
Universidade de Aveiro Departamento de Engenharia Mecânica
2012

Pedro Filipe Pinto

Pinheiro

Sistema Automático para Gestão da Caixa de

Velocidades do AtlasCar

Automatic Management System for the AtlasCar

Gearbox

Universidade de Aveiro Departamento de Engenharia Mecânica
2012

Pedro Filipe Pinto

Pinheiro

Sistema Automático para Gestão da Caixa de

Velocidades do AtlasCar

Automatic Management System for the AtlasCar

Gearbox

Dissertação apresentada à Universidade de Aveiro para cumprimento dos req-
uisitos necessários à obtenção do grau de Mestrado em Engenharia Mecânica,
realizada sob orientação científica de Vítor Manuel Ferreira dos Santos, Pro-
fessor Associado do Departamento de Engenharia Mecânica da Universidade
de Aveiro.

Para ti, Xaninha :)

O júri / The jury

Presidente / President Prof. Doutor Jorge Augusto Fernandes Ferreira
Professor Auxiliar da Universidade de Aveiro

Vogais / Committee Prof. Doutor António Manuel Ferreira Mendes Lopes
Professor Auxiliar da Faculdade de Engenharia da Universidade do Porto

Prof. Doutor Vítor Manuel Ferreira dos Santos
Professor Associado da Universidade de Aveiro (orientador)

Agradecimentos /
Acknowledgements

Ao Professor Doutor Vítor Santos, pelo acompanhamento constante, pela
motivação, por estimular o interesse pela robótica e pela programação e pela
luta constante para que eu soubesse sempre qual o caminho a seguir.
Ao Miguel Oliveira e ao Jorge Almeida, por tantas vezes partilharem o con-
hecimento, e apontarem a direção mais certa a seguir, em alturas cruciais
do trabalho.
Ao Doutor Ricardo Pascoal, por ter partilhado a sua vastíssima experiência,
transversal a inúmeras áreas técnicas e científicas, pela sua extraordinária
paciência para ensinar e pelas achegas que foi dando na área da eletrónica.
Aos meus colegas e amigos do LAR, por manterem a boa disposição, pela
companhia nas noitadas de trabalho e por me aturarem nos momentos de
pessimismo e de mau humor.
Aos meus pais, avós e irmã, pelo apoio exemplar ao longo de toda a minha
vida. Sem eles nada teria sido possível.
Resta-me mencionar os meus enormes Amigos Ana Matos e Dilas Fortes, a
quem terei de agradecer pessoalmente e com um grande abraço. Ao longo
destes cinco anos ajudaram-me tanto, de tantas formas e em tantos mo-
mentos, que sinto que tentar fazê-lo aqui, por escrito e numa só frase, não
seria suficiente.

Palavras-chave Controlador Lógico Programável; Caixa Automática; Arduino; Motor DC;
Ponte H; Simulador Hardware-in-the-Loop

Resumo O veículo AtlasCar é um protótipo desenvolvido pelo Laboratório de Au-
tomação e Robótica do Departamento de Engenharia Mecânica da Univer-
sidade de Aveiro, e tem como principais objetivos o estudo de sistemas de
segurança ativos e passivos, técnicas de apoio à condução e soluções para a
condução autónoma.
Até ao momento, uma das maiores limitações a nível da atuação de mecan-
ismos essenciais para a condução autónoma, verificada no AtlasCar, era a
ausência de um sistema que permitisse o controlo da caixa de velocidades.
Embora o comutador de caixa estivesse já projetado e construído, não pos-
suía nenhum sistema de controlo que permitisse a sua utilização. Com
este trabalho pretende-se executar todo o projeto, a construção e a progra-
mação de baixo nível de um controlador robusto e eficaz para desempenhar
o seu papel no âmbito do projeto AtlasCar. Um protocolo de comunicação
fiável entre o firmware do presente mecanismo e o software do AtlasCar será
também implementado, devido á grande responsabilidade do dispositivo em
questão, de forma a permitir uma condução segura.
Outros softwares acessórios á correta utilização deste mecanismo no âmbito
do projecto AtlasCar, como um software de calibração e um nodo de ROS
para comunicação com o mesmo serão apresentados.
É também objetivo deste trabalho a realização de alguns testes de bancada,
necessários de forma a comprovar o funcionamento correto quer da progra-
mação, quer do protocolo de comunicação criado, recorrendo a um simulador
com Hardware-in-the-Loop simplificado, programado em Matlab.

Keywords Programmable Logic Controller; Gearbox; Arduino; DC Motor; H-bridge;
Hardware-in-the-Loop Simulator

Abstract The AtlasCar vehicle is a prototype developed by the Laboratory of Automa-
tion and Robotics at the Department of Mechanical Engineering at Aveiro
University with the purpose of studying active and passive safety systems,
assisted driving techniques and new solutions for autonomous driving.
Until now, one of the major faults in what concerns to the actuation of the
AtlasCar vehicle’s main driving systems was the absence of a mechanism
that would allow the control over the AtlasCar gearbox.
Although a mechanism had already been built for this purpose, it had no
control system that would allow it to be automatically actuated. The pur-
pose of this work is to present an electronic project for a robust and effective
controller to this AtlasCar’s gear selector mechanism. The controller’s con-
struction and its low-level programming is also executed. A reliable commu-
nication protocol between the firmware of the mechanism, and the AtlasCar
software is also implemented, due to the high responsibility task to be per-
formed by this actuator in the driving process.
Other accessory software, like a calibrator for the gear selector mechanism
and a ROS Node to perform the communication between the AtlasCar con-
trol PC and the mechanism, are also presented.
It is also within the scope of this work the execution of several laboratory
tests, in order to determine the robustness of both the programming and
the communication protocol. These tests will be executed with a simplified
Hardware-in-the-Loop simulator, written using Matlab.

Contents

1 Introduction 1

1.1 The ATLAS Project . 1

1.2 The AtlasCar Actuators . 2

1.2.1 The Clutch and Brake Pedals . 3

1.2.2 The Handbrake . 3

1.2.3 The Throttle . 3

1.2.4 The Ignition . 4

1.2.5 The Steering . 5

1.2.6 The Lights . 5

1.3 Objectives . 5

1.4 Dissertation Structure . 6

1.5 Automatic Gearboxes . 7

2 Automatic Gearbox 11

2.1 Solution Study . 11

2.2 Mechanical System . 14

2.3 Control System . 15

2.3.1 DC Motor Controller . 15

2.3.2 Analogue value from the Potentiometers 17

2.3.3 Manual/Automatic Switches . 18

2.3.4 Seven Segment display . 19

2.3.5 Printed Circuit Board . 19

2.4 Arduino Programming . 25

2.4.1 The Setup Cycle . 25

2.4.2 The Loop Cycle . 25

2.4.2.1 The Manual Mode . 31

2.4.2.2 The Automatic Mode . 31

2.4.3 Communication Protocol . 32

2.4.3.1 Pc to Arduino Messages 32

2.4.3.2 Arduino to Pc Messages 33

2.5 The Calibration Software . 34

2.5.1 The Calibrator Graphical User Interface 35

2.5.2 The Calibrator Communication Process 36

2.5.3 The Calibration Process . 37

2.6 Integration with ROS . 37

i

3 Partial Gearbox Simulator 41

3.1 The Power Train System . 41
3.2 Car Physics . 42

3.2.1 The Drag Force . 43
3.2.2 The Rolling Resistance Force . 44
3.2.3 The Braking Force . 45
3.2.4 The Gravity Force . 45
3.2.5 The Engine Force . 45

3.3 The Simulator GUI . 47
3.4 Shifting Logic . 51

4 Experimental Results 55

4.1 Manual Mode Testing . 55
4.1.1 Motor Controller PCB . 55
4.1.2 Manual Mode Programming Tests 56

4.2 Automatic Mode Testing . 57
4.2.1 ROS Node Testing . 57
4.2.2 "Hardware in the Loop" Testing 57

4.2.2.1 Test 1 - Normal vehicle driving 57
4.2.2.2 Test 2 - Start-up situation 60
4.2.2.3 Test 3 - Steep road . 62

5 Conclusions 65

5.1 Conclusions . 65
5.2 Future Work . 66

6 References 69

7 Annexes 71

ii

List of Tables

2.1 The 4555 decoder Truth Table. 16
2.2 Display Number Meanings . 19
2.3 Available Arduino Pins . 22
2.4 Communication codes from the control PC to the Arduino. 33
2.5 Communication codes from the Arduino to the control PC 33
2.6 Possible Strings being published by the ROS Node. 39

iii

iv

List of Figures

1.1 AtlasCar prototype vehicle. 2
1.2 AtlasCar Handbrake mechanism. 3
1.3 AtlasCar electronic throttle valve. 4
1.4 AtlasCar electrical ignition diagram. 4
1.5 AtlasCar electrically controlled steering column. 5
1.6 Automatic Transmission . 7
1.7 Steering column automatic mode selector lever 8

2.1 Gear Selector Mechanism. 12
2.2 Siemens SIMATIC S7-1200 PLC . 13
2.3 VNH3SP30-E Package . 16
2.4 4555 Functional Diagram . 16
2.5 Vishay Spectrol Mutiturn Wirewound Potentiometer 17
2.6 Renaul Mégane adapted audio pad. 18
2.7 Seven Segment Display used digits. 19
2.8 7-Segment Display Final Board. 20
2.9 Arduino UNO . 21
2.10 Partial PCB 3D model . 22
2.11 Printed Circuit Board . 23
2.12 Final Motor Controller PCB. 23
2.13 Complete gear selector system . 24
2.14 Flowchart for the setup cycle. 26
2.15 Layout for the Gear positions. 27
2.16 Gear Positions Graph . 27
2.17 Orientation and Motor layout of the gear selector mechanism 30

2.18 Motor Acceleration and Deceleration Ramp 30
2.19 Arduino Ethernet "Shield" . 32
2.20 Gear Selector Mechanism Calibrator GUI. 36

3.1 Power Train movement flow scheme between parts. 42
3.2 Force Diagram used in the vehicle simulator. 43
3.3 Torque vs RPM of a 1999 Dodge Neon DOHC engine. 46
3.4 Parameters Graphical User Interface of the simulator. 48
3.5 Main Graphical User Interface of the simulator. 49
3.6 State Machine scheme used for the simulator. 51
3.7 Simplified Gear Shifting Schedule . 53
3.8 Hysteresis Gear Shifting Schedule . 54

4.1 Graphs representative of the Test number 1. 59

v

4.2 Graphs representative of the Test number 2. 61
4.3 Graphs representative of the Test number 3. 63

vi

vii

Chapter 1

Introduction

1.1 The ATLAS Project

The Atlas project has been developed at the Laboratory of Automation and Robotics at
the Department of Mechanical Engineering of the University of Aveiro [1]. The project
started in 2002/2003, and its primary mission is to develop, study and implement ad-
vanced sensing and active systems for further implementation in the automotive industry,
or other similar platforms. After repeatedly achieving excellent results while participat-
ing in the Autonomous Driving Competition, taking place at the Portuguese Robotics
Open, the Atlas team decided it was time to move on to a more ambitious and challeng-
ing environment: the real world scenario. In order to do so, a new platform was acquired
and a brand new branch of the project was created: the AtlasCar.

