa que permite aprender
padrões de movimento sem a necessidade de modelos dinâmicos complexos, mas
que geralmente é apresentada com demonstrações que não são fornecidas tele-
operando os robôs. Várias experiências são referidas onde o ensino cinestésico em
aprendizagem robótica foi utilizado com um sucesso considerável, bem como novas
metodologias e aplicações com aparelhos hápticos. Este trabalho foi realizado com
base na plataforma proprietária de 27 graus-de-liberdade do Projeto Humanoide
da Universidade de Aveiro (PHUA), definindo novas methodologias de comando
em tele-operação, uma nova abordagem de software e ainda algumas alterações
ao hardware. Um simulador de corpo inteiro do robô em MATLAB SimMechanics
é apresentado que é capaz de determinar os requisitos dinâmicos de binário de
cada junta para uma dada postura ou movimento, exemplificando com um movi-
mento efectuado para subir um degrau. Irá mostrar algumas das potencialidades
mas também algumas das limitações restritivas do software. Para testar esta nova
abordagem tele-cinestésica são dados exemplos onde o utilizador pode desenvolver
demonstrações interagindo fisicamente com o robô humanoide através de um joy-
stick háptico PHANToM. Esta metodologia irá mostrar que permite uma interação
natural para o ensino e perceção tele-robóticos, onde o utilizador fornece instruções
e correções funcionais estando ciente da dinâmica do sistema e das suas capaci-
dades e limitações f́ısicas. Será mostrado que a abordagem consegue atingir um
bom desempenho mesmo com operadores inexperientes ou não familiarizados com
o sistema. Durante a interação háptica, a informação sensorial e as ordens que
guiam a uma tarefa espećıfica podem ser gravados e posteriormente utilizados para
efeitos de aprendizagem.





Keywords Haptics, haptic interface, teleoperation, humanoid robotics, tele-kinesthetic teach-
ing, robot learning.

Abstract In this work an haptic interface using force feedback for the teleoperation of a
humanoid robot is presented, that approaches a new concept for robot learning by
demonstration known as tele-kinesthethic teaching. This interface aims at promot-
ing kinesthethic teaching in telerobotic environments enriched by the haptic virtual-
ization of the robot’s environment and restrictions. The data collected through this
interface can later be in robot learning by demonstration, a powerful approach for
learning motion patterns without complex dynamical models, but which is usually
presented using demonstrations that are not provided by teleoperating the robots.
Several experiments are referred where kinesthetic teaching for robot learning was
used with considerable success, as well as other new methodologies and applications
with haptic devices. This work was conducted on the proprietary 27 DOF Univer-
sity of Aveiro Humanoid Project (PHUA) robot, defining new wiring and software
solutions, as well as a new teleoperation command methodology. A MATLAB Sim-
Mechanics full body robot simulator is presented that is able to determine dynamic
joint torque requirements for a given robot movement or posture, exemplified with
a step climbing application. It will show some of the potentialities but also some
restricting limitations of the software. To test this new tele-kinesthetic approach,
examples are shown where the user can provide demonstrations by physically in-
teracting with the humanoid robot through a PHANToM haptic joystick. This
methodology will show that it enables a natural interface for telerobotic teaching
and sensing, in which the user provides functional guidance and corrections while
being aware of the dynamics of the system and its physical capabilities and / or
constraints. It will also be shown that the approach can have a good performance
even with inexperienced or unfamiliarized operators. During haptic interaction, the
sensory information and the commands guiding the execution of a specific task can
be recorded and that data log from the human-robot interaction can be later used
for learning purposes.





Contents

Contents i

List of Tables iii

List of Figures v

1 Introduction 1
1.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 State of the Art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3.1 Principles of Haptic Interaction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3.2 Haptic Interface Devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3.3 Teleoperation, Kinesthetic Teaching and Learning from Demonstration . . 10
1.3.4 University of Aveiro Humanoid Project . . . . . . . . . . . . . . . . . . . 14

2 SimMechanics Simulator 17
2.1 SimMechanics Short Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Step Climbing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Experimental Setup 27
3.1 Servomotor Wiring and Communication . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Mechanical Modifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Elastic Elements Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 The Haptic Device . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 OpenHaptics Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 ROS Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Robot Kinematics and Interactive Command 39
4.1 Kinematic Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 3DOF Arm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.2 3DOF Support Leg . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Command Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.1 Commanding in Position . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2.2 Commanding in Velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Tele-Kinesthetic Interaction and Haptic Demonstrations 51
5.1 Application Developed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.1.2 Application Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.2 Haptic Demonstrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2.1 Workspace Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

i



5.2.2 Haptic Object Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.2.3 Support Leg Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6 Conclusions and Future Work 69
6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

6.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.2 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.3 Haptics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2.4 Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.2.5 Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Bibliography 75

A SimMechanics Model 79

B Mechanical Drawings 101

C Software Notes 109
C.1 Computer Hardware Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.2 PHANToM Device Drivers and OpenHaptics . . . . . . . . . . . . . . . . . . . . 109

C.2.1 SensAble Software Pre-requisites . . . . . . . . . . . . . . . . . . . . . . . 110
C.2.2 SensAble Software Installation . . . . . . . . . . . . . . . . . . . . . . . . 110

C.3 Adicional Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.3.1 Robot Operating System . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.3.2 Eigen Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
C.3.3 Armadillo Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

ii



List of Tables

1.1 PHUA platform’s degrees-of-freedom and installed servomotors. . . . . . . . . . . 15
1.2 PHUA robot degree-of-freedom range limitations. . . . . . . . . . . . . . . . . . . 16

2.1 SimMechanics PHUA robot model geometrical data. . . . . . . . . . . . . . . . . 19

3.1 The HITEC BSI RS-232 7 byte word. . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 The HITEC BSI RS-232 configuration. . . . . . . . . . . . . . . . . . . . . . . . . 28
3.3 PHANToM OMNI device specifications. . . . . . . . . . . . . . . . . . . . . . . . 35

4.1 Denavit-Hartenberg table for the 3DOF arm. . . . . . . . . . . . . . . . . . . . . 41
4.2 Denavit-Hartenberg parameter table for the 3DOF support leg. . . . . . . . . . . 44
4.3 The 3DOF support leg inverse kinematics solution. . . . . . . . . . . . . . . . . . 45

iii



iv



List of Figures

1.1 The principle of haptic interaction. . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 An example of haptic rendering architecture. . . . . . . . . . . . . . . . . . . . . 4
1.3 The FCS HapticMaster and the MTB Freedom 6S devices. . . . . . . . . . . . . . 5
1.4 The SensAble PHANToM OMNI and Desktop devices. . . . . . . . . . . . . . . . 6
1.5 The Haption Virtuose 6D Desktop and the Force Dimension Omega and Delta. . 6
1.6 The SensAble PHANToM Premium 1.0, 1.5 and 3.0 devices. . . . . . . . . . . . . 7
1.7 The Haption Virtuose 6D35 and 6D40 devices. . . . . . . . . . . . . . . . . . . . 7
1.8 A double pantograph device proposal and the Quanser Haptic Wand device. . . . 8
1.9 The Force Dimension Sigma haptic device. . . . . . . . . . . . . . . . . . . . . . . 8
1.10 The DLR bimanual haptic device. . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.11 Haptic teleoperation of a mobile robot. . . . . . . . . . . . . . . . . . . . . . . . . 10
1.12 Teleoperating a humanoid robot demonstrating collaborate tasks with human users. 11
1.13 Retrieving position and force profiles from different tasks. . . . . . . . . . . . . . 11
1.14 Upper-body humanoid kinesthetic teaching. . . . . . . . . . . . . . . . . . . . . . 12
1.15 Virtual environment used for learning by demonstration. . . . . . . . . . . . . . . 12
1.16 Another tele-kinesthetic interaction environment. . . . . . . . . . . . . . . . . . . 13
1.17 The Rethink Robotics Baxter robot. . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.18 Current form of the PHUA robot platform. . . . . . . . . . . . . . . . . . . . . . 14
1.19 PHUA kinematic chains. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.20 Elastic elements placed on the robot’s joints and the passive toe joint. . . . . . . 15

2.1 SimMechanics body to body construction example. . . . . . . . . . . . . . . . . . 18
2.2 PHUA platform CAD design model. . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 SimMechanics model graphical visualization. . . . . . . . . . . . . . . . . . . . . 20
2.4 SimMechanics step heights visual comparison. . . . . . . . . . . . . . . . . . . . . 20
2.5 Mean angles for the human hip, knee, and ankle joints during stair ascent and

descent. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 SimMechanics step climbing movement. . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Example of a joint course description curve set. . . . . . . . . . . . . . . . . . . . 22
2.8 Example of a joint torque data set for the support leg. . . . . . . . . . . . . . . . 23
2.9 Example of a joint torque data set for the free leg. . . . . . . . . . . . . . . . . . 23
2.10 Example of a joint torque data set for the torso. . . . . . . . . . . . . . . . . . . 24
2.11 Example of a joint torque data set for the left arm. . . . . . . . . . . . . . . . . . 24

3.1 Servomotor controller motion control and trajectory planner. . . . . . . . . . . . 28
3.2 Servomotor identification numbering. . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 The servomotor line connection diagram and connector boards. . . . . . . . . . . 30
3.4 The designed servomotor communication converter board. . . . . . . . . . . . . . 30
3.5 Designed parts for the servomotor fixation. . . . . . . . . . . . . . . . . . . . . . 31
3.6 Designed parts installed on the robot. . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Elastic elements on the robot’s ankle joints. . . . . . . . . . . . . . . . . . . . . . 32
3.8 Elastic elements on the robot’s hip joints. . . . . . . . . . . . . . . . . . . . . . . 33

v



3.9 Elastic elements on the robot’s trunk joints. . . . . . . . . . . . . . . . . . . . . . 33
3.10 The PHANToM OMNI device used and its six degrees-of-freedom. . . . . . . . . 34
3.11 The PHANToM OMNI capstan drive mechanism illustration. . . . . . . . . . . . 34
3.12 A typical OpenHaptics application structure. . . . . . . . . . . . . . . . . . . . . 36
3.13 The OpenHaptics structure diagram. . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Kinematic chains used in the work. . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Arm frame system according to the Denavit-Hartenberg method. . . . . . . . . . 41
4.3 Support leg frame system acording to the Denavit-Hartenberg method. . . . . . . 44
4.4 Position command diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.5 Velocity command diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.1 Developed application structure diagram. . . . . . . . . . . . . . . . . . . . . . . 52
5.2 The graphical user interface main page. . . . . . . . . . . . . . . . . . . . . . . . 56
5.3 The graphical user interface miscellaneous page. . . . . . . . . . . . . . . . . . . . 56
5.4 The graphical user interface demonstrations page. . . . . . . . . . . . . . . . . . . 57
5.5 Workspace example for the robot arm kinematic chain. . . . . . . . . . . . . . . . 59
5.6 Workspace example for the robot detached leg kinematic chain. . . . . . . . . . . 59
5.7 Polynomial formulation for the haptic force generation. . . . . . . . . . . . . . . . 61
5.8 RViz workspace limits demonstration example. . . . . . . . . . . . . . . . . . . . 62
5.9 Inexperienced operator interacting with an haptic object teleoperating the robot. 63
5.10 Alternate formulation for the haptic force generation. . . . . . . . . . . . . . . . 65
5.11 Leg balancing force graphical representation. . . . . . . . . . . . . . . . . . . . . 66
5.12 Detached leg balancing haptic environment examples. . . . . . . . . . . . . . . . 67

vi



1

Chapter 1

Introduction

1.1 Framework

The work presented in this dissertation has been developed within the framework of a new
concept for robot learning by demonstration, combining teleoperation and kinesthethic teaching
around an haptic interface using force feedback.

Robot learning by demonstration is a powerful approach in order to automate the tedious
manual programming of robots, to learn locomotion patterns without complex dynamical models
and to reduce the complexity of high dimensional search spaces [1; 2]. The demonstrations are
typically provided by teleoperating the robot, or by vision and motion sensors recordings of the
user doing the task. Recent progresses aim to provide more user-friendly interfaces, such as
kinesthetic teaching [3; 4; 5].

The main focus of this work is centered on the University of Aveiro Humanoid Project
(PHUA), that currently consists of a 27 degree-of-freedom (DOF) whole body small-sized hu-
manoid platform based on an hybrid actuation system that combines servomotor powered joints
with elastic elements, providing an energy storage/recover mechanism [6; 7].

The robot’s anthropometric proportions and ranges served as inspiration towards a platform
that permits walking with straight support legs by incorporating a compliant foot with a passive
toe joint, bringing the robot’s foot kinematics closer to the humans.

The control of full-body humanoid robots is an extremely complex problem, especially for
tasks such as locomotion. This complexity arises from the many degrees-of-freedom involved,
the lack of precise models, the non-closed form for robot control, the dependency on the envi-
ronment conditions, the compliance of actuators, the variable stiffness of links, the backlash of
transmissions or the noise in internal sensors, along with many others.

The same problems have been faced in the PHUA project. Although conceived with care and
with many components previously simulated before effective construction, the platform suffers
from many of the limitations mentioned above. Tasks like walking or stepping/squatting, or even
manipulation or grasping, so natural in humans, become very difficult in these robots with all
their mechanical and controlling limitations.

To tackle the pre-programmed control issues, the project took a new direction towards robot
learning, but with a new approach: tele-kinesthetic teaching. Basically, it is teleoperation with
an haptic interaction with the robot’s environment and information from its state.

Haptic interaction can be defined as manipulation using the human sense of touch. The term
”haptics” arises from the Greek root haptikos, meaning ”able to grasp or perceive”. This kind
of interaction with computers implies the ability to use our natural sense of touch to feel and
manipulate computed quantities [8].

The haptic interaction presented in this work is within the scope of an area known as computer
haptics, ”algorithms and software associated with generating and rendering the touch and feel
of virtual objects” (analogous to computer graphics), but also slightly crossing into machine
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haptics, defined as ”the design, construction, and use of machines to replace or augment human
touch” [9]. This approach uses the field of computer haptics to feedback the operators of the real
world conditions through the use of machine haptics, which, in this case is not just an haptic
interface device, but also the robot itself.

The field of haptic interaction and perception is a new way of human-machine interface,
and one that may revolutionize the way we interact with machines, giving them a new ”feel”.
The human haptic system, with its tactile, kinesthetic, and motor capabilities together with
the associated cognitive processes, presents a uniquely bidirectional information channel to our
brains that remains somewhat unexplored.

Given the increasing quantities and types of information that surrounds us, there is a critical
need to explore new ways to interact with this ever-flowing new information. In order to be
efficient in this interaction, it is essential that we utilize all of our sensorimotor capabilities.

In this work, an approach is suggested where the user provides demonstrations by physically
interacting with the humanoid robot through an haptic interface [10]. The proposed methodology
enables a natural interface for tele-kinesthetic teaching and sensing, in which the user provides
functional guidance and corrections, while being aware about (i.e., able to “feel”) the dynamics
of the system, its physical capabilities and/or constraints.

The combination of haptic and visual (visuohaptic) information has been confirmed as a
good memorizing mechanism for humans [11], which gives confidence that such an approach can
perform well in demonstrations even with inexperienced operators.

Additionally, during the demonstration phase, the sensory information and the commands
guiding the execution of a specific task can be recorded. All the data logged from the human-
robot interaction can be later used for learning purposes.

This approach goes beyond previous research on teaching by demonstration that is unable to
raise the level of bidirectional human-robot interaction. Instead, it refers to a deeper relationship
between the user and the robot who share control to reach common goals using the same measures
of outcome.

1.2 Objectives

The objective of this work is to present new programming and control concepts for humanoid
robots by means of an haptic interface, specifically the development of a force feedback haptic
control and sensing mechanism, aimed at the robot’s perception/actuation data logging.

It is an objective to document current robot learning methodologies involving interactive
kinesthetic learning and teleoperation. As this work is centered around humanoid platforms, it
is also critical to document their current state and progresses.

As it was unsure if the platform could perform complex tasks such as walking, stepping or
squatting, a dynamic model is proposed as an easy-to-deploy solution, using a toolbox for a
commercial software, MATLAB.

It is also proposed the development of a user-friendly interface for robot control and an haptic
interface, providing the means for expert data logging when used by inexperienced operators.
This requires deep knowledge of the haptic device’s programming library and the definition of
a control structure for the platform. To ensure the operator perceives the current state of the
robot, it is required to develop ways of translating that information into force feedback, through
the haptic device. The collected data can then be used to obtain a model of the task, using data
as the position and force information, among others.

Lastly, it was a primary objective to develop haptic tele-kinesthetic demonstrations that could
show the potential of this work’s approach.

Pedro Miguel Batista Cruz Dissertação de Mestrado / Master Thesis
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1.3 State of the Art

1.3.1 Principles of Haptic Interaction

In the early 20th century, psychophysicists introduced the word ”haptics” to label the subfield
of their studies that addressed human touch-based perception and manipulation. In the 1970s
and 1980s, significant research efforts in a completely different field, robotics, also began to focus
on manipulation, perception and interaction by touch.

The idea of using touch as a means of communication grew in the late 1980s through the
late 1990s [12; 13]. Since then it became popular and, in the late years, the number of published
papers with the word ”haptic” in them reached thousands a year.

The word ”haptics” refers to the capability to sense a natural or synthetic mechanical en-
vironment through touch. Haptics also includes kinesthesia (or proprioception), the ability to
perceive one’s body position, movement and weight. It has become common to speak of the
”haptic channel” to collectively designate the sensory and motor components of haptics. This
is because certain anatomical parts (in particular the hand) are organs in which perceiving the
world and acting upon it are activities that take place together. Tactile and kinesthetic channels
work together to provide humans with means to perceive and act on their environment.

With the exception of input devices, such as the mouse, computer interaction relies on skills
similar to those needed for using typewriters. Haptic interfaces, with a principle as exemplified in
Figure 1.1, may be viewed as an approach to address this limitation. It is thus possible to classify
haptics into the area of human-computer interfaces. Unlike traditional interfaces that provide
visual and auditory information, haptic interfaces generate mechanical signals that stimulate
human kinesthetic and touch channels [14].

Interaction
Tool

Sensorimotor
System

Brain
Haptic

Interface
Computer

Mechanically Coupled

Perception

Action

Sensing

Actuation

Human UserHaptic Rendering System

Figure 1.1: The principle of haptic interaction (adapted [15]).

