
 

Universidade de Aveiro 

Ano 2012 

Departamento de Biologia 

Sofia Caçoilo 
Corticeiro  
 

Estudo da complexação de cádmio por glutationa 
em Rhizobium leguminosarum 
 
Study of the Cd complexation mechanism by 
glutathione in Rhizobium leguminosarum 
 

 

 



 

 

Universidade de Aveiro 

Ano 2012 

Departamento de Biologia 

Sofia Caçoilo  
Corticeiro 
 
 

Estudo da complexação de cádmio por glutationa 
em Rhizobium leguminosarum 
 

 

 

 
 

F
U
N
D
O
 
S
O
C
I
A
L 
E
U
R
O
P
E
U 

 

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos 
necessários à obtenção do grau de Doutor em Biologia, realizada sob a 
orientação científica da Doutora Etelvina Maria de Almeida Paula Figueira, 
Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro e 
da Doutora Odete Abreu Beirão da Cruz e Silva, Professora Auxiliar da Secção 
Autónoma de Ciências da Saúde da Universidade de Aveiro 

 

  Apoio financeiro da FCT e do FSE no 
âmbito do III Quadro Comunitário de 
Apoio (Bolsa de Doutoramento 
SFRH/BD/21788/2005). 
 



 

  

  
 

 

 
 
 

 



 

  
 

 
 
 

 
 

o júri   
 

presidente Prof. Doutor António Carlos Mendes de Sousa 
Professor Catedrático do Departamento de Engenharia Mecânica da Universidade de Aveiro 

 

  

 Prof. Doutora Isabel Maria Videira e Castro Viana 
Investigadora Auxiliar do Laboratório Nacional de Investigação Agrária do 
Instituto Nacional de Recursos Biológicos 

  

 

 Prof. Doutora Isabel Solange Martins de Oliveira 
Professora Auxiliar do Departamento de Biologia da Universidade de Évora 

  

 

 Doutora Glória Catarina Cintra da Costa Pinto 
Investigadora Auxiliar do Departamento de Biologia da Universidade de Aveiro 

  
 

 Prof. Doutora Etelvina Maria de Almeida Paula Figueira 
Professora Auxiliar do Departamento de Biologia da Universidade de Aveiro 

  
 

 Prof. Doutora Odete Abreu Beirão da Cruz e Silva 
Professora Auxiliar da Secção Autónoma de Ciências da Saúde da Universidade de Aveiro 
 

  

  

 

 



 

  

  
 

agradecimentos 

 

Gostaria de agradecer a todos me ajudaram e apoiaram, ou que de alguma forma 
contribuíram para a realização desta tese. No entanto gostaria de salientar um 
agradecimento especial: 
 
À Doutora Etelvina Maria Almeida Paula Figueira, Professora Auxiliar do 
Departamento de Biologia da Universidade de Aveiro, orientadora desta tese 
pela orientação científica prestada e por todo o apoio demonstrado este trabalho. 
 
À Doutora Odete Abreu Beirão da Cruz e Silva, Professora Auxiliar da Secção 
Autónoma de Ciências da Saúde da Universidade de Aveiro, co-orientadora desta 
tese pela ajuda científica prestada e pela disponibilidade com que me recebeu no 
seu laboratório. 
 
Á Doutora  Margarida Fardilha, Professora  Auxiliar Convidada da Secção 
Autónoma de Ciências da Saúde da Universidade de Aveiro, pela ajuda na 
componente prática do trabalho relacionado com as GSTs. 
 
Á Doutora Rosa Freitas, Investigadora Auxiliar do Departamento de Biologia da 
Universidade de Aveiro, pela ajuda no tratamento estatístico dos resultados desta 
tese. 
 
À Sofia Pereira pela grande ajuda prestada ao longo de todo este trabalho, pelo 
companheirismo em todos os momentos, principalmente nas horas mais difíceis, e 
pela amizade e apoio inestimáveis. 
 
À Ana Lima pelas grandes “discussões científicas”, pela ajuda na execução prática 
e pela amizade demonstrada. 
 
À Rita Castro pelo companheirismo e pela amizade demonstrada. 
 
Ao Centro de Biologia Celular da Universidade de Aveiro pela utilização do 
equipamento. 
 
Aos meus pais e à minha irmã por todo o amor e apoio incondicionais que sempre 
me deram, principalmente nas horas mais difíceis. 
 
Ao John pelo amor e amizade em todos os momentos, e pela paciência e incentivo 
mesmo nos mais difíceis. 
 
Ao Tiago por fazer de mim uma pessoa melhor. 
 
A todos os meus amigos por todo o apoio que me deram durante esta caminhada. 
 

 



 

  

 

 

 

 

 

 

 

 

 

 

  

palavras-chave 

 

Rhizobium leguminosarum, cádmio, glutationa, complexos, periplasma, 
glutationa-s-transferases. 
 

resumo 
 

 

 
 
A associação simbiótica de plantas leguminosas com bactérias do género 
Rhizobium é o maior e mais eficiente contribuinte de azoto fixado 
biologicamente (Somasegaran e Hoben, 1994; Zahran, 1999). No entanto, o 
constante aumento da poluição em solos agrícolas, nomeadamente a 
contaminação por metais devido à aplicação de fertilizantes e de lamas, está a 
tornar-se um problema ambiental cada vez mais preocupante (Alloway, 1995a; 
Giller et al., 1998; Permina et al., 2006; Thorsen et al., 2009; Wani et al., 2008), 
influenciando de forma negativa a persistência destas bactérias nos solos 
agrícolas, assim como a sua eficácia de nodulação (Broos et al., 2005; Wani et 
al., 2008;. Zhengwei et al., 2005). Desta forma, o estudo dos mecanismos de 
tolerância de Rhizobium a metais tornou-se uma área de investigação de 
elevada importância. Com o trabalho apresentado nesta tese pretendeu-se 
perceber melhor a tolerância Rhizobium leguminosarum ao cádmio (Cd), 
dando particular atenção a um mecanismo de tolerância previamente descrito 
em R. leguminosarum (Lima et al., 2006): a complexação intracelular de Cd 
pelo tripéptido glutationa (GSH). Assim, o principal objectivo deste trabalho foi 
perceber melhor qual a importância deste mecanismo nos níveis de tolerância 
de rizóbio ao Cd. Como já tinha sido descrito em trabalhos anteriores (Figueira 
et al., 2005; Lima et al., 2006), foi possível verificar que a estirpe mais tolerante 
ao metal apresenta níveis mais elevados de Cd e GSH intracelulares. 
Demonstrou-se ainda que a tolerância ao Cd está dependente da maior 
eficiência no mecanismo de complexação observada na estirpe tolerante, logo 
durante as primeiras 12 h de crescimento. Gomes et al. (2002) verificou que a 
acumulação de complexos GSH-Cd no citoplasma inibe a entrada de metal na 
célula. Como neste trabalho se observou um aumento nos níveis de Cd 
intracelular na estirpe tolerante ao longo do tempo, surgiu a hipótese dos 
complexos serem excretados para o espaço periplasmático. Os elevados 
níveis de GSH e de Cd determinados no espaço periplasmático corroboraram 
esta hipótese. Neste trabalho demonstrou-se ainda que a eficácia do 
mecanismo de complexação, depende da actividade enzimática de uma 
isoforma específica de GST, que apresentou um elevado acréscimo de 
actividade na presença do metal. Desta forma, os resultados desta tese 
indicam que, a maior tolerância de R. leguminosarum ao Cd, depende da 
capacidade das estirpes para induzir a síntese de GSH na presença de Cd e, 
simultaneamente aumentar a actividade enzimática da GST específica, 
optimizando assim o mecanismo de complexação de Cd intracelular. 
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abstract 

 
The symbiotic association of leguminous plants and rhizobia also has a crucial 
impact on the nitrogen cycle: estimates are that rhizobial symbioses, with a 
number greater than 100 important agronomical legumes, contribute nearly half 
to the annual quantity of nitrogen fixed biologically entering soil ecosystems 
(Somasegaran and Hoben, 1994; Zahran, 1999). Nevertheless, the permanent 
increased of metal pollution in agriculture soils, due to the current use of 
fertilizers and industrial and domestic sludge, is becoming one of the most 
troublesome environmental problems (Alloway, 1995a; Giller et al., 1998; 
Permina et al., 2006; Thorsen et al., 2009; Wani et al., 2008), has a negative 
impact in rhizobia persistence in agricultural soils and its ability to form 
nitrogen-fixing nodules (Broos et al., 2005; Wani et al., 2008; Zhengwei et al., 
2005). So, the study of the tolerance mechanisms of soil bacteria to metals 
arises as a research area with great importance. In this thesis it was intended 
to draw attention to the tolerance to Cd of Rhizobium leguminosarum, a specific 
soil bacteria that establish  symbiotic associations with legumes. 
The present study focused on a particular strategy that Rhizobium 
leguminosarum possess to tolerate Cd: the intracellular chelation of Cd by the 
tripetide GSH. Thus the elucidation of the role of GSH as a metal chelating 
agent in bacteria tolerance to Cd was considered to be the main aim of this 
work. Higher intracellular Cd and GSH levels were observed in the tolerant 
strain as it had already been demonstrated by others authors (Figueira et al., 
2005; Lima et al., 2006). It was also demonstrated that Rhizobium 
leguminosarum tolerance to Cd was dependent on the higher efficiency of the 
chelation mechanism exhibited by the tolerant strain. This mechanism was 
activated at the beginning of the lag phase (12 h of growth). As the 
accumulation of GSH-Cd complexes may inhibit intracellular Cd uptake 
(Gomes et al., 2002), which was not observed in the tolerant strain, the GSH-
Cd complexes were suggested to be transported into the periplasmic space. 
The results point out this hypothesis as the most viable as high levels of GSH 
and Cd were found in the periplasmic space but only a small percentage of 
GSH-Cd complexes were quantified. It was also established that the chelation 
mechanism occurred in the cytoplasm, and its efficiency appeared to be 
dependent on the enzymatic activity of a specific GST isoform. So, the ability of 
the tolerant strain to induce GSH synthesis under Cd exposure and, 
simultaneously, to increment the activity of a specific GST was point out as the 
main reasons behind the differences the tolerance to Cd observed between the 
two strains.  
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Chapter 1  

General Introduction 

 

 

1.1 Introduction 

1.1.1 Nitrogen fixation by Rhizobia 

The 6 billion people on earth consume an average of nearly 11 g of N per 

person per day (Fink et al., 1999). Plant sources satisfy up to 80% of dietary needs in 

much of the tropics and sub-tropics. With the earth’s population increasing and being 

expected to reach 9.4 billion in 2050 (Nature News, 2009), world food production 

rates will need to be increased by at least 50% (Murchie et al., 2009). In this way 

unprecedented increases in crop production will be needed if the current levels of 

dietary proteins and caloric intake are to be maintained. In many developing 

countries, the effective management of nitrogen in the environment is essential for 

agricultural sustainability (Rehman and Nautiyal, 2002). Rhizobia are Gram-negative 

soil bacteria, present in soils as free living bacteria or in mutualistic symbiosis with 

leguminous plants (Figure 1.1) resulting in nitrogen-fixing root nodules (Figure 1.2) 

(Atlas and Bartha, 1997; Muglia et al., 2007; Somasegaran and Hoben, 1994). Since 

plants do not assimilate the chemical form of atmospheric nitrogen (Abbas and 

Kamel, 2004; Atlas and Bartha, 1997; Figueira, 2000), rhizobia are essential in 

agriculture and crop production, particularly in nitrate-poor soils (Odee et al., 2002; 
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Viprey et al., 2000). Biological nitrogen fixation in legumes is often used to improve 

infertile agricultural soils (Rehman and Nautiyal, 2002). The symbiotic association of 

leguminous plants and rhizobia also has a crucial impact on the nitrogen cycle: 

estimates are that rhizobial symbioses, with a number greater than 100 important 

agronomical legumes, contribute nearly half to the annual quantity of nitrogen fixed 

biologically entering soil ecosystems (Somasegaran and Hoben, 1994; Zahran, 1999).  

 

Figure 1.1 – Scanning electron micrograph (SEM) of a nitrogen-fixing bacterium, Rhizobium 

leguminosarum, on the root hair of a pea plant, Pisum sativum. (in Burgess, 2010). 

 

 

 

Figure 1.2 – Scanning electron micrograph (SEM) of a root nodule on Pisum sativum caused by the 

nitrogen-fixing soil bacteria Rhizobium leguminosarum. (in Burgess, 2010). 
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The survival and symbiotic efficiency of rhizobial populations are influenced 

by several factors: the presence of the host plant, nutrient availability, soil 

characteristics, climatic factors and the level of exposure to abiotic stresses (Muglia et 

al., 2007). One of the abiotic stresses highly affecting symbiotic efficiency and 

rhizobia in agriculture soils is metal contamination (Broos et al., 2005; Wani et al., 

2008; Zhengwei et al., 2005). Nevertheless, the application of legume-rhizobia 

symbiosis in metal contaminated soils may also improve agriculture soils by 

diminishing soil contamination through metal extraction (Zhengwei et al., 2005).  

 

 

1.1.2. Metal contamination 

Many agricultural and industrial practices, as well as other anthropogenic 

activities, have been adversely affecting the environment, increasing the occurrence 

of several toxic compounds, such as metals, in the ecosystems (Pazirandeh and 

Mauro, 2000; Trajanovska et al., 1997). In the last decades, an increase of heavy metal 

contamination of water and soil has been considered as one of the most current 

troublesome environmental problems (Alloway, 1995a; Giller et al., 1998; Permina et 

al., 2006; Thorsen et al., 2009; Wani et al., 2008). These elements are ubiquitous and 

persistent pollutants that are introduced into the environment mainly through 

anthropogenic activities, such as smelters, power station industry, mining and the 

application of metal-containing pesticides, fertilizers, herbicides and sludges 

(Alloway, 1995a; Carrasco et al., 2005; Giller et al., 1989; McGrath et al., 1995; 

Robinson et al., 2001; Saxena et al., 1999). Atmospheric deposition of industrial dust, 

mining operations, incineration processes, burning of fossil fuels (Alloway and 

Steinnes, 1999) and military activities also contribute to the increased concentration 

of metals in soils (Giller et al., 1989; McGrath et al., 1995; Pazirandeh et al., 1998; 

Robinson et al., 2001).  Agricultural soils often present deficiencies in nutrients that 

affect plant growth and development, hence requiring the addition of fertilizers and 

sludges (Alloway, 1995a). According to Alloway (1995b), phosphate fertilizers are 

widely regarded as being the most ubiquitous source of cadmium (Cd) contamination 

in agricultural soils (< 500 mg. kg-1), since relatively high concentrations of this metal 
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can be found in phosphorites, used to manufacture these fertilizers. Sewage sludge 

application to land is also very common, resulting in an improvement of the soil 

physical and chemical characteristics (Abd-Alla et al., 1999; Giller et al., 1989; Obbard, 

2001), since sludges are a rich source of organic matter and inorganic nutrients, such 

as N, P, Ca and Mg (Chander and Brookes, 1993). However, there has been a growing 

concern over the use of sludges due to their content in non essential metals and other 

potential toxic compounds from both industrial and domestic sources (Horswell et al., 

2003; Obbard, 2001; Purchase and Miles, 2001), thus contributing to increase soil 

contamination. Metals become irreversibly immobilized in soil components being a 

cause of toxicity to microorganisms, plants, animals and in particular to humans 

(McGrath and Lane, 1989). Metals can accumulate in biological systems and 

ultimately be introduced into food web via different mechanisms (Giller et al., 1998). 

Among non essential metals, Cd is generally considered one of the most toxic 

elements, exhibiting highly adverse effects on soil biological activity and plant 

metabolism, even at low concentration (Carpena et al., 2003). Metal contamination in 

soils inhibits nodules formation and reduces the symbiotic efficiency on the formed 

nodules (Carpena et al., 2003; Chaudri, 1993; Chaudri et al., 2000; Giller et al., 1998; 

Hirsch et al. 1993; McGrath et al., 1995; McGrath et al., 1988), consequently affecting 

plant growth and crop production (Zhengwei et al., 2005).  

 

1.1.3. Cadmium  

Cd is a highly toxic metal, presence in the environment essentially due to 

human activities. Due to its severe toxicity, Cd is a serious threat to soil bacterial 

communities, as well as to plants, animals and other organisms, through the transfer 

of metal ions along the food chain, constituting a serious problem of public health 

(Ibekwe et al., 1995). According to the Agency for Toxic Substances and Disease 

Registry in 2009, Cd was considered to be one of the most toxic elements in the 

world. Cd is emitted to soil, water, and air as a consequence of the practice of several 

activities such as air emissions, waste and sewage disposal, industrial and mining 

processes, and application of phosphate fertilizers and sludges (Alloway and Steinnes, 
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1999; Obbard, 2001; Zhu et al., 1999). Unlike other metals that are considered 

essential nutrients in trace amounts (Gadd et al., 1990), Cd has no physiological 

function in terrestrial organisms, being considered toxic even at low concentrations 

(Adamis et al., 2004; Pan et al., 2009). Among the non-essential metals, Cd poses a 

most concerning threat due to its high mobility and bioavailability, being one of the 

reasons why metal contamination has been the concern of numerous scientific 

investigations. Cd has a much higher affinity for sulfur than for oxygen (Outten and 

O’Halloran, 2001), so its toxicity will be the result mainly of the affinity of Cd for 

sulfur generated during the biosynthesis of cysteine and of iron-sulfur centers; 

binding to thiol groups; and the replacement of other transition-metal cations from 

such sulfur-rich complex compounds (Helbig, 2008). Cd may enter living cells via 

transporters for the uptake of essential cations such as Ca, F and Zn (Clemens, 2006). 

Some of the toxic effects attributed to Cd in the intracellular environment are related 

to its ability to induce oxidative stress, by increasing cellular ROS (reactive oxygen 

species) levels (Sandalio et al, 2001; Winterbourn, 1982), which are extremely 

harmful to cellular components such as proteins, DNA and lipids (Romero-Puertas et 

al., 1999; Sandalio et al., 2001; Wolff et al., 1986,) and consequently to the cellular 

metabolism. This metal may also replace zinc and iron ions present in 

metalloenzymes, causing both the inactivation of the enzymes and the increase in free 

iron ions, which consequently increase the levels of oxidative stress (Stochs and 

Bagchi, 1995; Vido et al., 2001). Nevertheless, the major toxicity of Cd comes from its 

high affinity towards sulfhydryl groups (SH), inactivating important metabolic 

enzymes and consequently interfering with the cell metabolism (Bruins et al., 2000; 

Nies, 1992), potential resulting in cell death (Tamás et al., 2006). To cope with Cd 

toxicity, living organisms have developed different strategies and mechanisms 

(Prévéral et al., 2009), in order to reduce the concentration of cytosolic free Cd and 

hence its potential toxicity (Leverrier et al., 2007). 
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1.1.4. Cadmium tolerance mechanisms 

Despite the toxic effects of Cd, some microorganisms had develop diverse 

metal tolerance mechanisms (Roane and Pepper, 1999), such as energy-dependent 

efflux of the metal (Grass et al., 2000; Munson et al., 2000; Nies et al., 1998; Peitzsch 

et al., 1998; Purchase et al., 1997; Saltikov and Olson, 2002), precipitation as 

insoluble salts (Blake et al., 1993), immobilization of the metal within the cell wall 

(Cervantes and Gutierrez-Corona, 1994) and production of chelating agents (Silver 

and Phung, 1996; Lima et al., 2006). The search for other strategies that enhance Cd 

tolerance in bacteria will help us to understand how bacteria cope with metal stress. 

Under this context, Silver and Misra (1988) referred the importance of reevaluating 

the role of thiol in bacterial cell grown under Cd exposure.  

 

 

1.1.5. Glutathione and its cellular functions 

Glutathione (GSH) (Figure 1.3) is a well-known thiol-containing tripeptide and 

a ubiquitous molecule with several roles in the cell metabolism (Meister, 1995; 

Noctor and Foyer, 1998).  