The AtlasCar is a real-scale prototype vehicle used for research on Advanced Driver’s
Assistance Systems (ADAS), and consists of a modified and adapted 1998 Ford Escort
Station Wagon, shown in Figure 1.1. The vehicle is equipped with several sensor systems
that allow it to perceive the surrounding environment, as well as some of the driver’s
actions. The main sensors currently available in the car are the following:

• Stereo Head;

• Foveated Vision;

• 2D Laser Scanners;

• Custom 3D Laser Scanner;

• MEMS IMU;

• GPS Receiver;

• Pedal pressure Sensors.

The vehicle has also suffered a major set of interventions on a hardware level. One
of the most important changes was the addition of a second DC generator, independent
from the original AtlasCar alternator, but also propelled by the engine shaft. In order
to power up the vehicle’s new and more demanding electric circuitry, including all the
computers, monitors, cameras, sensors and actuators, this DC generator is connected to
an AC inverter that raises the voltage to 220/230 V. This inverter is connected to an

1

2 1.Introduction

Figure 1.1: AtlasCar prototype vehicle.

Uninterruptible Power Supply (UPS) to ensure a stable and safe power supply to all the
mentioned equipments. The UPS is the interface from where all equipments’ power is
derived. The car also includes two DC power rectifiers: a 12 V and a 24 V, used to feed the
large variety of electronic and electromechanical equipment. The power management of
each sensor or actuator is made by software using an industrial Mitsubishi Programmable
Logic Controller (PLC). Another PLC, a Siemens SIMATIC S7-1200 depicted in Figure
2.2, is the responsible for the majority of the actuation systems, the low-level management
of the security systems and the monitoring of several driving parameters.

1.2 The AtlasCar Actuators

As the AtlasCar project consists of an automatic driving prototype, there is the need to
control as many driving parameters as possible. In order to achieve this main objective,
AtlasCar uses some electronically controlled actuators on most of the main car systems.
The systems currently being actuated are listed below:

• The Throttle;

• The Brake pedal;

• The Clutch pedal;

• The Handbrake;

• The Ignition;

• The Steering;

• The Lights.

A brief description of these actuator systems is presented from Subsection 1.2.1 to
Subsection 1.2.6.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

1.Introduction 3

1.2.1 The Clutch and Brake Pedals

The AtlasCar clutch and brake pedals are actuated in a very similar way. These pedals are
mechanically connected, through a steel wire attached to the pedals, to the respective
actuator boxes, currently located below the driver’s seat to allow easy access. These
actuator boxes are actually adapted lock brake actuators from a Renault Vel Satis, whose
circuitry was remade in order to allow the local control of the speed and sense of rotation
of its DC motor [2]. The actuators simulate the pedal movements normally caused by
a driver’s foot pressing them, without interfering with the normal driving of the car.
The control signal used to actuate the clutch and the brake is controlled using a digital
communication protocol with the Siemens Programmable Logic Controller. The force
that the driver exerts in each pedal can also be monitored, using variable resistance
sensors, and the values are communicated directly to the PC.

The clutch actuator is particularly important for the future of this this work, as it
presents itself as a fundamental element on the gear shifting process. The clutch allows
the engine to be mechanically detached from the gearbox, which needs to be stopped in
order to perform a smooth gear shifting process.

1.2.2 The Handbrake

The system used to drive the handbrake uses a chain and sprocket wheel attached to the
handbrake itself. Another adapted Renault Vel Satis lock brake actuator box was used to
drive this system. An electric linear actuator, depicted in Figure 1.2, pulls the handbrake
blocking button when necessary. All the handbrake actions are controlled locally using a
programmable integrated circuit. The control signal used in order to actuate this system
is also controlled using a digital communication protocol with the Siemens PLC.

Figure 1.2: AtlasCar Handbrake mechanism.

1.2.3 The Throttle

The AtlasCar original vehicle, a 1998 Ford Escort Station Wagon, was not equipped with
an electrically controlled throttle valve, and consisted on a common throttle, actuated

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

4 1.Introduction

directly by a steel wire from the pedal to the throttle valve. This system was replaced
by the electronic throttle depicted in Figure 1.3, which uses digital potentiometers and
an H-bridge, controlled by an Arduino, in order to set a desired position to the valve.
This system communicates directly with the control PC, via TCP/IP.

Figure 1.3: AtlasCar electronic throttle valve.

1.2.4 The Ignition

The AtlasCar current automatic ignition uses a two relay system, as depicted in Figure
1.4, because there are two main circuits on the original lock cylinder:

• A pair of Power Cables;

• A pair of cables for the Starter Motor;

PLC NO RELAY

NC RELAY

Car Key
Starter

Motor

Power

Figure 1.4: AtlasCar electrical ignition diagram.

In order to activate this system, a normally closed relay is used in series with the
Power cables, and a normally open relay controls the state of the starter motor. This
system allows the automatic control of the ignition, but the manual system remains fully
operational. The key still needs to be inserted on the cylinder and rotated to the second
position (Power On) for the system to start, because of the steering wheel blocking
system.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

1.Introduction 5

1.2.5 The Steering

The steering actuator is an adapted electric power steering system, depicted in Figure
1.5. The original power steering system was hydraulic, and it is currently only aiding
the new electric system. The electrical actuator is locally controlled by a Programmable
Integrated Circuit, the position of the steering wheel is monitored using a multi-turn
potentiometer and the communication with the PLC is made using analogue signals.

Figure 1.5: AtlasCar electrically controlled steering column.

1.2.6 The Lights

The AtlasCar lights are currently being both controlled and monitored. The lights control
is achieved using the PLC digital outputs, which command a relay box, currently placed
below the passenger’s seat. The lights currently being actuated are listed below:

• Dipped Beam Headlamps;

• Main Beam Headlamps;

• Right Directional Indicator;

• Left Directional Indicator;

• Roof-mounted Yellow Beacon;

The lights’ actuation system is connected in parallel with the vehicle’s original light
circuitry, so all the lights can still be normally used by a human driver. This fact is
particularly useful if the automatic systems are turned off, or in the case that the car is
only used to monitor the driver’s behaviour, without interfering with it.

1.3 Objectives

The AtlasCar vehicle is not originally equipped with an automatic transmission system,
which makes the implementation and testing of new autonomous driving algorithms very

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

6 1.Introduction

difficult, or even impossible. One of this work’s main objectives is to project, build
and test extensively a new gearbox management system based on the control of two DC
motors. It is also an objective of this project to prove that this controller is solid and
robust enough to control the existent AtlasCar gear selector mechanism.

The other main objective of this work is to develop a reliable firmware solution to
control the gear selector mechanism, which can automatically perform the trajectories
required to obey any gear change order given by the software controlling the gearbox on
the AtlasCar PC.

The communication process with the device will also be explored and tested, to
ensure the proper operation required for such a vital element of the AtlasCar vehicle:
the gearbox.

It is also in the scope of this work the development of a simple, yet highly configurable
Hardware-in-the-Loop simulator, in order to perform laboratory tests on the gear selector
mechanism controller.

1.4 Dissertation Structure

This dissertation consists of seven chapters.

This first Chapter is a brief introduction to the Atlas project. It presents some of the
project’s history, and its current developments stage. In this Chapter, the most common
automatic transmission systems used nowadays are also presented, as well as some of
their advantages or limitations. The first Chapter also defines the primary objectives
and goals of this work.

In the second Chapter, the current AtlasCar gear selector mechanism is explained
in detail, and the electronic controller solution built to control it is also described. The
firmware programming, the methods used to perform it and the details about the com-
munication messages received and sent between the control computer and the firmware
are also explained in the second Chapter. Other accessory software, namely the cali-
bration software and the ROS Node that was built to facilitate the introduction of the
mechanism in the AtlasCar, are also shown in this Chapter, along with the necessary
instructions or programming details about their operation.

The third Chapter of this dissertation explains in detail the simple Hardware-in-
the-Loop partial gearbox simulator, written in Matlab in order to simulate and test the
behaviour of the gear selector mechanism, its communication protocol and the robustness
of its programming, in the laboratory.

The fourth Chapter explains some of the laboratory tests that were performed on
the gear selector mechanism, both using the manual mode and the automatic mode.
This second test is performed using the Hardware-in-the-Loop simulator described in the
fourth Chapter.

The fifth Chapter presents the conclusions about this work. This Chapter also pro-
poses some future work that still needs to be executed in order to perform successful gear
changes on the Atlascar vehicle using this mechanism.

At the end of this work, both the bibliographic material used to develop it is described,
and the annexes necessary to the complementation and further comprehension of certain
aspects and parts of this work are presented.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

1.Introduction 7

1.5 Automatic Gearboxes

In order do develop a gear changing mechanism for the AtlasCar vehicle, and to achieve a
better understanding of the problem at hand, the most common solutions commercially
available were studied and explored.

An automatic gearbox, or automatic transmission is, by definition, "an arrangement
of gears, brakes, clutches, a fluid drive and governing devices that automatically changes
the speed ratio between the engine and the wheels of an automobile" [3]. This system
was initially created to simplify the driving process, freeing the driver from the process
of shifting gears or clutching. There are three main types of automatic transmission used
nowadays:

• The traditional Fully Automatic Transmission;

• Continuously Variable Transmissions (CVT);

• The Semi-automatic transmission.

The most common automatic transmission system is the hydraulically operated fully
automatic transmission. One of the most significant differences between the manual
transmission and the hydraulic automatic transmission system is that the last uses a
torque converter instead of a common mechanical clutch.

Figure 1.6: Automatic transmission system. The torque converter can be seen in the
left, and the planetary gears can be observed in the middle [4].

The torque converter is a type of hydrodynamic fluid coupling used to transfer the
rotating power from the engine to the gearbox itself, allowing the two systems to be
mechanically separated when convenient, like the common clutch system. This system
differs from the classic clutch, as the one present in the AtlasCar vehicle, because the
clutch can completely mechanically connect two different shafts, contrarily to what hap-
pens with the torque converter, where a thin film of fluid is always present between the
gearbox’s and engine’s disks [5]. The clutch is not an hydraulic system, and uses springs
in order to engage or disengage the engine shaft from the gearbox shaft. The use of

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

8 1.Introduction

clutches, instead of hydraulic torque converters, on the manual transmission systems is
the main reason why this type of transmission presents more efficiency, as there is no
energy loss to the operating fluid [6].

The Hydraulic Automatic transmissions also use planetary gearing with independent
internal clutches, instead of the simpler meshing gears system used in the manual trans-
mission systems, thus increasing its maintenance cost. The number of moving parts used
in hydraulic transmission is considerably higher than their manual equivalent, because
of all the auxiliary hydraulic circuitry, such as the necessary pumps and pipes. The
hydraulic system is also composed of at least two different fluids: the lubricant and the
operating hydraulic fluid, which also requires a more careful maintenance.

Figure 1.7: Steering column automatic mode selector lever from a 2010 Mercedes-Benz
E350, with the four common modes: R, N D and P [7].

The fully automatic transmission interface with the driver consists of a selection lever,
normally located on the steering column like the one represented on Figure 1.7 or in the
car floor, on the place occupied by the gear lever on a manual transmission car. This
lever allows the driver to choose from a variety of running modes, the most common of
which are presented and described in the following list:

• Park (P)→ The Park mode mechanically locks the output shaft of the transmission
and prevents it from turning in any direction. This mode is used when the vehicle
is in a stationary position;

• Reverse (R) → The Reverse mode allows the vehicle to be driven backwards, in
order to perform special manoeuvres. The insertion of this mode is only allowed
when the vehicle reaches a complete standstill;

• Neutral (N)→ The Neutral mode works in a very similar way to a Neutral position
of a manual transmission vehicle, as it disengages all gears in the transmission
system. The automatic transmission drivers must always start in this position in
order for the engine to start;

• Drive (D) → The Drive mode allows the transmission to use all the forward gear
ratios available. This is the mode used for normal car driving.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

1.Introduction 9

An autonomous driving project named CADU, currently in progress at the Universi-
dade Federal de Minas Gerais, in Brazil, takes advantage of the simple lever design of the
semi-automatic transmission already available on the vehicle, and actuates it externally
using a linear actuator [8]. This actuator only pushes or pulls the lever in the forward or
backward direction, in order to select the desired running mode.