These signals are synthesized through computer algorithms, in a process know as ”haptic
rendering”, schematically represented on Figure 1.2. Haptic rendering algorithms compute the
correct interaction forces between the haptic interface representation inside the virtual (or vir-
tualized) environment and the objects populating the environment. Moreover, haptic rendering
algorithms ensure that the haptic device correctly renders such forces on the human operator.
Normally, haptic rendering is accompanied by simultaneous graphical rendering in what is more
properly referred to as a visual/haptic interface. Unlike graphical rendering which can satisfy
the eye at update rates of 30 frames per second or even less, haptic rendering must be done at
rates around a kilohertz, the human kinesthetic sensing frequency minimum threshold, in order
for the rendering to be seamless and natural [16].
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4 1.Introduction

Figure 1.2: An example of haptic rendering architecture, split into three main blocks.
Collision-detection algorithms provide information about contacts S occurring at position X

and the objects in the virtual environment. Force-response algorithms return the ideal
interaction force Fd while control algorithms return a force Fr to the user [16].

Nowadays, haptics can be found in a great variety of applications, such as video games,
military war games, vehicle simulators, touchscreens, arts and creation, computer aided de-
sign/engineering/manufacturing (CAD/CAE/CAM), assisted surgery machines and, of course,
robotics (telerobotics) [15].

In video games or touchscreens, haptic sensations are created by actuators, or motors, which
create a vibration. Those vibrations are managed and controlled by embedded software, and in-
tegrated into device user interfaces and applications. The rumble effect in video game controllers
or the touch vibration on smartphone dial pads are both examples of haptic effects [17].

For control or virtual reality applications, haptics goes beyond simple rumble or vibration
signals. These signals are no other than energy, so for applications that require a deeper human-
machine connection, force, torque, vibration and visual signals are combined. In this sense, we
can say haptic interface devices behave like small robots that exchange mechanical energy with
the user. The term device-body interface is frequent to highlight the physical connection between
operator and device through which energy is exchanged. Although these interfaces can be in
contact with any part of the operator’s body, hand interfaces have been the most widely used
and developed systems to date [16].
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1.3.2 Haptic Interface Devices

Nowadays, a number of different haptic interface commercial and academic solutions coex-
ist, for numerous applications. However, within the devices with relevance for the context of
this work, a distinction between haptic interface devices must be introduced: their intrinsic
mechanical behaviour.

On one hand, impedance based haptic devices simulate mechanical impedance, i.e., they read
position and output force. Simpler to design and much cheaper to produce, these impedance-type
architectures are the most common within both academic and commercial worlds.

On the other hand, admittance haptic devices simulate mechanical admittance, reading force
and outputting position. Admittance-based devices, such as the 3DOF Haptic Master [18],
represented i Figure 1.3, are generally used for applications requiring high forces in a large
workspace. This device has a maximum exertable force of 250 N with a sensitivity of 0.01 N.

Additionally, haptic devices can be broadly classified into: exoskeletons and stationary de-
vices; gloves and wearable devices; point-sources and specific task devices. Haptic exoskele-
tons/gloves are mainly admittance-based devices, not very frequent in telerobotics experiments.
So from this point on, the term ”haptic device” refers to point-source devices, for their prepon-
derance in teleoperation and robotics.

Figure 1.3: The FCS Control Systems admittance-based HapticMaster [18] (left) and the MTB
Technologies impedance-based Freedom-6S [14] (right) devices.

Still in the 1990s, impedance-based commercial solutions began to emerge, some with intricate
mechanics, such as the MTB Technologies Freedom-6S, in Figure 1.3, a 6DOF device (extensible
to 7 via accessories) built with hybrid kinematics. It is characterized by a wide dynamic range
and six-axis static and dynamic balancing. Its design was ”wrist partitioned”, i.e., the position
and orientation stages each being parallel mechanisms. The position stage is directly driven
and the orientation stage is driven through remotizing tendons with a differential tensioning
technique that operates with low tension and hence low friction.

Today, commercial solutions for haptic interface devices exist in many different physical
dimensions and specifications. One of the most popular is the desktop device, due to its compact
form factor and portability. These solutions provide a force feedback system with affordable price,
being very popular in the academia. The most common devices are the SensAble PHANToM
OMNI and Desktop models, shown in Figure 1.4.

These are sometimes called ”pen-grasping” joysticks, in the sense that the operator interacts
with the device via a pen-like end-effector. With a workspace of around 27 dm3 and force
feedback magnitudes of 3.3 N and 7.4 N, respectively [19], these devices are well known for their
capstan drive, which allows for their construction. They are mostly found in 3D CAD and 3D
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6 1.Introduction

moulding applications, for the pen-like interface emulates the tool usage mechanisms, making
the learning curve steeper.

Figure 1.4: The SensAble PHANToM OMNI (left) and PHANToM Desktop (right) haptic
impedance-based desktop devices [20; 19].

Within the desktop solutions, there is a new subdivision based on a parallel configuration
(Delta). These devices became popular for allowing 6DOF force feedback/position reading in a
very compact mechanism, but sacrificing workspace dimensions. The Virtuose 6D Desktop from
Haption is a 6DOF spherical joystick with 6DOF force feedback, within a volume of 120 mm in
diameter and 35° in three directions at the center, with a resolution in position at about 2 mm.
Its maximum exertable force is 10 N and its maximum exertable torque is 0.5 Nm [21]. Another
example are the Force Dimension products, also based on a parallel kinematics mechanism. The
Omega [22] and Delta [23] offer greater force feedback, but with a slightly smaller workspace.
These devices are represented in Figure 1.5.

Figure 1.5: The Haption Virtuose 6D Desktop (left) , the Force Dimension Omega (middle)
and Delta (right) haptic impedance-based desktop devices [21; 22; 23].

When bigger workspaces are required, these devices are not suitable. The Sensable PHAN-
ToM Premium line is the company’s ultimate line of products. The PHANToM Premium 1.0,
1.5 and 3.0, in Figure 1.6, are shoulder pivoting devices with larger force feedback levels when
compared to their desktop variants, but with the exact same mechanism type, allowing for 3DOF
force feedback and a 6DOF position reading. The PHANToM Premium 3.0 and the 1.5 model
both have a ”HIGH FORCE” variant that is capable of rendering 6DOF forces/torques.
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(a) (b)

(c)

Figure 1.6: The SensAble PHANToM Premium 1.0, 1.5 and 3.0 haptic impedance-based
desktop devices [24].

Again from Haption, we can find two models with large workspaces. The Virtuose 6D35-45
offers force-feedback on all 6 degrees-of-freedom together with a large workspace (450 mm). Its
maximum exertable force is 35 N and its maximum exertable torque is 3 Nm. Modular in design,
it can be purchased as a 3DOF device and later upgraded to 6DOF [25]. The Virtuose 6D40-
40 is a new generation master arm for teleoperation with force-feedback. It is very similar to
the 6D35-45 model in workspace limitations (400 mm workspace), but allows for a much higher
force/torque feedback. Its maximum exertable force is 100 N and its maximum exertable torque
is 10 Nm [26]. Both models are shown in Figure 1.7.

Figure 1.7: The Haption Virtuose 6D35 (left) and 6D40 (right) haptic devices [25; 26].
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New kinds of haptic devices have appeared in the later years. One of the most promising
is the dual-pantograph arrangement device. These devices are 6DOF joysticks with full 6DOF
force/torque feedback designed specifically to control industrial serial robots equipped with force
sensors. The device is made combining two pantographs (Delta type actuators) driven by motors
at its shoulders and another at the waist. The wand type end-effector is connected to both end
points of each pantograph through universal joints (U-joints). The yaw about the wand axis
gives its extra DOF. However, this kind of joysticks still possess very limited workspaces, so
their applicability is still somewhat limited. Figure 1.8 depicts two examples of this technology.

Figure 1.8: A double pantograph style haptic device proposal (left) [27] and the Quanser
Haptic Wand (right) commercial haptic device [28].

Another area quickly growing is the dual-device operation, with a great focus in the medical
industry. The Force Dimension Sigma, in Figure 1.9, is a dual joystick device that covers the
natural range of motion of the human hand and it is compatible with bi-manual teleoperation
console design. Along with a full gravity compensation and driftless calibration, it possesses a
good level of forces, torques and a high precision on all its 7DOF [29], making it one the most
accomplished master devices available.

Figure 1.9: The Force Dimension Sigma haptic device in a medical application [29].
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Virtual environment (VE) manipulation/navigation is another field were dual configurations
have great impact. The DLR (German Aerospace Center) bimanual haptic device, represented
in Figure 1.10, is a good example of the development of this field [30]. The device is composed of
two 6DOF DLR/KUKA Light Weight Robot (LWR) arms and an extra DOF at the handles. The
LWRs have similar dimensions to the human arms and can be operated in torque and position
control mode at an update rate of 1 kHz, for a full haptic rendering support. The two robot
arms are mounted behind the user, so that the intersecting workspace of the robot and human
arms becomes maximized. This system has a 150 N maximum exertable force generation. The
haptic system is combined with a motion detect helmet and a haptic glove system for maximum
VE immersion. Even though it is primary an impedance-based device, it is also prepared for
admittance-based control and a hybrid mode, making it one the few functional devices with this
capability. It is considered to be one of the most complex and complete VE haptic devices.

Figure 1.10: The DLR bimanual haptic device [30].
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10 1.Introduction

1.3.3 Teleoperation, Kinesthetic Teaching and Learning from Demon-
stration

The teleoperation of robots is currently a vast, yet still growing, scientific field, with count-
less publications on the matter. It is a concept that has grown to cover all fields of robotics
and into the commercial/industrial worlds. Robot learning is another topic of great interest to
the scientific community. New algorithms and techniques are proposed each year, with consider-
able improvements in every iteration. The use of haptic interfaces for human-machine learning
processes study is also well accepted, as the field of haptic guidance is growing [31].

Teleoperation of robots benefits from the extension of their sensory capabilities with the use of
haptic interfaces. Usually, telerobotic applications provide the remote user images and navigation
sensor data. With additional force feedback, the remote control performance is improved. Small
mobile robots have been successfully manipulated using an haptic interface, as shown on Figure
1.11, with the user being aware of the state changes in the robot’s environment. Sensors in the
car bumpers provide force feedback to the user [32].

Figure 1.11: Haptic teleoperation of a mobile robot [32].

In robotics, learning from demonstration is also becoming common place. Rather than im-
itating human actions, the focus is to develop an intuitive and interactive method based on
user demonstrations to create human-like, autonomous behaviour for a robot. New paradigms
have emerged with the use of haptic systems and robot learning. Skill transfer mechanisms have
gained a growing interest in the scientific community. For instance, one experiment constructs a
reality-based haptic interaction system for knowledge transfer, by linking a human expert skill
with robotic movement in real time, in an handwriting task [33]. The goal was to successfully
recreate manipulation motion with a robotic system and transfer haptic forces to an untrained
user with an haptic device.
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In another experiment, illustrated in Figure 1.12, a human teacher uses an haptic control
strategy to teach a humanoid robot collaborative tasks with a human partner [34]. The robot
can learn through observation to perform a collaborative manipulation task which is first demon-
strated by a user controlling the robot’s hand via an haptic interface. Haptic communication
reflects more than pure dynamic information on the task. It also includes communication pat-
terns which result from both users, human partner and teleoperated robot, constantly adapting
their hand motion to coordinate in time and space their respective motions.

Figure 1.12: Teleoperating a humanoid robot to demonstrate and teach an object lifting task
collaboratively with a human user [34].

Studies have shown that the use of force profiles along with position information improves the
quality of the robot learning. In one experiment, using a Barret Technology WAM manipulator,
kinesthetic teaching was used for position recording and an haptic interface was used to trace the
force profile of the same tasks, such as ironing a piece of cloth or opening a door, as described
in Figure 1.13. Feeding the force profile to the learning algorithm improved the robot’s response
when autonomously performing those tasks [4].

Figure 1.13: Retrieving position and force profiles from different tasks, such as ironing a piece
of cloth or opening a door, for teaching purposes [4].
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12 1.Introduction

Teaching by kinesthetic manipulation with humanoid robots is also a topic of interest in
the academia, with several new approaches successfully implemented at each passing year. One
experiment placed a humanoid robot writing on a chalk board while standing up [35]. The
humanoid robot upper body training for imitation learning is done via kinesthetic teaching, while
the Reaction Null Space method is used for keeping the balance of the robot. During the user
demonstration phase, as shown in Figure 1.14(a) and (b), along with the kinematic infromation
logging, a force/torque sensor is used to record the exerted forces. During the reproduction, a
hybrid position/force controller is used to apply the learned trajectories (position and force-wise)
to the end-effector, as seen on Figure1.14(c).

(a) (b) (c)

Figure 1.14: Upper-body humanoid kinesthetic teaching while standing [35].

Learning from demonstration has also been successfully achieved using virtual environments.
For instance, a serial robot arm was taught to catch a ball in mid-air by analysing data collected
in a virtual world environment, as shown in Figure 1.15, compiled from user inputs [36].

Figure 1.15: Virtual environment used for learning by demonstration with a serial arm catching
a ball in mid-air [36].

This dissertation implements a keyword not often used: tele-kinesthetic teaching. This
method refers to teleoperation/telerobotics with three-dimensional force feedback using an hap-
tic interface. The forces reproduced are those of the controlled object or equivalent, and are
not an input for the teleoperation. This is an important feature around this keyword. However,
in literature, the most relevant work found around this keyword approximates the user’s hand
motion with force by synthesizing EMG signals that are transformed into 3D motion and then
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applied to a hanging ball within a cubic frame [37], as shown in Figure 1.16. As the usage of
this keyword in this experiment seems to be related to force transfer from human to machine,
one must reinforce that the approach suggested in this work implements the opposite strategy.

Figure 1.16: Another tele-kinesthetic interaction environment based on EMG signals [37].

Lastly, a new paradigm in kinesthetic teaching must be presented: industrial kinesthetic
teaching. Presented in 2012, the Rethink Robotics Baxter, in Figure 1.17, is a dual-arm upper-
body humanoid-like robot [38]. Composed of two 7DOF serial elastic actuated arms, an array
of cameras and sensors, a quad-core computer running Linux, an LCD touchscreen for human-
machine interface and interchangeable grippers, it is the first of its kind. This robot was built to
be a low cost solution ($22.000 US) for industrial robotics, but its strength is not on high-precision
manipulation. The Baxter possesses two buttons and a knob on each forearm used to navigate
the robot user-interface and also to teach kinesthetic frames to the robot, demonstrating how to
perform the tasks. This solution does not require a specialized human operator to perform the
teaching and the LCD touchscreen provides a more user-friendly interface than the usual code
input interfaces.

Figure 1.17: The Rethink Robotics Baxter industrial kinesthetic teaching robot.

Pedro Miguel Batista Cruz Dissertação de Mestrado / Master Thesis
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1.3.4 University of Aveiro Humanoid Project (PHUA)

Started in 2003/2004, this project was the outcome of a joint venture between the Mechan-
ical Engineering Department (DEM) and the Electronics, Telecommunications and Informatics
Department (DETI) of the University of Aveiro. Dedicated to the development and integration
of hardware and software components, the project made a major step forward with the design
and development, in 2009, of a new small-size humanoid platform based on hybrid actuation,
as depicted in Figure 1.18. The focus has been on the mechanical design and the selection of
actuators and sensors [7; 39; 40; 41]. The humanoid robot’s height is around 65 cm, and its
weight is approximately 6 kg. It is equipped with an array of two 5000 mAh LiPo batteries on
the back.

Figure 1.18: Current form of the PHUA robot platform, with the hybrid actuation system and
the complete motor wiring installed.

This robot is a proprietary whole-body humanoid platform with a total of 25 active and 2
passive degrees-of-freedom, as shown in Figure 1.19. The joint actuation is composed of HITEC®

analog and digital servomotors, as distributed in the Table 1.1, combined with elastic elements.
The robot uses a belt and pulley adjustable transmission system on the legs and torso, providing
torque to the joints with higher requirements.

As illustrated in Figure 1.20, the design of this platform accounts for a hybrid actuation
system that combines active joints with adjustable elastic elements (rubber bands), providing a
passive mechanism to store and recover energy. Mainly to enhance the system response and also
to try lessen the actuator’s torque demands, flexible rubber bands are attached between several
pair of consecutive links in parallel with the servomotors.

The robot is also equipped with a set of 8 force sensors, 4 on each foot, and a FireFly®

FireWire artificial vision system in the head [42]. This platform is also equipped with an onboard
PC-104 small form-factor computer.
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Figure 1.19: PHUA kinematic chains.

Table 1.1: PHUA platform’s degrees-of-freedom
and installed servomotors.

Joint
Number of

DOFs
Servomotor

Toe 1(×2) (none)
Ankle 2(×2) HSR-5980SG
Knee 1(×2) HSR-5980SG
Hip 3(×2) HSR-5980SG

Trunk 3
HSR-5980SG(×2)
HSR-8498SG(×1)

Shoulder 3(×2)
HSR-5980SG
HSR-5498SG

HS-82MG
Elbow 1(×2) HSR-5498SG

Neck 2
HSR-5498SG
HS-5056MG

Total 27 —

The robot’s anthropometric proportions and ranges allow the platform to walk with straight
support legs by incorporating a compliant foot with a passive toe joint, bringing the robot’s foot
kinematics closer to the humans and allowing for a more natural gait.

Figure 1.20: Elastic elements placed on the robot’s joints and the passive toe joint.

Table 1.2 details the robot’s joints anthropometric ranges and the total angular course, mea-
sured from the home position (in degrees), defined as the robot with all limbs at full stretch
downwards, with the torso upright and a zero tilting in the head. At the moment there are
unavailable DOF’s due to reasons that will be detailed further in Chapter 3, and thus are not
represented.
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Table 1.2: PHUA robot degree-of-freedom range limitations.

DOF Minimum Maximum Total Range
Head
Tilt

0o 10o 10o

Shoulder
Flexion/Extension

−45o 135o 180o

Shoulder
Abduction/Adduction

0o 180o 180o

Elbow
Flexion/Extension

0o 120o 120o

Torso
Rotation

−90o 90o 180o

Torso
Flexion/Extension

−15o 90o 105o

Torso
Lateral Flexion/Extension

−90o 90o 180o

Ankle
Inversion/Eversion

−30o 45o 75o

Ankle
Flexion/Extension

−40o 20o 60o

Knee
Flexion/Extension

0o 130o 130o

Hip
Abduction/Adduction

−40o 45o 85o

Hip
Flexion/Extension

−30o 120o 150o
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Chapter 2

SimMechanics Simulator

The PHUA robot full body model simulator and results are presented in this chapter. This
simulator is a MATLAB SimMechanics construction, built according to the actual robot me-
chanical and dimensional specifications, designed to assess the robot’s hybrid actuation system
and, if possible, study its behaviour. The model expects the joint course data input (position,
velocity, acceleration and time vectors) and returns the calculated joint torques developed for
the movement. It is also equipped to track the robot’s center-of-gravity position, velocity and
acceleration. To study the model and simulator’s capabilities, a simple movement from a step
climbing locomotion pattern is simulated, and its fundamental mathematical expressions are
presented. The complete SimMechanics model is presented at Appendix A, for future reference.