 

Figure 1.3. Chemical forms of reduced glutathione (GSH) and oxidized glutathione (GSSG) (in Sakhi et 

al., 2006).  
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The tripeptide GSH is involved in the metabolism of sulfur-containing amino 

acids; in the biosynthesis of DNA; in the detoxification of toxic xenobiotics; in the 

scavenging of ROS and in the regulation of the redox environment of the cell by 

reducing disulfide proteins and other thiol containing molecules (Ashida et al., 2005; 

Griffith and Mulcahy 1999; Meister and Anderson, 1983). 

In bacteria GSH was also reported to be important in metal, acid, osmotic and 

oxidative stress induced by peroxides, such as hydrogen peroxide (H2O2) or alkyl 

hydroperoxides (Corticeiro et al., 2006; Figueira et al., 2005; Ferguson and Booth, 

1998; Lima et al., 2006; Masip et at al., 2006; Muglia et al, 2007; Riccillo et al., 2000; 

Vergauwen et al., 2003) and in protection against toxins like methylglyoxal, chlorine 

compounds like hypochlorous acid and monochloroamine (Chesney et al., 1996; 

Ferguson and Booth, 1998; Masip et al., 2006; Saby et al., 1999). Moreover, GSH was 

involved in the regulation of intracellular potassium levels (Ferguson and Booth, 

1998) and in preventing the formation of aberrant protein disulfides in the cytoplasm 

(Masip et al., 2006) and in the regulation of cell cycle (Meister, 1992). In Rhizobium, 

this tripeptide is one of the biomolecules with higher influence on tolerance of metals 

in free-living bacteria (Figueira et al., 2005, Lima et al., 2006) and plays an important 

role in the nodulation and fixation processes (Frendo et al., 2005; Harrison et al., 

2005; Helbig et al., 2008). GSH main functions are due to its sulfhydryl group (-SH), 

the electronic cloud surrounding the nucleus of an atom of sulfur is highly polarized, 

making GSH a highly reactive molecule (Adamis et al. 2004; Josephy et al., 1997). The 

abundance of GSH in aerobic organisms combined with their chemical properties, 

reinforces the importance of this tripeptide as a protective and detoxifying agent in 

many taxonomically diverse organisms such as bacteria, fungi, plants and animals 

(Josephy et al., 1997, Masip et al., 2006), being the most abundant low molecular 

weight thiol found in nature (Ferguson and Booth, 1998; Vergauwen et al., 2003).  
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1.1.5.1. Glutathione biosynthesis and recycling pathway 

In gram negative bacteria GSH biosynthesis is achieved by two steps and 

catalyzed by the products of gshA and gshB (Griffith and Mulcalhy, 1999; Janowiak, and 

Griffith, 2005; Masip et al., 2006; Meister, 1974; Meister and Anderson, 1983). The first 

step is catalyzed by gshA product, the cytosolic ATP-dependent enzyme γ-

glutamylcysteine synthetase (γ-GCS) that catalyzes the addition of cysteine and 

glutamate to produce γ-glutamylcysteine (Figure 1.3) (Meister, 1974).  

 

 

Figure 1.4. The schematic of GSH redox cycle shows the relationship between antioxidant enzymes and 

GSH. GSH is synthesized from the amino acids glutamate and cysteine by the action of γ-GCS, the rate-

limiting enzyme, followed glycine addition by GS. Both reactions are ATP-limited. GSH undergoes the 

GPx coupled reaction, thereby detoxifying reactive oxygen species (ROS). During this reaction, GSH is 

oxidized to generate GSSG, which is recycled back to GSH by the action of GR at the expense of NADPH2 

(adapted from Haddad, 2004) 

 

This reaction requires coupled ATP hydrolysis and Mg to form an amide bond 

between the c-carboxyl group of glutamate and the amino group of cysteine (Huang et 

al., 1993). The second step is the addiction of glycine to the dipeptide γ-
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glutamylcysteine to form GSH (Figure 1.3), a reaction catalyzed by gshB product,  the 

cytosolic ATP-dependent enzyme glutathione synthetase (GS) and also requires 

coupled ATP hydrolysis and Mg (Meister, 1974). γ-GSC enzyme is feedback inhibited 

by GSH, which binds to the glutamate binding site on the active site and at another 

position that interacts with the thiol group of GSH (Huang et al., 1988), being the rate-

limiting step in GSH synthesis (Kelly et al., 2002). 

GSH provides reducing equivalents for the glutathione peroxidase (GPx) 

catalyzed reduction of lipid hydroperoxides to their corresponding alcohols and 

hydrogen peroxide to water. In the GPx catalyzed reaction, the formation of a 

disulfide bond between two GSH molecules gives rise to oxidized glutathione (GSSG).  

The enzyme glutathione reductase (GR) recycles GSSG to GSH with the simultaneous 

oxidation of nicotinamide adenine dinucleotide phosphate (NADPH2) (Haddad, 2004).  

 

 

1.1.5.2. GSH as a metal chelator in Rhizobium leguminosarum 

In previous results it was demonstrated that GSH was dramatically increased 

in Rhizobium tolerant strains after Cd exposure, suggesting its importance in metal 

stress coping (Figueira et al., 2005). It was also demonstrated that the exposition to 

Cd induced oxidative stress in Rhizobium leguminosarum cells (Corticeiro et al., 

2006), however our findings suggested that the higher Cd tolerance presented by 

some Rhizobium strains was not related to a higher efficiency of the antioxidant stress 

mechanism, but to higher levels of intracellular GSH (Figueira et al., 2005). One 

important aspect of Cd ions is their ability to covalently bind to sulfhydril groups. 

Although this is partially the cause for its high toxicity, this feature is also used by 

several organisms to reduce its toxicity to the cell, through sequestration with metal-

detoxifying ligands, which converts it into a less harmful form. Some works have 

shown that isolate GSH molecules can also sequester Cd in yeast cells (Adamis et al., 

2004) and in Rhizobium leguminosarum (Lima et al., 2006). GSH-Cd complexes had 

been isolated, demonstrating that intracellular complexation in this species exists and 

it was proven to be an important intracellular Cd tolerance mechanism in Rhizobium 

leguminosarum (Lima et al., 2006). Although this mechanism was found to be present 
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in both tolerant and sensitive strains, different strains showed efficiency differences 

in the GSH-metal complexation, that are not understood. It is known however, that 

the efficiency of this mechanism correlates with variations in the tolerance of 

different strains to Cd. Understanding the complex formation between metal and GSH 

in Rhizobium is crucial to elucidate this molecular mechanism and to understand at 

what extent it confers protection against metal stress. The GSH-metal formation may 

be spontaneous, but can also be mediated or both. A strong candidate for mediating 

GSH-metal complexation are glutathione-S-transferases (GSTs), which are detoxifying 

enzymes present in all aerobic organisms (Vuillemier and Pagni, 2002). These 

enzymes catalyze the nucleophilic attack of the sulphur atom of GSH on the 

electrophilic group of other molecules. GSTs have been extensively studied in several 

species, including mammals, in which multiples isoforms are present. However much 

less information is available on the biological functions of bacterial GSTs (Allocatti et 

al., 2009), been mainly related with growth and with the degradation of aromatic 

compounds (Vuillemier and Pagni, 2002). Although the bind of metal ions to GSH was 

proven to be mediated by GSTs in yeasts (Adamis et al., 2004) it was not described in 

bacteria. 

  The fate of the complexes within the cell is another aspect that remains to be 

elucidated. It was already demonstrated the existence of a vacuolar membrane 

protein, the yeast cadmium factor protein (Ycf1p), which is involved in metal and 

drug detoxification in Saccharomyces cerevisiae (Li et al., 1997). It has been referred 

as an ATP-dependent pump able to transport organic GSH conjugates, GSH-metal 

complexes and GSH. In bacterial cells there are no vacuoles, however in gram-

negative bacteria, as Rhizobium, there is the periplasmic space where some 

polypeptide products can be sequestered (Herrmann et al., 2009; Marco, 2009). 

Recently it was described the transport of GSH by CydDC, also an ABC-type 

transporter, into the periplasmic space in E. coli (Pittman et al., 2005). So it is crucial 

to understand if the complexes or other GSH-conjugates are formed or transported 

into the periplasmic space, or if the GSH-Cd complexes are formed or accumulated in 

the cytoplasm. Each option entails different consequences for the cell. The 

complexation of metal ions in the periplasmic space reduce the amount of free ions in 

the cytoplasm, where their toxic effects are more detrimental. 
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1.1.6 General aims of this study 

The main aim of this thesis is to highlight the GSH-Cd chelation mechanism in 

Rhizobium. By increasing the knowledge on this intracellular Cd detoxification 

mechanism, it will be possible to understand the tolerance differences of bacteria to 

Cd and to develop strategies to improve bacterial tolerance to this metal. This aim 

will be accomplished by: 

 

A. The evaluation of the oxidative stress level experienced by Rhizobium 

leguminosarum strains at 50 % and 70 % growth inhibition, achieved by the 

quantification of lipid peroxidation and protein oxidation (Chapter 2). 

 

B. The study of GSH-Cd chelation mechanism at 50% and 70 % growth inhibitions  in 

Rhizobium leguminosarum  strains (Chapter 2), through the monitor of Cd and 

GSH levels as well as the formation of GSH-Cd complexes at 0h, 12h, 24h, 48h and 

72h. 

 

C. The purification of the periplasmic space and the determination of its importance 

in Cd tolerance (Chapter 3), by determining Cd and GSH subcellular distribution, 

and localization of the GSH-Cd.  

 

D. To analyze the influence of GSTs in the GSH-Cd complexes formation and their 

regulation under Cd exposure (Chapter 4), through the purification of GST 

isoforms present in bacterial cells in the absence and in the presence of Cd 

exposure. 
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Chapter 2 

GSH-Cd chelation mechanism in Rhizobium leguminosarum  

 

 

2.1. Introduction 

2.1.1. Cd toxic effects 

The permanent increased of metal pollution in agriculture soils, due to the 

current use of fertilizers and industrial and domestic sludge, is becoming one of the 

most troublesome environmental problems (Alloway, 1995a; Giller et al., 1998; 

Permina et al., 2006; Thorsen et al., 2009; Wani et al., 2008), which negatively affects 

rhizobia persistence in agricultural soils and its ability to form nitrogen-fixing 

nodules (Broos et al., 2005; Wani et al., 2008; Zhengwei et al., 2005).  

Cd deserves a particular attention, due to its high mobility and bioavailability 

in agriculture soils. This metal often causes toxicity to both eukaryotic and 

prokaryotic cells even at low concentrations (Prévéral et al., 2009; Zhengwei et al., 

2005), adversely influencing the survival and biodiversity of soil microbial 

communities (Roane and Pepper, 1999). Cd enters the cells through transports 

usually used for the uptake of essential cations such as calcium, iron and zinc 

(Clemens, 2006; Nies, 1992; Outtenand O’Halloran, 2001) and is a non-redox active 

metal, indirectly inducing oxidative stress by displacement of redox-active metals, by 

the depletion of endogenous radical scavengers, such as GSH, (Penninckx, 2002; 

Masip, 2006), or by affecting the activity of antioxidant enzymes. Nevertheless, the 

depletion of GSH is considered to be the main cause for the generation of ROS 
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(reactive oxygen species) and, consequently oxidative stress (Almazan et al., 2000; 

Avery, 2001; Ercal et al., 2001; Liu et al., 2005; Rikans and Yamano, 2000; Stohs et al., 

2001; Wolf and Baynes, 2007). ROS formation due to metal exposure enhanced lipid 

oxidation, consequently increasing membrane permeability (Gadd, 1993; Howlett and 

Avery, 1997). Nevertheless, the major toxicity of Cd comes from its high affinity 

towards sulfhydryl groups (SH), inactivating important metabolic enzymes and 

consequently interfering with the cellular metabolism (Bruins et al., 2000; Helbig et 

al., 2008; Nies, 1992).  

 

2.1.2. Glutathione 

GSH is a vital antioxidant and detoxifier, with important cellular functions in 

both prokariotic and eukaryotic organisms (Masip et al., 2006), being involved in the 

metabolism of sulfur-containing amino acids; in the biosynthesis of DNA and in the 

regulation of the redox environment of the cell by reducing disulfide proteins 

(Meister and Anderson 1983, Griffith and Mulcahy, 1999, Ashida et al., 2005). In 

bacteria GSH was also reported to be important in metal, acid, osmotic and oxidative 

stress (Corticeiro et al., 2006; Figueira et al., 2005; Ferguson and Booth, 1998; Lima et 

al., 2006; Masip et at al., 2006; Muglia et al, 2007; Riccillo et al., 2000; Vergauwen et 

al., 2003) and in protection against toxins like methylglyoxal and chlorine compounds 

(Chesney et al., 1996; Ferguson and Booth, 1998; Masip et al., 2006; Saby et al., 1999). 

GSH is synthesized in most organisms by the sequential action of γ-glutamylcysteine 

synthetase (γ-GCS) and GSH synthetase (GS) (Equation 2) (Griffith and Mulcalhy, 

1999; Meister and Anderson, 1983).  

 

 

 

 

 

 

 

L-glutamate + L-cysteine + ATP L- γ- glutamyl-L-cysteine + ADP + Pi (Equation 1) 

 

L-γ-glutamyl-L-cysteine  + glycine + ATP    GSH + ADP + Pi (Equation 2) 
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γ–GCS is the rate-limiting step in GSH synthesis and feedback inhibited by GSH 

(Huang et al., 1988; Kelly et al., 2002), for ensuring a constant level of GSH in the cell 

cytoplasm (Masip et al., 2006). 

 

2.1.3. GSH-Cd complex formation  

In previous results it was demonstrated that GSH was dramatically increased 

in Rhizobium tolerant strains after Cd exposure, suggesting its importance in metal 

stress coping (Figueira et al., 2005). It was also demonstrated that the exposition to 

Cd induced oxidative stress in Rhizobium leguminosarum cells (Corticeiro et al., 

2006), however our findings suggested that the higher Cd tolerance presented by 

some Rhizobium strains was not related to a higher efficiency of the antioxidant stress 

mechanism, but to higher levels of intracellular GSH (Figueira et al., 2005).  

Cd ions bind covalently to sulfhydril groups. Although this is partially the 

cause for its high toxicity, this feature is also used by several organisms to render the 

metal less harmful to the cell, through sequestration with metal ligands. Lima et al. 

(2006) demonstrated that GSH was related with bacterial tolerance to Cd due metal 

chelation. GSH-Cd complexes were isolated, demonstrating the existence of 

intracellular Cd chelation mechanism in Rhizobium leguminosarum and suggesting 

that the efficiency of this mechanism could justify the tolerance differences observed 

among different strains (Lima et al., 2006). Although this mechanism was found to be 

present in both tolerant and sensitive strains, different strains showed differences in 

the formation of GSH-Cd complexes which, remained to be clarified. Understanding 

the process of complex formation between metals and GSH in Rhizobium appears to 

be crucial to understand the extent of its protection against metal toxicity.  

 

2.1.4. Aims of the chapter: 

The intracellular GSH-Cd complexation mechanism has been reported in 

Rhizobium leguminosarum (Lima et al., 2006) when exposed to severe levels of stress 

(growth inhibitions of 80%). Although this mechanism had been described to such 

level of stress, the efficiency of the complexation mechanism at lower levels of metal 
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exposure remains unknown. Thus, the study of the GSH-Cd chelation mechanism at 

different degrees of metal exposure will highlight the real importance of this 

intracellular Cd tolerance mechanism. So, in this chapter this information was 

obtained by: 

 

A. Screening the Cd tolerance of two Rhizobium leguminosarum strains;  

B. Evaluating the cellular damage induced by different degrees of Cd exposure;  

C. Determining the enzymatic activity of γ-GCS under different levels of metal stress; 

D. Investigating the GSH-Cd chelation mechanism during R. leguminosarum growth; 

E. Determining the importance of the intracellular metal chelation mechanism in 

Rhizobium leguminosarum growing at different levels of Cd stress. 
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2.2. Material and methods 

 

2.2.1. Rhizobium strains and growth conditions 

Two Rhizobium leguminosarum biovar viciae strains, E20-8 and NII-1, formerly 

isolated from Pisum sativum, grown in soils from Estação Nacional de melhoramento 

de Plantas em Elvas, and previously used in other studies (Figueira, 2000; Figueira et 

al., 2005; Corticeiro et al., 2006; Lima et al., 2006), were screened for their Cd 

tolerance by growing in yeast extract – mannitol (YEM) medium (Somasegaran and 

Hoben, 1994) supplemented with increasing Cd concentrations. Cells were incubated 

at 26°C, in an orbital shaker at 200 rpm, during 72 h. To estimate growth, optical 

density was measured at 600 nm.  

 

2.2.2. Lipid peroxidation 

The level of lipid peroxidation in Rhizobium cells was determined in terms of 

malondialdehyde (MDA) content, after reaction with thiobarbituric acid (TBA), as 

described by Steels et al., (1994) with some modifications. One of the final products of 

lipid peroxidation is MDA which can react with TBA in vitro to form a chromogenic 

adduct that can be measured spectrophotometrically, with maximum absorption 

between 532 and 535 nm. Briefly, Rhizobium cells were collected, washed in ddH2O 

and centrifuged for 15 min at 10000 g and 4°C. The pellet was resuspended in 500 µl 

of 50 mM potassium phosfate buffer (pH 7.0) and disrupted by sonication for 15 s, at 

0.7 cycles. s-1. To each sample, 56 µl of 100 % TCA was added and the mixture was 

vortexed at a maximum speed for 1 min. Extracts were then centrifuged for 15 min at 

10000 g and 4°C. The reaction mixture containing 150 µl of supernatant, 100 µl of 

100 mM EDTA and 450 µl of a solution with TBA 1% (w/v), 50 mM NaOH 0.025% 

BHT (w/v) were kept in boiling water for 15 min and cooled on ice for 15 min. The 
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resulting mixture was centrifuged at 8000 g for 5 min and absorbance of the 

supernatant was measured at 532 nm. The measurements were corrected for non 

specific absorbance by subtracting the absorbance at 600 nm. The amount of MDA 

was calculated by using the extinction coefficient of 155 mM −1 cm−1. 

 

2.2.3. Protein oxidation 

Rhizobium cells were collected, washed in ddH2O and centrifuged for 12 min 

at 10000 g and 4°C. The pellet was resuspended in 500 µl of 10 mM phosphate buffer 

(pH 7.4) and 1mM EDTA and disrupted by sonication for 15 s, at 0.7 cycles. s-1. Cell 

extracts were centrifuged during 10 min at 10000 g and 4°C. This method (Levine et 

al., 1990) was based on the reaction of carbonyls resulting from free radical 

modification of proteins and 2,4-dinitrophenyl hydrazine (DNPH). Briefly,  5% of 

streptomycin was added to the sample and incubated for 20 min at room 

temperature. The resulting mixture was centrifuged at 4000 g for 5 min. 800 µl of 10 

mM DNPH in 2.5 mM HCl was added to 250 µl of sample extract, and the mixture was 

incubated in the dark for 1 hour. The sample was then precipitated with 1 ml of 20% 

(w/v) TCA, centrifuged at 10000 g for 10 min at 4°C and the supernatant discarded. 