The Continuously Variable Transmissions are another type of automatic transmission
system where the gear ratio can vary steplessly between a maximum and a minimum limit,
defined by the manufacturer. These systems are used to provide better fuel economy, as
the engine can work at its most efficient revolutions per minute value for a wide range of
vehicle speeds. This system is not relevant for the study at hand, and is not described in
more detail, because its functioning principle is drastically different from the transmission
used in the AtlasCar vehicle.

Due to all these notorious differences between the fully automatic hydraulic trans-
mission or the Continuously Variable Transmission described above, and the common
manual transmission present on the AtlasCar vehicle, the gear shifting system principle
used in the AtlasCar presents more similarities with the third automatic transmissions
category presented: the semi-automatic transmission.

Unlike the automatic hydraulic transmission, which takes care of the whole gear
shifting process for the driver, the semi-automatic transmission gives much more control
to the driver, or the controlling computer system. The main advantage of this system is
that it automatically controls the clutching process, leaving only the decision about the
gear at which the system should run to the driver, or the electronic system in charge of the
gear shifting logic. Typically it uses electronic sensors and actuators in order to engage or
disengage the clutch and carefully synchronize its timing. This accurate timing process
results in fast, smooth and effective gear shifts, which makes it the preferred transmission
type for high performance applications.

The semi-automatic transmission interface with the user is similar to a manual one,
but instead oh using the characteristic H-pattern gear distribution, the gear lever only
moves forward and backwards to shift up or down, respectively.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

10 1.Introduction

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

Chapter 2

Automatic Gearbox

2.1 Solution Study

The original AtlasCar vehicle is equipped with a fully manual, five speed plus reverse
transmission, which is still the most common type of transmission in Portugal. This
system presents some important advantages for the driver. A manual transmission allows
the driver to have more control on the driving, improving the behaviour of the car
during high speed turns, or even avoiding unexpected and dangerous situations. It is
also known for making the driving process more efficient in what concerns the engine
fuel consumption, even when compared against more modern, electronically controlled
transmissions available in the market [9].

Although this system presents more advantages for a human driver, it brings some
new challenges and problems when the control needs to be made by a computer or a ma-
chine. The ideal approach would be to use an automatic transmission system compatible
with the current engine model. Unfortunately, this solution turned out to be impossible
because there were no available automatic transmissions for the engine model currently
installed in the AtlasCar prototype. Although an automatic transmission was available
for the 1600 cm3 engine, there was no such system compatible with the 1400 cm3 en-
gine, which is the one present in the AtlasCar vehicle. A drastic measure, like changing
the engine itself, would also not be feasible because of all the changes and adaptations
already made on the engine and mentioned in Section 1.1, like the electronic accelerator
or the second alternator. In order to keep the car as unchanged as possible, it was clear
that the current fully manual transmission system should be used, with all the necessary
adaptations to automatically actuate it. Given the situation, the most reasonable ap-
proach to use the current transmission would be to control the position of the gear lever,
in the same manner a human driver controls it. A mechanical system, projected and
built prior to the beginning of this work, was intended to do just this. This mechanism
is represented in Figure 2.1.

This gear selector mechanism had already been built several months earlier, and a
first attempt to control it was made during the previous term. This first attempt resorted
to limit switches placed at some key points in the mechanism, in order to determine the
current position of the lever, and to drive it to the next. The system was driven by a
Microchip PIC. The AtlasCar control PC would calculate the direction the gear should
shift, and it would communicate this order, via TCP/IP, directly to the AtlasCar PLC.
The PLC would then communicate with the PIC on the gearbox mechanism controller,

11

12 2.Automatic Gearbox

Figure 2.1: Atlascar gear selector mechanism.

and the micro-controller program would decide which movements to make in order to
change to the requested gear.

This method has proven to be very prone to failure, and brought some expected and
unexpected problems. The PIC programming written using limit switches was made
in a purely sequential mode. To make the system memorize every path possible from
each point to the another would originate a rigid and complex code. Another problem
is that the control type made using only limiting switches is a bang bang with dead
band control, which is not the most indicated for high responsibility applications, such
as a vehicle automatic gearbox, because the control system would not know the position
of the gear lever at all times. The switches also presented some issues: they jammed
frequently, got run over by the DC motors, they easily got out of their mounting places
and the repetitive movements of the system caused the signal wires to break from their
respective leads.

The electronic circuits used to drive the DC motors in this early version had also some
issues. The system was divided into three separate printed circuit boards: two individual
H-bridges to drive each one of the DC motors, and one signal board used to hold the
Microchip PIC, and its auxiliary circuitry. The H-bridges power circuit often overheated,
and turned out not being stable enough to mount permanently on the vehicle, where they
would be subjected to both vibration and heat, in a much more heavy-duty environment
than the laboratory.

Another main issue presented in this first system was its difficult tuning at the mo-
ment of being placed in the AtlasCar prototype. Mounting each one of the switches on
its correct position would be difficult and very time consuming. Any recalibration of the
system would also take hours of effort, and should be executed by someone very knowl-
edgeable of both the mechanical system and its programming. Due to all these known

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 13

issues, this solution was abandoned.
Most recently, some important changes took place in the AtlasCar project. The most

important of these changes was the migration from the previous CARMEN based system,
to the new ROS architecture, which simplified many of the complexities present in the
previous and limited CARMEN system. ROS significantly improved and simplified the
interprocess communication, and the constantly updated drivers and libraries, available
on-line, are very helpful for those working with both hardware and software in the robotics
field.

It was also decided to free the Programmable Logic Controller, a Siemens SIMATIC
S7-1200 shown in Figure 2.2, which is AtlasCar’s current Engine Control Unit (ECU),
of some of its previous tasks. Any change on the PLC software is not easily made,
because the Siemens TIA Portal proprietary software must be used. Another known
issue associated with a big PLC code is the decreased TCP/IP communication frequency,
which is currently performed at about 10 Hz.

According to the ROS philosophy, the big systems should be subdivided into many
simpler subsystems, each one running their own simpler processes. All these subsystems
should constantly exchange data between them via a solid interprocess communication
system.

Figure 2.2: Siemens SIMATIC S7-1200, used as the AtlasCar Engine Control Unit (ECU)
[10].

All these profound changes also affected the way in which a new gear selection system
would be built. The most important change on the original project was the implementa-
tion of two multi-turn potentiometers to accurately measure the position of the lever in
real-time, one for each motor. The other main change was the decision to use an Arduino
instead of a Microchip PIC, to handle all the control logic of the system. Although they
are not as powerful as the Microchip PIC systems, the Arduino boards are cheap, well
tested and robust enough for this kind of simpler applications.

The high modularity of the Arduino system also brings another advantage: with small
and cheap hardware modifications, big changes in the communication system can be
achieved. For example, the communication process between the Arduino and the PC can
be changed simply by replacing or adding a "Shield", and writing a few more code lines
on the Arduino code in order to use it. The fact that the Arduino is already integrated
in a board alongside with all its auxiliary circuitry, eliminates the need to design another
new expensive PCB, print it, solder it and debug it, in order to have the platform for the
micro-controller. Similarly to what happens in the case of ROS, there is also a very active,
open source community constantly developing, using and testing software or hardware

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

14 2.Automatic Gearbox

solutions and applications for the Arduino. This constant development results in both
helpful up-to-date libraries to handle specific hardware systems, and the on-line support
to use them correctly.

Some communications changes were also implemented in this new gear system. In-
stead of a TCP/IP communication between the controlling PC and the PLC, and then a
digitally coded message between the PLC and the gear selector mechanism PIC, the new
communication process is made directly via TCP/IP with the Arduino micro-controller,
using an Arduino Ethernet "Shield". A server is run on the Ethernet "Shield", while a
client is running on a ROS node in the AtlasCar controlling PC. This client only needs to
communicate to the Arduino server the number of the new gear. The use of an Ethernet
"Shield" is necessary because the AtlasCar prototype is a very electrically noisy envi-
ronment, due to all the sensors, cameras and power actuators working at the same time.
The Arduino default communication port, a Serial USB port, is also not recommended
for longer distances, such as the ones that will be required at the time of mounting the
system on the vehicle.

In what concerns the power control of the DC motors, instead of using custom made
H-bridges’ printed circuit boards, a commercial automotive H-bridge integrated circuit
is used. This simplifies the system because instead of a three custom made PCB system
(one for each DC motor, and one for the controller), only one shield-like PCB would be
used to drive both DC motors. The following Sections give a detailed description and
explanation about each of the above subjects.

2.2 Mechanical System

The original AtlasCar gear selector mechanical system, shown in Figure 2.1 allows the
movement of a metal ring in a two dimensional, horizontal plane. The gear lever is
inserted in this metal ring, and the conjugation of vertical and horizontal movements
allow it to drive the lever to the correct position, according to the gear desired.

The movement of the positioning ring is obtained using the combined movements of
two 12 V DC motors. As the DC motors have a good rotational speed, but can not
develop high torques by themselves, each one of these motors is mechanically connected
to a 104:1 planetary gearbox, in order to achieve the necessary torque specifications
required to move the gear lever.

The system also uses a set of toothed belts and pulleys, attached to their respective
shafts. The use of toothed belts, instead of more rigid power transmission systems like
worm gears, is justified to prevent the catastrophic situation of control loss over the
motors. If the motors start, for some unexpected reason, moving uncontrollably, the
belts will simply skip pulley teeth, and the car’s transmission system, namely the lever
and the vehicle’s mechanism below it, will not suffer any relevant damage.

The only large modification made to this initial system was increasing the length
of two of the shafts, in order to place multi-turn potentiometers. The potentiometers
are coupled using two double aluminium screw couplers. Initially, a metal, possibly
aluminium, potentiometers’ fixation system was thought, but such rigid structure would
not allow the potentiometer to perform small movements during the rotation of the shaft,
in order to compensate possible misalignments between the shaft of the potentiometer
and the pulley shafts, since this is an addition to the original project. The solution
adopted was to use two acrylic potentiometer supports, bolted to the surface of the gear

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 15

selector mechanism, which allows the fixation system to be more flexible, thus prolonging
the lifetime of the potentiometers.

2.3 Control System

As referred at the beginning of this Chapter, in order to drive both DC motors in the gear
selector mechanism, an Arduino "Shield" was built. Actually, this "Shield" is responsible
for handling the following four tasks:

• Controlling the DC motors;

• Reading the analogue input from both multi-turn potentiometers;

• Reading the MAN/AUTO switches;

• Controlling the Seven Segment Display.

Each one of these subsystems will be described in detail in the following Subsections.