2.1 SimMechanics Short Overview

MATLAB SimMechanics is a multibody simulation environment for mechanical systems, in-
cluded within the Simscape suite. The multibody systems are modelled using blocks (represent-
ing bodies), joints, constraints, and force elements, whose equations of motion (for the complete
mechanical system) are then formulated and solved.

All geometrical information, including masses, inertial properties, joints configurations, con-
straints, and three-dimensional geometry can be imported into the model bodies, or can also be
given through CAD model importing. During (and after) calculations, a 3D animation allows
the visualization of the resulting system dynamics.

The model’s parametrizations can be done using regular MATLAB variables and expressions.
SimMechanics allows to use other toolkit as complementary systems, as control systems from
Simulink or electrical, hydraulic, or pneumatic systems from Simscape, and test them altogether
in a single simulation environment.

One of the main key features of this MATLAB toolkit are its simulation modes for analysing
motion and calculating forces/torques in a dynamical environment. This dynamical analysis
allows to study certain intrinsic properties and behaviour of the mechanical constructions that
would be strenuous to handle otherwise.

The SimMechanics model construction is very similar to the standard Simulink block-based
approach, but is based on defining three-dimensional bodies and their respective mechanical
connections. In this case, the robot bodies are all connected via rotational joints, actuated in
position, velocity and acceleration, while the robot connection to the ground is rigid, through
the tip of the robot’s support leg foot. Joint actuation is made through an actuator block, and
the required joint information is retrieved through a joint sensor block. An example of these
constructions is given in Figure 2.1. The hybrid actuation system is installed on the knee and
ankle joint systems using spring and damper blocks. The models can also account for a gravity
acceleration vector, defined with an environment block.
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Figure 2.1: SimMechanics body to body construction example. joint blocks can be of rotational
or prismatic joint types, allow for multiple DOF and different types combinations.

2.2 Model Construction

The SimMechanics toolkit had already been approached in past works, but only for the
purpose of studying the elastic elements on the knee. Thus, in order to build all the bodies that
compose the robot, the geometrical information, such as physical dimensions (lengths, centres
of gravity), masses, and inertial matrices were taken from the robot CAD model, shown in
Figure 2.2, in CATIAv5 environment. The joint properties, such as actuation type and course
limitations, as well as the elastic elements properties, were based on previous studies on the
hybrid actuation system, the robot construction and other simulators [40; 39; 43].

Figure 2.2: PHUA platform CAD design model.

It was determined that one of the most hampering limitations of the SimMechanics is the lack
of a ground/floor interaction system, that is, a way for bodies to interact dynamically with blocks
that are rigid to a static element. It is because of this limitation that the unactuated joints in the
robot’s feet are not represented in this model. As only the tip of the foot is linked rigidly to the
ground block, the gravity acceleration made the foot rotate freely around the unactuated joint,
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although the ground block occupied the space below them. Some strategies were attempted, like
mirroring the foot’s weight vector from the ground as a contact force, maintaining the foot and
the floor plane together, but the toolkit is not prepared for this workaround and the results were
unsatisfactory.

The SimMechanics model bodies are built from a reference frame to a destination frame, thus
requiring at least two frames. Other frames can be defined in between, and can be given on any
previous reference. This model was built from the ground up, defining bodies consecutively. In
the legs, the model is built from the tip of the support leg’s foot to the tip of the free leg’s foot.
The distinction between support and free leg is necessary because SimMechanics currently does
not support parallel configurations. Table 2.1 details the geometrical data used to build all the
robot body blocks, specifying their mass and centre of mass translation vector (and respective
reference frame), as well as the respective inertia matrices, given in the frames of the centres of
mass.

Table 2.1: SimMechanics PHUA robot model geometrical data used to build the body blocks
(positive is for left limbs, negative is for right).

Body Mass (kg) Center of Mass (mm) Inertia Matrix (kg.m−2)

Feet 0.444
[±2.746 ; -18.300 ; 9.060]

(ankle joints frame)

 9.30 × 10−4 ±2.20 × 10−5 ∓1.10 × 10−5

±2.20 × 10−5 7.6 × 10−4 1.50 × 10−4

∓1.10 × 10−5 1.50 × 10−4 3.80 × 10−4



Legs 0.343
[±15.861 ; 88.519 ; 0.182]
(ankle flexion joint frame)

 5.10 × 10−4 ±4.80 × 10−5 ∓6.50 × 10−7

±4.80 × 10−5 2.30 × 10−4 ±2.0 × 10−5

∓6.50 × 10−7 ±2.00 × 10−5 6.80 × 10−4



Thighs 0.243
[±1.418 ; 101.284 ; -2.262]
(knee flexion joint frame)

 5.30 × 10−4 ±1.10 × 10−4 −4.00 × 10−6

±1.10 × 10−4 1.40 × 10−4 4.60 × 10−6

−4.00 × 10−6 4.60 × 10−6 5.70 × 10−4



Pelvis 0.883
[0.000 ; -34.800 ; 8.110]

(torso rotation joint frame)

 6.39 × 10−4 7.39 × 10−8 −5.60 × 10−8

7.39 × 10−8 0.002 −6.80 × 10−8

−5.60 × 10−8 −6.80 × 10−8 0.002



Torso Base 0.089
[0.000 ; 13.411 ; 0.220]

(torso joints frame)

 3.65 × 10−5 −7.55 × 10−14 −3.83 × 10−9

−7.55 × 10−14 1.23 × 10−4 4.68 × 10−7

−3.83 × 10−9 4.68 × 10−7 1.22 × 10−4



Torso 1.849
[2.255 ; 100.867 ; -18.896]

(torso joints frame)

 0.007 8.48 × 10−5 −2.73 × 10−5

8.48 × 10−5 0.006 5.85 × 10−4

−2.73 × 10−5 5.85 × 10−4 0.01



Shoulders 0.077
[±18.640 ; 0.000 ; -2.170]

(shoulder abduction joint frame)

 2.30 × 10−5 ∓2.00 × 10−9 4.24 × 10−6

∓2.00 × 10−9 3.68 × 10−5 ±2.00 × 10−9

4.24 × 10−6 ±2.00 × 10−9 2.30 × 10−5



Arms 0.250
[±0.500 ; -62.457 ; 0.000]

(shoulder flexion joint frame)

 5.17 × 10−4 ±6.14 × 10−6 ±7.60 × 10−8

±6.14 × 10−6 4.08 × 10−5 −6.70 × 10−6

±7.60 × 10−8 −6.70 × 10−6 5.16 × 10−4



Forearms 0.048
[±3.418 ; -26.603 ; 0.000]

(elbow flexion joint frame)

 4.18 × 10−5 ±4.34 × 10−6 8.23 × 10−12

±4.34 × 10−6 1.87 × 10−5 ∓8.37 × 10−12

8.23 × 10−12 ∓8.37 × 10−12 5.76 × 10−5



Head 0.333
[0.000 ; 22.400 ; -11.300]
(head tilt joint frame)

 1.95 × 10−4 4.60 × 10−7 −1.60 × 10−7

4.60 × 10−7 2.48 × 10−4 −1.80 × 10−5

−1.60 × 10−7 −1.80 × 10−5 2.75 × 10−4
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The model was built to have as inputs each joint position, velocity and acceleration curves,
and is equipped to measure and output the active/passive torques in all the joints. It was also
implemented a mechanism that tracks the full body center of gravity position, velocity and
acceleration curves, which is then represented using the three orthogonal lines (red, green and
blue) that represent the COG frame, allowing to detect its movement even when it is occluded
within the robot.

Also, the robot model bodies were created with redundant frames that help SimMechanics
draw an approximate volume that enriches the graphical visualization of the model, shown in
Figure 2.3. This volume is created with the outermost frame origins of each body, so the geometry
is not exact, but it is also not used on any calculations.

Figure 2.3: SimMechanics model graphical visualization. The robot is represented in red and
the step and floor bodies in gray. The three orthogonal lines that represent the COG are also

represented in their red-green-blue color order.

In preparation for the step climbing simulation, the body blocks for the step and floor plane
were included in the model. All of the step’s dimensions are pre-defined, with the exception of its
height. The step height h is a parameter of the simulation, used to define the foot trajectories.
Figure 2.4 shows a series of acceptable step heights with the robot on its final pose of the
simulation.

(a) h=25mm (b) h=50mm (c) h=75mm (d) h=100mm (e) h=125mm

Figure 2.4: SimMechanics step heights visual comparison, ranging from 25 to 125mm.
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2.3 Step Climbing

The definition of the step climbing joint position curves was based on an analysis on the
humans stair ascent and descent natural joint courses [44]. The data is shown, in Figure 2.5,
for the spans of the leg flexion joints of the ankle, knee and hip for the humans. Due to the
SimMechanics floor plane interaction limitations, the whole step climbing movement can not be
performed at once using the same model. The support leg becomes a free leg when the current
free leg presses the step to project the body upwards. Therefore, this simulation only covers half
of the step climbing movement.

Figure 2.5: Mean sagittal plane angles for the human hip, knee, and ankle flexion joints during
stair ascent and descent [44].

From the analysis of the human step climbing movement, a 4 stage approximate movement
was designed for the robot, as shown in Figure 2.6. On the first stage the robot lowers the hip
backwards to leave the singularity point of the upright posture and increase the joint ranges.
The second and third stage represent the leg swing, where the robot will pull the thigh upwards
and swing the leg and foot forward. The last stage is the beginning of the support leg switch
stances, where the foot approaches and steps on the target step. Each stage duration was timed
to approximately match the timings of the human natural stances.

(a) 0% (b) 35% (c) 56.7% (d) 78.3% (e) 100%

Figure 2.6: SimMechanics step climbing movement, with the correspondent time fractions,
examplified for a 100mm step.
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For the implementation of this simulation with the developed model, the joint course curves
must be fed into the model. The limb joint space trajectories were translated from the Carte-
sian space using the standard inverse kinematics expressions for the RRR planar robot(three
consecutive parallel rotational joints), shown on equations (2.1), (2.2) and (2.3), applied to both
the support leg and the free leg, whereas on the support leg the end-effector is the hip and on
the free leg the end-effector is the foot. The end-effector pose is determined by the Cartesian
position Pwx and Pwy, and by the orientation φ. L1 and L2 stand for the limb lengths.

θ2 = ± arccos

(
Pw2

x + Pw2
y − L2

1 − L2
2

2L1 L2

)
(2.1)

θ1 = arctan

(
Pwy(L1 + L2 cos θ2 )− Pwx L2 sin θ2
Pwx(L1 + L2 cos θ2 ) + Pwy L2 sin θ2

)
(2.2)

θ3 = φ− θ1 − θ2 (2.3)

The individual joint trajectory curves are then built using a 5th degree polynomial, from the
initial joint position θi to the final position θf . The time frame is defined by the initial and final
time values, ti and tf . Parameters a, b and c (2.4) are used to create the time dependent curves
for the joint position q, velocity v and acceleration a, represented in equations (2.5), (2.6) and
(2.7).

a = −10 (θi − θf )

(tf − ti)3
; b =

15 (θi − θf )

(tf − ti)4
; c = −6 (θi − θf )

(tf − ti)5
(2.4)

q = θi + a t3 + b t4 + c t5 (2.5)

v = q̇ = 3 a t2 + 4 b t3 + 5 c t4 (2.6)

a = v̇ = 6 a t+ 12 b t2 + 20 c t3 (2.7)

Using a 5th degree polynomial function for the position description ensures the acceleration
curve is continuous in its domain. Figure 2.7 shows an example of the three curves used to define
a joint movement.
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Figure 2.7: Example of a joint course description curve set, for the support leg knee in a 75mm
step height 10 second climbing movement.
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The model uses the joint information data sets to generate the robot motion and dynamical
behaviour. As the model is parametrized by the step height and all of robot’s 25 joints are
analysed, the data produced is extensive. Figures 2.8 and 2.9 show two examples of torque
curves that can be extracted from this simulator.
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Figure 2.8: Example of a joint torque data set for the support leg in a 10 second movement
with a step height of 50mm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Time [s]

T
o

rq
u

e
 [

N
m

]

Free Leg Torques

 

 

Ankle Flexion/Extension

Ankle Eversion/Inversion

Knee Flexion/Extension

Hip Flexion/Extension

Hip Rotation

Hip Abduction/Adduction

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
−2

−1.75

−1.5

−1.25

−1

−0.75

−0.5

−0.25

0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

Time [s]

T
o

rq
u

e
 [

N
m

]

Free Leg Torques

 

 

Figure 2.9: Example of a joint torque data set for the free leg in a 10 second movement with a
step height of 50mm.
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However, this model also calculates passive torque for the joints actuated with constant
values, corresponding to the still torque the motor would have to produce to hold its position,
as shown in the examples of Figures 2.10 and 2.11, for the same case as before.
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Figure 2.10: Example of a joint torque data set for the torso in a 10 second movement with a
step height of 50mm.
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Figure 2.11: Example of a joint torque data set for the left arm in a 10 second movement with
a step height of 50mm.
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By examining the data collected for the knee and ankle joints using several simulations with
different step heights, it was possible to verify that although the results for the ankle joints with
the elastic elements in placed produced expectable results, the curves produced for the knee joint
were not consistent to what was expected. It was expectable that the knee joint torque curves
would show less energy spending while the knee was recovering from a given position, due to the
torque gained from the elastic elements, just as it was seen for the ankle joints, but that was not
the case.

The spring and damper block used to create the elastic elements of the robot (with a zeroed
damping factor), simulates a rigid spring connected between two different bodies in space. On
the knee, these connection points are placed on the leg and thigh, at approximately 30mm from
the joint axis. When the knee is upright, the force vector from the spring is correctly applied
to the bodies due to the spring being defined as pre-tensioned. Then, as the knee flexes, and as
SimMechanics does not yet possess interaction mechanisms between bodies, the model solver sees
the two end points of the spring coming closer, instead of farther. Naturally, neither the force
direction nor its magnitude are well calculated by the algorithms and the joint torque influence
that was expected from the hybrid actuation system is not verified in the resulting curves.

The force generation from the elastic elements in the knee is non-linear and very hard and
time consuming to simulate using other Simulink blocks due to the closed form of the SimScape
suite (in which SimMechanics is inserted). It was then decided that the simulation of the second
half of the step climbing movement was not to be pursued because the results for the hybrid
actuation of one of the most critical joint in that movement, the knee, could not be trusted.
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Chapter 3

Experimental Setup

In this chapter, the primary hardware and software setup that was necessary for the imple-
mentation of the haptic demonstrations is presented, detailing the servomotor wiring scheme,
mechanical modifications introduced and the chosen haptic joystick and programming libraries.
When this work was initiated, the PHUA platform robot could not accommodate the desired
implementation for haptic teleoperation and data logging. Some hardware issues were undefined
and had to be resolved to allow a correct software implementation.

3.1 Servomotor Wiring and Communication

One challenge in this work was to come up with a solution for the robot actuation wiring
and communication. Some solutions were already explored before [41; 45], based on distributed
control architectures, but unfortunately none of them were installed as a final version. The
implementation of a low-level hardware control system for the whole robot was not an objective
of this dissertation, so another alternative had to be devised.

The HITEC servomotors possess a proprietary protocol called Hitec Multi-Protocol Interface
(HMI), that allows communication to be established in three different modes [41]:

� Standard Pulse

� Extended Pulse

� Bidirectional Serial Interface

The first two are PWM based communication protocols, requiring dedicated hardware. The
Bidirectional Serial Interface is an RS-232 based communication, using a 7 byte command frame
represented on Table 3.1, configured as the Table 3.2 shows. The last 2 bytes of the word
contain the answer from the servomotor controller. Different answers from multiple servos on
one communication line will result in a bus collision. This type of communication allows not just
the position and velocity command of the servomotor, but also its internal programming.

Table 3.1: The HITEC BSI RS-232 7 byte word [41].

byte 1 2 3 4 5 6 7

Controller Startbyte Command Param1 Param2 Checksum 0x00 0x00

Servomotor High-Impedance Return1 Return2

The checksum byte adds up the sum of bytes 1 through 4 to a multiple of 256, as shown on
expression (3.1):

Checksum = 256− (0x80 + Command+ Param1 + Param2) % 256 (3.1)
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Table 3.2: The HITEC BSI RS-232 configuration [41].

Parameter Value
Baudrate 19200
Data Bits 8
Stopbits 2
Parity (none)

Handshake (none)

These servomotors perform their own motion control, having the low-level control already im-
plemented in the Atmega micro-controller circuit inside their casing. The controller’s trajectory
planner generates a linear trajectory (constant angular velocity) starting from the last trajectory
set point p0 to the actual target position p1, using the input position,defined in an integer range
of 1800 positions [600-2400], and the velocity value, defined in an integer range from 1 to 255, it
receives. The control loop then ensures the motor reaches the desired position by monitoring its
error value. The planned trajectory parameters are stored in a different memory block from the
one used for planning. This different block is read by the PD controller at every control loop to
define the motor PWM pulse. This mechanism assures the trajectory can be changed at every
loop without having to stop the motor, allowing for continuous operations.

Figure 3.1: Servomotor controller motion control (left) and trajectory planning (right)
(adapted [41]).

Closed-loop customized motor control is difficult with the current hardware. There was
already a distributed control architecture strategy presented in a previous work [41] that tried
to compensate this with local micro-controller units actuating small clusters of servomotors and
communicating between them through a CAN type protocol.

It was decided that, having the possibility to define a unique identification number (ID) for
each digital servomotor, the best solution was to implement a single direct line to connect all
digital servomotors using the BSI protocol for communications. However, this had the incon-
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venient of leaving out the analogue servomotors, since they require dedicated hardware. As it
would be very time-consuming to make the hardware structure necessary to include those motors
in the line, for this dissertation it was decided to drop those DOFs, and work with all the others.
Further, using a digital protocol also meant that the low-level control of the servomotors was
definitely set-aside for the work, and any commanding methodology had to take into account the
controller’s trajectory generator limitations.

The servomotor programming was conducted using the ”HMI Servo Programmer” software,
supplied by HITEC (for Windows 32bits). It defined the whole robot’s ID number logic, depicted
in Figure 3.2, as well as the reset of their internal controller to the factory defaults, so it could be
tested for optimal performance. The numbering logic defines a range of numbers specific for each
limb, so that the ID number quickly identifies the joint. With this method it is also possible to
introduce new servomotors in the platform without major modifications to the control structure.