The procedure was repeated with the addition of 1 ml of 10% (w/v) TCA. After being 

washed twice with 1 ml ethanol: ethyl acetate (1:1), the pellet was dissolved in 500µl 

of 20 mM sodium phosphate buffer (pH 2 - 3) containing 6 M guanidinium 

hydrochoride. The final mixture was incubated at 37°C during 15 min and centrifuged 

at 10000 g during 5 min at 4°C. Carbonyl concentration was calculated from the 

difference in absorbance recorded at 370 nm for DNPH-treated and HCl-treated 

(blank) samples and expressed in nmol of DNPH by mg protein. Protein carbonyl 

content estimated by using the molar absorption coefficient of 22 mM-1 cm-1 for 

DNPH derivatives.  
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2.2.4. Total thiol quantification  

Total thiol quantification was performed according to Ellman (1959) with 

some modifications. Rhizobium cells were collected, washed in ddH2O and 

centrifuged for 12 min at 10000 g and 4°C. The pellet was resuspended in 600 µl of 1 

M HCl and disrupted by sonication for 15 s, at 0.7 cycles. s-1. Cell extracts were 

centrifuged during 10 min at 10000 g and 4°C. The sample was neutralized with 0.1 M 

NaOH, after the addition of 800 µl of 100 mM Tris–HCl buffer (pH 8.6) and 1 mM 

EDTA. After incubation for 15 min at room temperature, 25 µl of 10 mM DTNB 

(Ellman’s reagent) prepared in 10 mM phosphate buffer (pH 7.5), was added. 

Derivatization was performed in the dark, for 30 min at 26°C. The intensity of the 

yellow colour formation due to 2-nitro-5-mercaptobenzoate was measured at 412 

nm, in a spectrophotometer (Beckman Model DU-68). Total thiols were quantified 

using GSH as standard. 

 

2.2.5. γ-Glutamylcysteine synthetase (γ-GCS) enzymatic assay 

γ-GCS activity was determined by following spectrophotometrically the ADP 

formation using the pyruvate kinase-lactate dehydrogenase-coupled assay (Seelig 

and Meister, 1985). Rhizobium cells were collected, washed in ddH2O and centrifuged 

for 12 min at 10000 g and 4°C. The pellet was resuspended in 500 µl of 600 mM Tris 

HCl buffer (pH 8.2), and disrupted by sonication for 15 s, at 0.7 cycles. s-1. Cell extracts 

were centrifuged during 10 min at 10000 g and 4°C. The reaction mixture, 

equilibrated at 37 °C, contained 250 µl of 600 mM Tris HCl buffer (pH 8.2), 100 µl  of 

250 mM L-glutamate, 100 µl of 250 mM L-aminobutyrate, 50 µl of 100 mM ATP, 50 µl 

of 100 mM (PEP) phospho(enol)pyruvate, 60 µl of 500 mM MgCl2, 100 µl of 1 M KCl, 

25 µl of 8 mM EDTA, 70 µl of 6 mM NADH, 35 µl of 200 U. ml-1 pyruvate kinase, 60 µl 

of 200 U. ml-1 lactate dehydrogenase, and 100 µl of cell extract, which was added last 

to start the reaction. The oxidation of NADH was monitored at 340 nm (ϵ = 6.2 mM -1) 

and was assumed to equal the rate of ADP formation. 1 U of enzyme was determined 

as the amount of enzyme used to form 1 µM produt. h-1. 
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2.2.6. Analysis of Cd complexes 

2.2.6.1. Cd extraction 

Rhizobium cells were harvested by centrifugation, for 10 min at 10000 g at 

room temperature. Cell pellets were suspended in ddH2O, immersed in an ultrasonic 

water bath for 5 min to release the loosely bound Cd and centrifuged for 10 min at 

10000 g and at room temperature. The supernatant was collected for metal 

quantification. For the intracellular Cd extractions, the procedure was followed as in 

Lima et al. (2006): the pellet was resuspended in 1ml of 100 mM HEPES (pH 8.6), 

1mM phenylmethylsulfonyl fluoride and 0.2% (v/v) Tween 20 and cellular disruption 

was achieved through ultrasonication with a low repeating duty cycle of 0.3 cycles. s-1 

in an ice bath for 10 min. Extracts were centrifuged at 14000 g, for 10 min at 4 °C and 

the supernatant collected. The remaining cell debris was again resuspended in 500 µl 

extraction buffer, and the procedure was repeated three more times, to assure the full 

extraction of intracellular Cd. The extracted supernatants were pooled and contained 

the intracellular, cytosolic Cd, which provided the material for the peptide–Cd 

complex characterisation. The Cd firmly bound to the cell walls was obtained by 

resuspending the remaining pellets with 1 ml of 400 mM HNO3. All extracts were sub-

sampled for metal quantification and immediately analyzed. 

 

2.2.6.2. Size exclusion chromatography 

Buffer Cd-extracts provided the material for the analysis of metal–peptide 

complexes, which were separated by gel filtration (Lima et al., 2006). Intracellular Cd 

extracts were eluted in a Sephacril S-100 column (25 cm×0.5 cm i.d.). The gel bed was 

equilibrated with degassed elution buffer, 10 mM HEPES (pH 8.0) and 300 mM KCl. 

Elution was achieved with an injection of 1ml of sample, at a flow rate of 0.4 ml. min-1, 

at room temperature. The absorbance was detected at 254 nm and fractions were 

collected every 2 min intervals. All fractions were sub-sampled for Cd quantification 

and those corresponding to peptide–Cd complexes were pooled and frozen for metal 

and peptide analysis. 
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2.2.6.3. Metal quantification 

Wall bound Cd, total intracellular Cd and Cd collected from eluted fractions 

were quantified by ICP-MS. 

 

2.2.6.4. HPLC analysis of the complexes 

In order to characterize the peptide nature of the Cd peaks, fractions were 

analyzed for their thiol content by HPLC, as described by Lima et al. (2006). Selected 

fractions were collected and complexes were dissociated by acidification with 0.4M 

HNO3. Thiols present in the Cd–peptide complex were analyzed by HPLC with pre-

column derivatisation with monobromobimane (mBBr). Samples (100 µl) were 

neutralized with 100 mM NaOH, after the addition of 200 µl of 0.1 M Tris–HCl buffer 

(pH 8.0), 1 mM EDTA and 25 µl of 2 mM DTE. After incubation for 1 h at room 

temperature, 50 µl of 20mM mBBr (Calbiochem) was added. Derivatization was 

performed in the dark, for 40 min at 35°C. The reaction was stopped by the addition 

of 5 % (v/v) acetic acid up to a total volume of 1.5 ml. Samples were stored at 4°C 

before RP-HPLC analysis. GSH and cysteine content was determined using GSH and 

cysteine as standard.  

 

2.2.7. Protein quantification 

Soluble protein concentration was measured following the method described 

by Bradford (1976) using bovine serum albumin (BSA) as standard. The assay was 

based on the binding of the dye Coomassie Blue G250 to protein, forming  a stable 

dye–albumin complex, which can be quantified spectrophotometrically at 595 nm.  

 

2.2.8. Statistical analysis 

For both strains, data from all the biochemical parameters were submitted to 

hypothesis testing using permutation multivariate analysis of variance with the 

PERMANOVA+ add-on in PRIMER v6 (Anderson et al., 2008), following the calculation 
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of Euclidean distance matrices among samples. A one-way hierarchical design, with 

the Cd exposure concentration as the main fixed factor, was followed in this analysis. 

The pseudo-F values in the PERMANOVA main tests were evaluated in terms of 

significance. When the main test revealed statistical significant differences (p<0.05), 

pairwise comparisons were performed. The t-statistic in the pair-wise comparisons 

were evaluated in terms of significance among different conditions and species. 

Values lower than 0.05 were considered as significantly different.  

The null hypotheses tested were: a) for each strain and for each biochemical 

parameter: no significant differences exist between Cd exposure concentrations; b) 

for each Cd exposure concentration and for each biochemical parameter: no 

differences exist between strains. 

The results obtained were represented as superscript letters (for each strain, 

Cd concentrations) or asterisks (for each Cd concentration, between strains) and the 

significance level for each comparison.  
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2.3. Results  

 

2.3.1. Susceptibility of Rhizobium leguminosarum strains to Cd 

To establish the tolerance levels of Rhizobium strains E20-8 and NII-1 to Cd, 

bacterial cells were incubated in YEM containing different metal concentrations, from 

0 to 1 mM Cd. Although Cd concentrations used in this study were reported to be 

higher than those observed in most contaminated ecosystems (Pan et al., 2009; 

Wagner, 1993), the growth of microorganisms at extreme stress levels was reported 

as crucial to trigger the tolerance mechanisms relevant for Rhizobium survival under 

Cd contaminated conditions (Figueira et al., 2005).  

 

Figure 2.1 – Cd tolerance of Rhizobium leguminosarum strain E20-8 (full circles) and strain NII-1 (open 

circles) exposed to increasing Cd concentrations during a 72h growth period. Results are expressed as 

the percentage of growth inhibition induced by metal exposure. Data are the means of three replicate 

experiments.  
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Cd tolerance of Rhizobium strains E20-8 and NII-1 was achieved by 

determining the growth inhibition levels induced by metal exposure during a 72h 

growth period (Figure 2.1). The results demonstrated that E20-8 Rhizobium strain 

was able to grow under all Cd concentrations used in this study, presenting growth 

inhibitions of 50% and 70% of the control at 100 and 200 µM Cd, respectively. The 

highest metal concentration tested, 1000 µM Cd, lead to a growth inhibition of 80% 

when compared to growth under control conditions. On the other hand, NII-1 

Rhizobium strain was not able to survive at Cd concentrations higher than 400 µM Cd, 

exhibiting at this concentration, a reduction of 98% when compared to the growth 

observed under control conditions. Growth inhibitions of 50% and 70% were 

detected at Cd concentrations of 25 and 50 µM Cd, respectively. Taking into 

consideration these results, from now on, E20-8 will be referred as tolerant and NII-1 

as sensitive to Cd. In order to be able to compare the stress level of each strain as well 

as the mechanisms induced by metal exposure, the subsequent studies will be 

performed at growth inhibitions of 50% and 70% of control for both strains, which 

implies that they will be grown at different Cd concentrations. The growth inhibition 

was chosen as a parameter to compare both strains, as it may be an indication that, 

although the Cd concentrations were different, metal exposure was inducing an 

equivalent stress level. Cd concentrations selected to perform the following analysis 

are summarized in table 2.1.  

 

Table 2.1. Cd concentrations inducing 50% and 70% growth inhibitions in Rhizobium leguminosarum 

tolerant (E20-8) and sensitive (NII-1) strains. 

 

Growth inhibition 

50 % 70% 

Tolerant strain (E20-8) 100 μM 200 μM 

Sensitive strain (NII-1) 25 μM 50 μM 
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2.3.2. Cellular damage 

The analysis of the cellular damage experienced by tolerant (E20-8) and 

sensitive (NII-1) strains under Cd exposure was performed to demonstrate that 

similar growth inhibitions were related to similar oxidative stress degrees in both 

Rhizobium leguminosarum strains. Cellular damage provided information concerning 

the toxic effect of Cd in Rhizobium leguminosarum cells, particularly the estimation of 

lipid peroxidation and protein oxidation levels. Both assays were also performed in 

Rhizobium cells growing under control conditions (absence of Cd) determining lipid 

peroxidation and protein oxidation levels under non stress conditions.   

 

2.3.2.1. Lipid peroxidation 

 

Figure 2.2 – Lipid peroxidation levels of Rhizobium leguminosarum tolerant (blue bars) and sensitive 

(red bars) strains under control and Cd exposure. Data are the means of three replicate experiments, 

with standard errors. Different letters represent different significant differences (p < 0.05) between 

treatments and asterisks represent different significant differences (p < 0.05) between strains in the 

same treatment. 

Lipid peroxidation, resulting of free radical attack to membrane lipids (Heath 

and Packer, 1968), was determined in both Rhizobium strains, under control 
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conditions and under Cd exposure (at 50% and 70% growth inhibition). Results are 

presented in Figure 2.2. In the tolerant strain, E20-8, a 50% growth inhibition did not 

significantly (p> 0.05) affect lipid peroxidation level, compared to control. However 

under a higher degree of metal stress, 70% growth reduction, a significant (p< 0.001) 

increased in lipid peroxidation was observed from 2.72 nmol. mg protein-1 under 

control conditions to 7.41 nmol. mg protein-1. In the sensitive strain, lipid 

peroxidation levels were significantly enhanced by Cd exposure at 50% (p<0.001) 

and 70% (p<0.05) growth inhibition, from 2.15 nmol. mg protein-1 to 3.83 and 7.82 

nmol. mg protein-1, respectively. Lipid peroxidation levels were not significantly 

(p>0.05) different between strains at 70% growth inhibition. 

 

2.3.2.2. Protein oxidation 

 

Figure 2.3. – Protein oxidation levels of Rhizobium leguminosarum E20-8 (blue bars) and NII-1 (red 

bars) strains under Cd exposure. Data are the means of three replicate experiments, with standard 

errors. Different letters represent different significant differences (p < 0.05) between treatments and 

asterisks represent different significant differences (p < 0.05)  between strains in the same treatment. 

Protein oxidation levels were measured in Rhizobium strains, under control 

conditions and under Cd exposure (at 50% and 70% growth inhibition). Results are 
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expressed in figure 2.3. Similar to lipid peroxidation results, Cd exposure inducing a 

50% growth inhibition was not sufficient to affect significantly (p>0.05) protein 

oxidation levels in Rhizobium tolerant strain. Nevertheless, under a severe stress 

exposure, 70% growth reduction, protein oxidation was significantly (p< 0.05) 

enhanced from 7.59 nmol. mg protein-1 to 11.31 nmol. mg protein-1. Sensitive strain 

presented higher protein oxidation values under both Cd exposures when compared 

to the control. Cells exposed to 25 μM Cd, 50% growth inhibition, presented a protein 

oxidation value of 11.02 nmol. mg protein-1, while in cells expose to 50 μM Cd, 70% 

growth inhibition, the levels of protein carbonylation were 27.81 nmol. mg protein-1. 

Comparing both strains, under control conditions the protein oxidation levels were 

not significantly (p>0.05) different. However, Cd exposure leaded to higher protein 

carbonylation levels at both, 50% (p< 0.05) and 70% (p< 0.001) growth inhibition.  

 

2.3.3. Total thiol content in Rhizobium leguminosarum  

 

Figure 2.4 – Total thiol levels of Rhizobium leguminosarum tolerant (blue bars) and sensitive (red bars) 

strains growing under Cd exposure. Data are the means of three replicate experiments, with standard 

errors. Different letters represent different significant differences (p < 0.05) between treatments and 

asterisks represent different significant differences (p < 0.05) between strains in the same treatment. 
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GSH is considered to be crucial to Rhizobium leguminosarum metal tolerance, 

having important functions in the antioxidant machinery and in metal detoxification 

(Masip et al., 2006; Lima et al., 2006).  Taking this into consideration, total thiol levels 

were quantified in Rhizobium cells growing in the absence of metal and under Cd 

exposure. Results are presented in figure 2.4.  

Total thiol levels of Rhizobium tolerant strain were enhanced due to Cd stress 

(p< 0.001). At 100 μM Cd, 50% growth inhibition, total thiols were 217.2 nmol. mg 

protein-1, almost 2.5 higher than the value measured in the control. In Rhizobium cells 

exposed to a higher metal concentration, 70% growth reduction, the thiol level was 

125.9 nmol. mg protein-1. It is important to notice that, in the tolerant strain, cells 

with a growth inhibition of 70% presented a lower total thiol content (p< 0.001) than 

cells exposed to Cd concentrations inducing a 50% growth reduction, nevertheless 

the thiol level remained higher (p< 0.001) than controls.  

In R. leguminosarum sensitive strain, total thiol levels were also enhanced (p< 

0.05) by Cd exposure, being the highest value registered at a growth inhibition of 

50%, 106.6 µmol. mg protein-1, twice the value measured in control conditions.  

Comparing both strains, results demonstrated marked differences between the 

tolerant and the sensitive strain at all conditions: under control conditions, R. 

leguminosarum tolerant strain had higher thiol content than the sensitive strain 

(p<0.05); under Cd exposure both strains demonstrated the ability to increment 

intracellular thiol pool, although the tolerant strain presented higher (p< 0.001) 

ability to increase total thiol levels, than the sensitive strain, NII-1.  

 

 

2.3.4. γ-Glutamylcysteine synthetase in Rhizobium leguminosarum  

GSH is synthesized in a highly conserved two-step ATP-dependent 

biosynthesis pathway by two specific enzymes: γ-Glutamylcysteine ligase (γ-GCS) and 

Glutathione synthetase (GS), being the first the key step of GSH synthesis. So in order 

to understand if GSH synthesis was affected by Cd exposure, γ-GCS activity was 

determined in R. leguminosarum strains under control conditions and under metal 

stress. Results indicate that γ-GCS activity was significantly (p<0.001) enhanced by Cd 
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exposure in R. leguminosarum  tolerant strain, being observed an increment  of 3.6 

and 2.7– fold at 50% and 70 % growth inhibition, respectively (figure 2.5). In the 

sensitive strain, γ-GCS activity was also significantly (p<0.05) affected by Cd 

exposure, nevertheless the increment under Cd stress was only 1.5 – fold, under both 

levels of metal stress. 

The comparison of γ-GCS enzyme activity of both strains showed that, 

although the enzymatic activity of E20-8 tolerant strain was significantly (p<0.05) 

higher in the absence of metal stress, the increment detected under metal exposure 

was also much higher (p<0.001) than in the sensitive strain. 

 

Figure 2.5 – γ-Glutamylcysteine ligase (γ-GCS) activity of Rhizobium leguminosarum tolerant (blue 

bars) and sensitive (red bars) strains growing under Cd exposure. Data are the means of three 

replicate experiments, with standard errors. Different letters represent different significant differences 

(p < 0.05) between treatments and asterisks represent different significant differences (p < 0.05) 

between strains in the same treatment. 

 

2.3.5. Cd distribution within Rhizobium leguminosarum cells 

Different growth inhibitions due to Cd exposure revealed significant 

alterations in cellular damage and in intracellular thiol content. To better understand 
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exhibited by E20-8 and NII-1 Rhizobium strains, it was important to analyze the 

intracellular Cd levels as well as the efficiency of the GSH-Cd chelation mechanism 

during the growth period of both Rhizobium leguminosarum strains. 

The first approach was to determine the intracellular Cd content in Rhizobium 

cells, knowing that not all the metal present into the growing medium is usually 

assimilated by bacterial cells and that, mostly of the cellular Cd was expected to be 

retained in the cell wall (Bianucci et al., 2012; Lima et al., 2006; Pereira et al., 2006). 

Cd partitioning into wall bound Cd and intracellular Cd was achieved by separating 

cells into two distinct fractions: the cell walls and the intracellular fraction. The 

intracellular Cd was obtained through sequential extractions with an alkaline buffer 

and the metal bound to cell walls, was separated by acid-extraction of the cellular 

debris resulting from the intracellular Cd extractions. The partitioning results 

through the sub-cellular fractions are presented in Table 2.2.  

 

Table 2.2 - Cd partitioning in Rhizobium leguminosarum strains E20-8 (tolerant) and NII-1 (sensitive) 

exposed Cd. Data are the means of three replicate experiments with standard errors. Different letters 

represent different significant differences (p < 0.05) between treatments and asterisks represent 

different significant differences (p < 0.05) between strains in the same treatment. 

Strain 
Cd 

treatment
(µM )  

Growth 
inhibition 

Cell wall bound Cd 
(µmol. mg protein-1) 

Intracellular Cd 
(µmol. mg protein-1) 

Intracellular 
Cd (%) 

E20-8 
100 50% 242.76  ± 64.62 (a*) 18.79 ± 7.26 (b*) 6.9 

200 70% 277.87 ± 85.75 (a*) 92.81 ± 29.85 (c*) 18.8 

NII-1 
25 50% 127.04  ± 10.17 (a* *) 10.55 ± 1.05 (b* *) 20 

50 70% 110.22  ± 10.61 (a* *) 6.36 ± 1.15 (b**) 9.3 

 

Cd distribution differed between cellular fractions, being mostly bound to the 

cell walls. The concentration of Cd bound to the cell wall was clearly higher in the 

tolerant strain, E20-8, than in the sensitive strain. In both strains wall bound Cd was 

not significantly (p>0.05) affected by the level of Cd exposure. Under a growth 

inhibition of 50%, the tolerant strain accumulated 18.79 µmol Cd. mg protein -1, 

intracellular. This concentration increased almost 5-fold to 92.8 µmol Cd. mg protein -
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1 at 70% growth inhibition. The sensitive strain accumulated 10.55 µmol Cd. mg 

protein -1 intracellular at 50% growth inhibition and the concentration decreased to 

6.36 µmol Cd. mg protein -1, at 70% growth inhibition. These results clearly show 

that, despite being more tolerant to Cd, the E20-8 strain accumulated more Cd 

intracellular than the sensitive strain. 