2.3.1 DC Motor Controller

The DC motor controller used for the purpose is a commercial fully integrated H-Bridge
circuit, the VNH3SP30-E, which comes in a MultiPowerSO-30 package [11], as shown
in Figure 2.3. This H-bridge allows a maximum output current of 30 A and 40 V of
maximum supply voltage. This integrated circuit also has integrated protection circuitry,
making it easy to use and robust enough for automotive purposes, such as required for
the task at hand. In order to drive each of these integrated circuits, the following signal
pins must be connected to the Arduino:

• One Pulse Width Modulation (PWM) input for the duty cycle square wave;

• Two digital inputs for controlling the DC motor rotation sense;

• Two enable/diagnostic pins;

There is a big limitation on the number of available pins in the Arduino UNO, spe-
cially if an Ethernet "Shield" is used. In order to save some Arduino I/O pins, the two
"enable/diagnostic" pins of each H-bridge can stay always active, thus always connected
directly to the 5 V, since the motors can still be easily stopped if the duty cycle is set to
0%. The motors can even be locked to Ground if both InA and InB are set to a LOW
state. Both these measures would reduce the Arduino pins needed to drive each H-bridge
to only three: the PWM pin, and the two rotation sense pins. There is still the need for
reducing the number of pins needed, in order for the Arduino to perform all the above
tasks.

The solution found was to decode two of the Arduino output pins, in order to control
four bits, using a 1-of-4 decoder/demultiplexer. The use of this decoder is only possible
because the motors only need to operate one at a time, since the trajectories travelled
along the gear selector are always in vertical or horizontal straight lines.

The decoder selected to decode the Arduino pins, and consequently to select the
direction in which the motors should turn was the HEF4555 [12]. As shown in Figure 2.4,

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

16 2.Automatic Gearbox

(a) (b)

Figure 2.3: VNH3SP30-E top (a) and bottom (b) view. Note the three heat slugs on the
bottom view of the Integrated Circuit, used to conduct the high currents allowed by this
Integrated Circuit.

Figure 2.4: 4555 Functional Diagram.

this decoder needs only three input bits to drive four output bits. In fact this integrated
circuit has two 1-of-4 decoders included, but only half of the circuit is used in the scope
of this work. The input pins are the normally closed Enable, the A0 and the A1. The
four output pins are Q3, Q2, Q1 and Q0. The truth table for this particular decoder
is represented in Table 2.1, where the output pins’ response to input pins combinations
can be observed.

INPUTS OUTPUTS

E A1 A0 Q3 Q2 Q1 Q0

0 0 0 0 0 0 1

0 0 1 0 0 1 0

0 1 0 0 1 0 0

0 1 1 1 0 0 0

1 X X 0 0 0 0

Table 2.1: The 4555 decoder Truth Table.

These measures reduce the number of Arduino pins needed for driving both H-bridges
to only five:

1. One PWM output for the duty cycle wave of Motor 1;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 17

2. One PWM output for the duty cycle wave of Motor 2;

3. One digital pin to drive the decoder pin A0;

4. One digital pin to drive the decoder pin A1;

5. One digital pin to enable the decoder.

2.3.2 Analogue value from the Potentiometers

As referred above, the Arduino needs to read the analogue value from both two po-
tentiometers. The potentiometers used in the system to read the axis angle are the
wire-wound Model 533 from Vishay Spectrol [13], depicted in Figure 2.5. During the
whole physically possible path of the gear selector system, the measured axis angle is of
about 450◦, so the use of a three turn potentiometer is enough for this purpose.

Figure 2.5: Vishay Spectrol Mutiturn Wirewound Potentiometer [14]

The Arduino’s analogue input pins read values ranging from 0 to 1023, corresponding
to a voltage level ranging from 0 V to 5 V, respectively. That would be the interval
read from those inputs if the whole extent of the potentiometer’s coil was used, which
corresponds to 1080◦ in the axis. As the angle is only of approximately 450◦, the voltage
interval perceived by the analogue inputs can easily be calculated, as shown in Equation
2.1:

V oltage_Interval =
450◦

1080◦
× 5 = 2.083(3) [V] (2.1)

From which the sensibility of the potentiometer system can also be calculated, as
shown in Equation 2.2:

Sensibility =
2.083(3)

450◦
≈ 4.62 [mV/◦] (2.2)

This means that variations of almost a degree are considered by the Arduino analogue
inputs, which is more than enough for the gear system.

In what concerns to the pins needed to read the two analogue values, each one of
these potentiometers needs three independent connections:

• The 5 V pin;

• The Groung (GND) pin;

• The Output Signal pin;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

18 2.Automatic Gearbox

Only the Output Signal pin is connected to the Arduino, so both potentiometers
occupy two analogue inputs.

2.3.3 Manual/Automatic Switches

The system can be switched by the user from two available running modes:

• Manual Mode;

• Automatic Mode.

Each one of these modes will be explained in detail on Sub-subsection 2.3.3. It consists
of a three-button system of an adapted Renault Mégane audio pad:

• Gear UP Button: Sends a pulse to increment the current gear, when the system
is running on Manual mode. This signal is ignored when the system is running on
Automatic mode. This button is ignored when the system is moving from one gear
to another.;

• Gear DOWN Button: Sends a pulse to decrement the current gear, when the system
is running on Manual mode. This signal is also ignored when the system is running
on Automatic mode. This button is also ignored when the system is moving from
one gear to another.;

• Man/Auto Button: This signal changes the system’s running mode, and is active
both in Manual or Automatic modes. This button is also ignored when the system
is moving from one gear to another.

GEAR UP

GEAR DOWN

MAN / AUTO

Figure 2.6: Renaul Mégane adapted audio pad.

Each one of these buttons uses an Arduino pin, so it occupies three additional digital
inputs.

2.3.4 Seven Segment display

In order for the user to see the current gear the car is running on, a simple seven segment
display was added to the system [15]. This seven segment display always represents the
current gear, the car being on Automatic or Manual mode. As the number of Arduino

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 19

pins is very limited, a BCD to Seven Segment decoder was used, specifically the 7447
BCD to 7-Segment Decoder/Driver. This decoder uses four normally LOW input bits to
drive seven output bits, used to directly drive the Seven Segment common anode display
[16].

There is no need to use all the input combinations allowed by the decoder. In the
AtlasCar gear system, there are only seven possible fixed positions, corresponding to the
6 gears and the neutral. Using only three of the BCD Driver’s four input pins a, b and
c, it is possible to display the eight integer numbers from 0 to 7, as shown in Figure 2.7.
Table 2.2 shows the meaning of each one of the numbers appearing in the Seven Segment
display.

Figure 2.7: Seven Segment Display used digits.

Display Digit Meaning

0 Neutral

1 First Gear

2 Second Gear

3 Third Gear

4 Fourth Gear

5 Fifth Gear

6 Reverse Gear

7 System in a moving state

Table 2.2: Display Number Meanings

The final 7-Segment display was assembled using a circuit prototyping board, and is
depicted in Figure 2.8.

2.3.5 Printed Circuit Board

After the definition of all the control board functions it is possible to precise the number
of Arduino input and output pins in order to build the final Control Printed Circuit
Board. Table 2.3 shows all the final Arduino pin functions, and Figure 2.9 shows the
actual location and layout of these used pins in the Arduino UNO board.

The most important part of the printed circuit board is the power circuit, where the
two H-bridges manage the electric current in order to drive the DC motors. According to
the VNH3SP30-E H-bridge driver datasheet, some external protective circuitry should
be used, in addition to the protective circuitry already included in the Integrated Circuit

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

20 2.Automatic Gearbox

Figure 2.8: 7-Segment Display final board.

itself. The most important measure is the inclusion of a N-channel MOSFET connected
to the Ground pin. This action protects the H-bridge against being connected in reverse
to the car battery.

Other measure taken to prevent voltage peaks in the circuit, is the use of a zenner
diode per H-bridge, so that the maximum voltage of the MOSFET gate pad is never
exceeded.

An 8 A fuse is also used in the power source cables for the H-bridges. Because the
circuit is directly connected to the AtlasCar vehicle battery, the fuse is used to prevent
the circuit from possible high current peaks provoked by accidental short circuits.

The projected printed circuit board also contains a connection to an Emergency Stop,
placed directly on the power source cables. This button allows the user to completely
shut down the power part of the circuit, leaving only the signal systems still functioning.

Another common and recurrent problem in this kind of electronic applications is the
electrical noise. In order to protect the circuit from the electrically noisy environment
present in the AtlasCar vehicle, two capacitors were also added to filter the power voltage
supply of the H-bridges:

• A 470µF electrolytic capacitor to withstand sudden voltage drops;

• A 100nF ceramic capacitor to filter high frequency noise.

The signal coming from the potentiometers has been proven to be very stable. How-
ever, and due to the inevitable proximity between the potentiometers’ analogue signal

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 21

Encoder Bit A0

Encoder Bit A1

PWM Motor 2

PWM Motor 1

MAN/AUTO Gear Up

Encoder ENABLE

MAN/AUTO Select

7-Seg Bit A

7-Seg Bit B

7-Seg Bit CPotentiometer 1

Potentiometer 2

MAN/AUTO Gear Down

0 0

Figure 2.9: Arduino UNO and the available pins’ functions used for this project.

cables and the DC motors, a low-pass, first order, passive filter is also used in the analogue
potentiometer input pins, to attenuate possible high frequency noise.

All the necessary pull-down or pull-up resistors were placed on the necessary digital
input and output pins, to avoid problems with random fluctuations on the digital signals.
All the vertical connectors, which allow the Printed Circuit Board to be inserted on the
Arduino are carefully aligned with its respective pins, to facilitate the coupling the DC
motor control "Shield" and the Arduino.

After considering all these details and electric protections, a circuit was projected
using the EAGLE PCB Design software. Both layers of the final PCB drawing can be seen
in Figure 2.11, and a full scale representation of each layer can be seen in the Annexes.
The layout of the components in the Printed Circuit Board was carefully defined, with
particular attention paid to the width of the pathways, given the considerably high
currents passing through the circuit. EAGLE 3D was also used during the project process
to obtain a partial representation of the final board, as depicted in Figure 2.10. The final
printed circuit board, after the soldering of all its components, is represented in Figure
2.12, and the complete system is represented in Figure 2.13.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

22 2.Automatic Gearbox

Pins Arduino UNO Ethernet "Shield" Used For I/O

D
ig

it
al

IO

0 RX RX - -
1 TX RX - -
2 FREE FREE Encoder Bit A0 Output
4 FREE SDCS - -
7 FREE FREE Encoder ENABLE Output
8 FREE FREE MAN/AUTO Select Input
12 FREE SPI - -
13 FREE SPI - -

P
W

M

3 FREE FREE Encoder Bit A1 Output
5 FREE FREE PWM Motor 2 Output
6 FREE FREE PWM Motor 1 Output
9 FREE FREE MAN/AUTO Gear Up Input
10 FREE ETHCS - -
11 FREE ETHCS - -

A
n
al

og
u
e

In
p
u
t A0 FREE FREE Potentiometer 1 Input

A1 FREE FREE Potentiometer 2 Input
A2 FREE FREE MAN/AUTO Gear Down Input
A3 FREE FREE 7-Seg Bit A Output
A4 FREE FREE 7-Seg Bit B Output
A5 FREE FREE 7-Seg Bit C Output

Table 2.3: Available Arduino Pins

Figure 2.10: Partial PCB 3D model, created using EAGLE 3D.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 23

(a) (b)

Figure 2.11: Printed Circuit Board Top (a) and Bottom (b) layers. The image has been
scaled to fit on the page, but the real scale image can be consulted on the Annexes.