Figure 3.2: Servomotor ID numbering.

The servomotor internal controller can be configured in terms of proportional and derivative
gains parameters (P-Gain and D-Gain) as well as their Dead Zone parameter. The proportional
gain defines the speed and acceleration properties of the motor, and the derivative gain defines
the servomotor’s stopping behaviour. A small current consumption test showed that carrying
heavy loads over great distances made the motors consume a considerable current. As advised
by the manufacturer in the data sheets, the gain parameters were set to the their lowest setting
in the controllers to avoid damage and wear throughout the course of the works. The Dead
Zone parameter defines the inactive range of a stop point, or the ”still tolerance”. There was
no noticeable change while varying this parameter, and it was decided to keep it to the lowest
setting, again for servomotor preservation reasons.

To allow for the platform’s mobility, this common line had to be installed on the robot and not
restrain any DOF. Thus, it was decided to design small connector boards where the servomotors
could be easily plugged/unplugged. These boards were then placed on each leg, on the trunk
and on the shoulders, connecting all the servomotors together. These boards, as well as the
connection diagram [41], are depicted on Figure 3.3.
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Figure 3.3: The servomotor line connection diagram [41] and connector boards.

Using the HITEC servomotor connection scheme, another small board was designed to con-
nect the RS-232 connector and the power line to the robot’s common line. These parts are
represented in Figure 3.4.

Figure 3.4: The designed servomotor communication converter board.

The common line allows for full robot control, with the exception of the analogue motors,
and the connector board allows to separate the power line from the RS-232 communication line.
It is also possible to control any kinematic chain separately, or a single servomotor, if necessary.
The cables installed on the platform are not definitive and will require maintenance in the future,
although perfectly fitting the purpose of testing.
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3.2 Mechanical Modifications

Due to the wiring solution, the analogue servomotors on the arms and in the thighs were
left unactuated. In order to stabilize them, it was decided to take one of two possible solutions:
to power up the servos at zero position or to mechanically immobilize them. The later was the
choice, given that it was unpredictable if the static torque of the analogue motors was enough to
support the internal forces of the limbs while in operation, besides the fact that being powered
up could eventually deteriorate them. So, the solution was to design small parts to restrain
those DOFs and avoid possible problems. These parts, represented in Figure 3.5, were initially
developed to be of low mass/dimensions, so that the limb’s inertia matrices were not affected
by them. However, the robot’s dimensional restraints and the assembly/disassembly problems
of the platform conditioned the design to its final geometry and position.

Figure 3.5: Designed parts for the servomotor fixation.

As the parts in the arms were developed with a considerable volume, the choice in material
was made of aluminium. Although this material allowed for a small mass in the arm parts, it
made the legs component frail around the bolt tightening phalanx. Even though the leg parts
are slightly deformed, their mechanical performance is the same, and no problems are to be
expected from al the parts while the robot is in operation. The mechanical drawings for the
designed parts, shown Figure 3.6, are submitted on Appendix B.

(a) (b) (c)

Figure 3.6: Designed parts installed on the robot, for the arms on the left and middle, and for
the legs on the right.
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3.3 Elastic Elements Review

In the previous works on this platform [40; 41; 39; 45], there was no indication left about the
mounting of the elastic elements of the ankle and hip joints elastic elements. Although there was
some calculations regarding the mounting of the trunk and knee’s rubber bands, no indication
was given for any other joint or joint groups. The review of these mechanical elements was not
an objective for the dissertation, but it quickly became clear that the experience gained over the
course of this work was an interesting addition to the project’s documentation.

The previous work and solutions on the mounting of these elements was not significantly
altered, as the goal was to improve the current implementation. For that, the rubber band
mounting on the knee flexion joint and on the trunk’s flexion and lateral flexion joints was
initially performed as previously defined.

On the robot’s ankle flexion/extension and abduction/adduction joints, the mounting points
were all previously defined, but were not tested. The placement of the rubber bands proved
successful on maintaining the joint around it’s home position, with the servomotors powered
down, and with no apparent stress induced on them while in operation. Figure 3.7 shows the
rubber bands mounting on the ankle.

Figure 3.7: Elastic elements on the robot’s ankle joints.

New mounting points had to be created to apply the rubber bands on the hip flexion/extension
and abduction/adduction joints, in order to fulfil the goal of the hybrid actuation system. As
there was very little geometric/dimensional margin for a mechanical modification, the solution
was to remove some screws and replace them with metric screw hooks, similarly to what had
been done before in trunk [39], as shown in Figure 3.8.

However, the results were not satisfying. It was observed that, when the tested courses
started on a joint limit (where the elastic force is greater), the joints accelerated up to a point
were the servomotor could no longer stop at its destination point, due to lack of stopping torque.
Diminishing the number of rubber bands was not a good solution either, for their presence
became redundant due to very low exerted force.

The torques developed on these joints make the hybridization very complex. A simple ap-
proach as the one taken is not sufficient to assure the rubber band’s force vector is applied in
favour of the energy minimization required. It is necessary to achieve a compromise between the
rubber bands stiffness and the increase in joint torques.
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Figure 3.8: Elastic elements on the robot’s hip joints, viewed from the front (left) and from the
back (right).

As for the trunk joints, there was considerable amount of testing done, because of their critical
nature on the robot’s self balancing tasks, or even for it’s operation while standing still. The first
event of notice was the failure of the flexion/extension joint (forward/backward torso tilting).
Due to the overweight of the upper-body (chest + head + arms), the servomotor assigned to
this joint is severely under-dimensioned and fails to tilt the torso at any position or posture.
The natural outcome is that the task of maintaining the torso upright falls completely on the
elastic elements. The overweight problem was the result of unpredicted mechanical insertions to
the upper-body [39] combined with a small margin in design tolerance after the design of the leg
system [40].

In this sense, the solution determined was to over-supply the trunk’s joints with rubber bands
in such a way that they would remain almost locked. The trunk’s lateral flexion motor has enough
torque to move itself around 10o, at most upright postures, so the rubber bands must not restrict
it in that range. As for the torso rotation joint, the low-end servomotor installed (see Table 1.1)
fails to rotate the joint more than a mere 5odue to its lack of torque.

As the Figure 3.9 shows, the final solution is able to maintain the joints around the robot’s
home position, even with a small tilting. Unfortunately, rapid movements or big tilts are not
possible with this strategy due to the intrinsic nature of elastic elements and the robot’s upper-
body overweight problem.

Figure 3.9: Elastic elements on the robot’s trunk joints.
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3.4 The Haptic Device

The haptic device used in this work is a SensAble PHANToM OMNI haptic joystick, as
shown in Figure 3.10, which is a 6DOF impedance-based joystick capable of rendering three-
dimensional force vectors at high frequencies. The OMNI model connects to the PC via IEEE-
1394a (FireWire) ports and it can be connected in chain to another identical equipment. This
equipment requires proprietary drivers to function properly, with specific requirements and de-
pendencies that must be met. Therefore, its installation procedures are described in detail in
Section C.2 for future reference.

Figure 3.10: The PHANToM OMNI device used and its six degrees-of-freedom.

Although the device possesses 6DOF, from which it is possible to retrieve a correspondent
three-dimensional Cartesian position, only three of these are active (actuated) joints, meaning it
is only possible to render force vectors and not possible to render torques (directly) with the last
3DOF. This is mainly due to its mechanical construction. This device is built with a capstan
drive actuating two out of three base degrees-of-freedom, as the Figure 3.11 illustrates, allowing
for its compact form-factor and good force feedback level on its actuated workspace, coupled
with high precision optical encoders. The last three DOFs are unactuated joints equipped with
potentiometers, allowing for a compact mounting. A more extensive list of specifications is shown
on Table 3.3.

Figure 3.11: The PHANToM OMNI capstan drive mechanism illustration [46].
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Before exploring the software solution offered by SensAble, the kinematics and manipula-
bility of the device were consulted [46], to determine the possibility of developing a in-house
control method for the device, avoiding proprietary libraries . However, it quickly became clear
that implementing a such low-level control offered no real advantage to this work. The software
supplied by SensAble, described ahead on Section 3.5, is well endowed with quickly deployable
solutions to address the device’s control.

Table 3.3: PHANToM OMNI device specifications [20].

Force Feedback
Workspace

160 W X 120 H X 70 D [mm]

Footprint
(Physical area the base
of the device occupies)

168 W x 203 D [mm]

Weight
(device only)

3 lb 15 oz
(aprox. 1.786 kg)

Range of Motion
Hand movement
pivoting at wrist

Nominal
Position Resolution

450 dpi
(aprox. 0.055 mm)

Backdrive
Friction

0.26 N

Maximum
Exertable Force

(at nominal position)
3.3 N

Continuous
Exertable Force

(24 hrs.)
0.88 N

Stiffness
X axis : 1.26 N/mm
Y axis : 2.31 N/mm
Z axis : 1.02 N/mm

Inertia
(apparent mass at tip)

45 g

Force
Feedback

x, y, z

Position Sensing
(with stylus gimbal)

- x, y, z
(digital encoders)
- roll, pitch, yaw

(±5% linearity potentiometers)

Interface
IEEE-1394 FireWire port

(6-pin to 6-pin)
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3.5 OpenHaptics Toolkit

Developed in C/C++, the OpenHaptics toolkit is the proprietary programming solution
offered by SensAble to build haptically enabled applications. Currently on version 3.0 and
available for Linux, Windows and MacOS X operating systems, it includes [47; 48]:

� QuickHaptics micro API;

� Haptic Library API (HLAPI);

� Haptic Device API (HDAPI);

� PHANTOM Device Drivers (PDD);

� Utilities;

� Source code examples;

� Documentation.

The typical application structure under OpenHaptics is depicted in Figure 3.12. Its usual
implementation points towards object virtualization and virtual environments (VE), usage for
which it is exceptionally well prepared. Due to its long installation procedures, the relevant steps
are described in detail in Section C.2 for future reference.

Figure 3.12: A typical OpenHaptics application structure [47].

Benefiting from the advances in this research field over the later years, these toolkits allow
to ease programming by encapsulating the some of the steps common to all haptics/graphics
applications in the C++ classes of the QuickHaptics micro API, making use of the Standard
Template Library (STL). By anticipating typically used scenarios and using built-in geometry
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parsers and intelligent default parameters, it is possible to set up haptics/graphics scenes with a
minimal amount of code.

The HLAPI is designed for high-level haptic rendering and it is designed to be familiar to
OpenGL API programmers. It is targeted for advanced OpenGL developers who are less familiar
with haptics programming, but desire to quickly and easily add haptics to existing graphical
applications.

The HDAPI (the most explored in this work) is the foundational layer for haptics, providing
low-level access to the haptic device. It is best suited for developers who are already familiar
with haptic paradigms and have to send forces directly. It enables haptics programmers to render
forces directly, offers control over configuring the runtime behavior of the drivers and provides
convenient utility features and debugging aids. Experts can still use HLAPI and HDAPI in
conjunction with QuickHaptics to take advantage of all SDKs.

The HDAPI requires the developer to manage direct force rendering for the haptic device,
whereas HLAPI handles the computations of haptic rendering based on geometric primitives,
transforms, and material properties. Direct force rendering with HDAPI requires efficient force
rendering/collision detection algorithms and data structures coding. This is due to the high
frequency of force refreshes required for stable closed-loop control of the haptic device.

The HLAPI prevents the developer from having to implement efficient force rendering algo-
rithms and managing the synchronization of servo loop thread-safe data structures and state.
The servo loop refers to the tight control loop used to calculate forces to send to the haptic
device. In order to render stable haptic feedback, this loop must be executed at a consistent 1
kHz rate or higher. In order to maintain such a high update rate, the servo loop is generally
executed in a separate, high priority thread. This thread is referred to as the servo loop thread
[47].

Diagram 3.13 illustrates the relationship between the QuickHaptics micro API and the exist-
ing HD and HL layers of OpenHaptics.

Figure 3.13: The OpenHaptics structure diagram [48].
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3.6 ROS (Robot Operating System) Framework

Even though it was not in the original objectives, specific components of this work are running
under the Robot Operating System (ROS) framework. Created in 2007, ROS started as an open-
source programming platform for robots, designed for the development of the Stanford Artificial
Intelligence Robot project (STAIR) [49]. The platform is now maintained by the open-source
community and Willow Garage, responsible for the Personal Robots Program (PR/PR2 robots).
ROS was created with the intent of fulfilling a series of objectives [50]:

� Build a lightweight and robust operating system;

� Ease modular software deployment;

� Build a free and open-source platform;

� Supply tools for code implementation as a configuration parameter server, message viewer,
documentation auto-generation, etc . . . ;

� Multi-lingual (currently C++, Python, Octave and LISP);

� Support for peer-to-peer connections.

Designed to run under Unix/Linux, ROS eases the interaction of hardware and software,
using a modular architecture. This architecture allows the creation and management of software
modules and assures the communication between them in a very well structured and robust form.
The platform is organized in nodes, messages, topics and services [50].

The nodes are processes that compute the system, being part of the software modules. With
this modular architecture, these processes need to communicate among them. This communi-
cation is made by means of messages, which are data structures with the respective languages
primitive data types which can be recorded in logs. An interesting fact about ROS is that the
data in these logs can be later reproduced as if the real system is online, making it possible
to record real world events and develop code for them in the laboratory with real event data
playback information.

However, for a module to subscribe (or publish) a message, it must know its ”name”, called
a topic. It is possible to have several ROS nodes that subscribe or publishe the same topics,
or one node that does it for several topics, so in the ROS constitution we find services, which
are synchronous transactions ”watchers”. They prevent the wrong node from getting the wrong
message at the wrong time.

For humanoid robots, ROS hardware abstraction and low-level device control, are very handy
tools, saving up the strenuous task of programming low-level functions for kinematics, dynamics,
sensor/actuator communication, etc . . .

ROS is an asset of invaluable worth in the programming of robots. Although it may not be
the best solution overall, it is certainly the best documented due to the large online community
and the distribution under a BSD license (permissive free software license). The ROS community
creates and maintains software repositories for drivers and algorithms, making the software very
flexible and malleable to a variety of systems.

The inclusion of ROS in the PHUA project will represent the next milestone completed. In
that sense, after having tested some of preliminary versions of this work’s systems, it was decided
that using ROS would allow for a more efficient robot system construction and maintenance. The
software developed in that sense is fully described in Chapter 5. The ROS tool ”RViz” was used
to create graphical visualizations of the haptic environments, the robot/joystick frames and other
debugging constructions.
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Chapter 4

Robot Kinematics and Interactive
Command

Having defined the hardware setup, there is a need for mathematical models that define the
two kinematic chains that will be used for the haptic demonstrations: the arm and the detached
leg. The mathematical expressions for forward, inverse and differential kinematics expressions
for these chains will be presented. Further, two distinct methodologies for robot command
will be detailed. The position command methodologies actuates the robot joints by sending
position commands to the servomotors through inverse kinematics and the velocity command
methodology actuates the robot via the update of each joint instantaneous velocity value, using
differential inverse kinematics.

4.1 Kinematic Models

In this work, two different kinematic chains were used to create a control structure needed to
support the haptic demonstrations: the robot arm and the support leg (detached from the hip), as
depicted in Figure 4.1. As the analogue servomotors were disconnected from the communication
line and mechanically immobilized, their degrees-of-freedom were unused and had to be discarded.

Figure 4.1: Kinematic chains used in the work.
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For the arm, restricting the analogue servomotor removed one degree-of-freedom from the
chain, from 4 to just 3DOF. This chain was then composed of the shoulder’s flexion/extension
and abduction/adduction joints and the elbow flexion/extension joint, starting in the shoulder
and ending in the forearm end-point (wrist).

For the legs, as the robot disassembly procedures determine that they must be mechanically
detached from the pelvis, it is impossible to maintain the hip’s three degrees-of-freedom (2
digital plus 1 analogue) on the detached leg kinematic chain, leaving it with just 3DOF. These
degrees-of-freedom are the ankle’s flexion/extension and abduction/adduction joints and the
knee flexion/extension joint. The chain starts in the ankle and ends in the thigh’s end-point
(hip abduction axis interface). It was not possible to include the hip’s degrees-of-freedom in
this kinematic chain because the thigh joints are assembled as a part of the robot’s pelvic sub-
assembly (with the exception of the analogue motor), which includes the other leg’s hip joints
and the robot’s torso rotation joint.

Although only the left side chains are presented, this work is valid for both left and right
side arms/legs. The forward and inverse kinematics of the right side limbs are calculated as if
it was the left side kinematic model and the joint angles are then converted to their right side
equivalent. This is possible due to symmetry in the reference frames of each chain.

Note: In this text, non-explicit references are made to specific recurrent mathematical expres-
sions for equation/matrix shortening purposes. They are hereby summarized for future reference:

� rotx(), roty(), rotz() and trans()
These expressions refer to the elementary geometrical transformation matrices. The rotx(),
roty(), rotz() expressions are associated with the x, y and z axis rotation matrices and
trans() refers to the three-dimensional translation matrix.

� C1, C2, C23, . . . and S1, S2, S23, . . .
These condensed expressions are reductions of the notation for the sine (sin) and co-
sine (cos) functions applied to a kinematic chain’s degrees-of-freedom, as cos(θ1), sin(θ2),
sin(θ2 + θ3), etc. . . .

� ATB and (ATB)−1

This notation represents generic geometric transformation matrices. In this example, the
transformation occurs from frame A to frame B in first case, while the second case represents
the inverse transformation, going from frame B to frame A.

4.1.1 3DOF Arm

Forward Kinematics

The forward kinematics for the 3DOF left arm was set using the Denavit-Hartenberg method,
with the parameters shown in Table 4.1. The arm is built with two links of lengths L1 and L2

and three joints, being a universal joint (θ1, θ2) at the shoulder and a rotational joint at the
elbow (θ3). Zero position (home configuration) was defined as the arm at full stretch downwards.
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Figure 4.2: Arm (left side) frame system
according to the Denavit-Hartenberg method.

Table 4.1: Denavit-Hartenberg table for the
3DOF arm.

Link l d θ α
1 0 0 θ1 −π/2
2 L1 0 θ2 π/2
3 L2 0 θ3 0

As the Denavit-Hartenberg notation places the primary axis (Z0) aligned with the first joint,
the end-effector coordinates of the chain will be given under that frame. In order to correct
them, a transformation matrix, defined as equation (4.1) shows, must be pre-multiplied so that
the those coordinates are rotated back into the world reference frame (ZR). This reference frame
was placed in the respective shoulder, so there would be no need for a translation transformation
in-between.