 

 2.3.6. Intracellular Cd and GSH content 

Although the majority of Cd was wall bound, it was crucial to investigate 

intracellular Cd tolerance mechanisms as the metal present in the cytoplasm is 

considered highly toxic to the bacterial cells, by disturbing cellular metabolism and 

consequently affecting Rhizobium survival. Thus, intracellular Cd and GSH levels were 

monitored during the 72 h of bacterial growth, to determine the profile of cellular Cd 

uptake and the GSH levels in both Rhizobium leguminosarum strains.    

 

2.3.6.1 Intracellular Cd accumulation in Rhizobium cells 

Intracellular Cd levels were monitored during a 72 h growth period (in the 

stationary phase) and Cd levels quantified, at 0h, 12h, 24 h, 48 h and 72 h (figure 2.6).  

At 50% growth inhibition, the tolerant strain E20-8 presented intracellular 

metal levels significantly (p<0.05) increased during the first 12 h of growth, followed 

by significant reduction (p<0.05) after 24 h of stress, to increase once more (p< 0.05), 

reaching the highest level of Cd accumulation at 72 h of metal exposure. At 70% 

growth inhibition Cd accumulation was initially (12 h) low, followed by an increment 

until 48 h, and after that Cd accumulation stabilized until 72 h of growth.  

In the sensitive strain, NII-1, the profile of Cd uptake during the growth period 

was dependent of the degree of metal exposure. At a 50% growth inhibition, 3.59 

µmol. mg protein-1 of intracellular Cd (34%) was uptake during the first 12h of 

growth, a level which was not significantly different (p> 0.05) from the 

quantifications performed after 24h and 48h of metal exposure; the highest amount 
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of Cd uptake was observed at 72h, reaching an intracellular Cd concentration of 10.55 

µmol Cd. mg protein-1. 

 

 

Figure 2.6 – Total intracellular Cd levels during growth period of Rhizobium leguminosarum strains, 

tolerant (A), under a 50% (Full triangles) and 70% (Full circles) of growth inhibition, and sensitive (B) 

under a 50% (Open triangles) and 70% (Open circles) of growth inhibition. Intracellular Cd was 

quantified at 0h, 12h, 24h, 48h and 72h of the growth period. Data are the means of three replicate 

experiments. Standard errors are less than 10%. Different letters represent different significant 

differences (p < 0.05). 
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In the sensitive strain, at 70% growth inhibition, 5.28 µmol Cd. mg protein-1  

(50%) entered the cells during the first 12 h of exposure, and increased steadily again 

between 24 h and 48 h of growth, reaching the highest value, 10.5 µmol Cd. mg 

protein-1. At 72 h, the metal present in the intracellular was 6.4 µmol. mg protein-1. It 

is important to underline that, at 70% growth inhibition the intracellular Cd 

concentration at 72h was lower than the concentration observed at 50% growth 

inhibition. The results also demonstrated that intracellular Cd levels of Rhizobium 

tolerant strain were always higher than the levels quantified in the sensitive strain, 

under the same degree of metal stress, indicating that E20-8 had to cope with higher 

intracellular metal concentrations during the entire growth period. 

 

2.3.6.2. Intracellular GSH content of Rhizobium cells 

The analysis of the thiol pool of bacterial cells demonstrated that GSH was the 

main thiol in Rhizobium leguminosarum strains, being also quantified very small 

amounts of cysteine (results not shown). Taking this into consideration total thiol 

levels will be hereafter referred only as GSH. Intracellular GSH levels during the 72 h 

of Rhizobium growth (0 h, 12 h, 24 h, 48 h and 72 h) under control conditions and 

under Cd exposures are present in figure 2.7.  

In the absence of metal stress, intracellular GSH levels of the tolerant strain 

increased to 51.86 µmol. mg protein-1 (61%) at the first 12 h of growth, reaching 

78,12 µmol. mg protein-1 GSH (92%) after 24 h. The maximum value of intracellular 

GSH observed in E20-8 under control conditions was 84. 35 µmol. mg protein-1, at 72 

h of growth. At a Cd exposure inducing a 50% growth inhibition, the tolerant strain 

demonstrated the ability to increment GSH levels during the 72 h of growth: thiol 

levels incremented to 76.71 µmol. mg protein-1 (37%) during the first 12 h of growth, 

after 48 h reached 187.81 µmol. mg protein-1 (92%). The highest intracellular GSH 

level observed in the tolerant strain was 204. 74 µmol. mg protein-1 determined at 72 

h. GSH profile in the tolerant strain, at 70% growth inhibition, was different from 

other treatments. Intracellular GSH concentrations reached 87.82 µmol. mg protein-1 

(72%) during the first 24 h of growth, but at 48 h decreased to 70.55 µmol. mg 
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protein-1, 58% of the highest GSH concentration determined (120.63 µmol. mg 

protein-1) at 72 h.  

 

 

 

Figure 2.7 – Intracellular GSH levels during growth period of Rhizobium leguminosarum strains, 

tolerant (A), under control conditions (Full squares), and under a 50% (Full triangles) and 70% (Full 

circles) of growth inhibition, and sensitive (B) under control conditions (Open squares), and under 

50% (Open triangles) and 70% (Open circles) of growth inhibition. Intracellular Cd was quantified at 

0h, 12h, 24h, 48h and 72h of the growth period. Data are the means of three replicate experiments. 

Standard errors are less than 10 %. Different letters represent different significant differences (p < 

0.05) between treatments and asterisks represent different significant differences (p < 0.05) between 

strains in the same treatment. 
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When the sensitive strain grew under control conditions, GSH content reached 

45.27 µmol. mg protein-1, 89 % of the total intracellular GSH at 12 h. After 24 h the 

tripeptide level increased to 48.00 µmol. mg protein-1 (95%), continuing to be 

enhanced to 50.52 µmol. mg protein-1 at 72 h. At 50% growth inhibition, the 

tripeptide levels increased to 8.77 µmol. mg protein-1 (80%) during the first 12 h of 

growth. The value observed at 24 h was lower (72%), recovering in the subsequent 

24 h, reaching 96% of the intracellular GSH level (95.12 µmol. mg protein-1) 

registered at 72 h. At 70% growth inhibition, after the first 12 h of growth GSH was 

8.19 µmol. mg protein-1 (78%), of the highest value recorded. After 24 h of growth it 

was observed a decrease to 5.29 µmol. mg protein-1 (54%), only recovered at the end 

of the growth (72 h), which presented the highest GSH value observed in NII-1 to this 

treatment, 63.05 µmol. mg protein-1. Although the intracellular GSH levels were 

higher in Rhizobium tolerant strain in control conditions. The highest difference 

between the two strains were in the presence of Cd, tolerant strain demonstrated a 

higher ability to increase the thiol levels under metal stress, particularly at 50% 

growth inhibition, than sensitive strain. Nevertheless both strains presented higher 

levels of intracellular GSH under Cd exposure, being that increment more evident 

under a lower degree of metal stress. 

 

2.3.6.3. Intracellular Cd complexation  

Rhizobium leguminosarum strains possess tolerance mechanisms to cope with 

metal toxicity. The formation of GSH-Cd complexes was already described in 

Rhizobium leguminosarum (Lima et al., 2006) as an important intracellular Cd 

detoxification mechanism dependent on GSH. Lima et al. (2006) also suggested that 

the efficiency of the complexation mechanism could justify differences in Cd 

tolerance, detected among Rhizobium strains. Thus in this chapter, it was investigated 

the GSH-Cd complexation mechanism during the Rhizobium leguminosarum growth 

(figure 2.8 – 2.11). The analysis of GSH-Cd complexes was performed in Rhizobium 

leguminosarum cells exposed to Cd stress (figures 2.8 and 2.9) at 12 h, 24 h, 48 h and 

72 h of the growth period. The results were obtained by undertaking three distinct 
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analyses: the separation of the intracellular peptide content through size exclusion 

chromatography and the quantification, in each separated protein peak, of Cd by ICP-

MS and GSH by RP-HPLC. 

 

 

Figure 2.8. Cd (A) and GSH (B) content in the separated protein peak determined in Rhizobium 

leguminosarum tolerant strain under a 50% (Full triangles) and 70% (Full circles) of growth inhibition. 

Intracellular Cd and GSH levels were quantified at 0h, 12h, 24h, 48h and 72h of the growth period. Data 

are the means of three replicate experiments with standard errors. Different letters represent different 

significant differences (p < 0.05). 

Results demonstrated the presence of Cd in GSH peak, indicating the existence 

of the GSH-Cd complexation mechanism in both, tolerant and sensitive Rhizobium 
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strains, growing under metal exposure. Complex formation was first detected after 12 

h of growth, as it was possible to quantify a significant level of intracellular Cd 

chelated to GSH. The highest intracellular metal concentration observed in GSH peak 

was detected after 72 h of growth (figure 2.8A and 2.9A), when the level of GSH 

available to form the GSH-Cd complexes also was the maximum (figure 2.8B and 

2.9B).  

In the tolerant strain, at a 50% growth inhibition, Cd quantified in GSH peak 

during the first 12 h of stress was 4.31 µmol Cd. mg protein-1, after 24 h the metal GSH 

chelated decreased (p<0.05), recovering to 9.05 µmol Cd. mg protein-1 after 72 h of 

growth (p<0.05) (figure 2.8A). At 70% growth inhibition, the concentration of Cd 

chelated during the first 12 h was lower (p<0.05), 2.42 µmol Cd. mg protein-1, but was 

continuously increased (p<0.05) during the 72 h of metal exposure, when 36.59 µmol. 

mg protein-1 Cd was observed in GSH protein peak (figure 2.8B). GSH concentrations 

present in protein peak and were also dependent on the level of stress and growth 

phase. In Rhizobium tolerant strain, during the first 12 h of growth, GSH chelated to 

Cd was 19.88 µmol. mg protein-1; the highest GSH complexed with Cd was quantified 

after 48 h of metal exposure, 99.40 µmol. protein-1, and was not significantly different 

(p>0.05) from the GSH concentration observed after 72 h of growth. At 70% growth 

inhibition, GSH detected in the peptide peak was 25.09 µmol. protein-1 after 12 h of 

growth, and was enhanced, reaching 80.39 µmol. protein-1 at 72 h.  

Similar profiles were registered to NII-1 sensitive strain, although Cd chelated 

to GSH chelated was much lower than in the tolerant strain (figures 2.9A e 2.9B). At 

50% growth inhibition 0.32 µmol Cd. mg protein-1 were quantified during the first 12 

h and after 72 h the Cd chelated to GSH was 1.53 µmol Cd. mg protein-1; at 70% 

growth inhibition 0.21 µmol Cd. mg protein-1 of metal were quantified after 12 h of 

exposure and the highest value of metal chelated to GSH was 1.69 µmol. mg protein-1 

at 72 h of growth. The GSH levels complexed to Cd in Rhizobium sensitive strain are 

represented in figure 2.9.B. At 50% growth inhibition, the level of GSH quantified 

after 12 h of exposure increased to 8.77 µmol. protein-1 until the end of growth 

period, when GSH concentration was 13.11 µmol. protein-1. At 70% growth inhibition, 

GSH concentrations during the first 12 h and after 72 h of growth were not significant 
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different (p> 0.05) from the values quantify at 50% growth inhibition to the same 

growth phases, nevertheless it was possibly to detected a decreased in GSH  chelated 

to Cd at 24 h and 48 h of stress. 

 

 

Figure 2.9 - Cd (A) and GSH (B) content in the separated protein peak in Rhizobium leguminosarum 

sensitive strain under a 50% (Open triangles) and 70% (Open circles) of growth inhibition. 

Intracellular Cd and GSH levels were quantified at 0h, 12h, 24h, 48h and 72h of the growth period. Data 

are the means of three replicate experiments with standard errors. Different letters represent different 

significant differences (p < 0.05). 

Taking into account the levels of total and complexed intracellular Cd and GSH, 

(figures 2.6 – 2.9), differences between strains emerged. In order to highlight those 
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differences, the relative amount of Cd and GSH involved in the chelation process was 

obtained and expressed as percentage of total intracellular Cd and as percentage of 

total intracellular GSH (figures 2.10 – 2.11). 

 

 

Figure 2.10 – Cd (A) and GSH (B) chelated in the separated protein peak as percentage of the total 

intracellular Cd and GSH, respectively, quantified during growth period of Rhizobium leguminosarum 

tolerant strain under a 50% (Full triangles) and 70% (Full circles) of growth inhibition. Intracellular 

Cd and GSH levels were obtained at 0h, 12h, 24h, 48h and 72h of the growth period. Data are the 

means of three replicate experiments with standard errors. Different letters represent different 

significant differences (p < 0.05).  
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Figure 2.11- Cd (A) and GSH (B) chelated in the separated protein peak as percentage of the total 

intracellular Cd and GSH, respectively, quantified during growth period of Rhizobium leguminosarum 

sensitive strain under a 50% (Open triangles) and 70% (Open circles) of growth inhibition. 

Intracellular Cd and GSH levels were obtained at 0h, 12h, 24h, 48h and 72h of the growth period. Data 

are the means of three replicate experiments with standard errors. Different letters represent different 

significant differences (p < 0.05). 

In Rhizobium leguminosarum tolerant strain (figure 2.10.), at a 50% growth 
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growth and maintained (p> 0.05) after 72 h of metal exposure. At 70% growth 

inhibition, the efficiency of metal chelation was initially (first 12 h of growth) modest, 

only 6% of the total intracellular Cd was chelated. Nevertheless it increased steadily 

the following 12 h, reaching 32% at 24 h and increased until the end of the growth 

period (72 h) reaching 52 % of total intracellular Cd. 

The GSH-Cd complexation mechanism should also be evaluated by the ability 

to increase GSH levels and the percentage of thiol used in metal chelation should also 

be considered as an important indicator of the efficiency of this intracellular Cd 

detoxification mechanism. Thus, the percentage of GSH used in metal chelation was 

also analyzed during metal exposure. In Rhizobium tolerant strain (figure 2.10.B), at 

50% growth inhibition, the percentage of GSH use to chelate Cd increased during the 

first 24 h, when 58.1% of GSH was chelated to Cd, but decreased with time, and at 72 

h only 47.6% of GSH was found to be metal chelated. At 70% growth inhibition, 

during the first 48 h of growth the tolerant strain was able to increase the percentage 

of GSH used to chelate Cd, 65.7% reaching at this time a  “plateau”.   

In the sensitive strain, the percentage of intracellular Cd chelated to GSH was 

9% to 14% at a growth inhibition of 50%, and 4 to 27% at 70% growth inhibition 

(figure 2.11.A). NII-1 showed a low GSH ability to chelate Cd. At 50% growth 

inhibition, the percentage of GSH bound to Cd was never higher (p>0. 05) than 15.9% 

of the total intracellular GSH level. At 70 % growth inhibition, presented similar 

percentages to 50% growth inhibition of GSH chelated to Cd in the first 24 h. 

Increasing at 48 h and at 72 h, when the percentage was the highest recorded 

(23.4%).   
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2.4 Discussion 
 

2.4.1 Rhizobium tolerance to Cd 

 

In previous reports (Corticeiro et al., 2006; Lima et al., 2006), it was 

demonstrated the importance of intracellular GSH in Cd detoxification at extreme Cd 

stress levels, (80% growth inhibition) in Rhizobium leguminosarum. At that time the 

question if intracellular Cd chelation by GSH is only triggered as an ultimate effort to 

survive or if it is a cellular response to decrease intracellular Cd ions toxicity, induced 

at lower metal stress levels was raised. Thus, the study of the GSH-Cd chelation 

mechanism at different degrees of Cd stress during Rhizobium growth was believed to 

be crucial to better understand the role of the tripeptide GSH in Cd tolerance.  

Previous results had already described E20-8 and NII-1 as Cd tolerant and Cd 

sensitive, respectively (Figueira et al., 2005; Lima et al., 2006). The screening of Cd 

tolerance performed in this thesis was important to show that tolerance differences 

between these Rhizobium leguminosarum strains were maintained, even though these 

strains had been preserved for several years in laboratory conditions. In this chapter 

results demonstrated that R. leguminosarum strain E20-8 was able to grow at 1000 

μM Cd, while NII-1 strain did not survive to Cd concentrations higher than 400 μM Cd. 

E20-8, the tolerant strain, presented a growth inhibition of 50% at 100 μM Cd and of 

70% at 200 μM Cd, and NII-1, the sensitive strain, presented a growth inhibition of 50 

% at 25 μM Cd and of 70% at 50 μM Cd (figure 2.1). Cd concentrations inducing 

growth inhibition of 50% and 70% were chosen to perform the subsequent analysis, 

in order to investigate the importance of the GSH-Cd chelation mechanism in stress 

levels inferior to those reported by Lima et al., (2006), as different degrees of metal 

stress could trigger distinct cellular responses (Hu et al., 2005; Roane and Pepper, 

1999). Roanne and Pepper (1999) observed that some bacterial Cd-resistant 

populations increase resistance under higher levels of metal stress, and therefore 

suggested a possible change in resistance mechanism, depending on the level of Cd 

exposure. A similar conclusion was obtained in Pseudomonas putida exposed to 
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different Copper (Cu) concentrations (Rensing et al., 2002). So, the GSH-Cd 

complexation mechanism found in R. leguminosarum under 80% growth inhibition 

(Lima et al., 2006) could not be so important in bacterial tolerance under low levels of 

metal stress. 

 

  

2.4.2 Cd, cellular damage and the importance of GSH 

Cd had been described as a non redox-active metal, although indirectly 

inducing oxidative stress (Penninckx, 2002), due to the formation of reactive oxygen 

species (ROS). ROS damage biologically relevant macromolecules, such as nucleic 

acids, membrane lipids and proteins (Mostertz and Hecker, 2003), leading to cellular 

damage. Lipids are considered to be major targets during oxidative stress (Bianucci et 

al., 2012). Free radicals can attack directly polyunsaturated fatty acids in membranes 

and initiate lipid peroxidation. A primary effect of lipid peroxidation is a decrease in 

membranes fluidity, which alters their properties and can disrupt membrane-bound 

proteins significantly (Cabiscol et al., 2000). Thus, the determination lipid 

peroxidation was crucial to assess the level of cellular damage experienced by 

bacterial strains. Cellular damages, lipid peroxidation (figure 2.2) and protein 

oxidation (figure 2.3), in Rhizobium tolerant strain were not affected in a Cd 

exposition inducing 50% growth inhibition, probably due to the higher levels of total 

thiols. Only the higher stress level (70% growth inhibition) affected lipid 

peroxidation, inducing an increment in MDA levels. The sensitive strain presented 

higher lipid peroxidation and protein oxidation levels than the control, under both 

metal exposures. Similarly it was observed a significantly increase in lipid peroxides 

in Bradyrhizobium sp. (Bianucci et al., 2012) and in E. coli when exposed to Cd (Helbig 

et al., 2008; Pacheco et al., 2008). Due to the rapid turnover of proteins, protein 

oxidation is considered to contribute less prominently to total cellular damage (Mayo, 

2003). A severe Cd exposure, leading to a growth inhibition of 70%, induced a higher 

degree of cellular damage in both Rhizobium strains, possibly as a consequence of the 

lower levels of total thiols. The depletion of reduced GSH and protein-bound 

sulfhydryl groups also resulted in the production of ROS, consequently, it enhanced 
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cellular damage, such as lipid peroxidation and protein oxidation (Stohs and Bagchi, 

1995). Corticeiro et al., (2006) demonstrated that the oxidative status in tolerant 

Rhizobium strains was better maintained due to the ability to improve GSH:GSSG 

ratio, than NII-1 Rhizobium sensitive strain. So, as it was reported by Corticeiro et al. 