Figure 2.12: Final version of the Motor Controller Printed Circuit Board.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

24 2.Automatic Gearbox

Emergency

Button

Power

Cables

Gear

Pad

7-Segment

Display

y-Direction

DC Motor

x-Direction

DC Motor

Potentiometer

Fuse

Motor

Controller

PCB

Figure 2.13: Complete gear selector system. The second potentiometer is hidden below
the metal surface. The Arduino, and the respective Ethernet Shield are both positioned
below the DC Motor Controller PCB.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 25

2.4 Arduino Programming

The Arduino has two types of internal cycles: the setup and the loop. The setup cycle
runs only once when the Arduino resets, or each time a TCP/IP or Serial connection is
successfully established. This cycle is used to set connection parameters and run some
initial routines, prior to the main program itself. The loop cycle runs in a continuous
loop, and is where the main program is located. Both these cycles will be explained in
the following Subsections.

2.4.1 The Setup Cycle

The gearbox setup cycle is used to start the communication processes, specifically the
Ethernet Server which must be continuously running on the Arduino. The setup is also
used to define the working mode of certain Arduino pins, according to their function.
For example, in order to use the ADC (Analogue to Digital Converter) which is available
on the Arduino to allow the use of certain analogue pins as digital ones, their mode must
be defined here, in the setup cycle.

This setup cycle is also used to put the car in a neutral position. This is an extra
safety measure to avoid any problems while starting up all the ATLASCAR systems, like
the case of the clutch not being pressed at the time of the ignition. A representative
flowchart of the described functions of the setup cycle can be seen in Figure 2.14.

2.4.2 The Loop Cycle

The Arduino loop is used to run the Arduino program that really controls the gear selector
mechanism. During this cycle, the necessary Arduino inputs and outputs are sequentially
scanned and made active or inactive, according to the case at hand and the programmed
orders.

As mentioned above, the AtlasCar gearbox is a common H-pattern transmission. To
make the program as robust and flexible as possible, the use of a sequential gearbox is
to be avoided, especially because the long shifting times inherent to the vehicle actu-
ator’s physical mechanism itself. In order to make this, the mechanism must compare
the current gear with the gear asked by the control PC and, if necessary, execute the
appropriate movements to obey and successfully execute that command.

Figure 2.15 represents the layout of the gear positions present in the AtlasCar.

In terms of control, there’s the need to analyse this system to determine its interest
points, as well as the possible paths to connect those points between them. A good way
to get a mathematical model for the gear positions layout is to use some concepts of
the graph theory. Although Figure 2.15 is already a graph by itself, the classic graph
representative of the system is shown in Figure 2.16, which shows all the physically
possible paths connecting each lever position.

At this point the system can be mathematically modelled, and a solution to determine
the path needed to go from point A, which represents the current gear of the system,
to point B, which represents the next gear, asked by the computer or the user, can be
found.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

26 2.Automatic Gearbox

Arduino Reset

Start Ethernet

Read Vertical Po-
tentiometer Value

Move Verti-
cal DC Motor

Vertically
Centered?

Read Horizontal
Potentiometer Value

Move Horizon-
tal DC Motor

Horizontally
Centered?

Enter Loop

No

Yes

No

Yes

Figure 2.14: Flowchart for the setup cycle.

There are several methods for computing and determining the solution for a problem
which is commonly known as the "Shortest Path Problem".

In the situation at hand, the system goes under a particular case of the "Shortest Path
Problem", which is called the single-source shortest path problem. The most commonly
used algorithms to solve this particular case of the "Shortest Path Problem", and the
ones that were considered in this work to solve it are:

• The Bellman-Ford algorithm;

• The Dijkstra’s algorithm;

• The A* search algorithm.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 27

NN N

1st

2nd

3rd

4th

5th

R

(a)

54 6

1

7

2

8

3

9

(b)

Figure 2.15: Layout for the Gear positions (a) and the respective numbering used for the
Arduino programming (b).

1

2 3

4

5 6

7

8 9

Figure 2.16: Graph representative of the gear positions and the physically possible paths
between them.

All these algorithms are based on possible paths organized according to a pre-attributed
weight, so that the algorithm can choose one path instead of another one, in the case
there are several paths between two nodes belonging to the same graph.

The Bellman-Ford algorithm is used when these path weights can assume negative
values. There is no need to use the Bellman-Ford algorithm, because the weights of
each path of the gear system, used later to compute the shortest and most interesting
path to follow, are never negative in the system at hand. Given the simplicity of the
graph, and the need for a fast and simple method, capable of running efficiently on
the limited processing capabilities of the Arduino. There is also no need to use a more

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

28 2.Automatic Gearbox

complex algorithm such as the A* search algorithm. This algorithm is an extension of
the Dijkstra’s algorithm, but it uses heuristic processes to achieve better performance,
especially in what concerns to the computing time of large graph systems. These heuristic
functions define the order in which the algorithm will compute each point. The system
at hand is not complex enough to justify the use of this search algorithm.

Dijkstra’s algorithm has shown to be the best candidate to solve this problem, and to
do so in a fast way. The Dijkstra’s algorithm requires the construction of a cost/adjacency
matrix, representative of the graph, that the algorithm uses as a criteria to determine
the shortest path between a given pair of points. For this particular system, the cost
matrix M is shown in 2.3. The numbering used to build this matrix is the one present in
Figure 2.15, so the first column represents the first node, the second column represents
the second node, and so on. The same happens with the numbering of the matrix rows.

M =

5 5 5 1 5 5 5 5 5
5 5 5 5 1 5 5 5 5
5 5 5 5 5 1 5 5 5
1 5 5 5 0 5 1 5 5
5 1 5 0 5 0 5 1 5
5 5 1 5 0 5 5 5 1
5 5 5 1 5 5 5 5 5
5 5 5 5 1 5 5 5 5
5 5 5 5 5 1 5 5 5

(2.3)

Each connected path assumes a cost of 1 or 0, respectively vertical or horizontal
paths. This difference between the cost values is due to the necessity of distinguishing
between vertical and horizontal paths, allowing this to be done using the same matrix to
represent both the adjacency between nodes and the cost of the paths linking them. The
longest path that can be travelled by the gear lever is from point 1 to point 9 and vice
versa (which corresponds to the shifting from a first gear to a reverse), or the path from
point 3 to point 7 and vice versa (which corresponds to the transition from a fifth gear
to a second gear). The cost associated with the longest path is four, so every impossible
path existing in the system will take a cost value greater than three(two paths with a 0
cost, and two paths with a 1 cost), so the impossible paths are set as being fives.

During the calibration process of the mechanism, a table is constructed with the
horizontal potentiometer’s values of the points 1, 2 and 3, and the vertical potentiometer’s
values of the points 1, 4 and 7. These values are defined at the beginning of the Arduino
code, so that the user can easily change them if necessary. The user can also define
an admissible error interval for each one of the directions. These intervals are used to
determine the current location of the gear lever, because the analogue values read from
the potentiometers, and corresponding to a stationary position, have small fluctuations
and vary overtime. When the lever is being positioned at a given point, the nominal
values are used, but when determining the current gear lever position, both an x and y
interval, in the vicinity of the nominal point, is considered admissible.

As soon as a new gear value is requested, and only if that value is in the interval
[0, 6], the program checks its current position, and determines the corresponding point.
Then it calculates the corresponding point of the requested gear. Next, the Dijkstra’s
algorithm, running in the Arduino, takes as inputs the matrix M, the current point and
the requested gear’s point. The output of the function is a path vector containing all it’s

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 29

points, including the beginning and the end points.

Next, the system distinguishes vertical from horizontal paths, using the values from
the matrix M. A value of 0 stands for horizontal paths, and 1 corresponds to vertical
paths. The Dijkstra’s algorithm function builds the transitions vector. If the path
vector has n elements, this transitions vector has n− 1 elements. The transitions vector
is the one responsible for determining which motor should move to execute the linear
trajectory desired. Following this operation, a correction is made to both the path and
the transitions vectors, so that the motor movements do not stop at each passing point.

The following example is useful to understand this problem. If the user asks a reduc-
tion from the 1st gear to the Reverse gear, the corresponding path vector would be the
following, using the numeration from Figure 2.15:

Path =
[

1 4 5 6 9
]

(2.4)

And the corresponding Transitions vector is the following, admitting that the hor-
izontal paths are represented by 0 and vertical paths are represented by 1, as referred
above:

Transitions =
[

1 0 0 1
]

(2.5)

If these vectors were used directly to drive the motors, the horizontal motor would
stop when reaching the point number 5, and then would accelerate again to reach point
6. This would delay the mechanical system’s response even more, because these stops
are unnecessary. According to the referred correction, the corrected transition vector is:

Transitionscorrected =
[

1 0 1
]

(2.6)

Then, the corrected path vector is calculated, and differs from the first one in point
number 5:

Pathcorrected =
[

1 4 6 9
]

(2.7)

At this stage, both vectors are ready to drive the motors. As depicted in Figure 2.17,
Motor 1 is responsible for the y direction, and Motor 2 is responsible for the x direction.
The directions, represented by arrows in Figure 2.17, show the positive increment of both
potentiometer’s values.

A for cycle travels across the Transitions vector to determine which motor must move.
Inside each cycle run, the system computes the direction in which the chosen motor
must turn, using the values in the corrected Path vector. According to the numeration
adopted, and depicted in Figure 2.15, if the current point is greater than the next point,
the motor must turn in one direction, and if the current point is smaller than the next
point, the motor must turn in the opposite direction. This process becomes even simpler
because each motor is represented by a C++ class, and this class already contains direct
commands to make each motor turn clockwise or counter-clockwise, as desired.

An acceleration and deceleration ramp, similar to the one depicted in Figure 2.18
is also calculated according to the path each motor must travel. The function that
calculates this ramp is given the starting and the ending potentiometer values, as well
as the minimum and maximum PWM values. These PWM values are outputs from the
Arduino, and range from 0 to 255, which correspond to 0% and 100% motor duty cycle,

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

30 2.Automatic Gearbox

Figure 2.17: Orientation and layout of the gear selector mechanism.

respectively. The minimum, non-zero PWM value is necessary, because a zero starting
value would lead the motors to a premature stop, prior to reaching the required position.
Tests performed in laboratory on these DC motors showed that any duty cycle below 20%
was ineffective and the motors remained still. If the acceleration ramp began at zero,
the system would assume that the motors were still in motion and it would continue
indefinitely to impose the physically impossible interpolated PWM value.

PWM MAX

PWM MIN

RAMP WIDTH

Minimum

Potentiometer

Value

Maximum

Potentiometer

Value

Figure 2.18: Parametrizable acceleration and deceleration ramps for the motor PWM
value.

These ramps are necessary not just because they make the movements of the gear
selector mechanism softer and more fluid, but because it is also a good practice to use this
kind of approach to relieve the DC motors from current peaks and drastic accelerations,
thus prolonging their lifetime.

After calculating the acceleration and deceleration ramps, the program enters a while

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 31

cycle, in which the correspondent potentiometer analogue value is monitored, and the
interpolated PWM value is imposed to the respective motor. This procedure is repeated
until all the paths in the corrected Path vector are successfully travelled.

The process described above is common to both Automatic and Manual modes, but
there are some differences between these two modes in what concerns to the behaviour of
the mechanism. Sub-subsections 2.4.2.1 and 2.4.2.2 describe in detail each one of these
running modes.

2.4.2.1 The Manual Mode

The Manual mode is implemented as a purely sequential gearbox mode, and is controlled
directly by the Arduino and the user. This control is possible using the Renault Mégane
adapted sound pad, presented in Figure 2.6. All the logic is controlled by the Arduino,
and the communication between the Arduino and the PC is mono-directional; this means
the Arduino only communicates via TCP/IP the current gear of the car, and ignores any
information coming from the control PC.