RT0 = rotx(
π

2
)× rotz(−π

2
) (4.1)

Applying the Denavit-Hartenberg algorithm with the parameters in Table 4.1, and pre-
multiplying by transformation (4.1), it was possible to obtain the robot shoulder-to-wrist forward
transformation matrix (ShoulderTWrist), equation (4.2) , in the world frame.

STW =



C1S3 + C2C3S1 C1C3 − C2S1S3 S1S2 L1C2S1 + L2(C1S3 + C2C3S1)

C3S2 −S2S3 −C2 S2(L1 + L2C3)

S1S3 − C1C2C3 C3S1 + C1C2S3 −C1S2 L2(S1S3 − C1C2C3)− L1C1C2

0 0 0 1

 (4.2)

Through the elements in this matrix it is possible to retrieve the forward kinematics expres-
sions for the robot wrist cartesian position, in the shoulder frame, shown in equation (4.3).

Xarm = STW (1, 4) = L1C2S1 + L2(C1S3 + C2C3S1)

Yarm = STW (2, 4) = S2(L1 + L2C3) (4.3)

Zarm = STW (3, 4) = L2(S1S3 − C1C2C3)− L1C1C2
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The expressions for RPY (Roll, Pitch and Yaw) angles can also be retrieved from the trans-
formation matrix 4.2, by comparing to the theoretical RPY (φ, θ, ψ) matrix, in equation (4.4).

RPY (φ, θ, ψ) = trans(px, py, pz)× rotz(φ)× roty(θ)× rotx(ψ)

=


CφCθ −SφCψ + CφSθSψ SφSψ + CφSθCψ px
SφCθ CφCψ + SφSθSψ −CφSψ + SφSθCψ py
−Sθ CθCψ CθSψ pz

0 0 0 1

 (4.4)

With a small mathematical reordering, the outcome are the expressions for Roll (φ), Pitch (θ)
and Y aw (ψ).

φ = arctan

(
STW (2, 1)
STW (1, 1)

)
⇔ φ = arctan

(
C3S2

C1S3 + C2C3S1

)
(4.5)

θ = arctan

(
−STW (3, 1)

STW (1, 1)Cφ + STW (2, 1)Sφ

)
⇔ θ = arctan

(
C1C2C3 − S1S3

(C1S3 + C2C3S1)Cφ + C3S2Sφ

)
(4.6)

ψ = arctan

(
STW (3, 2)
STW (3, 3)

)
⇔ ψ = arctan

(
C3S1 + C1C2S3

−C1S2

)
(4.7)

Inverse Kinematics

Closed form expressions for inverse kinematics are determined by combining and re-arranging
the forward kinematics equations and isolating the desired joint angle variables.

Equation (4.8) shows the the expression for the elbow flexion/extension joint angle (θ3) as
a function of the end-effector space coordinates, which is achieved by squaring and adding the
forward kinematics expressions for X, Y and Z coordinates (4.3).

X2
arm + Y 2

arm + Z2
arm = L1

2 + L2
2 + 2C3L1L2 ⇔

⇔ θ3 = ± arccos

(
X2
arm + Y 2

arm + Z2
arm − L1

2 − L2
2

2L1L2

)
(4.8)

By combining and re-arranging expressions for X and Z, the expression for the shoulder
flexion/extension joint angle (θ1) can be obtained as a function of the arm’s cartesian position
and the elbow flexion/extension joint angle (θ3), as equation (4.9) shows.


Xarm − L2C1S3

C2S1
= L1 + L2C3

Zarm − L2S1S3

−C2C1
= L1 + L2C3

⇔ S1Zarm + C1Xarm = L2S3 ⇔

⇔ θ1 = 2 arctan

[
Zarm ±

√
X2
arm + Z2

arm − (L2S3)2

Xarm + L2S3

]
(4.9)
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For the shoulder abduction/adduction joint angle (θ2), expressions for Y and Z coordinates
are manipulated to achieve equation (4.10), showing the joint angle value also as function of the
end-effector cartesian position and the two previous joint angles.

S2 =
Yarm

L1 + L2C3

C2 =
−C1 (L1 + L2C3)

Zarm − L2S1S3

⇔ θ2 = arctan

[
Yarm(Zarm − L2S1S3)

−C1(L1 + L2C3)2

]
(4.10)

There are other solutions for this chain’s inverse kinematics expressions. However, the use of
the arctangent function (arctan()) is beneficial for programming purposes, allowing the use of the
atan2(y,x) function, which is an enhanced version of the original, auto-detecting the quadrant
of the angle and returning the result in the interval ] − π, π]. The angle is positive for counter-
clockwise angles (upper half-plane, y > 0), and negative for clockwise angles (lower half-plane,
y < 0).

Differential Kinematics

For differential kinematics the Jacobian matrix (J matrix) and its inverse must be defined, so
that equation (4.11) is solvable. This expression allows to determine the end-effector cartesian
position increments (∆r) given it’s current posture and joint angular increments (∆q). Similarly,
the inverse is true if the J matrix admits an inverse (J−1). It is possible to deduce an analogous
expression, as equation (4.12) shows, in where the position increment vector represents the three-
dimensional velocity vector (ṙ) of the end-effector, and the result of the operation with the J−1
matrix is the joint angular velocities (q̇) for that posture.

∆r = J(q)∆q ⇔ ∆q = J−1(q)∆r (4.11)

q̇ = J−1(q)ṙ (4.12)

For forward differential kinematics the Jarm matrix is then defined as expression (4.13) shows,
using the forward kinematics expressions (4.3) presented before.

Jarm(q) =



∂Xarm

∂θ1

∂Xarm

∂θ2

∂Xarm

∂θ3
∂Yarm
∂θ1

∂Yarm
∂θ2

∂Yarm
∂θ3

∂Zarm
∂θ1

∂Zarm
∂θ2

∂Zarm
∂θ3

 =

=


C1(L1C2 + L2C2C3)− L2S1S3 −S2S1(L1 + L2C3) L2(C3C1 − S3S1C2)

0 C2(L1 + L2C3) −L2S2S3

L2C1S3 + S1C2(L1 + L2C3) C1S2(L1 + L2C3) L2(C3S1 + S3C1C2)


(4.13)
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For the inverse differential kinematics, the analytical inverse of this matrix was not determined
and J−1arm is calculated numerically. This allows for faster algorithms and real time kinematics cal-
culations. By monitoring the value of the matrix determinant for both Jarm and J−1arm matrices,
it is possible to detect singularity points and other Jacobian limitations.

4.1.2 3DOF Support Leg

As the 3DOF support leg kinematics were already explored by another work in the past [45], it
was decided to re-use that same formulation for this work, only introducing minor modifications
to suit the nomenclature presented in this text.

Forward Kinematics

The forward kinematics for the 3DOF support legs was also based on the Denavit-Hartenberg
method, with the frame placement as Figure 4.3 shows and with the parameters described on
Table 4.2.The figure depicts a right leg, but both sides were implemented. The leg chain is
built with two links of lengths L1 and L2, plus the distance to the ground plane L0, and with
three joints, a universal joint (θ1, θ2) at the ankle and a rotational joint at the knee (θ3). Home
configuration was defined as the leg at full stretch upwards.

Figure 4.3: Support leg (right side) frame
system acording to the Denavit-Hartenberg

method [45].

Table 4.2: Denavit-Hartenberg parameter table
for the 3DOF support leg (left side is positive).

Link l d θ α
1 0 0 θ1 ±π/2
2 L1 0 θ2 0
3 L2 0 θ3 0

Again, the Denavit-Hartenberg notation places the primary axis (Z0) aligned with the first
joint. In this chain, it was useful to place the world reference frame (ZR) at the bottom of the
robot’s feet, so the transformation matrix (4.14) was pre-multiplied to rotate and translate the
chain’s end-effector coordinates into that frame.

RT0 =


0 0 1 1
0 −1 0 0
1 0 0 L0

0 0 0 1

 (4.14)

Applying Denavit-Hartenberg’s algorithm to Table 4.2, and pre-multiplying by transfor-
mation (4.14), it was possible to obtain the robot foot-to-hip forward transformation matrix
(FootTHip), expression (4.15), in the world frame.
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FTH =


±S23 ±C23 0 ±L1S2 ± L2S23

−S1C23 S1S23 ±C1 −L1S1C2 − L2S1C23

C1C23 −C1S23 ±S1 L0 + L1C1C2 + L2C1C23

0 0 0 1

 (4.15)

From this matrix we can retrieve the forward kinematics expressions for the cartesian position
in the reference frame ZR, shown in equations (4.16), (4.17) and (4.18).

Xleg = FTH(1, 4) = ±L1S2 ± L2S23 (4.16)

Yleg = FTH(2, 4) = −L1S1C2 − L2S1C23 (4.17)

Zleg = FTH(3, 4) = L0 + L1C1C2 + L2C1C23 (4.18)

The expressions for Roll, Pitch and Yaw angles can also be retrieved from the transformation
matrix 4.15, comparing it to the RPY (φ, θ, ψ) matrix. The result are expressions (4.19), (4.20)
and (4.21).

φ = arctan

(
FTH(2, 1)
FTH(1, 1)

)
⇔ φ = arctan

(
−S1C23

±S23

)
(4.19)

θ = arctan

(
−FTH(3, 1)

FTH(1, 1)Cφ + FTH(2, 1)Sφ

)
⇔ θ = arctan

(
−C1C23

±S23Cφ − S1C23Sφ

)
(4.20)

ψ = arctan

(
FTH(3, 2)
FTH(3, 3)

)
⇔ ψ = arctan

(
−C1S23

±S1

)
(4.21)

Inverse Kinematics

The closed form inverse kinematics expressions are again determined combining and re-
arranging the forward kinematics equations and isolating the desired joint angle variables. This
solution is given for all joint angles in the form of the solution in θ to the generic expression
k1 sin θ + k2 cos θ = k3, in equation (4.22), where k1, k2 and k3 known constants.

θ = arctan

(
k1
k2

)
± arctan

(√
k1

2 + k2
2 − k32

k3

)
, if

(
k1

2 + k2
2
)
≥ k32 (4.22)

The inverse kinematics parameters are then presented on Table 4.3. Parameter A assumes
whether the value (Zleg − L0)/C1 or −Yleg/S1 according to the quadrant to avoid divisions by
zero. Like before, this solution takes the advantage of the use of arctan() functions, improving
the resulting code robustness to numerical uncertainties.

Table 4.3: The 3DOF support leg inverse kinematics solution.

θi k1 k2 k3
θ1 Zleg − L0 ∓Yleg 0

θ2 ±2L1X 2L1A X2
leg +A2 + L1

2 − L2
2

θ3 0 2L1L2 X2
leg +A2 − L1

2 − L2
2
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Differential Kinematics

For forward differential kinematics the Jleg matrix was defined as expression (4.23) shows,
using the forward kinematics expressions (4.16), (4.17) and (4.18), presented before. For the

inverse differential kinematics, the analytical inverse of this matrix was not determined and J−1leg
is calculated numerically.

Jleg(q) =



∂Xleg

∂θ1

∂Xleg

∂θ2

∂Xleg

∂θ3
∂Yleg
∂θ1

∂Yleg
∂θ2

∂Yleg
∂θ3

∂Zleg
∂θ1

∂Zleg
∂θ2

∂Zleg
∂θ3

 =

=


0 L1C2 + L2C23 L2C23

−L1C1C2 − L2C1C23 L1S1S2 + L2S1S23 L2S1S23

−L1S1C2 − L2S1C23 −L1C1S2 − L2C1S23 −L2C1S23



(4.23)

Center of Gravity

The expressions for the support leg center of gravity COG, matrix (4.24), and its Jacobian
matrix JlegCOG (4.25) can be written as follows:

COG(q) =
1

Mt


m0CM0x +m1r1S2 +m2(L1S2 + r2S23)

−m1(r1S1C2 + CM1yC1)−m2(L1S1C2 + r2S1C23)

m0CM0z +m1(L0 + r1C1C2 + CM1yS1) +m2(L0 + L1C1C2 + r2C1C23)


(4.24)

JlegCOG(q) =
1

Mt



m1r1C2+
0 +m2(L1C2 + r2C23) m2r2C23

−m1(r1C1C2 + CM1yS1)− m1r1S1S2+
−m2(L1C1C2 + r2C1C23) +m2(L1S1S2 + r2S1S23) m2r2S1S23

−m1(r1S1C2 − CM1yC1)− m1r1C1S2−
−m2(L1S1C2 + r2S1C23) −m2(L1C1S2 + r2C1S23) −m2r2C1S23


(4.25)

For these calculations, the information on the robot’s foot, leg and thigh (m0, m1, m2) and
respective centers of mass positions (CM0, CM1, CM2) are required, as well as the robot’s leg
and thigh lengths (r1, r2).
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4.2 Command Methodologies

After defining the servomotor communication strategy, on Section 3.1, methodologies for
teleoperation were defined using the mathematical support presented earlier in this Chapter.
However, some hardware and software limitations are common to both methodologies presented.

The servomotors have a total course of 180o(±90o) and read their position using a linear
potentiometer. The potentiometer’s analogue value is read by the integrated circuit, converted
into the discrete integer range, and then stored in the volatile memory. It is this value that is
returned by the controller when requested, and as the position digital range is of 1800 digital
position value, the nominal position resolution can be defined to a theoretical 0.1o.

It was determined that the angular position that the controller responds in the position query
has a small error that is not constant neither equal in all servomotors. Except for controller pre-
defined positions, such as 0o, 90oor 180opositions (center and extreme positions, configurable),
the angle that the servomotors respond does not match the physical angle measured in the
motor (which strangely matches the position command sent). This error is different for each
servomotor, including identical models, making it impossible to define an error compensating
strategy that suits all cases. The only possible solution for this problem was to define joint
specific error correction algorithms, but due to unrelated mechanical complications that could
lead to servomotor replacements, it was decided to blindly abide by the motors read value for
robot joint state scanning.

Commanding the robot through an RS-232 protocol requires that the commanding unit keeps
track of the position and velocity information from the servomotor common line to determine the
robot joint state. As previously concluded [45], this message overflow can significantly increase
the servomotor response time, as the internal controller is programmed to prioritize ”move”
commands over ”read” orders, so that the control loop is not disturbed. This is another limitation
that needs to be taken into account when implementing teleoperation command strategies with
the PHUA robot.

So, as the low-level control is in closed-form over the communication line, the PC side of the
command structure had to be defined. As shown before, inverse kinematics of both kinematic
chains each offer two different solutions.

The first command methodology implemented was in Position, meaning that it gave use to
the inverse kinematics expressions for the joint angles presented before. Because the servomotors
define their own velocity planning, the computations on the PC side are lighter, but the method
does not allow the user to specify robot end-effector velocity vectors.

As the J matrices and the differential inverse kinematics were defined, it was decided to
implement a control structure that could define the robot’s end-effector velocity vector at each
loop. The Velocity command methodology is more intense in terms of servomotor communica-
tion, scanning the robot joint state at each loop in order to correctly calculate the joint course
increments that ultimately define the end-effector velocity and Cartesian navigation.

4.2.1 Commanding in Position

The position command defined in this work is a closed loop between the PHANToM joystick
and the robot, serving as the intermediary between the user and the world, as explained in the
diagram in Figure 4.4. This method defines a constant angular speed for the servomotor line,
and sends only position commands.

The coordinate mapping in this loop is relative, rather than absolute, mainly due to the
morphological differences between the robot’s kinematic chains workspaces and the joystick’s
own workspace. With this mechanism, the control can be initiated on any robot posture without
workspace restrictions, because the control loops are always initiated relatively to the current
end-effector position.
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Figure 4.4: Position command diagram, from the user to world interaction.

When the loop is initiated, current robot state qi and the joystick absolute position are known.
Using the robot’s joint configuration and the forward kinematics expressions, the current end-
effector position is calculated. This information is used as the reference for the loop, meaning that
the joystick information is retrieved relatively to that first position and added to the calculated
end-effector position, building the vector P j . Then, this increment is adjusted according to a
scaling factor that is used to control the precision and sensitivity of the control. This factor
controls the workspace scaling of the joystick, meaning that the user can ”zoom in”, refining the
control, but increasing the sensitivity. The vector P i+1 contains the next end-effector position
to be executed by the robot.

The inverse kinematics equations will then produce the next set of joint angles to send to the
robot, qi+1. If the communication is successful, the robot will feedback its current joint state
qi. Due to the low update frequency possible with the communication protocol implemented, a
fallback routine was built to use the last sent joint angle vector if the communication slows down
or is unsuccessful.

The force generator consists of algorithms that use the robot current state to generate a force
vector F i to be reproduced by the PHANToM device, interactively, as the user is controlling the
robot. These forces are varied in nature and affect the user joystick navigation and effectively
influence the position that will be sent to the robot in the next iteration of the loop. Normally,
these signals would come from the world, provided by sensors installed on the platform. As those
sensors are not currently installed, the solution is to use simple models to generate those forces,
which will be described in detail in Chapter 5.

None of the 3DOF manipulators used in this work allow redundancies at the third joint (elbow
or knee joints), due to not being mechanically possible to execute negative angle values, and so
the inverse kinematics solutions were restricted to ”elbow-down” postures, for both kinematic
models.

This command strategy using inverse kinematics has the advantage of direct coordinate map-
ping, but also singularity point avoidance mechanisms. It is possible to build algorithms where
singularities do not represent a significant limitation, at the cost of a difficult end-effector velocity
control. This methodology is able to keep track of both the robot joint state and the joystick’s
Cartesian position during execution.

This point by point methodology of command combined with this kind of digital servomotors
defines the robot end-effector velocity by the number of points per second sent. If the servo-
motor angular velocities are set to the maximum value, the motors will reach the sent positions
very quickly. So, if the user navigation velocity vectors are adequate, and the servomotors are
parametrized to move without overshoot, the robot will be able to match those end-effector veloc-
ities perfectly. It was determined, by testing with several operators, that the velocity matching
is seamless and any potential desynchronization issues never appeared or posed a problem to the
users.
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Although the PHANToM software and drivers communicate with the device at a very high
frequency (≈1kHz), the communication with the robot servomotor line is very slow (≈25Hz)
and depends on the number of servomotors present. To maintain the integrity of the rendered
signals, the haptic force generator cannot wait for the robot state to update. Thus, the rendered
force vector components are only updated after the robot state is updated (and the end-effector
estimated position is corrected), but the force rendering mechanism is continuous and the software
ensures it is executed at the highest possible frequency.