(2006), these results demonstrated that the R. leguminosarum tolerant strain was 

able to better tolerate Cd stress. The aptitude to better cope with metal stress was 

believed to be dependent on its ability to improve or maintain the intracellular thiol 

pool (Figueira et al., 2005; Lima et al., 2006). Cd exposure lead to an increase in total 

intracellular thiol levels in both strains (figure 2.4), primarily at 50% growth 

inhibition. Nevertheless the increment was more evident in E20-8 tolerant Rhizobium 

strain, suggesting that Cd tolerance differences between the two strains were related 

to the ability to increase thiol levels under metal stress. As GSH is the main thiol 

present in R. leguminosarum strains, it was possibly to assume that the cellular 

damage exhibited by these strains under Cd exposure was inversely related to GSH 

levels, since higher levels of this tripeptide had a protective effect on bacterial cells 

growing under metal stress, as it was observed in other bacteria strain under Cd 

exposure (Bianucci et al., 2012; Figueira et al., 2005; Lima et al., 2006; Mendoza-

Cózatl et al., 2005).  

The study of the enzymatic activity of γ-GCS was considered to be important 

parameter to understand the higher thiol pool observed particularly in R. 

leguminosarum tolerant strain under Cd stress (figure 2.5). In this thesis only the 

activity of γ-GCS was determined as this enzyme is the rate-limiting in GSH synthesis 

(Huang et al., 1988; Kelly et al., 2002). In R. leguminosarum strains, parallel to the 

levels of total thiols, the activity of γ-GCS was enhanced under Cd exposure and much 

more pronounced in the tolerant strain, particularly at 50% growth inhibition. Cd has 

also been reported to induce the activity of γ-GCS, and consequently GSH pool, in E. 

coli (Chen et al., 2009) yeasts (Mendoza-Cózatl et al., 2005) and plants (Mendoza-

Cózatl et al., 2005; Zhu et al., 1999). Since γ-GCS  activity is feedback inhibited by GSH 

(Huang et al., 1988), the higher activity of this enzyme detected under Cd stress may 

be explain by the depletion of this tripeptide, possible in metal chelation, as GSH is 
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consumed in the detoxification of heavy metals, leading to the increment of its 

synthesis (Coblenz and Wolf, 1994). 

 

2.4.3 Cd cellular distribution in Rhizobium leguminosarum 

Cd distribution within Rhizobium cells demonstrated that, in both strains, the 

majority of Cd was retained in the cell wall, being intracellular Cd only a small 

fraction of the total Cd (table 2.2). These results confirm bacterial cell wall as the 

primary defense mechanism against metal, acting like a primary defense, which 

avoids the entrance of Cd into the cell. Similar results were obtained in Rhizobium 

leguminosarum (Lima et al., 2006) and in Pseudomonas, where 90% of the initial Cd 

was bound to the surface of the cells (Pabst et al., 2010). Several authors 

demonstrated that the extracellular barrier of LPS was an important mechanism of Cd 

resistance in A. caulinodans (Zhengwei et al., 2005). In Klebsiella aerogenes, the 

extracellular capsule prevented the entry of up to 1 nM of Cd (Mergeay, 1991). 

Pereira et al. (2006) demonstrated that Cd sequestration by exopolysaccharides was 

an important avoidance mechanism in R. leguminosarum strains isolated from metal-

contaminated soils. Moreover, Cd exposure was proven to increase bacterial 

production of extracellular polymeric substances (EPS) (Guibaud et al., 2005; 

Henriques et al., 2007), providing protection to the cell by restricting its contact with 

the outer membrane layer (Ueshima et al., 2008). In this chapter, both, Rhizobium 

strains presented similar percentages of Cd retention in the cell wall, suggesting that 

there are no differences in Cd binding process to the cell wall among strains. 

Intracellular Cd was much lower than the metal bound to the cell wall. Nevertheless 

intracellular Cd is considered to be much more toxic, due to interfering with 

metabolism (Lima et al., 2006). At 50% growth inhibition, Rhizobium tolerant strain 

accumulated 18,79 µmol .mg protein -1 Cd intracellular, while NII-1 sensitive strain 

presented 10.55 µmol .mg protein -1. At 70% growth inhibition, tolerant Rhizobium 

strain E20-8 accumulated 92.81 µmol .mg protein -1 Cd intracellular, while in the 

sensitive strain only 6.36 µmol .mg protein -1 was quantified. Results from this 

chapter demonstrated that the tolerant Rhizobium strain presented higher levels of 

intracellular Cd than sensitive strain as was described by other authors (Figueira et 
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al., 2005; Lima et al., 2006). Rhizobium leguminosarum tolerant strain presented 

higher intracellular Cd levels in both treatments but, according to the analysis of 

cellular damage parameters, intracellular metal toxicity was not higher when 

compared to the sensitive strain, NII-1. Thus, the tolerance difference of these strains 

rely, at least in part, on the efficiency of intracellular mechanisms. Lima et al. (2006) 

had already established that tolerance differences detected among R. leguminosarum 

strains subjected to severe levels of metal stress, could be explained by the efficiency 

of the GSH-Cd chelation mechanism. Some Cd resistant strains increased their 

resistance under higher levels of metal stress (Roane and Pepper, 1999), suggesting a 

possible change in the resistance mechanism according to the degree of metal stress  

induced in bacterial strains (Hu et al., 2005; Roane and Pepper, 1999). Thus, GSH-Cd 

complexation may be an important intracellular Cd tolerance mechanism only 

triggered by extreme levels of Cd stress, as an ultimate cellular effort to survive, or 

may be an important strategy to improve Rhizobium leguminosarum strains at 

different levels of Cd.  

 

2.4.4. Intracellular Cd and GSH levels during Rhizobium growth 

The analysis of intracellular Cd levels during Rhizobium growth demonstrated 

that after 24 h of growth, intracellular Cd levels in E20-8 tolerant strain decreased at 

50% growth inhibition (figure 2.6A), suggesting the activation of an efflux mechanism 

as a consequence of Cd exposure, not observed in R. leguminosarum sensitive strain 

(figure 2.6B). The stress response strategy of lowering intracellular Cd levels was also 

reported in several bacteria such as Caulobacter crescentus, (Hu et al., 2005), 

Alcaligenes eutrophus (Nies et al., 1992) and E. coli (Nies, 2003) due to the up-

regulation of efflux pumps. Zhengwei et al. (2005) reported that Azorhizobium 

caulinodans sensitive strains presented higher Cd uptake than tolerant strains, being 

able to accumulate 3 to 15 times more Cd in intracellular than metal tolerant strains 

(Bruins et al., 2000), suggesting that Cd tolerance was related to the ability to 

maintain Cd intracellular levels low in tolerant strains. Nevertheless, the high Cd 

concentrations tolerated by Rhizobium E20-8 strain demonstrated that such efflux 

mechanism was not efficient to avoid metal accumulation in the tolerant strain at 
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longer periods of metal exposure, leading to intracellular Cd levels much higher than 

in the sensitive strain. Cd increment after 24 h of growth was concomitant with the 

increment of intracellular GSH levels, suggesting that intracellular Cd ions induced 

GSH synthesis in Rhizobium tolerant strain. In E. coli, GSH overproduction resulted in 

a higher uptake of Cd (Wawrzynska et al., 2005). As it was also reported in E. coli  by 

Vlamis-Garlikas (2008), GSH levels in Rhizobium tolerant strain were enhanced even 

throughout the stationary phase of growth.  

 

2.4.5. The importance of GSH in intracellular Cd detoxification  

The chromatographic analysis demonstrated that GSH-Cd chelation 

mechanism was present in both Rhizobium leguminosarum strains, being already 

observed during the first 12 h of metal exposure (figure 2.8 and 2.9). The results 

present in this chapter, proved that GSH chelation mechanism was activated by the 

entrance of Cd into the cell and that it was not dependent on the degree of metal 

stress. Tolerance differences among sensitive and tolerant Rhizobium strains were 

suggested (Lima et al., 2006) to be dependent, not only on the ability to induced GSH 

synthesis, but also on the efficiency of the chelation mechanism, as Cd sequestration 

is dependent on GSH synthesis and on a rapid formation of GSH conjugates with metal 

ions (Adamis et al., 2004), but the overprodution of GSH in E. coli resulted in a higher 

intracellular Cd accumulation but not altered its metal tolerance (Wawrzyńska et al., 

2005). Results obtained in this work show a higher efficiency of metal chelation 

observed under the severe level of metal stress (figure 2.10 and 2.11). During the first 

12 h of growth, the GSH-Cd chelation mechanism presented a similar efficiency 

between strains, exception made to the tolerant strain under a 50% growth inhibition 

where 29% of the intracellular metal was already GSH chelated. Nevertheless, after 

72 h the tolerant strain, presented 48% and 67% of intracellular metal chelated to 

GSH at 50% and 70% growth inhibition, respectively, while the highest percentage of 

metal chelated by NII-1 was only 27%. These results demonstrated the importance of 

GSH-Cd complexation in the detoxification of intracellular Cd in R. leguminosarum. 

This mechanism was demonstrated to be activated by metal exposure, during the first 



2. GSH-Cd chelation mechanism in Rhizobium leguminosarum_________________________                                                

 
 

64 

12 h of metal stress, and not to be dependent on the degree of metal stress as it was 

observed in both strains. It was also proven that the tolerance differences detected 

among Rhizobium strains can be explain at least in part by the ability to increase GSH 

synthesis and to form GSH-Cd complexes. GSH may not be a vital metabolite for 

bacteria, as demonstrated by the survival of GSH mutants of E. coli (Chesney et al., 

1996), nevertheless it was already proven that its presence is crucial to cope with 

several types of abiotic stresses (Bianucci et al., 2012; Chesney et al., 1996; Fergunson 

et al., 1998; Figueira et al., 2005; Lima et al., 2006 ; Pabst et al., 2010; Riccillo et al., 

2000).  

The accumulation of GSH-Cd complexes may not be a successful strategy in 

metal contaminated environments, as may be deleterious to the cellular metabolism. 

In Saccharomyces cerevisiae it was demonstrated that the accumulation of GSH-Cd 

complexes in the cytoplasm inhibited Cd uptake, nevertheless intracellular Cd levels 

in tolerant strain were continuously enhanced during the growth period, suggesting 

that GSH-Cd complexes may be excreted. In S. cerevisiae the formed complexes are 

transported into the vacuoles (Li et al., 1997), but as bacterial cell do not have such 

cellular organelles, the fate of GSH-Cd complexes are uncertain. In E. coli it was 

reported a periplasmic transporter mediated by GSH conjugates implicated in 

metylglyoxal and N-ethylamide detoxification (Ferguson et al., 1995). A similar 

transporter may be active in R. leguminosarum. Thus, as R. leguminosarum is a gram-

negative bacteria, the periplasmic space of the tolerant and sensitive strains will be 

isolated and the role of this compartment in the intracellular Cd detoxification 

mechanism will be evaluated (Chapter 3). As the tolerance of E20-8 was suggested to 

be related to the efficiency of the GSH-Cd chelation mechanism, the reasons behind 

the higher efficiency of the GSH-Cd chelation mechanism will also be investigated. 

Adamis et al. (2004) demonstrated that Glutathione-S-Transferases (GST), a 

multifamily of detoxifying enzymes, were crucial to GSH-Cd complexes formation in S. 

cerevisiae. Thus, in Chapter 4, the GSTs of Rhizobium leguminosarum strains will be 

investigated in order to determine the importance of this family of enzymes in the 

efficiency of the GSH-Cd chelation mechanism and, therefore in the tolerance of E20-8 

strain.   
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Chapter 3 

The importance of the periplasmic space in Cd 

tolerance 

 

 

3.1 Introduction 

3.1.1. Gram-negative bacteria  

Gram-negative bacteria, like Rhizobium leguminosarum, do not have the 

complex compartmentalization and organelles of eukaryotic cells but are divided in 

four compartments: the cytoplasm, the inner membrane, the periplasm and the outer 

membrane (Salton, 1963; Stock et al., 1977). The outer membrane, which separates 

the external environment from the periplasm, is composed by phospholipids, 

lipopolysaccharides, β-barrel proteins and lipoprotein (Beveridge, 1999; Tokuda, 

2009), and the inner, membrane is composed of phospholipids in both the inner 

membrane and the outer membrane constituted gram-negative cell envelope 

(Beveridge, 1999; Nikaido, 2003; Salton, 1963; Tokuda, 2009). The cell envelope 

provides a boundary between the environment and the cytoplasm of the cell, and this 

boundary is a main line of defense protecting the cell from stressful environments 

(Beveridge, 1999; Ruiz et al., 2006). The periplasm is an aqueous compartment 

enclose by the two membranes of gram-negative cell envelope, which contains a layer 

of peptidoglycan and a high variety of macromolecules (Beveridge, 1999; Nikaido, 

2003; Ruiz et al., 2006; Tokuda, 2009).  
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Figure 3.1 –The cell envelope of Gram-negative bacteria includes an outer membrane (OM), an inner 

membrane (IM), a layer of peptidoglycan, and the aqueous periplasm. The OM is an asymmetric bilayer 

composed of lipopolysaccharides (LPS) in the outer leaflet and phospholipids in the inner leaflet. The 

IM is a symmetric bilayer composed of phospholipids in both the inner leaflet and the outer leaflet. 

Lipoproteins in the IM and OM are anchored to the membranes through lipid tails while the proteins 

are in the periplasm. Soluble periplasmic proteins are in the periplasm and are not anchored to either 

membrane. Integral OM proteins are usually β-barrel proteins and act as channels between the 

periplasm and the extracellular environment. Integral IM proteins span the entire IM and have various 

functions. (in Poole et al., 2012).  

 

3.1.2. The GSSG:GSH subcellular ratio 

All cells must maintain intracellular compartments at appropriate reduction 

potentials for metabolism (Krebs, 1967). In the bacterial cytoplasm, thiol groups are 

maintained in a reduced state by thioredoxins and other reducing agents, whereas in 

the periplasm, cysteine residues are rapidly oxidized as soon as newly synthesized 

proteins are translocated across the inner membrane (Herrmann et al., 2009; Marco, 

2009; Smirnova and Oktyabrsky, 2005; Pittman et al., 2005). GSH reduces disulfide 

bonds in proteins including those that may form on exposure to oxidative stress, 

neutralizes free radicals, and is involved in the detoxification of xenobiotics and in 

metal chelation (Adamis et al., 2004; Lima et al., 2006). Cellular GSH homeostasis has 
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long been considered as a key element of signaling cascades, transducing information 

on environmental constraints to their respective targets (May et al., 1998). Due to the 

central cysteine, GSH can undergo reversible oxidation and reduction, and can thus be 

present in either the reduced form or oxidized GSH disulfide (GSSG) (Haddad, 2004), 

and the oxidation of GSH pool is often expressed in terms of the GSH:GSSG ratio 

(Kirlin et al., 1999). GSH:GSSG ratio reflects the dynamic balance between GSH 

synthesis, decomposition, transport, oxidation, and reduction, so it depends on 

cellular state and compartment; and environmental conditions, such as metal stress 

(Corticeiro et al., 2006; Pittman et al., 2005; Smirnova and Oktyabrsky, 2005).  In E. 

coli cells, under non stress conditions, 99.5% GSH exists in the reduced form, while 

GSSG is 0.33% of the total intracellular GSH, being the ratio GSH:GSSG between 300 

and 600 (Dalle-Donne, 2009; Smirnova and Oktyabrsky, 2005).  

 

3.1.4. The importance of periplasmic space in metal tolerance 

GSH is involved in an important intracellular Cd detoxification mechanism 

found in Rhizobium leguminosarum: the chelation of the metal by GSH (Lima et al., 

2006; Chapter 2). The efficiency of this chelation mechanism appears to be crucial to 

explain the Cd tolerance levels presented by some Rhizobium strains. Nevertheless, 

the accumulation of GSH-Cd complexes in the cytoplasm may possible interfere with 

the cellular metabolism, affecting cell survival (Adamis et al., 2009; Gomes et al., 

2002). Furthermore, the accumulation of GSH-Cd complexes in the cytoplasm would 

inhibit Cd absorption (Gomes et al., 2002). However, as it was demonstrated in 

Chapter 2, Cd chelation did not inhibit metal uptake in R. leguminosarum tolerant 

strain. In Saccharomyces cerevisiae, the GSH–Cd complex was proven to be 

transported into the vacuole through the Ycf1 protein (Li et al., 1997). Thus, in 

bacteria, the fate of the complexes may be the exclusion out of the cell into the 

environment or the transport and accumulation of the complexes into the periplasmic 

space. In E. coli GSH was reported to be excreted or leaked out into the periplasm 

(Pittman et al., 2005), however there are no information regarding the destination of 

GSH-Cd complexes in bacteria. 
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3.1.5. Aims of the chapter 

The results of the Chapter 2 suggested the non accumulation of the GSH-Cd 

complexes in the cytoplasm, raising the hypothesis of their transport into the 

periplasmic space of R. leguminosarum. In order to study the periplasmic space as the 

potential fate of the GSH-Cd complexes and its metabolic implications, the aims of this 

chapter were: 

A. To isolate the periplasmic space from the cytosolic fraction; 

B. To determine the subcellular GSH:GSSG ratios; 

C. To study Cd and GSH distribution between the periplasm and the cytoplasm; 

D. To analyze the possible GSH-Cd complex formation in the periplasmic space or its 

transport into that compartment. 
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3.2. Material and methods 

3.2.1. Bacterial strains and growth conditions 

Rhizobium leguminosarum strains E20-8 and NII-1 were grown in YEM 

(Somasegaran and Hoben, 1994) supplemented with Cd (0, 100 and 200 µM Cd to the 

tolerant strain and 0, 50 and 75 µM Cd to the sensitive strain). Cells were incubated at 

26°C, in an orbital shaker, during 72 h at 200 rpm. To estimate growth, optical density 

was measured at 600 nm.  

 

3.2.2. Purification of periplasmic and cytoplasmic fractions  

The isolation and identification of the periplasmic and cytoplasmic fractions 

was accomplished by following the method described by De Maagd and Lugtenberg 

(1986) with some modifications. All the procedure was carried out at 0 to 4°C.  

Rhizobium cells were grown as described previously and harvested by centrifugation 

during 10 min at 10000 g and 4°C. The pellet was suspended in 5 ml of 30 mM Tris 

(pH 8.0) and 20% (w/v) sucrose. 2 mg.ml-1 of lysozyme was added and incubated at 

room temperature for 45 min. The cells were pelleted by centrifugation at during 10 

min at 10000 g and 4°C. Part of the supernatant fluid, the periplasm, was kept apart 

for measuring the activities of malate dehydrogenase (Kitto, 1969) and alkaline 

phosphatase (Malamy et al., 1964), markers for the cytoplasmic and periplasmic 

fractions, respectively. To isolate the cytoplasmic proteins, spheroplasts were lysed in 

500 µl of 30 mM Tris-HCl (pH 8.0), by sonication during 15 s at 0.5 cycles. s-1. 

Subsequently, unbroken cells were pelleted, being a small fraction kept apart for 

measuring malate dehydrogenase and alkaline phosphatase activities. The 

supernatant fluid, containing cytoplasmic fraction, was further diluted, and KCl was 

added to a final concentration of 200 mM. Cell envelopes were removed by 

centrifugation at 262000 g for 2 h at 4°C.  
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3.2.3. Alkaline Phosphatase activity 

Alkaline phosphatase (AP) activity was assayed in 3 ml of 100 mM Tris-HCl pH 

9.8, containing 30 µl  of 65 mM p-nitrophenyl phosphate, 100 µl  of 10 mM MgCl2 and 

100 µl of cell extract. The reaction mixture was incubated al 37 °C for 15 min. The 

reaction was stopped by adding 500 µl of 1 M NaOH and the p-nitrophenol produced 

was measured at 405 nm, using a control, lacking the enzyme, as blank, using a 

UV/VIS spectrophotometer (Beckman Model DU-68). A unit of ALP activity was 

defined as the amount of enzyme catalyzing the liberation of 1 µmol p-nitrophenol 

min-1 under standard conditions. p-nitrophenol was used as standard  (Malamy et al., 

1964).  