This sequential gearbox can only execute the shifting in the following order, without
any possibility of skipping any of the steps, and without any possibility of going from
the last position to the first (5th gear to Reverse) and vice-versa (Reverse to 5th gear):

Reverse←→ Neutral←→ 1st ←→ 2nd ←→ 3rd ←→ 4th ←→ 5th

The 5th ←→ Reverse transition is not allowed in this mode, not only because it is a
dangerous manoeuvre which makes no sense in normal car usage, but also because the
AtlasCar gearbox does not mechanically allow this direct operation. The original manual
gear system, currently installed in the car, is protected against this situation, since the
user must at least bring the gear lever to a central Neutral position before any attempt
of forcing a Reverse, after a 5th gear.

The user can also, and at any time while the mechanism is in a stationary state,
change between modes using the MAN/AUTO switching button, also available on the
described button pad.

2.4.2.2 The Automatic Mode

The Automatic mode is implemented in the form of a traditional H-pattern gearbox.
The user has no direct control over the shifting process, and can only switch mode using
the MAN/AUTO switching button, when the gear selector mechanism is at a stationary
state. When in Automatic mode, the communication between the Arduino and the PC
is bidirectional: the Arduino sends the current gear of the car to the controlling PC, and
the PC can set the value of the next gear.

The Automatic mode is not sequential. The Arduino constantly checks if a gear
shifting is needed by comparing the current gear lever position with the gear asked by
the PC, and it is able to calculate the next position from the previous one and execute
it, using the methods described in Subsection 2.4.2. The non-sequentiality can be useful
during later project stages of the AtlasCar software and hardware development, widening
the window of real world situations that could get an appropriate response from the gear
selector mechanism.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

32 2.Automatic Gearbox

2.4.3 Communication Protocol

The communication between the Arduino and the PC is performed using an Ethernet
Arduino "Shield", similar to the one represented in Figure 2.19. There is an Ethernet
class available on the Arduino website, which has available a complete set of useful
communication functions to use the Ethernet "Shield".

Figure 2.19: Arduino Ethernet "Shield" [17].

A simple, yet complete communication message system was defined to monitor the
state or to set gears on the gear selector mechanism. The communication process with
the Arduino is an "Answer to Question" type, as the server running in the Arduino
only generates an answer if the client, running on the control PC, requests it. This
communication process is used because it allows the higher level systems to constantly
monitor the device, and take the necessary measures if, for some reason, the device stops
responding to the commands sent. There are two main distinct message types:

• PC → Arduino: This message is the simplest, and its only purpose is to set a car
gear or to read the current state of the gear selector mechanism;

• Arduino → PC: This message is more complex, because it is able to give accurate
and real-time information about the current state of the gear selector mechanism.

These message types will be described in detail in the next Sub-subsections.

2.4.3.1 Pc to Arduino Messages

The message going from the control PC to the Arduino has the following format:

<STX> opcode value <ETX>

The possible opcode strings coming on this message, and their corresponding mean-
ings, are represented in Table 2.4. The opcode is not case sensitive, and the valid value
is an integer number in the interval [0, 6].

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 33

opcode string Message Meaning

SG Sets a gear in the gear selector mech-
anism. The value is not ignored in
this case, and is used as the value of
the gear to set.

GG Gets the value of the current gear
of the car. The value is ignored, if
existent.

Table 2.4: Communication codes from the control PC to the Arduino.

2.4.3.2 Arduino to Pc Messages

There are three main message types coming from the Arduino to the PC:

• Answer to a "Set" command;

• Answer to a "Get" command;

• Unrecognised command message.

The first message type is used to answer to a "Set" message coming from the PC.
The structure of this message is the following:

<STX>a sg message_code <ETX>

The character "a" at the beginning of the message informs that it is an "Answer"
message from the Arduino. The "sg" string indicates that the answer is made to a "Set"
command. These message elements are all separated by spaces, except the Start of Text
character and the "a", at the beginning of the message. Table 2.5 shows the possible
characters sent inside the message_code field, as well as their respective meanings.

message_code character Message Meaning

i Indicates that the gear asked is in-
valid, i.e. not belonging to the inte-
ger interval [0; 6]. For security rea-
sons, the Arduino always checks the
validity of the gear sent by the PC.

m Indicates that the computer tries to
set a gear while the system is in
manual mode. The set operation is
only allowed in automatic mode.

o Indicates that the system is already
at the asked gear. The "o" stands
for "OK".

Table 2.5: Communication codes from the Arduino to the control PC - Stationary State.

The second message type is used to answer to a "Get" command sent from the
control PC. This message has two different formats, which can be used to determine if

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

34 2.Automatic Gearbox

the mechanism is moving or stopped at a certain gear. In the case the system is moving
from a gear to another, the message has the following format:

<STX>a gg c previous_gear - next_gear <ETX>

The "a" at the beginning of the message informs that it is an "Answer" message from
the Arduino. The "gg" string indicates that the answer is made to a "Get" command.
The "c" character stands for "Changing". The previous_gear field indicates the gear
from where the system is moving, and the next_gear field indicates the gear number the
system is moving to. These message elements are all separated by spaces, except the
Start of Text character and the "a" at the beginning of the message. The purpose of this
message is to let the computer or the higher level software know that the system is in
motion and not in an error state.

If the system is currently stopped at a certain gear, the message sent to the control
PC is the following:

<STX>a gg a current_gear <ETX>

Similarly to what happens in the previous message, the "a" at the beginning of the
message informs that it is an "Answer" message from the Arduino, and the "gg" string
indicates that the answer is made to a "Get" command. The "a" character, next to
the "gg" string, stands for "Actual". The current_gear field contains the number of the
selector system’s current gear. All the message elements are separated by spaces, except
the Start of Text character and the first "a" character.

The last message type is an error message generated whenever a message arriving to
the Arduino is unrecognised, or written with a wrong syntax. This message presents the
following format:

<STX>a u <ETX>

Once again, the message starts with an "a" character, informing that it consists of
an "Answer" message from the Arduino. The "u" character stands for "Unrecognised".

2.5 The Calibration Software

As said in Subsection 2.4, the gear selector mechanism needs to be calibrated prior to
its usage, to make the firmware memorize the necessary potentiometers’ values to define
completely the points on the H-pattern, depicted in Figure 2.15, and execute the desired
gear changes effectively. This process normally consists on the following steps:

1. Connection between the Arduino and the PC;

2. Compilation and transferring the calibration program into the Arduino;

3. Monitoring the Serial port and taking note of the x and y potentiometer’s values
for each necessary point;

4. Redefinition of each point on the Arduino gear changing program, by direct code
edition;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 35

5. Compilation and transferring the gear changing program into the Arduino.

Although there has been the care to simplify this calibration process by defining these
potentiometers’ values in a very clear way at the beginning of the Arduino code, along
with the respective comments informing about the meaning of each value, some difficulties
may still arise. A user less familiarized with the Arduino programming language or some
technical characteristics of the gear selector mechanism may not be able to calibrate it
successfully, especially if an axis direction diagram, like the one depicted in Figure 2.17, is
not available. The above steps may also be of difficult execution at the time of mounting
the gear selector mechanism in the car. Step number 2 is especially demanding in what
concerns to the user attention and to the stability of the connection, both affected by
the in-loco calibration, as the mechanism needs to be on its final position on the car in
order to perform the calibration correctly.

To allow the simplification of the calibration process described, a calibration software
was created, along with a simple Graphical User Interface to use it. In what concerns to
the calibrator programming, it is divided in two distinct processes that fork at the time
the program is launched:

• The parent process, which is responsible for the Graphical User Interface;

• The child process, which is responsible for the communications process.

The following Subsections explain in detail the operation of each of these processes.

2.5.1 The Calibrator Graphical User Interface

The calibrator parent process launches the Graphical User Interface and manages its
button callbacks and the necessary functions. The Graphical User Interface used in this
project was built using GLADE, which is a programming language-independent graphical
user interface builder for GTK+ [18]. All the code necessary for the handling of events,
like clicking on a button or updating a text box, is written in this part of the program, as
GLADE only produces a XML file containing the Graphical User Interface appearance.
This file is loaded and the events are bound to its corresponding callback functions at
the time of launching the program. The Calibrator Graphical User Interface can be seen
in Figure 2.20.

Although the Graphical User Interface is very simple and self explanatory, the mean-
ing of each of its fields and elements is explained in detail, according to the numeration
in Figure 2.20:

1. The Y VALUE text box → This text box displays the current y-axis’ potentiome-
ter value. This value is constantly updated directly from the Arduino, using the
calibration software written for this purpose;

2. The X VALUE text box→ This text box displays the current x-axis’ potentiometer
value. This value is also constantly updated using direct information from the
Arduino;

3. The Memorize Point buttons → These buttons store the information on the text
boxes inside internal variables when the user presses them. During the calibration
process, the user must place the gear lever on the corresponding point position,
and click on each of these buttons in order to memorize the necessary point;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

36 2.Automatic Gearbox

1

2

3

4

5

Figure 2.20: Gear Selector Mechanism Calibrator GUI.

4. The CALIBRATE button → When clicked, this button automatically generates
the Arduino code, with the new calibrated values, in the same folder where the
program is being executed;

5. The Points to Memorize Figure → This figure is not interactive, and it is only
placed on the calibrator program for the user to be aware of the equivalence between
the point numbering used in the Arduino, and its positions on the H-pattern used
in the AtlasCar gear lever.

When the calibration process is terminated, the calibrator program must be closed
and the file recently created, named ARDUINO_MOTOR_CONTROLLER.pde, must
be transferred to the Arduino in order to start the Gear Selector Mechanism program.

2.5.2 The Calibrator Communication Process

The child process, running in parallel to the Graphical User Interface is in charge of the
communication process between the PC and the Arduino. The communication protocol
used to calibrate the Arduino is the USB standard Serial communication. The USB com-
munication is used during the calibration process because it is a maintenance operation,
that needs to be done near the device. The calibration process also requires the user
to consecutively transfer programs to the Arduino, namely the calibration program fol-
lowed by the calibrated gearbox firmware control code itself, which is not possible using
the Ethernet communication due to the non-existence of the auto-reset necessary to the
programmable integrated circuit reprogramming process.

The serial port defined in the program is the Arduino default communication port,
the "/dev/ttyACM0", and the baud-rate is also predefined to 9600, and should not be
altered.

As soon as the calibrator Arduino program is sent to the Arduino, it starts sending
a message via Serial communication with the following format:

<STX>X<x_pot_value> Y<y_pot_value> <ETX>

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 37

The <x_pot_value> message field is the direct x-axis’ potentiometer reading, thus
an integer number between 0 and 1023, and the <y_pot_value> brings and equivalent
reading but from the y-axis’ potentiometer. The parallel communication process running
on the PC is responsible for interpreting this message and sending both potentiometer’s
values to a shared memory between this process the Graphical User Interface one. These
values appear on the interface text boxes, depicted in Figure 2.20.

2.5.3 The Calibration Process

The simpler calibration process, executed using this calibration software, is comprised of
the following steps:

1. Connect the Arduino to the PC using the USB cable, and transfer of the Arduino
calibration firmware application;

2. Execute the Calibrator Software, and make it memorize all the five points, using
the respective buttons;

3. When all the points are calibrated, the CALIBRATE button is pressed, and the
Gear Selector Mechanism control code is automatically generated and stored in
the same folder where the Calibrator software is being executed in, with the name
ARDUINO_MOTOR_CONTROLLER.pde;

4. Transfer of the ARDUINO_MOTOR_CONTROLLER.pde to the Arduino.

2.6 Integration with ROS

ROS (Robotis Operating System) is an open source software framework for robot software
developers. Contrarily to the previous framework used in AtlasCar, CARMEN, ROS is
based on a multitude of processes, or hosts, running in a peer-to-peer topology, instead
of using a centralized server, like the CARMEN architecture [19]. ROS also allows the
software development written in many different languages, such as:

• C++;

• Python;

• Octave;

• LISP.