Frequencies of around 100Hz in position command can be achieved if the force vector update
does not wait to confirm the end-effector Cartesian position. If the algorithm uses the previous
sent joint configuration as the current state, trusting the robot to have performed it correctly
and using the forward kinematics to estimate the current end-effector position, the only messages
sent to the servomotor common line are the position commands for the respective motors.

4.2.2 Commanding in Velocity

The velocity command implemented in this work is very similar to the position commanding
methodology, except in that the information retrieved from the joystick is its three-dimensional
velocity vector, as the diagram in Figure 4.5 depicts. The commands sent to the servomotors are
also different, with position and velocity commands sent at every iteration. This control method
was only applied to the robot arms, since that for the support leg the control had different goals.

With this methodology there is no direct coordinate mapping between the robot’s end-effector
and the joystick position. The information taken from the joystick is its end-point velocity vector
at every iteration.

Human
Operator

PHANToM
joystick

Scaling

Differencial I.K.
Algorithms

PHUA Robot

World Disturbances

Haptic
Rendering

Ṗ j Ṗ i+1 qi+1, q̇i+1

qi

Force Feedback F i

Linux PC

Figure 4.5: Velocity command diagram, from the user to world interaction.

End-point velocity vectors are calculated from the joystick workspace navigation over time,
and sent forward at every iteration. As the previous case, a scaling factor is introduced to define
sensitivity, but in this case it does not define the workspace coordinate scale, but the velocity
vector magnitude scaling. It was expected to retrieve the velocity information directly from the
haptic joystick, but there was an unidentified hardware problem with the device and the velocity
vector retrieved was not reliable. To counter this issue and proceed with the work, the velocity
vector is estimated by monitoring the raw Cartesian position increments of the joystick, time
stamped by a timer set on the PC. This information is then accumulated and mean filtered
during run time. The size of this accumulation is adjustable in the code, and can be used to
damp this velocity estimation.

Like before, when the loop is initiated, current robot state qi is known and updated at every
iteration. The current joint angle values are used to update the differential inverse kinematics
algorithms, that use the velocity information Ṗ i+1 from the joystick to create the next set of
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joint angles and joint angular instantaneous velocities, qi+1 and q̇i+1, to be sent to the servo
line.

This control method actuates the robot by continuously varying the joint velocity values. The
sign of each joint velocity determines the direction of the servo rotation, achieved by sending
position commands to the joint limits. A zero value for a joint velocity means that joint will
receive a command containing the same position angle value it fed back in the previous iteration.

Inverse differential kinematics has the clear advantage of allowing all manipulator configura-
tions to take place in a natural, somewhat unbounded way. The only drawback are the singularity
points, which require special dedication by the algorithms so that the user experience is not hin-
dered by a mathematical limitation. In these points, the forward J matrix determinant becomes
zeroed and thus that matrix cannot be inverted. Further, as the end-effector approaches these
points, the J matrix determinant reaches values that are computationally valid for inverting the
matrix, but produce unrealistically high velocity values, generating very high accelerations in the
motors that induce unnecessary stress and wear. To avoid these points, the determinant of the
Jacobian matrix is watched to prevent singularities and high magnitude joint velocity values.

The forces generated with this command method are similarly generated as in the position
command case. The force generator uses the forward kinematics to track the robot end-effector
Cartesian position, using the joint values feedback qi. Because the rendered force vector is only
updated at the rate of the robot servomotor line update frequency, very erroneous results are
produced. The system keeps evaluating postures that the robot has already executed several
loops before, due to the joints being constantly moving (towards their limit values). The user
feels obstacles and signals that are no longer a limitation of the robot in the real world, but may
have been in the past.

The only solution to this problem is to lower the velocity vectors magnitude that are sent
to the robot, meaning that either the operator must restrain himself from executing high veloc-
ity trajectories, or the system must crop the generated vectors to reasonable magnitude values.
However, neither case is acceptable. Cropping the velocity vectors by software is the same as
dampening the interaction between user and robot, producing a very unrealistic robot command.
As the force rendering around unreachable or singularity points produces high forces, and there-
fore high accelerations, at a very high update frequency, the human operator is not capable of a
rapid suitable response and generates high velocity vectors unwillingly.

Furthermore, the trajectory planner in the servomotor’s controller is not designed to generate
motions using a methodology based on velocity instead of position values. It is difficult to ensure
the servomotor stops at the right position when the Jacobian matrix fails, because due to both
the slow communications and the internal controller’s giving priority to the position reaching
instead of the velocity adaptations.

This command methodology was then deprecated for the demonstrations robot command,
because it was considered that the position commanding approach produced better results. Also,
the differential inverse kinematics issues with singularities would also require a different approach
to allow the reachable workspace to match that which is achieved with the position commanding
methodology.
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Chapter 5

Tele-Kinesthetic Interaction and
Haptic Demonstrations

In this chapter, the software application to support the three distinct haptic demonstrations
developed is presented. The application is internally separated into threads, to take advantage
of all available processing power and haptic joystick’s libraries, and possesses a custom built
graphical user interface. The haptic demonstrations detail three different approaches for haptic
signals integration on teleoperation events and also on enriched data logging applications. The
workspace limits demonstrations tries to ensure the operator does not perform incorrect motions
by avoiding workspace limitations, virtualized as haptic objects. An object interaction demon-
stration placed the teleoperated robot interacting with a real world object. A leg balancing
demonstration tries to show the usefulness of haptic signalling in balance applications.

5.1 Application Developed

5.1.1 Overview

As stated before, the PHANToM haptic device is the primary interface for robot control.
However, early tests quickly showed that the simple shell terminal information output of the
application could not provide the level of flexibility required for keeping track of the robot state
in real time, while maintaining high frequency haptic rendering information output. It was then
decided that a user-friendly front-end had to be created to improve the robot command and
teleoperation experience, the overall efficiency and debug effectiveness while testing.

This interface eventually evolved into a more mature approach. A C/C++ Linux application
was designed to improve user-friendliness, to maximize information output and provide a certain
level of hardware abstraction, all trying to maintain execution speed, critical for haptic rendering.

The application is multi-threaded, in an effort to minimize potential execution speed re-
ductions from heavy kinematics or haptics algorithms. To ease the robot manipulation it is
equipped with user-friendly menus for kinematic chain selection, robot joint state information
output, shortcuts with the joystick buttons and safety routines. The application is also able
to perform joint-by-joint robot control, inverse kinematics testing, individual joint velocity and
position definition, low-level servomotor control, joystick calibrations, etc. . .

The code was developed to be portable to other platforms and languages, in the case it will
ever be needed. There was an effort to create a Doxygen-based documentation that would be
helpful in understanding the code structure, the APIs used and all the functions developed.

Many libraries used in the creation of this application are not regularly distributed with the
usual Linux distributions. On Appendix C are hardware and software related instructions for all
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dependencies of the application.
At the start of this work, it was uncertain if the ROS framework was to be introduced into

the platform, and the application was not built to support it. Even though in the end it became
a functional ROS node, some of its functionalities were unfortunately not implemented.

5.1.2 Application Structure

The need to easily export the code to other formats and the need for very high execution
frequencies led to the design of a compartmentalized application, divided among three separate
threads: Main thread, HD/HLAPI thread and the Graphical Interface thread, as shown in the
diagram in Figure 5.1. The choice of multi-threading over ”forking” was due to the high memory
consumption of some of the libraries that were used, but also to take full advantage of the
OpenHaptics libraries which already had this as a pre-requisite.

Further, multi-threading, specially on multi-core/multi-processor systems, is able to use latent
CPU time associated to idle processes, boosting the computational power accessible to the
applications. Old systems however, as the PC-104 computer that is a part of the robot, will not
be able to take the full advantage from this, but the code should be compilable nonetheless. As
most computational systems today possess multi-threading capabilities, it should not be an issue
in the future.

As the the diagram in Figure 5.1 illustrates, all three threads communicate between them
through a shared data structure which, combined with thread-safe coding, provides an elegant
information flow structure. Each individual thread is designed to process specific individual
tasks, in so that no overlapping occurs.

This structure allows the code to easily be ported or expanded. The same logic applied here
can work with ROS nodes, or even by introducing other threads. Most of the base functions
developed can easily be recycled into new applications.

Main Thread

� Forward/inverse kinematics

� Servomotor communication

� Error handling

� (ROS node functions)

Shared
Data

Structure
Graphical Interface Thread

� User input

� State changes

� Information output

HL/HDAPI’s Thread

� PHANToM data read/write

� Haptic force rendering

� Joystick speed calculations

Figure 5.1: Developed application structure diagram, showing the three separate threads
communicating through a shared data structure.
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Main Thread

The main thread is where the application’s main loop resides, as well as where all the other
threads are launched, the shared data structure is instantiated and the ROS node and message
publishers are initiated.

Before the application’s main loop starts, a series of routines take place that verify calling
arguments, hardware state and communications. The program can be called using different
arguments, or none at all.

When no argument is passed to the application, the program execution will abruptly stop if
any of the threads fail to launch, the robot communication is determined to be impossible or some
other unspecified error occurs. Alternatively, the argument ”- -debug” causes the application to
ignore these hardware verification procedures and attempt to load all functionalities without
terminating execution. It is mainly used to test the interface callbacks, or joystick functions
when the robot is not operational.

If the joystick is not detected by the PDD (PHANToM Device Drivers), the HDAPI does
not allow to create none of the hardware-dedicated C/C++ classes to manage and communicate
with the device, as well as its dedicated thread (the Servo Loop Thread), detailed ahead.

If any motor in the robot’s servomotor communication line does not respond, robot joint state
scanning and robot commanding are disabled. All of the kinematics functions work as usual, but
the robot message orders are not actually sent.

However, the graphic interface is not critical. If it fails to load, or its thread cannot be
properly launched, program execution continues normally (although now it can only be stopped
by sending ”kill” signals through the operating system).

Although the communication with the robot is done via RS-232, the computer available
for this work had no serial port so a USB converter had to be used. In some Linux kernel
versions, the ”ttyUSB” object number associated with the same physical port can change, thus
making the application programming a bit more challenging. To counter this inconvenience, the
application can be called with the path to the correct object, overriding the default object usage,
”/dev/ttyUSB0”. For future versions, automatic USB port scanning may be the best solution.

Calling the program with the argument ”- -help” will print to the console a patch of text with
usage options and instructions. This argument was initial designed just to test user-friendliness,
but it was later maintained and merged into the main code.

After all the hardware verifications are cleared, the application will start its ROS node. This
node publishes the PHANToM wrist and pen tip frame transforms, force vectors created and the
haptic object data. The publish frequency is given by the main loop execution frequency, which
in turn is variable with the amount of calculations it must perform (apart from CPU related
issues).

The main loop is where the application begins. The loop waits for the user to change states,
whether through the joystick buttons or though the interface. While it loops, the joystick, the
robot state, the error state and all exit parameters are updated. Inside the main loop is another
nested loop that runs the robot control and respective inverse kinematics.

The control loops whenever the operator moves the joystick more than a user-configurable
value. It was determined that the joystick’s precision was too high for the low communication
frequency of the servo line. While trying to stand still, the operator is unable to stabilize the
joystick while keeping the position fluctuations below the nominal position resolution. Due to
roundings in the algorithms and the servomotor’s position reading error, the robot kinematic
chains could not reach such low resolution in position, and these small joystick fluctuations in
position did not affect the end-effector position. At every loop, inverse kinematics calculations
gave approximately the same value, which are then converted to the servomotor digital posi-
tion range and sent to the robot, overflowing the communication line with consecutive position
commands that the servos had already received. This waste of CPU time was countered by in-
troducing a condition for triggering the robot control, defined by a minimum position increment
the operator must perform.

Pedro Miguel Batista Cruz Dissertação de Mestrado / Master Thesis



54 5.Tele-Kinesthetic Interaction and Haptic Demonstrations

The exit parameter forces the loop to terminate and perform a series of clean-up routines
along with forcing all other threads to close correctly. If all goes well, the application returns
the system macro ”EXIT SUCCESS” (or ”EXIT FAILURE” otherwise).

HL/HDAPI’s

The thread assigned to haptics is a specification of the OpenHaptics suite. In an attempt to
ensure the 1kHz update frequency goal for haptic rendering, both API’s required the so called
Servo Loop Thread, which is, basically, a high priority thread designed to exponentiate the low-
level interaction between the libraries and the PHANToM hardware.

This thread opens an infinite loop structure, with a built-in execution cue for user functions,
that can be assigned to run consecutively in an ordered, prioritized and thread-safe manner.
Although these functions have pre-defined prototypes and recommended structures, their content,
return value and execution order are user-defined. They are conveniently called ”callbacks”, a
nomenclature that derives from the background of these API’s, the technical specifications of
mechanisms on virtual environment creation and rendering.

These callbacks can be set to run synchronous or asynchronously. Synchronous functions are
thrown in the execution queue, and the main program execution is halted until that function
emits its return value. With asynchronous functions the program execution is not halted, allowing
the callbacks to run in loop at the maximum possible frequency. Freeing CPU cycles and avoid
inefficient processing power spending allows this mechanism to have functions with impressively
low execution times.

The execution order in the queue is defined by setting the priority (maximum, default or
minimum) property of these callbacks, and is managed by a ”scheduler” . This scheduler is re-
sponsible for appending functions to the queue at each loop of the thread. This mechanism allows
for new callbacks to be appended whenever the user requires, synchronous or asynchronously.
The loop thread does not depend on the scheduler, as it may be running with a void queue if
the scheduler is shut down, but the scheduler can only be launched if the thread is open.

In this work, both types of functions were used. There are three asynchronous functions
defined, for distinct uses, that run in loop throughout normal program execution, and two syn-
chronous functions, that are placed in the queue whenever they are required.

� Main device update (Asynchronous, Maximum priority)
This function is responsible for the haptic device data extraction, running at the highest
possible frequency. It collects data from the joystick, such as position, button states,
joystick joint angles, motor temperatures,frame transformations, etc. . . , and inserts that
information into an exclusive dedicated data structure. It is also responsible for the device
error state handling.

� Force feedback (Asynchronous, Default priority)
This function is responsible for rendering force vectors. It is basically a watcher function,
that keeps track of the selected kinematic model, looking at the haptic demonstration
chosen and generating the correspondent force vector. It also determines if the previously
sent force vector was correctly executed by the device.

� Joystick calibration (Asynchronous, Minimum priority)
This function checks the joystick internal calibration parameters. If the user decides to
calibrate the device this function acts accordingly, but only if required. It was designed for
this particular PHANToM device, and will not work with other models.

� Copy device data (Synchronous, Default priority)
This function updates the joystick data on the application shared data structure. It is
added to the queue whenever it is needed, copying the data from the dedicated structure
for continuous device data extraction. It is also responsible for the JoystickTWorld frame
transformation using the matrix (5.1), which is applied to the joystick coordinate vector,
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rotating it into the world orientation.

JTW = rotz (π/2)× rotx (π/2) (5.1)

It is not possible to retrieve the joystick pen tip coordinates directly from the device, as
this model is only equipped to work with the wrist point. These devices are meant to
be used in virtual reality environments, where the physical distance from the wrist to the
pen tip frame is irrelevant, and usually used as a configurable parameter to refine the
VE experience. To suit this purpose, the device outputs a single transformation matrix
that contains the wrist point 3DOF position and its 6DOF orientation components. This
information on orientation was then used to determine the pen tip frame, by defining
the transformation as a translation, whose corresponding translation vector represents an
approximate physical distance (manually measured) from the wrist to the tip. The pen tip
coordinates are then updated in the shared data structure, and the transformations will be
later published as ROS messages in the main thread.

� Retrieve device parameters (Synchronous, Default priority)
This function runs only once, prior to the main loop. It is used to retrieve four of the
device’s nominal parameters for force rendering, that will later be used to establish upper
and lower bounds for the force generator algorithms. These parameters are the nominal
maximum stiffness and damping (N/mm) values, and the nominal maximum force (N)
values renderable instantly and continuously.

Graphical User Interface (GUI)

The graphical user interface, as stated before, was a non-scheduled need that emerged from the
early tests with the robot and the joystick. It soon became clear that the format of information
output had to be a little more complex than the simple ASCII text possible with the terminal,
but at the same time become user-friendly to the operator.

This interface was built using GTK+ (Gimp ToolKit), in C/C++ languages. The early ver-
sions of this interface were dedicated to show the simple robot joint angle values. When both
arms control was implemented, the interface was altered to allow changing the kinematic model
interactively, without the need to recompile a new application. From that point on, several new
graphical additions were successively introduced to improve overall user-friendliness and the user
overview of the robot state. To test these changes, the interface was submitted to unfamiliar-
ized users for input on the user-friendliness and access to information. The joystick buttons
shortcuts are a clear example of this interaction’s usefulness, because they were introduced as
recommendation from one of those unfamiliarized operators.

The interface main page, shown in Figure 5.2, is the primary interface for the user when
teleoperating the robot. The left side of the window is dedicated to robot command and state,
and outputs the current joint angle values, updated during runtime. According to the kinematic
model selected (through the dropdown menu or the joystick button 2) the interface also outputs
the correspondent end-effector Cartesian positions. It is also possible to switch control methods
and define servomotor velocity values. On the bottom right side, the parameters for control
resolution and workspace scaling can be specified. On the top right side, the haptic data is shown
according to the demonstration selected and a set of bars outputs the force vector components
every time they are sent to the device.

On the bottom of the page lay buttons for closing the application, robot state updating or
setting the robot to its home position. Starting/stopping the robot control loop via the interface
button is equivalent to using the joystick button 1.

The status bar shows the communications status and frequencies throughout the application.
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Figure 5.2: The graphical user interface main page, dedicated to the robot control and haptic
feedback information output.

The interface miscellaneous page, shown in Figure 5.3, contains, on the left, the individual
robot joint control and inverse kinematics testings, and on the right the extracted joystick in-
formation output, updated at approximately 22 fps (frames per second). The device calibration
can also be tested using the dedicated button. On the bottom lay the buttons for active/passive
servomotor commands.

Figure 5.3: The graphical user interface miscellaneous page, dedicated to the robot individual
joint control and the device information output.
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The interface demonstrations page, shown in Figure 5.4, is dedicated to the choice and de-
scription of the demonstrations created. These demonstrations will be thoroughly detailed on
Section 5.2 of this chapter.

Figure 5.4: The graphical user interface demonstrations page, where the user can
select/deselect an haptic demonstration.

Shared Data Structure

The shared data structure is a C/C++ struct variable composed of several other sub-
structures, variables and classes. It is shared throughout the whole application using C/C++
pointers. Some of its sub-structures are exclusive to a single thread or to a pair threads that
communicate between them. It suits the same purpose of shared memory blocks in ”forked”
applications.