 

3.2.4. Malate dehydrogenase activity 

Malate dehydrogenase was assayed by measuring the decrease rate 

absorbance at 340 nm during the conversion of oxaloacetate to malate with NADH as 

the cofactor. Reaction mixture of 825 µl contained 60 mM HEPES (pH 7.2), 50 µl of 6 

mM NADH, and 100 µl of cell extract. Before starting the reaction by the addition of 

25 µl of 10 mM oxaloacetate solution, the endogenous NADH oxidase activity was 

measured (Kitto, 1969) using a UV/VIS spectrophotometer (Beckman Model DU-68). 

 

3.2.5. Reduced and oxidized GSH quantification 

GSH and GSSG were quantified according to the DTNB-GSSG reductase 

recycling assay (Anderson, 1985). In this reaction GSH is oxidized by DTNB to give 

GSSG with stoichiometric formation of TNB. GSSG is reduced to GSH by the action of 

the highly specific GR and NADPH. The reaction mixture, containing 300 µl of 150 mM 

Potassium phosphate buffer (pH 7.5) and 100 mM EDTA, 50 µl of 10 mM DTNB, 5 µl 

of 100 U. ml-1 GR, 90 µl  of cell extract and 50 µl  of NADPH, was incubated at 30°C 

during 15 min. TNB formation was measured at 412 nm using a UV/VIS 

spectrophotometer (Beckman Model DU-68) and was proportional to the sum of GSH 
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and GSSG present. GSSG was determined by the same method, with previously 

incubation of 90 µl of cell extract with 2 µl of 2-vinylpyridine during 60 min. GSH 

content was calculated as the difference between the two forms. GSSG and GSH were 

used as standard.  

 

3.2.6. Total thiol quantification 

Total thiol quantification was performed as previously described in Chapter 2, 

in periplasmic and cytoplasmic fractions (Ellman, 1959).   

 

3.2.7. Analysis of the complexes 

The analysis of the complexes was determined as previously described in 

Chapter 2, in the periplasmic and cytoplasmic fractions (Lima et al., 2006). 

 

3.2.8. Cd quantification  

Cd was quantified in both periplasmic and cytoplasmic fractions by ICP-MS, as 

previously described in Chapter 2. 

 

3.2.9. Protein quantification  

Protein quantification was performed in both periplasmic and cytoplasmic 

fractions as described in Chapter 2 (Bradford, 1976). 

 

3.2.1. Statistical analysis 

For both strains, data all the biochemical parameters in the periplasmic and 

cytoplasmic fractions were submitted to hypothesis testing using permutation 
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multivariate analysis of variance with the PERMANOVA+ add-on in PRIMER v6 

(Anderson et al., 2008), following the calculation of Euclidean distance matrices 

among samples. A one-way hierarchical design, with the Cd exposure concentration 

as the main fixed factor, was followed in this analysis. The pseudo-F values in the 

PERMANOVA main tests were evaluated in terms of significance. When the main test 

revealed statistical significant differences (p<0.05), pairwise comparisons were 

performed. The t-statistic in the pair-wise comparisons was evaluated in terms of 

significance among different conditions and strains. Values lower than 0.05 were 

considered as significantly different.  

The null hypotheses tested were: a) for each strain, for each cellular fraction 

and for each biochemical parameter: no significant differences exist between Cd 

exposure concentrations; b) for each strain, for each biochemical parameter: no 

significant differences exist between cellular fractions; c) for each Cd exposure 

concentration, for each cellular fraction and for each biochemical parameter: no 

differences exist between strains. 

  



___________________________3. The importance of the periplasmic space in Cd tolerance                                                                        
 

73 
 

 

 

3.3. Results  

3.3.1. Purification of periplasmic and cytoplasmic fractions  

Separation of the periplasmic and cytoplasmic fractions was achieved by 

employing the experimental methodology described by De Maagd and Lugtenberg 

(1986) with same alterations. R. leguminosarum cells grown under control conditions 

and under Cd stress were first treated with lysozyme to obtain the periplasmic 

fraction, and then disrupted by ultrasonication to obtain the cytoplasmic fraction.  

 

3.3.1.1. Quantification of alkaline phosphatase (AP) activity 

 

Figure 3.2. – Alkaline phosphatase activity, expressed in percentage, obtained from the periplasmic (PF) 

and cytoplasmic fractions (CF) of Rhizobium leguminosarum tolerant (blue bars) and sensitive (red 

bars) strains growing under control conditions and under Cd exposure inducing 50% and 70% growth 

inhibition. Data are the means of three replicate experiments, with standard errors. Different letters 

represent significant differences (p < 0.05) between treatments and asterisks represent significant 

differences (p < 0.05) between strains in the same treatment. 

The purification of the sub-cellular fraction was validated by performing the 

quantification of alkaline phosphatase activity, an enzyme specific to the periplasmic 
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space. AP activity of the periplasmic space was significantly (p<0.001) different from 

the enzymatic activity observed in the cytoplasmic fraction. The purification 

procedure with the concentration of 2 mg. ml-1 of lysozyme allowed the detection of 

more than 90% of the total alkaline phosphatase activity in the periplasmic fraction 

(figure 3.1). These results were not dependent on Rhizobium leguminosarumn strains, 

or on the level of Cd exposure, as no significant (p>0.05) differences were detected. In 

the cytoplasmic fraction, the enzymatic activity quantified was never higher than 

10% of the total AP activity, demonstrating that the purification was achieved with a 

residual level of contamination between fractions.  

 

3.3.1.2. Quantification of malate dehydrogenase (MDH) activity 

 

Figure 3.3. – Malate dehydrogenase activity, expressed in percentage, obtained from the periplasmic 

(PF) and cytoplasmic fractions (CF) of Rhizobium leguminosarum tolerant (blue bars) and sensitive 

(red bars) strains growing under control conditions and under Cd exposure inducing 50% and 70% 

growth inhibition. Data are the means of three replicate experiments, with standard errors. Different 

letters represent significant differences (p < 0.05) between treatments and asterisks represent 

significant differences (p < 0.05) between strains in the same treatment. 

 

The activity of the cytoplasmic enzyme malate dehydrogenase was determined 
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(p<0.001) different between the periplasmic fraction and the cytoplasmic fraction, 

nevertheless no significant (p>0.05) differences were detected between strains or 

treatments. Less than 10% of MDH activity was detected in the periplasmic fraction, 

while more than 90% MDH activity was found in the cytoplasm (figure 3.2). So, these 

results indicate that the chosen methodology was efficient to purify periplasmic 

fraction, leaving cytoplasmic membrane intact. The cytoplasmic fraction could be 

obtained after lysis of the cells by ultrasonication, with subsequent removal of the cell 

envelopes by centrifugation. So, the concentration of 2 mg. ml-1 of lysozyme allowed 

the lysis of the cell wall with the release of the periplasmic content without disrupting 

the inner membrane, and thus avoiding contamination of the periplasmic fraction 

with cytoplasmic content. 

 

3.3.1.3. Proteins recovered from the periplasm and cytoplasm fractions 

As it was already established, the chosen purification procedure efficiently 

separated periplasm from cytoplasm content. Protein quantification was performed 

in each sub-cellular fraction and the results are presented in figure 3.4. Results 

indicated that, in each bacterial strain and growth condition, protein concentration 

was significantly (p<0.001) lower in the periplasmic fraction than in the cytoplasm. In 

Rhizobium tolerant strain, the periplasmic protein concentration (0.058 mg. ml-1) 

quantified under control conditions, was not significantly (p>0.05) affected by Cd 

exposure. Nevertheless, at 70% growth inhibition, the protein concentration in the 

cytoplasm was significantly (p<0.001) affected by the metal exposure decreasing 

from 0.349 mg. ml-1 to 0.138 mg. ml-1.  

In NII-1 sensitive strain protein content was significant (p<0.05) affected by 

Cd exposure in both subcellular fractions. The protein content in the periplasmic 

fractions were significantly (p<0.05) reduced due to meta, but were not significant 

(p>0.05) affected by the degree of stress. In the cytoplasmic fraction it was observed 

a significant (p<0.001) decrease in protein concentration as the level of Cd exposure 

has been enhanced, reaching 0.152 mg. ml-1 at 70% growth inhibition.  

Under control conditions and at 70% growth inhibition, periplasmic and 

cytoplasmic protein levels of both R. leguminosarum strains were not significantly 
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(p>0.05) different. Although under Cd concentrations inducing 50% growth 

inhibition, NII-1 sensitive strain presented significantly (p<0.05) lower peptide 

content in both fractions, being the highest difference observed in the cytoplasm 

where protein concentration in the sensitive strain was 2-fold  lower.   

 

Figure 3.4. – Protein from the periplasmic (PF) and cytoplasmic fractions (CF) of Rhizobium 

leguminosarum tolerant (blue bars) and sensitive (red bars) strains growing under control conditions 

and under Cd exposure inducing 50% and 70% growth inhibition. Data are the means of three 

replicate experiments, with standard errors. Different letters represent significant differences (p < 

0.05) between treatments and asterisks represent significant differences (p < 0.05) between strains in 

the same treatment. 

The ratio between the periplasmic and cytoplasmic proteins was significantly 

(p<0.05) different among treatments, but was similar between the two Rhizobium 

leguminosarum strain. The percentage of periplasmic proteins was only significantly 

(p<0.05) higher than the control at 70% growth inhibition, increasing from 14% to 

26% of the total protein content and decreasing from 86% to 74% in the cytoplasm.  

Similar results were observed in NII-1 (sensitive strain) at 70% growth inhibition, the 

concentration of periplasmic proteins was enhanced to 20% of the total protein 

content. Furthermore, it was not possible to detect significant differences (p>0.05) 

among Rhizobium strains under control conditions or under Cd exposure. So, despite 

the differences in protein quantifications observed in both strains, the relation 

between the periplasmic and the cytoplasm peptide content was very similar in 

tolerant and sensitive strains.  
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3.3.2. GSH and GSSG levels in the periplasm and cytoplasm 

 

 

Figure 3.5. – GSSG (A) and GSH (B) in the periplasmic (PF) and in the cytoplasmic (CF) fractions of 

Rhizobium leguminosarum tolerant (blue bars) and sensitive (red bars) cells growing under control 

conditions and under Cd exposure inducing 50% and 70% growth inhibition. Data are the means of 

three replicate experiments, with standard errors. Different letters represent significant differences (p 

< 0.05) between treatments and asterisks represent significant differences (p < 0.05) between strains 

in the same treatment. 

In the tolerant strain GSSG levels were significantly (p<0.001) higher in the 

periplasm space, than in the cytoplasm, in control and 50% growth inhibition (figure 

3.5.A). However, 70% growth inhibition induced a significant (p<0.001) increment in 
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GSSG content in both fractions, much evident in the cytoplasmic fraction. At this level 

of stress, GSSG concentration was significantly (p<0.001) higher in the cytoplasm 

than in the periplasm. In the sensitive strain, most of the GSSG was located in the 

periplasm, in control, as it was observed in the tolerant strain, but under Cd exposure, 

GSSG levels increased 7-fold in the cytoplasm compared to control conditions 

surpassing periplasmic concentrations. No significant (p>0.05) differences were 

detected in periplasmic GSSG levels between Cd treatments. For the three conditions 

tested, the tolerant strain presented significantly lower (p<0.001) GSSG values in the 

cytoplasm than the sensitive strain. 

Under control conditions, both strains presented significantly (p<0.05) higher 

GSH levels in the cytoplasm than in the periplasm (figure 3.5.B). Under Cd exposure it 

was observed a significant (p<0.001) increase of GSH in the periplasm, at both levels 

of metal concentration. The highest level of periplasmic GSH was observed at 50% 

growth inhibition, 349.66 µmol. mg protein-1. In the cytoplasm GSH increased at that 

level of metal stress, but at 70% growth inhibition was similar to control. GSH values 

obtained at 50% growth inhibition were the highest quantified in subcellular 

fractions of NII-1, 130.55 µmol. mg protein-1 in the periplasm space and, 102.75 µmol. 

mg protein-1  in the cytoplasm. The results also showed that, under metal stress, GSH 

subcellular levels of the sensitive strain were significantly (p<0.001) lower that the 

ones observed in the tolerant strain, being the major difference in the periplasmic 

fraction under a 50% growth inhibition. 

GSH:GSSG ratio was estimated in the subcellular fractions of Rhizobium 

leguminosarum and the results are expressed in table 3.1. Under control conditions 

both Rhizobium strains presented a significantly (p<0.05) higher GSH:GSSG ratio in 

the cytoplasm, than in the periplasmic space (6 to 8 fold). Under Cd exposure, tolerant 

and sensitive strains showed marked differences. In the tolerant strain, only at 70% 

growth inhibition, it was determined a GSH: GSSG ratio significantly (p<0.05) higher 

in the periplasmic fraction than in the cytoplasm. In the sensitive strain, Cd exposure 

induced a significant (p<0.05) increment in GSH: GSSG ratio in the periplasmic 

fraction, 3.1-fold at 50% growth inhibition and 1.5-fold under 70% growth inhibition. 

Tolerant strain always presented significantly (p<0.05) higher GSH:GSSG ratio in both 

subcellular fractions than the sensitive strain, being the highest GSH:GSSG ratio 
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detected in the cytoplasmic fraction of this strain when exposed to a Cd concentration 

inducing 50 % growth inhibition.   

Table 3.1. GSH:GSSG ratios in periplasmic and cytoplasmic fractions in Rhizobium leguminosarum 

strains tolerant and sensitive under control conditions and under Cd exposure inducing 50% and 70% 

growth inhibition, after 72 h of growth. Data are the means of three replicate experiments, with 

standard errors. Different letters represent significant differences (p < 0.05) between treatments and 

asterisks represent significant differences (p < 0.05) between strains in the same treatment. 

 

  Fraction GSH: GSSG ratio 

Tolerant 
(E20-8) 

Control 
Periplam 299 ± 53 a* 

Citoplasm 2430 ± 276 b* 

50% 
Periplam 3037 ± 591  c* 

Citoplasm 4640 ± 564  d* 

70% 
Periplam 971 ± 107 e* 

Citoplasm 366 ± 77  a* 

Sensitive 
(NII-1) 

Control 
Periplam 158 ±  48 a ** 

Citoplasm 1013 ± 151 b ** 

50% 
Periplam 745 ± 99 c ** 

Citoplasm 240 ± 36  a ** 

70% 
Periplam 301 ± 25 d ** 

Citoplasm 198 ± 61 a ** 

 

3.3.4. Cd distribution in R. leguminosarum cells 

The protocol used to separate periplasmic from cytoplasmic fraction also 

allowed to determine the subcellular localization of the metal within Rhizobium 

leguminosarum cells: wall bound Cd and intracellular Cd values were previously 

presented in Chapter 2. Nevertheless intracellular Cd comprises the metal in the 

periplasmic space as well as in the cytoplasm. The metal distribution between 

subcellular fractions is presented in figure 3.6. 

In the tolerant strain, at 50% growth inhibition, the Cd concentration found in 

the periplasmic space was significantly higher (p<0.001) from the level in the 

cytoplasmic fraction. However, at 70% growth inhibition, Cd levels in the cytoplasm 

were significantly (p<0.001) enhanced to 79.61 µmol. mg protein-1, while Cd 

concentration in the periplasm was 35.12 µmol. mg protein-1. Although the Cd 
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concentrations determined in the periplasmic space of both Cd exposures were 

similar, at 50% growth inhibition, it corresponded to 24% of the total intracellular Cd 

content, whereas at 70% growth inhibition it only corresponded to 12% of the total 

intracellular Cd. 

 

Figure 3.6. – Cd in the periplasmic (PF) and in the cytoplasmic (CF) fractions of Rhizobium 

leguminosarum tolerant (blue bars) and sensitive (red bars) cells growing under Cd exposure inducing 

50% and 70% growth inhibition. Data are the means of three replicate experiments, with standard 

errors. Different letters represent significant differences (p < 0.05) between treatments and asterisks 

represent significant differences (p < 0.05) between strains in the same treatment. 

 

In NII-1 sensitive strain it was observed a different subcellular distribution of 

Cd: at 50% growth inhibition, a significant (p<0.001) higher Cd concentration was 

found in the cytoplasm, 11.85 µmol.mg protein-1. At 70% growth inhibition there 

were no significant (p>0.05) differences between both fractions. However, under the 

lowest level of metal stress, only 3% of the total intracellular Cd was found in the 

periplasmic fraction, whereas at 70% growth inhibition it reduced to 20% of total 

intracellular Cd. So, at 50% growth inhibition, the tolerant strain presented a 

significantly (p<0.001) higher Cd concentration in the periplasmic fraction than in the 

cytoplasm, a trend that was inverted at 70% growth inhibition. The concentration of 

Cd in the sensitive strain was always higher on the cytoplasm at 50% growth 

inhibition, being similar at 70% growth inhibition.  
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3.3.5. Distribution of GSH-Cd complexes in R. leguminosarum cells 

 

 

Figure 3.7. Cd (A) and GSH (B) content in the separated protein peak obtained in periplasmic (PF) and 

cytoplasmic (CF) fractions in Rhizobium leguminosarum tolerant strain, E20-8, under Cd exposure 

inducing 50% and 70% growth inhibition. Data are the means of three replicate experiments, with 

standard errors. Different letters represent significant differences (p < 0.05) between treatments. 

Buffer extracts, containing periplasmic and cytosolic Cd fractions, provided the 

source of peptide–Cd complexes and were separated through gel filtration, as it was 

reported in Chapter 2. Cd bound to GSH in both periplasmic and cytoplasmic fractions 

are expressed in figure 3.7. The analysis of the GSH-Cd distribution demonstrated that, 

in Rhizobium leguminosarum strains, most of Cd complexes were localized in the 
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cytoplasm. In the tolerant strain Cd chelated in the cytoplasm was 1.5-fold higher 

than in periplasmic fraction at 50 % growth inhibition and 4-fold at 70 % growth 

inhibition, reaching 9.07 µmol. mg protein-1 and 45.37 µmol. mg protein-1, 

respectively (figure 3.7.A). In the tolerant strain higher levels of GSH chelated were 

found in the cytoplasm under both levels of metal stress, being 1.4-fold and 3.4 fold 

higher, respectively than in the periplasmic space (figure 3.7.B).  

 

 

Figure 3.8. Cd (A) and GSH (B) content in the separated protein peak obtained in periplasmic (PF) and 

cytoplasmic (CF) fractions in Rhizobium leguminosarum sensitive strain, NII-1, under Cd exposure 

inducing 50% and 70% growth inhibition. Data are the means of three replicate experiments, with 

standard errors. Different letters represent significant differences (p < 0.05) between treatments. 
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The same profile was observed in the sensitive strain, under the lower level of 

metal exposure, Cd chelated in the cytoplasm was 4.2-fold higher than in the 

periplasmic space and at 70% growth inhibition it was 2.8-fold higher (figure 3.8.A). 

The level of GSH chelated in the sensitive strain was also higher in the cytoplasmic 

fraction, 14.34 µmol. mg protein-1 at 50% growth inhibition and, 15.85 µmol. mg 

protein-1 at 70% growth inhibition (figure 3.8.B).  

The efficiency of the GSH-Cd chelation mechanism was also found to be 

different according to its subcellular localization (figure 3.9). In the tolerant strain 

more than 50 % of the Cd present in the cytoplasm was found to be chelated, 59 % 

under the lower level of metal stress and, 57 % under the severe Cd exposure. In the 

periplasm fraction the efficiency was much lower, but dependent on the degree of 

metal stress, reaching 32 % of Cd chelated at 70 % growth inhibition. 

 

Figure 3.9. The percentage of Cd chelated in periplasmic (PF) and cytoplasmic fractions in Rhizobium 

leguminosarum tolerant (blue bars) and sensitive (red bars) strains under Cd exposure inducing 50% 

and 70% growth inhibition. Data are the means of three replicate experiments, with standard errors. 