In order to achieve this cross-language development, ROS uses a simple language-
neutral message definition system where the elements carried by each message and used
by each process are defined.

Another important characteristic of ROS, is the large number of small tools that
can be used to get or even set information about the processes or the messages being
transferred between them. These tools allow the user to measure bandwidth utilization,
visualize the current topology of the running processes, graphically plot data in a very
easy way or auto-generate documentation.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

38 2.Automatic Gearbox

ROS also supplies a large variety of useful drivers and libraries that allow the user to
communicate with the sensors or hardware used within the project being developed. The
fact that the ROS is an open-source project also enables a very active on-line community,
constantly writing and using new software on the ROS project.

The ROS implementation is divided in four distinct concepts:

• Node;

• Message;

• Topic;

• Service.

The Node is the name given to a certain process running within a ROS project. A
project built using the ROS architecture is normally comprised of many Nodes working
separately, and constantly communicating between them.

The ROS Nodes communicate with each other using Messages. A Message is an
auto-generated data structure composed mainly of primitive types, and can include other
Messages nested inside it.

The Topic is a string where a certain message is published, making its contents
available to all the other ROS Nodes. When a Node, or a set of Nodes, needs to read
the information contained inside a message published by another Node, it subscribes the
corresponding Topic.

A Service is used when the topic-based publish-subscribe model is not advised for a
certain Node that requires a synchronous communication with another Node. A Service
is comprised of two distinct Messages, one user for the request, and the other used for
the response.

In order to allow the future installation of the gearbox mechanism on the AtlasCar,
and to integrate the system on the ROS based architecture currently being used, a ROS
Node was created: the Gearbox Node. The main function of this Node is to implement
the TCP/IP communication protocol, described in Subsection 2.4.3, with the Arduino
firmware. The Node generates a Message and publishes it to a specific Topic, which is
made available to any other Nodes in the AtlasCar. This node also subscribes another
Topic, which contains the information about the gear that needs to be set on the gear
changing mechanism. Note that it is not on the scope of this node to implement any gear
logic on the AtlasCar, since the only purpose of the Node is to send orders to, or receive
the status update from the gear selector mechanism’s controller. Any gear shifting logic
must be implemented on a higher level Node that communicates with this one, which
is not the objective of this work. For this reason, the ROS Messages published and
subscribed by this Node were intentionally kept as simple as possible.

The command message being subscribed by this Node has only one field, apart from
the "priority" and the "lifetime" fields, that are required for ROS to make the automatic
Topic and Message management. This field is called "gear", and is an unsigned 32 bits
integer on the interval [0, 6], as said in Sub-subsection 2.4.3.1.

The status message being published by this Node is more complex, due to the fact
that it needs to inform the controlling PC about the accurate status of the gear selector
mechanism device. This Message has two fields: the "gear" and the "status". The gear
field is an unsigned 32 bits integer and contains the current gear on the gear selector

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

2.Automatic Gearbox 39

mechanism. If the device is moving, this integer corresponds to the last gear that was
inserted by the device, thus the gear from where the mechanism left from. The "status"
field is a string, interpreted by this Node according to the message read from the gear
selector mechanism’s control system. Table 2.6 shows the possible strings that can appear
on this Message field, as well as the respective meanings.

status string Message Meaning

manual mode Indicates that the control computer is trying to
set a new gear on the gear selector mechanism
while it is in manual mode, since the set opera-
tion is only allowed in automatic mode. To pre-
vent or correct this situation, the MAN/AUTO
button on the steering column gear pad selector
must be pressed.

command invalid Indicates that the gear asked to the gear selector
mechanism is invalid, i.e. not belonging to the
integer interval [0; 6]. This check is always made
by the Arduino firmware code.

changing to gear_number Indicates that the system is currently moving
from one gear to another. The gear from where
the system left is represented in the "gear" field,
on the Node Message. The gear_number rep-
resents the gear to where the system is moving
to.

ok Indicates that the system is currently stationary
on the desired gear number.

unknown status Indicates that the Node could not interpret the
message coming from the gear selector mecha-
nism. This string indicates that something hap-
pened with the device, and security measures
should be taken.

Table 2.6: Possible Strings being published by the ROS Node.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

40 2.Automatic Gearbox

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

Chapter 3

Partial Gearbox Simulator

3.1 The Power Train System

In order to perform laboratory tests on the gear selector mechanism described on Chapter
2, prior to its installation in the AtlasCar vehicle, a simplified partial power train and
car physics simulator was created using Matlab. The purpose of this simulator is to test
the robustness of the Arduino programming, the shifting logic used, the communication
protocol implemented and to evaluate shift times.

The simulator is built in a way that allows the gear selector mechanism to be tested
using the Hardware-in-the-Loop (HIL) simulation technique. This technique is used to
simulate the real-time behaviour of a particular embedded system which is only a com-
ponent of a more complex system. This more complex system, where the embedded
component will be inserted, is usually emulated using representative mathematical mod-
els.

In the context of this study, the gear selector mechanism represents the embedded
component, and the systems that will be mathematically modelled are the power train
system and some aspects of the vehicle’s physics. Note that the aim of this simulator is
not to obtain a very accurate representation of the vehicle’s dynamics, or even to repro-
duce the precise behaviour of the engine, clutch or other key power train components.

The power train system of a vehicle is the set of all the components necessary to
generate, transform and transmit power, in order to move it. The most important parts
on the power train system are:

• The Engine;

• The Clutch;

• The Transmission;

• The Drive Shafts;

• The Differential;

• The Wheels.

Figure 3.1 shows the energy flow between the elements of the power train. Even today,
some of the elements represented have no accurate representative mathematical model, or
the existing models require a lot of computational power to run in real-time applications,

41

42 3.Partial Gearbox Simulator

like the one at hand. Other elements have non-linear behaviour, like the clutch or the
interaction between the wheels and the road. New and more accurate physical and
mathematical models for some of the vehicles’ main components are constantly being
developed and improved [20].

Engine Clutch Gearbox

Drive ShaftsDifferentialWheels

Figure 3.1: Power Train movement flow scheme between parts.

On the next Subsections, the physical model of the car is presented, and a description
on how the various systems are simulated, and the way how they interact with each others,
is detailed.

3.2 Car Physics

In order to model the car physics, a simple two dimensional model of the vehicle was
created. This model of the car takes into account the five main forces acting on a car
while it is in motion [21]. The considered forces are the following:

• Engine Force (Feng)

• Drag Force (Fdrag)

• Force of Gravity (Fg)

• Rolling Resistance Force (Frr)

• Braking Force (Fb)

Figure 3.2 shows the forces used in this model, as well as the coordinate system used.
The resulting force acting on the car is the sum of all the above:

Fr = Feng + Fdrag + Fg + Frr + Fb (3.1)

Each of these forces must be calculated separately, and then the resulting force acting
on the vehicle is computed. With the force acting on the vehicle and its mass, it is possible
to calculate the acceleration value at a given time. The vehicle speed value on the next

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

3.Partial Gearbox Simulator 43

α

+y

+x

α

N

Fb

Frr

Fdrag

Feng

Fg

Figure 3.2: Force Diagram used in the vehicle simulator.

iteration of the simulator can then be calculated using the Euler method for numerical
integration,as shown in Equation 3.2:

v(t+ tstep) = v(t) + tstep × a (3.2)

Where:

• v −→ The vehicle speed [m/s];

• t −→ Current time value [s];

• tstep −→ The time step of the integrator [s];

• a −→ Last acceleration value, calculated using the resulting force [m/s2].

The next Subsections explain in detail how each one of these forces, used to compute
the resulting force acting on the vehicle, are calculated.

3.2.1 The Drag Force

The drag force is the main responsible for the loss of speed experienced by an object when
it’s travelling at higher speeds. The following equation gives a relatively reasonable value
for the force exerted by the wind in the car, while in motion. It is also assumed that the
fluid where the car is immersed, air in this case, is in a stationary sate. The force can be
calculated using the Drag Equation [22]:

Fdrag =
1

2
× ρ× Cd ×A× v2 (3.3)

Where:

• ρ −→ The density of the involving fluid [kg/m3];

• Cd −→ The Drag Coefficient, a dimensionless quantity characteristic of the vehicle;

• A −→ Frontal Area of the vehicle [m2];

• v −→ Current speed of the vehicle [m/s].

The sign of this force is opposite to the current speed vector direction. When the
car is stopped, its value is zero. When the driver is driving forward, the force is exerted
pointing to the back of the car, and vice-versa.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

44 3.Partial Gearbox Simulator

3.2.2 The Rolling Resistance Force

The rolling resistance force is the force experienced by the car caused by the friction
between the tires’ rubber and the surface of the road. This force is calculated using the
normal force and a dimensionless coefficient, called the "rolling resistance coefficient".
This is the most notorious resistant force acting on the vehicle while it is travelling at
lower speeds. The rolling resistance force equation is as follows [23]:

Frr = Crr ×N (3.4)

Where:

• Crr −→ The "rolling resistance coefficient";

• N −→ Normal Force [N];

The Normal Force can be easily calculated using the weight of the car, the angle of
the road and the acceleration of gravity, using the following expression:

N = m× g × cos(θ) (3.5)

Where:

• m −→ Car mass [kg];

• g −→ Acceleration of Gravity [m/s2];

• θ −→ Angle of the ground plane.

For pneumatic tire vehicles, the rolling resistance coefficient can be estimated using
an empirical expression. This expression depends on the tires’ pressure and the current
vehicle speed [24]:

Crr = 0.005 +
1

P
×

(

0.01 + 0.0095 ×

(

v

100

)

2
)

(3.6)

Where:

• P −→ Tire Pressure [bar];

• v −→ Current speed of the Vehicle [km/h].

Merging these three equations, a reasonable approximation of the rolling resistance
force can be computed. The sign of this force is also given relatively to the direction of
the speed vector. Similarly to what happened with the drag force, if the car is driving
forward, this force is pointing backwards, and vice-versa.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

3.Partial Gearbox Simulator 45

3.2.3 The Braking Force

The braking force can be calculated by predefining a maximum braking force. In order
to simplify the approach, it is assumed that the slip between the tires and the road
is non-existent, and that the actual force exerted by the brakes at a certain time is
proportional to an user input, which represents the percentage of the brake pedal pressed.
The maximum braking force is left as a configurable parameter, and should be defined
prior to running the program. The equation that represents this proportional behaviour
is the following:

Fb = percent× Fbmax
(3.7)

Where:

• percent −→ Percentage of the brake pedal pressed;

• Fbmax
−→ Maximum Braking Force [N].

The braking force is also always pointing in the opposite direction of the speed, and
it assumes a zero value when the car is stopped.

3.2.4 The Gravity Force

The gravity force is calculated simply by projecting the weight of the vehicle on the x
direction, and can be expressed by the following equation:

Fg = m× g × sin(θ) (3.8)

Where:

• m −→ Car mass [kg];

• g −→ Acceleration of Gravity [m/s2];

• θ −→ Angle of the ground plane.

Note that there is a negative sign on the equation, because when the angle is negative,
it means that the car is descending a road, so the force exerted on the car is positive.