This structure is roughly composed of:

� Servomotor communication class
This class is responsible for establishing and maintaining communications with HITEC
servomotors connected via RS-232 through a USB adaptor. This class allows to easily
send orders to the servos, such as position and velocity commands, define internal controller
parameters or define active/passive motor states. It is shared between the main and GUI
threads.

� Robot state structure
This structure holds all of the robot’s joint angle values, end-effector positions and orien-
tations and both legs centres-of-gravity. It is shared by all the threads.

� GTK widgets structure
This structure is exclusive to the GUI thread, and contains a set of GTK widget pointers
that need to be shared throughout the interface to ease the development.

� Device state data structure
This structure holds all the haptic device data and parameters that are extracted with
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the HDAPI. It contains the joystick button states (pressed/clicked), position, joint angle
values, motor temperatures, frame transformations, error states and other internal device
parameters. It is shared by all the threads and some of its components are published by
the ROS node.

� Haptics data structure
This structure holds all the haptic data of the application and it is used mainly by the
demonstration algorithms. It is shared throughout the application and some of its compo-
nents are also published by the ROS node.

� General parameters structure
This structure contains a set of general parameters that the application internally needs
to share, such as update rates, application state variables, etc. . . It is mainly used for main
thread/graphical thread communication.

� Humanoid functions class
This class was designed to hold all the robot geometrical information, like segment lengths
and masses or joint angle limitations. It contains several functions used to work with
kinematics (direct/inverse/differential) and convert joint angles to servomotor digital range
values (and vice-versa).

� Miscellaneous
There are other variables, structures and classes shared throughout the application. They
were not compartmentalized properly since their respective code is not yet definitive or
simply because there is no category for them. Examples are the graphical thread ”mutex”
(anti-deadlock object), the HDAPI device and context classes, application miscellaneous
state variables, etc. . .

5.2 Haptic Demonstrations

Due to the robot currently lacking sensors that allow to retrieve real world information, and
thus work with it to force feedback the system, the haptic demonstration possibilities become
somewhat limited.

The solution found was to synthesise the external forces, using as much robot information as
possible, which in this case was the robot joint angle and velocity states, which by turn allow
forward kinematics to provide all the rest. This synthesis is a mechanism long presented and
validated in the academia [51].

The rendered force vectors originate attractor and/or repulsive force fields, perceived as haptic
objects that the user can feel through the haptic joystick. Due to the high frequencies involved,
the user can perceive these fields as objects, by correctly defining the stiffness parameters.

5.2.1 Workspace Limitations

This demonstration implements a strategy for generating force vectors based in workspace
limitations [52]. While the user is controlling the robot using the position control method, the
system is monitoring the respective kinematic model end-effector Cartesian position and renders
force vectors to signal the operator when the end-effector is nearing a workspace limitation.

A 3DOF kinematic chain, built with a universal joint, has a workspace composed of inter-
secting spherical regions.

In the arms, the minimum and maximum reach points radius, relative to the shoulder, de-
fine the workspace inner and outer spheres, as illustrated in Figure 5.5. As the shoulder flex-
ion/extension joint is limited to a motion range of −45o to 135o (measured from the home
position), two other smaller spheres appear centred on the elbow when that shoulder joint is
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at its limits, but only one of them represents a real workspace limit due to the ”elbow down”
postures limitations. In the arm, an extra limitation was introduced representing the shoulder
sagittal plane. The robots arms are not capable of transposing their shoulder sagittal plane, for
their abduction/adduction joint have a motion range of 0o to 180o.

Figure 5.5: Workspace example for the robot arm kinematic chain, resulting from the the two
possible postures.

The workspace of the detached leg, as illustrated in Figure 5.6, is also defined by intersecting
spherical regions, but with the introduction of two toroidal surfaces that define the reachable
space when the flexion/extension joint of the ankle is at its minimum or maximum positions.

Figure 5.6: Workspace example for the robot detached leg kinematic chain.

When a control loop starts, the robot end-effector position E, given in the kinematic chain
base frame (and adjusted by the scaling kscale), is subtracted to the current device position P ji,
as equation (5.2) shows, to determine the robot workspace spheres centre position C, in the
joysticks workspace.
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C = P ji −
(

E

kscale

)
(5.2)

This centre position allows to create the haptic spheres independently of the end-effector
position and the joystick position when the control loop starts.

While the control loop is underway, the end-effector position is monitored using equation (5.3),
by calculating the radius r of the current joystick position P j in relation to the sphere centre
position C, in the joystick workspace. The distance to the arms saggital plane is determined
using the same equation but adjusted for the Y axis components.

r = ‖P j −C‖ (5.3)

Force rendering takes place at two distinct zones in the workspace. The joystick position
is in a closed loop with the human operator via the force vector rendering. Defining a rigid
force barrier (haptic object), thresholding the Cartesian navigation, becomes unstable at high
frequencies due to the human inability to adequately react to high frequency disturbances induced
by inappropriate force curve derivative planning.

So, an approach zone doverlap zone (in millimetres) was defined were the user is signalled of
the proximity to the limit, thus avoid a rapid and steep increment in force rendering when the
end-effector position is at the edge of that limit. This zone’s length is programmable in the code,
but can be associated with an element in the interface, if required.

When the end-effector is within this zone, the user is signalled with a non-linear force vec-
tor, whose magnitude is defined by equation (5.4) in terms of the distance to the limit x, and
parametrized by expressions (5.5), (5.6), (5.7), (5.8) and (5.9) with the variable stiffness k.

F (x) = a× x3 + b× x2 + c× x+ d, x ∈]0 ; doverlap zone] (5.4)

a = 2× Fmax
d3overlap zone

(5.5)

b = −3× Fmax
d2overlap zone

(5.6)

c = 0 (5.7)

d = Fmax (5.8)

Fmax = k × doverlap zone (5.9)

If the user tries to leave the workspace and moves inward or outward from the reach limits,
a force step is added to the maximum force of the approach zone using the expression (5.10),
signalling the user that those points are unreachable. Due to its greater magnitude, it helps
drive the user’s hand towards a navigable workspace zone. The parameter k2 defines the greater
stiffness of this zone.

F (x) = Fmax + k2 × (−x), x ∈]−∞ ; 0] (N) (5.10)

Using a modified Hooke’s Law expression allows to avoid a steep increase in force magnitude
and the subsequent instability it may cause.
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The graphical representation of this polynomial formulation for all the scaling factors (×1, ×2,
×3 and ×4) is shown in Figure 5.7, exemplified for an approach zone of 30mm and a maximum
renderable force of 3.3N.
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Figure 5.7: Polynomial formulation for the haptic force generation.

The direction of the force vector sent F depends on whether the end-effector is near the
minimum (rmin) or maximum (rmax) reach limits or normally navigating the workspace, as
the expression (5.11) shows. Inward or outward direction is defined by calculating the current
position radius versor and manipulating its signal.

If no other forces are rendered, a gravity compensating force is sent to the device, whose
magnitude is determined by the joysticks apparent mass at the tip mtip and the gravity accel-
eration vector g. The gravity compensation was implemented as a safety measure, after letting
the unfamiliarized operators test the system. If the users lost control of the haptic device, due to
force generation instability or incorrect hand postures, the closed loop between the joystick posi-
tion and the end-effector made the robot follow the downward trajectories, and execute random
movements that could compromise the robot and the operators integrity.

F =


F (x)×

(
P j−C
r

)
if r ≥ (rmin + doverlap zone)

mtip × g if (rmin + doverlap zone) ≤ r ≤ (rmax − doverlap zone)

−F (x)×
(

P j−C
r

)
if r ≤ (rmax − doverlap zone)

(5.11)

This formulation is useful for progressively signalling the operator of his proximity to the
workspace limits, but can be unstable around the limit value. As the decision criteria for es-
tablishing if the end-effector is in or out of the workspace is purely mathematical, the small
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fluctuations of the user’s hand can cause unstable force generation around the workspace limit
due to increasing/decreasing the force magnitude at high frequency.

In an effort to make the force rendering seamless to the user, the method was modified
to allow force vectors to be calculated without the system knowing the current robot state.
It became clear that the position control was sufficiently reliable to have the rendered forces
generated according to the next position sent, instead of the previous one. The force generator
was placed in a closed loop with the joystick by ignoring the position readout of the robots joints
and, allowing for a very fast force rendering scheme with a small de-synchronization that is not
noticeable by the operator.

Figure 5.8 shows an example of an RViz-based visualization of the haptic environment created
with this methodology. It is possible to view the generated force vector direction and approximate
magnitude during runtime. The workspace limits are represented with ROS markers.

Figure 5.8: Workspace limits demonstration exemplification for the left arm, developed under
ROS and RViz. The smaller spheres appear in blue and the outer sphere is shown in faded
green, while the yellow plane represents the arm saggital transposition limit. The rendered

force value and illustration vector appear in black.

5.2.2 Haptic Object Interaction

One of the advantages of haptic feedback is the possibility of interaction with real world
objects. Even without direct sensory data from the robot, a strategy was devised to use real
world objects and interact with them via the teleoperated robot.

An experiment was proposed for the University of Aveiro Summer Academy activities, be-
cause this event represented a unique opportunity to test the system with inexperienced and
unfamiliarized operators. The experiment, as shown in Figure 5.9, demonstrated how the system

Pedro Miguel Batista Cruz Dissertação de Mestrado / Master Thesis



5.Tele-Kinesthetic Interaction and Haptic Demonstrations 63

could be used to teleoperate the robot while attempting to draw line segments on a transparent
board.

The marker was placed on the robot’s left forearm, approximately 2cm further than the wrist
point (end-effector). The transparent board was placed between the operator and the robot, in
an attempt to remove the operator’s depth perception. If the user has a visual perception of the
task, the visuohaptic signals will prevail over tactile-based haptics, and the goal here was to try
to understand if it was possible to simply rely on the device to perform the task.

Figure 5.9: Inexperienced operator interacting with a virtualized object while teleoperating the
PHUA robot, over the course of the Summer Academy activities.

As there was no hardware to provide the board plane features, or the robot-to-plane transfor-
mation matrix, its virtualization had to be accomplished from the haptic device point-of-view,
ignoring any possible changes in the robot/plane relative position.

The board plane definition in the device’s workspace was made by inputting three points,
which by turn meant the user had to blindly press the marker against the board three times to
retrieve the set of points P1, P2 and P3. These points were then used to determined the vector
pair up and vp, that in turn can be used to determine the plane normal vector np as the cross
product of the previous, as expressions (5.12), (5.13) and (5.14) show.

up = P2 − P1 (5.12)

vp = P3 − P1 (5.13)

np = up × vp (5.14)
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This allowed to determine the distance s from the current joystick position (X,Y ,Z) to the
virtual plane defined by the pair P1 and np using expression (5.15), defined with the components
of vector np, and with parameter d determined by the dot product between the negative P1 and
the vector np components, in equation (5.16).

s =
nx ×X + ny × Y + nz × Z + d√

nx2 + ny2 + nz2
(5.15)

d = −P1 · np (5.16)

Knowing the distance to the virtualized board plane, it is possible to create an haptic ob-
ject representing the plane, using the same formulation as in the workspace limits demonstra-
tion. However, as the experiment was conducted with inexperienced operators, activating the
workspace limitation signalling became clearly necessary.

In order to create a distinction between signals from a workspace limitation and those coming
from the targeted planar object, another formulation for the force generation was developed. Such
distinction may be required to diminish the operator dependence on the visuohaptic information
set, providing a pure haptic tool for object interaction.

Another objective with this new equation set, shown in expression (5.17), was to avoid the
instability around the limit of the object interaction still verified with the polynomial formula-
tion of the workspace demonstration. Instability on these zones was hindering to a good task
performance, for the end-effector was affected by the force peaks and did not allow to correctly
navigate over the surface.

The force magnitude F (x) is again given in function of the distance to the object (s), but
now with one additional region dlimit after the approach signalling zone doverlap zone. This new
region is modelled by a tanh() type function, so that the force peaks appear within a safety
margin of the limit, that together with the position uncertainty from the robot’s end-effector
allow for a better navigation over the objects surface. Parameters γ, k and k2 are used to adjust
the stiffness of the regions without modifying the functions continuity.

F (s) =



0 if s ∈ [doverlap zone +∞[

k × γ × s if s ∈ [dlimit doverlap zone[

α× tanh(β + s) + θ if s ∈]0 dlimit[

Fmax + k2 × (−s) if s ∈]−∞ 0]

(5.17)

Expressions for β, α and θ parameters are shown on equations (5.21), (5.22) and (5.23),
obtained after a series of mathematical manipulations and substitutions, as expressions (5.18),
(5.19) and (5.20) resume. These substitutions are only performed for code and representation
shortening, and have no mathematical meaning of note.

A = edlimit , B = e2 dlimit , C = e3 dlimit , R = γ k (dlimit − doverlap zone) (5.18)

D =
√

(A+ 1) (Fmax +R) (Fmax − 2A+ FmaxA+R+RA+ 2) (5.19)

E = ln

(
−A− C + FmaxA−AD + Fmax C +BD +RA+RC

2FmaxA−B + 2RA+ 1

)
(5.20)
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β =
E

2
(5.21)

α = cosh

(
β − dlimit

2

)2

(5.22)

θ = Fmax +
tanh(β)

tanh

(
β − dlimit

2

)2

− 1

(5.23)

Graphically, this formulation is represented as Figure 5.10 shows, for a maximum renderable
force Fmax of 3.3N, a γ factor of 10 and an approach zone doverlap zone of 30mm, and for all the
scaling factors (×1, ×2, ×3 and ×4). The limit zone dlimit length is proportional to the approach
zone length by a factor of 25%.
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F(x) = α × tanh(β − x) × θ
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Figure 5.10: Alternate formulation for the haptic force generation.

The force vector F that is sent to the device is then obtained using the versor of the normal
vector np and the force value F (s) calculated before, as shown on expression (5.24).

F = F (s)× n̂p (N) (5.24)
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5.2.3 Support Leg Balancing

The usual means for humanoid balancing/locomotion is through their centre-of-pressure
(COP), measured on the feet by pressure sensors or a pressure plate. The COP can be viewed
as the dynamical projection of the robot’s centre-of-gravity on the feet, and is used widely to
track and predict the dynamic behaviour of humanoid robots.

This demonstration is meant to show the potential for haptic signalling in balancing appli-
cations, which are fundamentally different from the object interaction or navigation signalling
applications. In a balancing situation, and as the operator’s goal is to retrieve data sets for learn-
ing algorithms, the force rendering cannot overwhelm the user operation, but it must interfere
in the control in such a way that the user knows the posture is unachievable.

Unfortunately, at the time, this platform did not have its respective force sensors and ded-
icated electronics installed on the feet, making it impossible to use that information for force
rendering. The alternative devised was to simulate the COP navigation by monitoring the robot’s
centre-of-gravity (COG), measuring the travelled distance (x and y coordinates) from the home
position and detecting the foot area edge crossing.

The force feedback signals of the force vector F are determined directly through the distance
to the robot’s foot edges, using expression (5.25), which is also illustrated on Figure 5.11.

F =

 e(−x+1)

e(−y+1)

0

 (N) (5.25)

The graphical representation shows how the force generation for the progression of the dis-
tance s, comparing it to the maximum renderable force and constant gravity compensation force
levels.
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Figure 5.11: Leg balancing force graphical representation, as a function of the distance to the
foot edges.
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This approach is mathematically valid for static purposes, but incorrect for dynamic be-
haviours, and so this demonstration is limited to very low control speeds. As the robot state
update can only be done at low frequencies, due to the high response time of the servomotors,
estimating trustworthy COG velocity vectors and their corresponding differential information is
therefore ruled out.

Figure 5.12 shows a visualization of the haptic environment created and the COG/COP
workspace navigation representations in RViz environment while teleoperating in a support leg
balance situation. The workspace haptic limits representations can also be added to further
enrich the data sets.

(a) (b)

Figure 5.12: Detached leg balancing haptic environment examples, developed under ROS and
RViz. The COG and COP spheres appear in yellow and red, while the light blue plane

represents the foot sole area. The rendered force value and illustration vector appear in black.
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Chapter 6

Conclusions and Future Work

The final conclusions of this dissertation will be detailed in this chapter, detailing the success
or unsuccess of the initially proposed objectives. For future works, a wide range of proposals are
detailed, to suggest future approaches to haptic rendering applications, enriched data logging,
software solutions and hardware modification suggestions.

6.1 Conclusions

The main objective of this dissertation was to develop a force feedback haptic control and
sensing mechanism, aiming at robot perception / actuation data logging for learning purposes.

The proposed approach can effectively bridge together the robot teleoperation and kinesthetic
teaching fields if the world and robot current state are correctly fed back to the user. With
the introduction of more dedicated hardware, this approach will still maintain its validity, and
naturally allow for a deeper and truer user immersion in haptic control.

It was also proposed the development of a robot SimMechanics simulator, so it would suit
the purpose of a predictive and testing tool for locomotion and other intricate humanoid tasks.
Although mechanically correct, it was verified that the SimMechanics simulator was not able to
describe the dynamic behaviour of the hybrid actuation system, and requires an enormous effort
to correctly build a humanoid robot as the PHUA robot.

It was found during the course of this work that the SimMechanics suite possesses yet another
limitation for the simulation of the PHUA robot platform. Although the simulation of the
dynamical behaviour of the ankle joints with the elastic elements in placed produced the expected
results, the same cannot be said about the knee joint. When the knee flexes, the model solver
sees the two end points of the spring becoming closer to each other, and so it assumes the spring
is being pressed instead of pulled, producing erroneous results for the hybrid actuation system
analysis.

Also, as this MATLAB toolkit does not provide any tool for calculating kinematics or perform
any kind of trajectory planning within the models, it falls to the user to generate and feed that
information into them, increasing the overall computational cost of the simulation (associated
with MATLAB scripting) and diminishing the simulator’s user-friendliness.

The servomotor wiring was deemed suitable, and it served the purpose without failing. The
cable gauge chosen was enough to handle all testing runs without issues of note, and should hold
future demands sufficiently well. The connector boards developed also performed well, without
overheating. The locations chosen for the installation of these boards was also satisfactory,
minimizing cable bending issues in the legs and not restricting the arms and torso’s workspaces.

Concerning the mechanical parts for the analogue servomotor’s immobilization, their perfor-
mance was also deemed satisfactory. The parts installed on the arms were correctly machined,
and hold the arm with a single pair of bolts. In the legs, however, although the servomotor im-
mobilization was successful, the gripping mechanism is too thin and bends just with the gripping
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force from the bolt tightening. The part design was severely restricted by the robot geometry,
and the choice of aluminium material was not ideal.