Different letters represent significant differences (p < 0.05) between treatments and asterisks 

represent significant differences (p < 0.05) between strains in the same treatment. 

At 50% growth inhibition, the efficiency of the GSH-Cd chelating mechanism in 

tolerant strain was achieved using only 4% of the GSH quantified in the periplasm 

and 12% of the tripeptide present in the cytoplasm. At 70% growth inhibition, 14% of 

the GSH from the periplasm fraction was found to be chelated to Cd, but in the 
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cytoplasm 89% of GSH was involved in the chelation mechanism. In the sensitive 

strain the highest percentage of GSH involved in Cd chelation was 20% in the 

cytoplasmic fraction, under the severe level of metal stress. Overall R.leguminosarum 

tolerant strain demonstrated significantly (p<0.001) higher levels of Cd chelated to 

GSH than the sensitive strain. 

 

 

 

Figure 3.10. The percentage of GSH chelated in periplasmic (PF) and cytoplasmic (CF) fractions in 

Rhizobium leguminosarum tolerant (blue bars) and sensitive (red bars) strains under Cd exposure 

inducing 50% and 70% growth inhibition. Data are the means of three replicate experiments, with 

standard errors. Different letters represent significant differences (p < 0.05) between treatments and 

asterisks represent significant differences (p < 0.05) between strains in the same treatment. 
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3.4. Discussion 

3.4.1. Subcellular fractionation: periplasmic and cytoplasmic fractions 

In order to investigate the subcellular localization of GSH-Cd complexes in R. 

leguminosarum, bacterial cells were sub fractionated into periplasmic and 

cytoplasmic fractions, according to the method describe by (De Maagd and 

Lugtenberg, 1986) with some adaptations. The efficient separation of cellular 

fractions was demonstrated by determining the activities of alkaline phosphatase (AP) 

and malate dehydrogenase (MDH) enzymes, markers for the periplasmic and 

cytoplasmic fractions, respectively (De Maagd and Lugtenberg, 1986; Molenaar et al., 

2000). The efficiency of the procedure had already been demonstrated in R. 

leguminosarum (De Maagd and Lugtenberg, 1986), and in several other bacteria such 

as Agrobacterium tumefaciens (Wu et al., 2008) and E. coli (Arrecubieta et al., 2001). 

Results demonstrated that this protocol was efficient in releasing periplasmic 

proteins, without disturbing cytoplasmic membrane, in R. leguminosarum strains 

under control conditions and Cd exposure. In the periplasmic fraction more than 90% 

of the total AP activity was quantified, while only less than 10% of the total MDH 

activity was detected. In the cytoplasmic fraction more than 90% of the total MDH 

activity was quantify, demonstrating the efficient disrupt of the inner membrane and 

consequently release of cytoplasmic proteins.  

 

3.4.2. The GSH: GSSG ratio in subcellular fractions 

Within bacterial cells, more than 99% of GSH exists in the thiol-reduced form 

(GSH). The remaining amounts undergo thiol oxidation to form GSH disulfide (GSSG) 

and mixed disulfides with target proteins (Dalle-Donne, 2009). The GSH:GSSG redox 

ratio can directly influence disulfide bonding in proteins, functioning as an indicator 

of cellular oxidative stress level (Wang and Ballatori, 1998). In R. leguminosarum it 
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was demonstrated that the majority of GSH was in the reduce form in both 

subcellular fractions, nevertheless important biological levels of GSSG were observed 

in the periplasmic space of Rhizobium strains in the absence of metal stress, as it was 

shown by Eser et al. (2009) in E. coli. Such GSSG levels corroborated the oxidative 

environment in the periplasm, even under non stress conditions. In R. leguminosarum 

tolerant strain the GSSG increment induced by Cd exposure was only detected at 70% 

growth inhibition. In NII-1 sensitive strain, GSSG increase was more pronounced, 

particularly in the cytoplasm, independently of the degrees of metal stress, 

evidencing the higher susceptibility of Rhizobium sensitive strain to oxidative stress. 

Moreover GSSG in the cytoplasm may be highly toxic to cellular metabolism because it 

may easily react with free sulfhydryl groups (Smirnova and Oktyabrsky, 2005). The 

high GSH:GSSG ratio observed in both cellular fractions of E20-8 under the lowest 

degree of Cd stress, showed that R. leguminosarum tolerant strain was able to cope 

with metal stress and consequently avoid oxidative stress effects by increasing GSH 

levels in both subcellular fractions. In gram-negative bacteria, GSH was reported to be 

synthesized in the cytoplasm and subsequently exported into the periplasm space 

(Suzuki et al., 1986). This statement was confirmed by the results expressed in this 

chapter, since in R. leguminosarum it was not detected activity of γ-GCS in the 

periplasmic space (results not shown), corroborating that periplasmic GSH was 

previously synthesized in the bacterial cytoplasm. In the GSH-dependent 

detoxification of N-ethylmaleimide, GSH was reported to be recycled in the cytoplasm 

(MacLaggan et al., 2000). However in other detoxifying pathways GSH was leaked out 

into the periplasm space (CrowyChanel et al., 2001) through an ABC-type transporter 

(Pittman et al., 2005) or was excreted to the extracellular medium, with the following 

reentry into the cell (Smirnova and Oktyabrsky, 2005). The results of this chapter 

suggested that GSH was exported into the periplasmic space therefore protecting 

cellular metabolism from the metal toxicity. In yeast, GSH can be decomposed by 

gamma-glutamyl transferase (γ-GT) and Lap4 (an aminopeptidase) inside the vacuole, 

restoring glutamate, cysteine and glycine in the cytoplasm, which can be used for  

new GSH synthesis through GSH synthesis enzymes (Adamis et al., 2007; Adamis et al., 

2009). Thus, GSH would be recycled for continuous protection against metals, 

xenobiotics and oxidative stress.  In gram-negative bacteria this tripeptide may be 
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cleaved in the periplasmic space and resynthesized in the cytoplasm, as the peptide 

bond between glutamate and cysteine can only be cleave by the periplasmic enzyme 

γ-glutamyl transpeptidase (Smirnova and Oktyabrsky, 2005), conserving the low 

levels of GSH in the periplasm space (Vlamis-Gardikas et al., 2008). Once more, as in R. 

leguminosarum Cd exposure enhanced GSH levels in both subcellular fractions, even 

at 70% growth inhibition, high levels of GSH were synthesized and transported into 

the periplasmic space, possibly as GSH-Cd complexes. 

  

3.4.3. Cd distribution in Rhizobium subcellular compartments 

Intracellular Cd ions are assumed to be highly toxic to the cellular machinery. 

Consequently, the high intracellular Cd concentrations found in R. leguminosarum 

tolerant strain may be considered dangerous to cell metabolism, even with the 

demonstrated efficiency of the chelation mechanism in this strain. In Pseudomonas 

putida, Cd was reported to be storage in the periplasm limiting metal toxicity in the 

cytoplasm (Pabst et al., 2010). In this work, the purification and analyzes of the 

periplasmic space content was believed to be crucial to highlight the intracellular Cd 

detoxification pathway in R. leguminosarum. Pabst et al. (2010) suggested that, during 

metal uptake, Cd was initially retained in the periplasmic space before entering the 

cytoplasm as 4.3% of the total Cd was found in the periplasmic space and only 0.25% 

of the metal was found in the cytoplasm (Pabst et al., 2010). On the other hand, 

Rensing et al. (2002) suggested that, in gram-negative bacteria, Cd was first 

accumulated in the cytoplasm and consequently exported into the periplasm by a P-

Type ATPase. The high levels of Cd present in the cytoplasm of R. leguminosarum 

strains suggest that Cd was uptaken into the cytoplasm and exported to the periplasm 

to avoid the toxicity due to metal accumulation. In R. leguminosarum tolerant strain, 

under a 50% growth inhibition, the higher levels of Cd quantified in the periplasmic 

space, when compared to the levels in the cytoplasm, could suggest that Cd was first 

uptaken into the periplasmic space. Nevertheless the results obtained at the extreme 

level of stress show that the high levels of metal in the cytoplasm may only be due to 

the direct entrance of the metal, as upon saturation of the periplasmic space, Cd ions 
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can be exported extracellular, as observed by Rensing et al. (2002) by the CZC system 

exporting Cd out of E. coli cells. In P. aeruginosa it was determined that an outer 

membrane purine (OprE purine) was involved in the efflux of chromate from the 

periplasm to outside the cell, thus avoiding accumulation of chromate (Cr) in the 

cytoplasm (Rivera et al., 2008). In E. coli one of the pathways described for copper 

(Cu) resistance was the active efflux of the metal from the cytoplasm into the 

periplasmic space, carried out by ATPases located in the internal membrane (Outten 

and O’Halloran, 2001; Rensing et al., 2000). 

 

3.4.4. GSH-Cd complexes in R. leguminosarum  subcellular fractions 

The higher levels of Cd in the cytoplasm and the cytoplasmic synthesis of GSH, 

indicated that the GSH-Cd complexes were formed in the cytoplasm. Although the 

possible accumulation of the GSH-Cd complexes in the cytoplasm was reported to 

inhibit Cd uptake (Gomes et al., 2002), it may have a negative impact on the cellular 

metabolism. So, even with the demonstrated efficiency of the chelation mechanism in 

R. leguminosarum tolerant strain (Chapter 2), the accumulation of GSH-Cd complexes 

in the cytoplasm may not emerge as an improved survival strategy in a permanent 

contaminated environment. The increment in intracellular Cd levels found in the 

tolerant strain, parallel to the efficiency in GSH-Cd chelation and suggested that the 

complexes were excreted from the cytoplasm. Indeed, R. leguminosarum tolerant 

strain presented GSH-Cd complexes in the periplasmic space, suggesting that the 

GSH-Cd complexes were excreted to the periplasmic space. In gram-negative bacteria, 

as Rhizobium, GSH-Cd complexes may be exported into the periplasmic space, to 

increase cell tolerance to Cd. In S. cerevisiae, the formed GSH-Cd complexes are 

transported into the vacuole through the yeast cadmium factor protein (Ycf1) (Li et 

al., 1997), to avoid its accumulation in the cytoplasm and Pittman et al. (2005) 

suggested that in E. coli, GSH transport by CydDC, an ABC-type transporter, was 

similar to that of Ycf1 described by Li et al. (1997).  
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Chapter 4 

The role of GSTs in R. leguminosarum tolerance to 

cadmium 

 

 

4.1 Introduction 

4.1.1 Glutathione-S-transferases  

Glutathione-S-transferases (GST; EC 2.5.1.18) are a family of multi-functional 

dimeric proteins implicated in a variety of stress conditions, particularly in the 

cellular detoxification of xenobiotic (Allocati et al., 2009; Favaloro et al., 2000; Hayes 

et al., 2005) such as drugs and pesticides (Kanai et al., 2006). The common feature of 

these enzymes is to catalyze the conjugation of the sulphur atom of GST with a large 

variety of hydrophobic toxic compounds of both endogenous and exogenous origin 

(Allocati et al., 2009; Armstrong, 1991). Furthermore, GSTs are involved in other 

cellular functions, such as peroxidase and isomerase activity (Hayes and McLellan, 

1991; Hayes and Pulford, 1995; Mannervik and Danielson, 1988).  GSTs, using GSH as 

co-enzyme and/ or as substrate, are also involved in several degradation reactions 

and have the ability to bind to a range of lipophilic compounds (Favaloro et al., 2000). 

GSTs are widely distributed in nature, been found in both prokaryotes and 

eukaryotes. Presently it is possible to distinguish, at least, four major families of these 

proteins: cytosolic GSTs, mitochondrial GSTs, microsomal GSTs and bacterial 



4. The role of GSTs in R. leguminosarum tolerance to Cd____________________________________________ 

 
 
90 
 

fosfomycin-resistance proteins (Allocatti et al., 2009; Armstrong, 2000; Hayes et al., 

2005). The cytosolic GSTs are divided into numerous divergent classes, according to 

their chemical, physical and structural properties (Hayes et al., 2005; Sheehan et al., 

2001), and represent the most biologically relevant and well studied group of GSTs 

(Allocati et al., 2009); the mitochondrial GSTs, also known as kappa class GSTs, are 

soluble enzymes that have been characterized in eukaryotes (Robinson et al., 2004); 

the microsomal GSTs include membrane-bound transferases known as membrane-

associated proteins that are involved in ecosanoid and GSH metabolism (Jakobsson et 

al., 1999); and the fosfomycin-resistance proteins that are exclusive to bacteria 

(Allocati et al., 2009). 

Cytosolic GSTs, referred only as GST in this thesis, are divided into different 

classes, mainly α, μ, π, θ, σ, ζ and ω in mammals, φ and τ in plants, δ in insects and β, 

θ, χ and ζ in bacteria, according to their specific characteristics (Allocatti et al., 2009; 

Vuilleumier and Pagni, 2002). GSTs are accepted to belong to the same class, 

generally, when proteins present a sequence similarity higher than 40% in their 

primary structure (Armstrong, 1997). GSTs of different classes share less than 25% 

sequence identity. The identity increases only if the N-terminal region is considered, 

since this region comprises part of the active site, with residues that interact with 

GSH, and it is evolutionarily conserved (Hayes et al., 2005; Sheehan et al., 2001). In 

addition to amino acid sequence identity, immunological properties, kinetic features 

as well as similarity of the crystal structures provide additional supporting data 

(Allocatti et al., 2009; Vuilleumier and Pagni, 2002). Despite the low inter-class 

sequence identitiy, crystallographic analyzes demonstrated that the overall protein 

fold is conserved among GSTs classes (Dixon et al., 2002). GSTs are dimeric proteins 

homo or heterodimers of subunits with apparent molecular masses in the range of 

23–27 kDa (Yang et al., 2004), with each subunit divided in a two-domain structure: 

the N-terminal thioredoxin-like domain and the C-terminal α-helices domain (Kanai 

et al., 2006). The active site of these enzymes consists of two binding sites: the G-site, 

where GSH binds; and the H-site, where the hydrophobic electrophiles bind 

(Armstrong, 1997; Sheehan et al., 2001). 
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4.1.2. Bacterial GSTs 

Four different classes of GSTs have been identified in bacteria: β, θ, χ and ζ (Di 

Ilio et al., 1988; Rossjohn et al., 1998; Sheehan et al., 2001; Wiktelius and Stenberg, 

2007). β class GSTs is characterized by the presence of a cysteine residue at the GSH 

site (Rossjohn et al., 1998), by the ability to efficiently conjugate with the most GST 

common substrate, CDNB, and binding to GSH-affinity matrix. The first β class GST 

was characterized from Proteus mirabilis (PmGST) (Di Ilio et al., 1988), but GSTs from 

this class had already been purified and characterized from several other bacteria, 

such as E. coli. 

 

 
Figure 4.1- Beta class GST structure from Proteus mirabilis (in Rossjohn et al., 1998) 

 

 

 4.1.3. Putative GSTs in the genomes 

Bacterial genomes encoding multiple GST genes with extensively different 

sequences have been investigated in the last years. Nevertheless, most of the gene 

products do not present functional features or have unknown functions (Vuilleumier 

and Pagni, 2002). In the E. coli genome, in addition to the beta class GST and to 

Stringent starvation protein A, a RNA polymerase, six other GST homologues have 

been identified (Rife et al., 2003). These proteins had GST and GSH dependent 
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peroxidase activities and were involved in the defense against oxidative stress (Kanai 

et al., 2006). In P. mirabilis as well as in Proteus vulgaris three and four different GSTs 

were identified, respectively (Allocatti et al., 2009). According to Rife et al. (2003) 

there are eight possible GSTs in E. coli but only two of the eight gene products have 

functional characteristics. There is no information in R. leguminosarum GSTs. 

According to the genome sequencing there are 19 putative GSTs in the chromosome 

plus four in the plasmids (Young et al., 2006).  

 

4.1.4. The role of GSTs in Cd tolerance 

A general mechanism for Cd detoxification is the chelation of the metal by GSH 

(Adamis et al., 2009). In R. leguminosarum the GSH-Cd complex formation is an 

important Cd detoxifying mechanism present in both, tolerant and sensitive strains 

(Chapter 2), but showing a higher efficiency of Cd chelation to GSH in the tolerant 

strain, suggesting that the sensitivity of NII-1 may be justified by the low efficiency of 

the complexation mechanism in this strain. The tolerant strain was able to complex 

52% of the intracellular Cd with 67% of the intracellular GSH, while sensitive strain 

only sequestrated 27% of intracellular Cd and used only 23% of total GSH. So, 

apparently intracellular GSH content do not explain per se the GSH-Cd complexation 

differences between strains. GSTs are detoxifying enzymes that catalyze the 

nucleophilic attack of the sulfur atom of GSH on the electrophilic group of the 

substrate, both from endobiotic and xenobiotic origin. In Saccharomyces cerevisiae it 

was demonstrated that this family of enzymes have distinct roles in response to Cd 

stress: one is involved in the formation of GSH-Cd complexes, while the other appears 

to be involved in the regulation of GSH homeostasis (Adamis et al., 2004).   

 

4.1.5. Aims of the chapter: 

 GSTs may be involved in the GSH-Cd complex formation in Rhizobium 

leguminosarum and its activity under metal stress may explain the chelation 

efficiency differences detected among strains and, consequently, their tolerance 
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differences under metal stress. However there are no reports regarding the study of 

GSTs in rhizobia under metal stress. So, in order to understand the role of this family 

of enzymes in the formation of GSH-Cd complexes, the aims of this chapter are: 

A. To determine GST activity of Rhizobium strains in the absence and in the presence 

of Cd inducing 50% growth inhibition. 

B. To purify GST isoforms under control conditions and under Cd exposure. 

C. To understand the role of GSTs on GSH-Cd complex formation, through 

quantification of GST activity using Cd as substrate.  
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4.2 Material and methods 

4.2.1 Bacterial strains and growth conditions 

Rhizobium leguminosarum strains E20-8 (tolerant) and NII-1 (sensitive) were 

grown in YEM (Somasegaran and Hoben, 1994) supplemented with Cd (0 and 100µM 

Cd to the tolerant strain and 0 and 50 µM Cd to the sensitive strain). Cells were 

incubated at 26°C, in an orbital shaker, during 72 h at 200 rpm. To estimate growth, 

optical density was measured at 600 nm.  

 

4.2.2 Isolation of GSTs 

Rhizobium GSTs were purified according to the method of Di Ilio et al. (1988). 

Briefly, cells were washed twice with 10 mM potassium phosphate buffer pH 7.0 

containing 1mM EDTA and 1mM DTT and disrupted by sonication during 20 s at 0.7 

cycles. s-1). The homogenated material was centrifuged at 105.000 g for 1 h and the 

supernatant was loaded onto a GSH-Sepharose affinity column equilibrated with 10 

mM potassium phosphate buffer pH 7.0 with 1 mM EDTA. The column was washed 

using 15ml of the same buffer with 0.5M KCl to rinse away non-specific proteins; non-

retained effluent was collected. The GSTs were then eluted in 1 ml fractions with 50 

mM Tris–HCl buffer pH 9.6 with 5mM GSH. Fractions were tested for activity towards 

CDNB and assayed for protein using the Bradford Assay. Retained and non-retained 

fractions were then frozen at −80°C for further analysis and the procedure was 

repeated three times. 

 

4.2.3 Purification of GSTs isoforms 

Fractions presenting GST activity were pooled and submitted to anion 

exchange chromatography. The sample was eluted with a linear salt gradient (0 to 
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750 mM NaCl). Detection was performed at 280 nm. Fractions were tested for activity 

towards CDNB and assayed for protein using the Bradford Assay (Bradford, 1976). 

Retained fractions were then frozen at −80◦C for further analysis and the procedure 

was repeated three times. 