The introduction of new elastic elements to the structure was only significant in immobilizing
the torso rotation joint servomotor. There were no visible changes in the servomotor actuation
by the introduction of rubber bands in the ankle or hip joints. A coherent and valid test was not
possible, but it is recommended nonetheless.

The position control method developed was considered successful. Although it fails to specify
end-effector velocity vectors, the velocity can be controlled indirectly by the number of joint
angle vectors fed per second. On the velocity control method, due to the velocity measuring
problem, the method for the determination of the pen tip velocity is not as exact as the internal
joystick controller would be, and due to the mean filtering, the calculated vector is slightly
desynchronized from the current one and dampens accelerations. These limitations hinder the
control by limiting it to low / medium velocity values and acceleration vectors. However, the
velocity control method allows to navigate the entire workspace without adding a significant
computational weight to the system, hinting towards the possibility of implementing an hybrid
control method using inverse differential kinematics with a position incremented vector adjusted
by a standard velocity magnitude.

On the PHANToM joystick, the low-level interaction implemented was considered to be very
complete, but heavy on calculations and pre-processing routines, dropping the overall perfor-
mance and thus the computing frequencies. On the testing computer, with an hardware as
described on section C.1, the heaviest haptic rendering demonstration registered frequencies of
approximately 500Hz, below the optimum value of 1kHz but still indistinguishable from the user’s
perspective if the incrementation of the vector’s magnitude is controlled. The joystick data gath-
ering routines alone could be performed at frequencies well above 1.5kHz while controlling the
robot.

It was verified that the device can be further explored to enhance the operator’s perception
of the haptic environment. Although the device does not allow to render torques directly, it may
be possible to have that effect emulated if the joystick control frequency is high enough. As the
forces are applied on the wrist point, it would be possible to consecutively apply perpendicular
forces vectors to the pen tip that would be felt by the user as applied torques, which would be
useful for rendering inertial signals (forces and torques), for example.

The haptic demonstrations presented fitted the purpose of showing the potential of the ap-
proach but do not represent a final version. They are meant to be the precursors of those that
will be used for the actual data logging, destined for the future of the platform.

On the workspace limitations demonstration, using custom force generation algorithms was
successful for testing purposes, but these formulations are limited in user perception for a fully
functional solution. The force generation expressions shown on this work represented an effort
to emulate the solutions already offered by the OpenHaptics toolkit, but failed to meet their
complexity and sharpened realism.

The same can be said for the transparent board drawing attempt. The force algorithms
failed to offer a real object perception to an experienced user, but were satisfactory for the
inexperienced users. The familiarization with these interfaces leads to a refined perception of the
haptic object’s geometry and other subliminal properties, like surface stiffness and texture.

The leg balancing demonstration presented is scarce in content due to the hardware limitations
of the platform, but it never meant to represent an actual approach to the balancing problem.
It was showed that rendering a force signal is a useful way to provide the user with a perception-
based tool that complements the visual information obtained during the balancing data logging
stage.

For all haptic-based human-robot interfaces, refining the underlying properties of the haptic
objects and signals will ultimately be needed to enhance the user’s perception of the virtualized
robot world. Object states will require more advanced haptic signals, so that the user can learn
to distinguish and prioritize them correctly when data logging, giving rise to the possibility that
after the leaning process the robot does that distinction as well.
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6.2 Future work

The work in this dissertation was the first of its kind in the PHUA project, therefore probing
a number of fields that can now be thoroughly explored. Further, the experience acquired over
the course the work allowed to gain a more incisive look on the platform’s current issues of
note. Future work recommendations are then hereby presented, subdivided by areas of interest,
without ever forgetting the project’s original goal of enriched data logging for robot learning, on
walking and locomotion tasks.

6.2.1 Simulation

For future (dynamic) robot simulations, the V-REP software (www.v-rep.eu) is strongly
recommended. This software has a built-in support for ROS nodes, automatic kinematics calcu-
lations, dynamic simulators, among several other characteristics.

If the SimMechanics simulator is deemed appropriate, a different approach must be taken
concerning the hybrid actuation. As is, the model is capable of simulating approximate results
for the dynamic behaviour of the directly mounted servomotor limbs, as the arms. For the hybrid
joint, that is not possible, and is recommended a study on the matter, looking into other Simulink
blocks that can be used to emulate the elastic elements impact on the motor’s torque.

6.2.2 Software

The full conversion of this work into the ROS framework, allowing for a better development
and integration of all the system in the platform, is highly recommend for the future of this
project. Any work developed from that point on will largely benefit from all the ROS embedded
tools.

The developed application can be easily ported to ROS and maintain it’s full functionality, if
required. The three thread logic can be expanded into ROS nodes, and the shared data structure
can easily become a ROS message structure. In this sense, the most significant module to develop
would be the robot base module, which takes care of the robot actuation and publishes the robot
state messages. This would represent the stepping stone of the ROS integration for the project.
The joystick base module would also be an important step, along with Ethernet node-to-node
communication, for it would mean that dual-device setups would be possible. With the current
PHANToM driver version, that is not possible.

The ROS visualizing software Rviz allows for a rapid deployment of visual information that
is crucial to the development of any software solution for the platform. ROS ’s sensor integration
will be a major fact for its introduction into the platform. In the future, inertial sensors in the
structure, force sensors in the feet and a vision system in the head will allow measuring the
centres of pressure for the whole system and will be later used to provide force feedback into
the haptic tele-kinesthetic interface, so that the operator is able to ”feel” the robot’s dynamics,
improving the data logged towards the goal of walking.

Unfortunately, there is no open-source solution for the low-level pc-to-device communication,
other than the OpenHaptics suite, through the HDAPI. Even within ROS there is no alternative
yet. The phantom omni package uses the HDAPI to implement a node that publishes a limited
amount of information, but still does not provide the same level of hardware interaction as what
was achieved in this work. However, exploring and improving this package may be suitable for
the projects long term goals.

6.2.3 Haptics

It is clear that haptics and haptic interfaces are the future heading of the PHUA humanoid
robot towards the goal of autonomous balancing and locomotion. The presented haptic demon-
strations were exploratory of the validity of the approach, but also of the existing programming
solutions.
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The force rendering schemes presented in this work were not able to provide a ”real feel” to
the demonstrations, but this can be solved by recurring to the haptic object algorithms that the
OpenHaptics suite already possesses. These algorithms are recommended for correctly defining
and refining the haptic surfaces and stiffnesses, for these aspects will not be the focus of future
works, but merely means to an end. Alternatively, the open-source H3DAPI libraries may be
recommended for virtual environment creation. An aspect of notice in the OpenHaptics suite is
their lack of support for Linux-based programming, which hindered this work heavily.

6.2.4 Command

The velocity command methodology presented on this work was not able to establish a
coordinate mapping between the joystick and the end-effector positions. The mechanism used,
retrieving the joystick end point velocity vectors indiscriminately throughout the workspace, does
not make it possible to do so.

In order to solve this issue, a new strategy was conceived that, due to time limitations,
was unfortunately not implemented. It consisted of building what was named an haptic three-
dimensional analogue velocity controller. This controller was built with a static haptic rigid
sphere, with an anchor-point at its center, and filled on the inside by an attractor force field
whose force magnitude is proportional to the travelled radius. The sphere surface represented
a maximum velocity magnitude, and the anchor point in the middle represents a zero velocity
value. Navigating inside this sphere means creating three-dimensional velocity vectors, scaled in
magnitude by the travelled radius (felt as the force magnitude). This method allows the creation
of dampened velocity vectors, with the user having complete control over their direction and
magnitude. As the sphere is static inside the joystick workspace, there is no danger of reaching
the joystick physical workspace limits, and thus leaving a margin for the development for an
force feedback methodology for the velocity command of the PHUA robot.

6.2.5 Hardware

On the mechanical aspects, it is still critical the review of the robot’s belt and pulley trans-
mission system. Some reductions, as the one on the ankle flexion joint, are too high for the type
of belts available, causing the belt’s polyurethane body to fail while the robot is in operation.
These timing belts pass all the static criteria, and are able to hold the robot in position, but are
not able to withstand the robot’s dynamic torques for long. In that sense, it is again proposed
a revision on the transmission systems of the platform, with a complete survey on available
solutions for the belts, as performed on all past and current works on the platform.

The rubber bands that were used as elastic elements do not withstand long exposures to
ultra-violet light and thus fail to achieve a satisfactory performance in terms of durability. As
the platform still possesses some assembly / disassembly constraints, it becomes gruelling to
keep replacing parts in the robot after a work session or minor testing run, or even after a few
days idle. It is recommended the development of a conditioning or clustering method for the
rubber bands, allowing them be easily replaced in bulk. This may allow to keep the low-cost and
easiness of access of the rubber-bands as elastic elements.

Ultimately, the robot’s torso joint system and structure will require mechanical modifications
due to its overweight. It became clear during the course of this work that the leg motors are not
capable of performing a wide variety of movements necessary for walking purposes, even though
they succeed on maintaining static postures. On squatting, for instance, if the joint velocities
are not well defined, the robot fails to return from the squat posture due to lack of torque in the
ankle and hip joints.

Using the leg and hip system separated from the rest of the robot may also be a solution
for gait training if this problem is not solved. The drawback is that the sensors in the feet will
not record actual usable data for the whole assembled robot applications. Moving the battery
set from the back to inside the robot torso may help reduce the upper body overweight issues,
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because it will move the robot’s centre-of-gravity forward in the sagittal plane, thus modifying
torque requirements in the legs.

If all else fails, reviewing the actuators may be a good endeavour, although of a more com-
plex nature. There are solutions in the market for servomotor actuation without some of the
restrictions of the current setup, and that would require small but possible mechanical modifi-
cations. Higher torques on the lower limbs would allow for wider operation ranges in full body
motion patterns, and refined communication protocols could largely improve robot joint state
scanning frequencies. These changes would undoubtedly mean the whole project would need to
be reviewed, which would undoubtedly mean the development of a new robot. The cost-benefit
relation of such a radical enforcement would have to be well studied and weight all the platform’s
current limitations versus the current potentialities and long term goals of the project.

Finally, a note is left regarding the robot power supply. Although dangerous by nature, the
LiPo batteries are superb for the robot power supply. However, it was determined that while
in operation, they can drain very quickly and without previous notice, lowering their output
voltage to very low, harmful, levels. As there is currently no mechanism to warn the operator of
such event, it is proposed the installation of a small, affordable buzzer. These devices, which the
battery manufacturers also supply, emit a loud buzz (sound signal) warning when the connected
power source’s voltage drops below a safety value. Furthermore, as the servomotors have specific
power supply specifications, some buzzer models can be programmed to warn at specified levels,
i. e., the servomotors minimum supply voltage.

During the course of this work, a 12V/20A DC power supply was acquired to serve the
purpose of a tabletop power supply for workbench testing runs, in an effort to avoid unnecessary
battery wear. Unfortunately, due to a shortage of DC-DC converters on the supplier that goal
was not achieved. In that sense, the completion of this workbench power supply could prove to
be an invaluable tool for future works, and it is thus recommended.
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SimMechanics Model
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Para mudar as variáveis que o modelo procura no workspace,

entrar em cada uma das máscaras e alterar o parâmetro

devido nos blocos "From Workspace".
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Appendix B

Mechanical Drawings
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Appendix C

Software Notes

C.1 Computer Hardware Configuration

This work was conducted on a Hewlett-Packard Compaq nx9420 notebook with the following
specifications:

� Hardware

– Intel Corp. T2400 @1.83GHz processor (32 bits)

– 4GB (2+2) SODIMM DDR2 Synchronous 667 MHz RAM memory

– ATI Technologies Radeon Mobility X1600 graphics card

– Fujitsu MJA2500B 465GiB (500GB) SATA hard drive

– Texas Instruments PCIxx12 OHCI Compliant IEEE-1394 Host Controller (internal)

� System

– Ubuntu Linux version 10.04 LTS

– Linux kernel version 2.6.32-43-generic-pae

– ROS Fuerte version

C.2 PHANToM Device Drivers and OpenHaptics

Installation of the PHANToM device software is hereby described for future reference.

Note: As Ubuntu is a Debian-based Linux distribution, software installation files come fre-
quently in the form of .deb packages. Other Linux distributions have similar packages, but the
instructions for installation and setup may differ. Beware of this fact beforehand, for this text
is meant for Debian-like systems.

Also, system component dependencies, as the libc libraries, the gcc and g++ compilers or
the raw1394 (FireWire) module libraries, will not be explicitly requested to be updated on
automatic configuration scripts. However, keep in mind that distribution-dependent repositories
not always provide the latest version for system components, even non kernel-dependent software.
Core components update may be recommended to advanced users to improve execution speeds
and memory management.
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C.2.1 SensAble Software Pre-requisites

� SensAble Developer Support Center (DSC) access credentials:

Place a request for credential generation at the SensAble Developer Support Center website
(dsc.sensable.com). As the software components are proprietary (libraries and drivers),
these credentials will be needed to download all the software and documentation, as well
to give access to the online discussion forum.

� Necessary libraries:

According to the respective Linux distribution, install all the dependencies and requisites
mentioned on the file ”HW userguide Linux.pdf”. As stated there, all the dependencies
must be satisfied before attempting to install the PHANToM drivers.

� Mesa3D libraries:

In the previous .pdf file, the MesaLib7.4.2 library appears as a pre-requisite. However, this
version was flagged on Ubuntu 10.04 for its numerous bugs, so the installed version was
7.5.2. This version is recommended, along with the MesaGLUT associated package, and is
available at www.mesa3d.org.

For a better system integration, the library should be compiled as follows (sudo is optional
if the working subdirectory is within the /home directory):

1. Extract the downloaded file and run the package configuration in a console:
sudo ./configure - -enable-motif

(The configuration report detects both critical and optional dependencies. If any crit-
ical library fails, the Linux distribution’s repositories should have a version available.
The motif package linking may not be required for every system.)

2. Compile the libraries with the command:
sudo make

3. Install with the command:
sudo make install

4. Check if the location of installed libraries is in directory /usr/lib:
sudo locate libGlw
sudo locate libGLUT

C.2.2 SensAble Software Installation

The installation of the OpenHaptics v3.0 suite must only be executed after the correct instal-
lation of the PHANToM drivers. To install both, navigate to the directory of the .deb files (or
extract the compressed version) downloaded and run consecutively in a console (”*” represents
the version downloaded):

sudo dpkg -i phantomdevicedrivers *.*-* i386.deb

sudo dpkg -i openhaptics *.*-* i386.deb

Alternatively, a GUI application for the .deb package manager dpkg can also be used. But
installing the .deb file through the GUI may not work. If running amd64-based systems or other
64bit system, dpkg requires a different argument list, as exemplified:

dpkg -i –force-architecture /path/to/file.deb

Pedro Miguel Batista Cruz Dissertação de Mestrado / Master Thesis

dsc.sensable.com
www.mesa3d.org
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After the installation is complete, device communication must be tested. These libraries are
equipped with two small applications, installed by default with the drivers. The PHANToM-
Configuration is an application for managing the connected hardware, defining the default device
and allowing for dual-device setup configurations. The PHANToMTest is a small application de-
signed to test the device’s capabilities. This library, drivers, and applications were not designed
for systems running in any other than the English language. For that reason, normal execution
of these programs, via command line calls, is not possible. The only way these applications can
run is by calling their configuration routines, which are no other than scripts that change the
environment language just for the program’s execution.

The configuration application is called by running:

sudo /usr/sbin/runPHANToMConfiguration

Select the correct PHANToM device and press ”OK”. Next, to test the device:

sudo /usr/sbin/runPHANToMTest

The PHANToM drivers do not have access to the FireWire communication port object, so it
falls to the user the responsibility to probe it and change the access rules. To workaround these
issues, a small shell file was created with the lines:

#!/bin/bash

modprobe raw1394

chmod 777 /dev/raw1394

This script is to be run before any call for device applications. Alternatively, these commands
can be added to the shell ’s startup script or to the system’s startup routines.

The OpenHaptics toolkit deploys compilable examples to demonstrate both the device and
the libraries capabilities. If correctly installed, the compilable source code should be installed on
the directory /usr/share/3DTouch/examples. All the provided documentation is also installed
in the hard-drive on the directory /usr/share/3DTouch/doc.

Note: Some examples require the creation of an environment variable 3DTOUCH BASE that
is supposed to point at a directory. However, the Ubuntu Linux bash does not allow to initiate
an environment variable started by a number. The most common workaround for this case is to
use the tcsh shell, an old C-shell still supported on Linux, and run the following commands:

sudo tcsh

sudo setenv 3DTOUCH BASE /usr/share/3DTouch

The examples can be run inside the tcsh terminal, or outside back in the bash shell, exiting
with the command ”exit”.

C.3 Adicional Software

C.3.1 Robot Operating System (ROS)

In this work, the ROS version installed was Fuerte. The installable Linux version is system
dependent, but the detailed instructions can be found on http://www.ros.org. Here it can also
be found tutorials, code examples, discussion forums, etc. . .
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C.3.2 Eigen Library

The Eigen library is a C++ template library for linear algebra, with matrices, vectors, numer-
ical solvers, and other related algorithms, and is provided together with ROS. Should it be needed
for another purpose, the compilable source code can be found on http://eigen.tuxfamily.org.

C.3.3 Armadillo Library

Armadillo is an open-source C++ linear algebra library with a syntax that is deliberately
similar to Matlab. It supports integer, floating point and complex numbers, and has a built
trigonometric and statistics functions. Various matrix decompositions are provided through
optional integration with LAPACK, or one of its high performance drop-in replacements (such
as the multi-threaded MKL or ACML libraries). Primarily developed at NICTA (Australia), it
has contributions from around the world.

To install the library, instructions are as follows (sudo is optional if the working subdirectory
is within the /home directory):

1. Install ROS as detailed above. This will install a series of dependencies that will be needed
to compile this library.

2. Install CMake:

sudo apt-get install cmake

3. Install BLAS, LAPACK and ATLAS libraries:

sudo apt-get install libblas-dev

sudo apt-get install liblapack-dev

sudo apt-get install libatlas-base-dev libatlas-headers

4. Download and unpack the source code from http://arma.sourceforge.net.

5. Open a command line and change into the directory that was created by unpacking the
downloaded archive:

sudo cmake .

(CMake should detect all necessary dependencies and warn if any fails.)

6. Compile the library with the command:

sudo make

7. Install with the command:

sudo make install
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