 

4.2.4 Enzyme activity 

GST activity was determined spectrophotometrically with CDNB, ETHA and 

DCNB and Cd by the method of Habig and Jakobi (1981). The activity towards CDNB 

was determined at 340 nm by adding 200 µl of 50 mM phosphate potassium buffer 

(6.8), 100 µl of 5 mM GSH, 100 µl of cell extract and finally 100 µl of 5 mM CDNB to 

start the reaction. The activity towards ETHA was determined at 270 nm by adding 

250 µl of 50 mM phosphate potassium buffer (6.8), 100 µl of 5 mM GSH, 100 µl of cell 

extract and finally 50 µl of 2 mM ETHA to start the reaction. The activity towards 

DCNB was determined at 344 nm by adding 50 µl of 50 mM phosphate potassium 

buffer (6.8), 250 µl of 5 mM GSH, 100 µl of cell extract and finally 100 µl of 5 mM 

DCNB to start the reaction. The activity towards Cd was determined at 254 nm by 

adding 210 µl of 50 mM phosphate potassium buffer (6.8), 90 µl of 5 mM GSH, 100 µl 

of cell extract and finally 100 µl of 4 mM Cd to start the reaction. GSTs activity was 

obtained based on the extinction coefficients of 9.6 mM. cm−1 (CDNB), 5.0 mM cm−1 

(ETHA) and 10.0 mM cm−1 (DCNB). All the assays were performed at 25 °C, using a 

UV/VIS spectrophotometer (Beckman Model DU-68) and activity was calculated 

using protein concentrations determined via the Bradford assay, with BSA used as 

standard.  

 

4.2.5 Protein quantification  

Protein quantification was performed by the Bradford method as previously 

described in Chapter 2 (Bradford, 1976). 
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4.2.6 Statistical analysis 

For both strains, data from GST activity and protein peak isolated were 

submitted to hypothesis testing using permutation multivariate analysis of variance 

with the PERMANOVA+ add-on in PRIMER v6 (Anderson et al., 2008), following the 

calculation of Euclidean distance matrices among samples. A one-way hierarchical 

design, with the Cd exposure concentration as the main fixed factor, was followed in 

this analysis. The pseudo-F values in the PERMANOVA main tests were evaluated in 

terms of significance. When the main test revealed statistical significant differences 

(p<0.05), pairwise comparisons were performed. The t-statistic in the pair-wise 

comparisons was evaluated in terms of significance among different conditions and 

strains. Values lower than 0.05 were considered as significantly different.  

The null hypotheses tested were: a) for each strain, for each substrate and for 

total GST activity: no significant differences exist between Cd exposure concentration; 

b) for each strain and for each Cd exposure concentration: no significant differences 

exist between GSTs isoforms; c) for each strain and for each GST isoform: no 

significant differences exist between Cd exposure concentration; d) for each Cd 

exposure concentration and for total GST activity: no differences exist between 

strains; e) for each Cd exposure concentration and for each GSTs isoform: no 

differences exist between strains.  
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4.3 Results 

 

4.3.1 GST activity in Rhizobium leguminosarum cells 

GST activity was assessed in Rhizobium leguminosarum strains, under control 

conditions and under Cd exposure, in order to understand the role of this family of 

enzymes in Rhizobium metal tolerance. Cd concentration inducing 50% and 70% 

growth inhibitions in both Rhizobium tolerant and sensitive strains were chosen to 

perform several analysis (Chapters 2 and 3), however in this chapter all analysis were 

performed at 50% growth inhibition, due to the amount of cells needed to perform all 

the methodologies. The enzymatic activity of GSTs was obtained towards three 

substrates presenting different chemical properties: CDNB, ETHA and DCNB, in 

tolerant and sensitive (figure 4.2.) strains grown under control conditions and under 

Cd exposure. Under control conditions, the GST activity of the tolerant strain towards 

CDNB was not significantly (p>0.05) different from the activity detected towards 

ETHA, but was significantly higher (p<0.001) than the GST activity quantified 

towards DCNB. Results also demonstrated that GST activity towards the different 

substrates was significantly (p<0.001) affected by metal exposure. GST activity 

towards CDNB and DCNB was significantly enhanced (p<0.001) by Cd exposure, 4 and 

3.5 fold, respectively. GST activity towards ETHA decreased 2 fold in the presence of 

Cd. In the sensitive strain GST activity towards the three different substrates was 

similar in cells growing in the absence or in the presence of Cd. The highest GST 

activity was quantified towards ETHA in both treatments, being the only significant 

difference (p<0.05) detected due to metal exposure. Comparing GST activity between 

both strains it was evident that, under control conditions, tolerant strain presented a 

significant (p<0.001) higher GST activity towards CDNB, but no significant (p>0.05) 

differences were obtain towards ETHA and DCNB. Under Cd exposure, differences in 

GST activity towards CDNB was even higher between both strain, since GST activity 

was highly enhanced in the tolerant strain, while in the sensitive strain GST activity 
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was negatively affected by the metal. Cd decreased GST activity towards ETHA in both 

strains, although its effect was more pronounced in the tolerant strain. For DCNB, 

strains showed different Cd activity, being higher in the tolerant strain than in the 

sensitive strain. 

 

 

Fig. 4.2 – GST activity in Rhizobium leguminosarum tolerant (A) and sensitive (B) strains, grown under 

control conditions (open bars) and under Cd exposure inducing 50% growth inhibition (full bars), 

towards different specific substrates: CDNB, ETHA and DCNB. Data are the means of three replicate 

experiments, with standard errors. Different letters represent significant differences (p < 0.05) 

between treatments and asterisks represent significant differences (p < 0.05) between strains in the 

same treatment. 
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4.3.2. GST activity in the periplasmic and cytoplasmic fractions 

The GST isolation procedure was performed in the periplasmic fraction and in 

the cytoplasmic fraction in order to understand GST localization within the cell. 

Despite the effort it was not possible to isolated different GST isoforms from the 

periplasmic fraction. GST activity from the isolated fractions is expressed in figure 

4.3. 

 

Figure 4.3. – GST activity towards CDNB recovered from the periplasmic (PF) and cytoplasmic 

fractions (CF) of Rhizobium leguminosarum tolerant (blue bars) and sensitive (red bars) strains 

growing under control conditions and under Cd exposure inducing 50% and 70% growth inhibition. 

Data are the means of three replicate experiments, with standard errors. Different letters represent 

significant differences (p < 0.05) between treatments and asterisks represent significant differences (p 

< 0.05) between strains in the same treatment. 

 

The GST activity levels detected in periplasmic fraction were very low, when 

compared to the ones obtained in the cytoplasm, indicating that GST activity was 

mainly located in the cytoplasm.  
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4.3.3. Isolation and purification of Rhizobium GSTs  

 

 

  

Figure 4.4 – GST activity of protein fractions from anion exchange chromatography in Rhizobium 

leguminosarum tolerant (A) and sensitive (B) strains grown under control conditions (open bars) and 

under Cd exposure inducing 50% growth inhibition (full bars), towards CDNB. Data are the means of 

three replicate experiments, with standard errors. Different letters represent significant differences (p 

< 0.05) between treatments and asterisks represent significant differences (p < 0.05) between strains 

in the same treatment. 
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Putative GST isoforms were isolated from Rhizobium leguminosarum cells 

grown under control conditions or exposed to 50% growth inhibition Cd 

concentrations. The purification procedure was achieved through two distinct steps: 

1) separation of GST from the other bacterial proteins by GSH affinity 

chromatography; and 2) isolation of the different GST isoforms by anion exchange 

chromatography. After the first step affinity chromatography performed on a GSH-

Sepharose column, eluded fractions containing GST activity were loaded into an anion 

exchange chromatography column. GST activity towards CDNB was quantified in each 

eluted fraction and after the entire purification procedure. The obtained results are 

presented in figure 4.4.  

When the tolerant strain was grown under control conditions, the purification 

procedure resulted in the separation of five protein peaks with GST activity towards 

CDNB, corresponding to five GST isoforms. Peaks II and V presented the higher GST 

activity towards the universal CDNB substrate. The lowest GST activity towards CDNB 

was observed in the isolated protein reported as peak IV. Under Cd exposure it was 

possible to separated six protein peaks with GST activity towards CDNB, suggesting 

the presence of an additional GST isoform induced by metal stress. The presence of 

Cd also altered the activity of some GST isoforms, being the higher GST activity 

quantified in peaks I and IV and significant (p<0.001) lower GST activity was detected 

in peak III. Cd exposure did not significantly (p>0.05) affect GST activity of peak II.  

In the sensitive strain, the methodology used allowed the isolation of five 

protein peaks with GST activity towards CDNB in control conditions and only four in 

the presence of Cd. Peaks II and V presented the higher GST activity values towards 

CDNB in control conditions. Cd exposure significantly (p<0.05) affected GST activity, 

exception made to peak I. The enzymatic activity detected in peak IV was significantly 

(p<0.05) higher, but in peaks II and V the activity decreased and in peak III no activity 

was detected towards CDNB.  

Both strains presented similar GST profiles under non stress conditions: it was 

possible to separate five distinct protein peaks presenting comparatively analogous 

enzymatic activities. However, when exposed to Cd, differences in the purified protein 

peaks were evident: a new peak the tolerant strain, peak VI, not detect in the sensitive 
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strain; the non-detection of GST activity in peak III of the sensitive strain.  In peak II, 

the enzymatic activity decreased in the sensitive strain but not in the tolerant strain. 

 

4.3.4. The role of GSTs in Rhizobium leguminosarum Cd tolerance 

The role of the purified GSTs in GSH-Cd complexes formation was studied by 

quantifying the complexes resulting from GSH-conjugation activity of the purified 

enzymes from the tolerant strain (Figure 4.5) in the presence of Cd and GSH. In the 

sensitive strain no activity towards Cd was detected.  

 

 

Fig. 4.5. – GSH-conjugation activity of the protein peaks purified from tolerant strain grown under Cd 

exposure inducing 50% growth inhibition. Data are the means of three replicate experiments, with 

standard errors. Different letters represent significant differences (p < 0.05) between values. 

 

According to the results obtained, all proteins were able to successfully 

conjugate GSH towards Cd, leading to the formation of GSH-Cd complexes. However, 

the protein from peak IV was the one presenting a higher GSH-conjugation efficiency 

in the chelation between the metal and the tripeptide. These results suggest that, 

although all GST were able to catalyze the binding between Cd and GSH, the enzyme 
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isolated in peak IV presented a higher specificity to that reaction not being the most 

reactive enzyme towards the universal GST substrate, CDNB. 
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4.4 Discussion 

   

4.4.1 GSTs catalytic ability with different substrates  

GSTs have been extensively studied in several species, including mammals, in 

which multiple isoforms, composed of two subunits, are present. GST fold is highly 

conserved from bacteria to mammals (Federici et al., 2007). However, much less 

information is available on the presence, structure and biological functions of 

bacterial GSTs. GST activity in Rhizobium cells was determined towards different 

substrates, since the catalytic ability towards selected substrates is considered to be 

an important parameter to distinguish, among different GST isoforms (Dainelli et al., 

2002). Some GST isoforms may have low specific activity towards the universal 

substrate CDNB, but an extraordinary higher activity towards other substrates 

(Alkafaf, 1997). The GST activity, determined in R. leguminosarum cells towards three 

different substrates, revealed marked differences between the two Rhizobium strains 

(figure 4.2) . The tolerant strain (E20-8) demonstrated the ability to increase GST 

activity towards the specific substrate CDNB as a consequence to Cd exposure, while 

under the same level of metal stress, the GST activity of the sensitive strain (NII-1) 

was negatively affected. It had already been reported that bacterial GSTs have no 

specific relevant activity towards CDNB (Zablotowicz et al., 1995), as bacterial GSTs 

were first described not as detoxifying enzymes but rather as being involved in 

primary metabolism (Wiktelius and Stendberg, 2007).  On the other hand Favaroloro 

et al. (1998) demonstrated that OaGST from Proteus mirabilis presented high activity 

towards that specific substrate. Even though the present work demonstrated that the 

metal tolerant strain present higher GST activity towards CDNB when exposed to Cd. 

Zablotowicz et al. (1995) had already suggested a high affinity of gram-negative 

bacteria GST towards CDNB, even though the affinity was considerable lower than in 

eukaryotic organisms.  
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In this work the level of GST activity under control conditions was similar to 

those found in other bacteria (Emtiaze et al., 2009; Favarolo et al., 1998; Federici et 

al., 2007; Kanai et al., 2006) but lower than the values obtained to other organisms 

(Adewale et al., 2006; Donham et al., 2005; Dainelli et al., 2002). Nevertheless under 

Cd stress GST activity levels in the tolerant strain were highly increased, indicating 

that GSTs must have an important role in the tolerance to Cd. There are several 

studies regarding the identification and characterization of bacterial GSTs. 

Nevertheless there are no evidences supporting the role of GSTs in bacterial tolerance 

to Cd stress. In Saccharomyces cerevisiae it was reported two important GSTs in Cd 

stress: Gtt1 involved in the regulation of GSH homeostasis and Gtt2 involved in the 

formation of GSH-Cd complexes (Adamis et al., 2004). The increment observed in the 

activity of GSTs towards CDNB, in the Rhizobium tolerant strain exposed to Cd, 

suggested that bacterial GSTs may be involved in the formation of GSH-Cd complexes. 

In plants and animals it was demonstrated that some GSTs may be inducible by the 

exposure to some xenobiotics, and even though some reports confirmed that gram-

negative bacteria may use GST as a potential detoxification mechanism (Favarolo et 

al., 1998; Favarolo et al., 2000; Zablotowicz et al., 1995), there were no evidences 

regarding the presence of inducible GSTs in bacteria.   

 

4.4.2 GST isoforms under Cd stress 

It was already demonstrated in S. cerevisiae (Adamis et al., 2004) that GSTs 

appear to be crucial to the efficient formation of GSH-Cd complexes and consequently 

to increase Cd tolerance. The results presented in this chapter confirm that in 

Rhizobium leguminosarum GST may have a similar role. GSTs are a multigene family 

of enzymes (Allocati et al., 2009) with possible different roles in cellular 

detoxification against harmful xenobiotics (Adamis et al., 2004; Oakley, 2005). Thus, 

it was important to identify the GST isoform directly involved in the formation of 

GSH-Cd complexes. To accomplish this goal different GST isoforms, present in 

Rhizobium leguminosarum, were isolated in the absence and in the presence of metal 

(figure 4.4). Both Rhizobium strains presented five GST like proteins, presenting 

different GST activities towards CDNB. Similar results were obtained in other bacteria 
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species. In Proteus mirabilis were identify three GSTs (Di Ilio et al., 1988), while in 

Proteus vulgaris were identify four (Hong et al., 2003) and in E. coli, apart from beta 

class GST (Nishida et al., 1998), there are reports of at least six GST homologous (Rife 

et al., 2003). Although Cd exposure inhibited the activity of some GSTs, results 

indicated the induction of a new GST isoform in the tolerant strain. The isolated GST 

isoforms may not be the only GSTs present in Rhizobium leguminosarum, as the 

analysis of R. leguminosarum genome revealed 19 putative GST (Young et al., 2006), 

that were not expressed under the experimental conditions or could not be purified 

by the procedure used. 

Bianucci et al. (2012) demonstrated that, in Bradyrhizobium, GST activity was 

inhibited by Cd exposure. Nevertheless there are no reports regarding the 

purification of GST isoforms under Cd stress in bacteria. The results of this thesis 

indicated that Cd exposure had a different influence in GSTs isoforms, as the activity 

of some isoforms was inhibited and of others was enhanced. Furthermore, the 

increment in the activity of some GST isoforms was related with the higher metal 

tolerance exhibited by the tolerant Rhizobium strain. The isoform isolated in peak IV 

had a particularly affinity towards Cd in the presence of GSH (figure 4.5), suggesting 

its crucial importance in the chelation mechanism. Moreover, the lower GST activity 

detected in the periplasmic fraction and the difficulty to isolate GST isoforms from 

that fraction, suggested that GSTs were mainly present in the cytoplasm (figure 4.2). 

Taking this into consideration, the results from this thesis suggest that GSH-Cd 

complexes were formed in the cytoplasm of Rhizobium leguminosarum cells, and that 

this complexation mechanism was mainly mediated by a specific GST isoform (peak 

IV).  
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Chapter 5 

Final remarks 

 

 

 

Given the pressure caused by the global population increase, over the past 50 

years there has been a profound transformation of agricultural practices. The 

widespread use of pesticides, chemical fertilizers and household or industrial sludges, 

increased soil contamination with toxic substances that interfere with soil microflora. 

Agricultural soils often present deficiencies in nutrients that affect plant growth and 

development, hence requiring the addition of fertilizers and sludges (Alloway, 

1995a), which frequently present high levels of metals such as Cd. The study of soil 

bacteria tolerance to contaminants arises as a research area with great importance 

and short time to produce results. Throughout the chapters of the thesis it was 

intended to draw attention to the influence of Cd on the tolerance of Rhizobium 

leguminosarum, a bacterial species with high importance to agricultural soils, due to 

the establishment of endosymbiosis with legumes high economic and dietary value.  

The study focused on a particular strategy that Rhizobium leguminosarum 

possess to tolerate Cd, and possible other metals. Mechanisms of tolerance to Cd as 

metal efflux systems mediated by active transport (Nies, 1999; Saltykov and Olson, 

2002), precipitation of metal ions as insoluble salts (Blake et al. 1993 ; Wang et al., 

2000), change in the permeability of membranes (Levine and Marzluf, 1989), 

immobilization of metals in the cell wall (Cervantes and Gutierrez-Corona, 1994) and 

production of chelating agents (Silver and Phung, 1996) have been described for 
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several bacterial species. However the role of GSH, a biomolecule present in the 

majority of species, on the chelation of metals was poorly studied. Thus the 

elucidation of the GSH role as a metal chelating agent in bacteria tolerance to Cd was 

the main aim of this work. 

In Chapter 2 it was investigated the GSH-Cd chelation mechanism. Higher 

intracellular Cd levels were observed in the tolerant strain as it had already been 

demonstrated by others authors (Figueira et al., 2005; Lima et al., 2006). It was also 

demonstrated that Rhizobium leguminosarum tolerance to Cd was dependent on the 

higher efficiency of the chelation mechanism exhibited by the tolerant strain. This 

mechanism was activated at the beginning of the lag phase (12 h of growth). As the 

accumulation of GSH-Cd complexes may inhibit intracellular Cd uptake (Gomes et al., 

2002), which was not observed in the tolerant strain, the GSH-Cd complexes were 

suggested to be transported into the periplasmic space (Chapter 3). The results point 

out this hypothesis as the most viable as high levels of GSH and Cd were found in the 

periplasmic space but only a small percentage of GSH-Cd complexes were quantified. 

Furthermore, as GSH synthesis appeared to occur in the cytoplasm, GSH content in 

the periplasm had to be transported from the cytoplasm. It was also established that 

the chelation mechanism occurred in the cytoplasm, as its efficiency was dependent 

on the enzymatic activity of a specific GST isoform, present in that cytoplasm 

(Chapter 4). The ability of the tolerant strain to induced specific GST activity was 

probably the most important reason to explain differences in Cd tolerance between 

the two strains. Thus, results of this thesis suggested that, Cd was uptaken by 

bacterial cells directly into the cytoplasm, where it was GSH chelated, a reaction 

catalyzed by a specific GST isoform. The formed complexes were then excreted into 

the periplasmic space, where complexes dissociated and metal ions were 

accumulated or excreted. Figure 5.1 represents the Cd tolerance mechanism, 

suggested by the results obtained in this thesis, that may  explain the higher tolerance 

demonstrated by the tolerant Rhizobium leguminosarum strain, E20-8. 
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Figure 5.1. – The putative Cd tolerance mechanism that present in Rhizobium leguminosarum  tolerant 

strain. Cd enters bacterial cells directly into the cytoplasm, where it is chelated by GSH, a reaction 

catalyzed by a specific GST isoforms. This mechanism leads to the increment of γ-GCS activity and 

consequently, to a higher of GSH synthesis. The formed GSH-Cd complexes are then excreted into the 

periplasmic space, where complexes are dissociated and metal ions are accumulated or excreted.  
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