3.2.5 The Engine Force

The internal combustion engine is the power source for the whole car system. The engine
is responsible for the conversion of the chemical energy, stored in the vehicle’s fuel, into
rotational movement. The interaction between all the thermodynamic and mechanical
processes that occur inside an internal combustion engine make it a particularly difficult
system to model, as a whole.

The engine simulation is another subject still being developed and studied further,
and there are some works in the subject, but the model systems proposed are too complex
to be applied to the subject at hand. Because of all the complexities associated with the
modelling the internal combustion engine itself [25], the approach used in this simulator
is a very simplified model, and it requires the user to know or measure some parameters

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

46 3.Partial Gearbox Simulator

about the engine itself, as well as some parameters regarding the transmission process
itself. Although the engine simulation used is simplified, it is obtained using a single
function, that can easily be replaced by a more complex simulation process, if necessary.

1000 2000 3000 4000 5000 6000 7000
0

20

40

60

80

100

120

140

160

180

200
Torque vs RPM

RPM

T
or

qu
e

[N
.m

]

Figure 3.3: Torque vs RPM of a 1999 Dodge Neon DOHC engine.

First, there is the need to define the Torque versus RPM curve for the engine. This
curve is obtained performing a dynamometer test on the engine, and it allows the knowl-
edge about the maximum torque value that can be achieved by a certain internal combus-
tion engine at a given RPM value. A 1999 Dodge Neon DOHC engine curve is represented
in Figure 3.3 [26]. The problem in using the values from this curve is that the dynamome-
ter test is driven at the maximum load of the engine, meaning that the throttle is fully
opened. In this simulator, and in order to simplify the system as much as possible, the
torque value for a given RPM is assumed to be proportional to the percentage of throttle
pedal pressed, so:

τ = throttle_percent× τmax@RPM (3.9)

Where:

• throttle_percent −→ Percentage of throttle pressed;

• τmax@RPM −→ Maximum Torque at a given RPM, directly interpolated from the
Torque versus RPM curve [N ·m].

The RPM value is calculated directly from the vehicle speed, using the gear ratios
and assuming that there is no slip between the tires and the road.

At this point, the engine force can be calculated using the following equation:

Feng =
τ × xg × xd × ηtrans

Rtire

(3.10)

Where:

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

3.Partial Gearbox Simulator 47

• τ −→ Current Torque [N ·m];

• xg −→ Current Gear Ratio;

• xd −→ Differential Ratio;

• ηtrans −→ Transmission efficiency;

• Rtire −→ Tire Radius [m].

3.3 The Simulator GUI

Although the use of a SIMULINK model was initially considered, the simplicity of the
physics involved on this simulator, along with the nature of the simulation itself, did not
justify its usage, since the aim of this simulator is not physical accuracy. The values
used to calculate some of the forces described above are based on standard values, and
they do not correspond to the real AtlasCar vehicle values. Some examples of this are
the gear ratios or the engine Torque versus RPM curve. Extensive research has been
performed in pursuit of such values, both on-line, in car catalogues, magazines and even
through the vehicle manufacturer, but no information was found or provided about this
particular car model. However, the simulator was written in such a way that the main
force calculations are performed in separate functions, which can easily be replaced at
any time when more realistic values are available, or more accurate models are developed
and implemented.

A Graphical User Interface (GUI) was created to allow the user to change some real-
time driving parameters, and to show the current state of the simulator. When the
program starts, a first Graphical User Interface is displayed, the Parameters Graphical
user Interface, as shown in Figure 3.4 . This first Graphical User Interface allows the user
to change the simulator starting values, physical conditions and parameters or vehicle
specifications that are constant throughout the simulation.

The values that can be modified in this Graphical User Interface are divided in two
main categories: the Physical Characteristics, which are physical values and quantities
of the environment where the car is inserted, and the Car Characteristics, that represent
attributes of the vehicle itself. The corresponding units, that allow the simulator to work
correctly, are also displayed in front of each editable text fields.

The Physical Characteristics that can be changed in the scope of this simulator are
the following:

• The maximum road angle, which corresponds to the angle between the road plane
and the plane tangent to the theoretical earth curvature at this exact point;

• The gravity acceleration, as this value is not constant along all points on the surface
of the planet;

• The density of air, that can also vary according to the altitude, temperature and
humidity;

• The drag coefficient of the vehicle, which is a representative dimensionless quantity;

• The initial speed of the car, which is the starting speed of the simulator;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

48 3.Partial Gearbox Simulator

Figure 3.4: Parameters Graphical User Interface of the simulator.

The Car Characteristics that can be edited and changed in order to vary the response
of the simulator to the user actions are the following:

• The clutching time, which represents the time in seconds that the clutch takes to
go from the engaged state to the disengaged one, or vice-versa;

• The car total mass, including the load mass;

• The maximum brake force, which is the force exerted by the brakes on the car if
the brake pedal is completely pressed;

• The tire pressure in bar, assuming that all the tires are at the same pressure.

• The frontal area of the vehicle, which is used to compute the Drag Force, caused
by the movement of the car in the surrounding air;

• The transmission efficiency, which corresponds to the ratio of usable energy, or the
fraction of energy not lost during the movement of the transmission;

• The wheel radius, or the radius of the car tires;

• The differential ratio;

• The gear ratio for all the seven different gears of the car.

The main Graphical User Interface, depicted in Figure 3.5, has a set of vertical bars
that allows the user to manually change some of the driving variables. Real-time graphics

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

3.Partial Gearbox Simulator 49

1

2

3

4 5 6 7 8

9

10

11

Figure 3.5: Main Graphical User Interface of the simulator.

are constantly updated accordingly to the changes. The user can also override the values
present in the vertical bars at each time, in order to impose specific values to the system.

The meaning of each of the Graphical User Interface fields and elements is explained
in detail, according to the numeration in Figure 3.5.

1. Angle bar → This vertical sliding bar allows the user to make the road angle vary
overtime. This bar’s default value is a zero, corresponding to a perfectly horizontal
road. The Angle bar has a maximum and a minimum value, the last being the
symmetric of the first. As described in Subsection 3.2.4, a negative angle means
that the car is descending a road, thus accelerating;

2. Throttle bar → The Throttle vertical bar allows the user to vary the percentage
of throttle, and consequently increase or decrease the force exerted by the engine.
The default value for this bar is zero, corresponding to the bottom position. The
top position corresponds to the maximum throttle;

3. Brake bar → The Brake vertical bar allows the user to change the force exerted
by the car brakes. This force is proportional to the maximum brake force of the
car, defined previously in the parameters Graphical User Interface, as described in
Subsection 3.2.3;

4. Angle override → The Angle override editable text box allows the user to impose
a specific value for the road angle. The value must be between the maximum and
minimum road angle values, or it is ignored;

5. Throttle override → The Throttle override editable text box allows the user to
impose a specific percentage value for the throttle; If the value is greater than
100%, a 100% value is assumed, and if the value is negative, a 0% value is assumed;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

50 3.Partial Gearbox Simulator

6. Brake override → The Brake override editable text box works in a similar way to
the Throttle override editable text box, only it affects the brake percentage value;

7. Override push-button → The Override push-button collects the values from the
override editable text fields and applies them to the respective variables, and up-
dates the vertical bars. If a field is left blank, its value remains unchanged;

8. Reverse button → The Reverse button is used only when the car is in a stationary
position, and informs the simulator about the user’s intention of direction. This
button is a particular kind of button called "Toggle Button", and it visually informs
about its state. If the button is pressed, it means that the "reverse" is selected,
and that the car will start moving backwards. If the button is not pressed, the car
will start moving forward;

9. Speed graph→ The Speed graph is constantly being updated and shows the current
speed of the car, in km/h. The numerical value of the car is also represented in
the Speed graph title.

10. Clutch graph → The Clutch graph shows the position of the clutch overtime. This
graph is continuous and varies between 0 and 1. While clutching the graph is a
parametrizable ramp, as the time the clutch needs to actuate can be changed in
the initial Parameters Graphical User Interface. The clutch state can also be seen
in the Clutch graph title;

11. Gear graph → The Gear graph is a stepped line that shows the gear on the gear
selector mechanism overtime. The current gear can also be seen in the Gear graph
title.

This simulator is based on a state machine, whose states and possible transitions
between them are represented in Figure 3.6. The vehicle is considered to be stopped when
its speed is too low for the engine to stay mechanically connected to the wheels, preventing
it from stalling. The default value considered on this simulator for the minimum vehicle
speed is 5 km/h when the car is moving forward, or -5 km/h when the car is moving
backwards. In the stopped state, the clutch is fully pressed, in order to keep the engine
from stalling, and the gear selector mechanism is set to Neutral, for safety reasons. The
Vehicle Stopped state is in fact an indetermination, from the system’s point of view, since
there are three possible situations that can be experienced by the system:

• The car continues stopped;

• The car starts moving forward;

• The car starts moving in reverse.

The condition that needs to be fulfilled in order for the simulator to resolve this
undetermined state is the increasing of throttle input from the user. If the user presses
more than a certain percentage of the throttle pedal, 30% being the default value, the
systems assumes the user’s intention to start moving. In order to choose between the
forward or reverse situations, the simulator uses the information read from the Reverse
button.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

3.Partial Gearbox Simulator 51

Moving in

Reverse

Vehicle

Stopped
Start Moving

in Reverse

Start Moving

Forward

Moving

Forward

Figure 3.6: State Machine scheme used for the simulator.

If the system evolves in the forward direction, the first gear is set on the gear selector
mechanism, and when the gear shift is complete, the system releases the clutch while a
pre-programmed start routine is imposed to the system, increasing the speed inversely
proportional to the clutch movement. This simple routine happens inside the state
called Start Moving Forward in the scheme from Figure 3.6. When the system ends the
Start Moving Forward state, enters automatically on the Moving Forward state, which
corresponds to the normal behaviour of the car, shifting gears as it seems fit, according
to the gear shifting logic applied.

If, on the other hand, the system evolves in the Reverse direction, the Reverse gear
is set on the gear selector mechanism, and the clutch is released while a pre-programmed
start routine, similar to the one described above for the Start Moving Forward state, is
imposed to the system, only this time the speed increases in the negative sense. When
this routine ends, the system automatically enters the Moving in Reverse state, allowing
the user do accelerate or brake normally, but having only the Reverse gear available. If
the user needs to start driving forward again, and similarly to what happens on the real
semi-automatic transmissions, the vehicle must first enter the Vehicle Stopped state.

3.4 Shifting Logic

The gear shifting is a complex decision process performed in a very different way from
driver to driver. Some people constantly look to the information displayed in the car’s
tachometer to decide if a gear shift is needed, others base this decision solely on the speed
of the car, or even the engine sound. A machine, such as the controlling computer in the
AtlasCar does not currently have such a high level of perception, even with the variety
of sensors currently installed in the car.

In order to decide the most appropriate gear ratio for the car, at a certain time,
the most obvious inputs of this control system would be the current vehicle speed, the
throttle pedal position or the engine RPM value. Many other inputs could be used to
improve the process, such as:

• The road angle, between its plane and the horizontal plane;

• Inertial information;

• Engine sound pitch;

• Constantly updated information about the engine torque;

• Environment information, such as the relative position to other cars;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

52 3.Partial Gearbox Simulator

• Information about the car trajectory, such as bumps or tight corners.

Although some of these inputs are currently present in the vehicle, its usage is complex
because they are still under a development stage. It is the case of the inertial information
or the environmental data collected from the lasers and cameras.

The sifting model explained in this work, and the one implemented in the Hardware-
in-the-Loop simulator, only uses the information about the vehicle current speed and
throttle pedal position. A similar model is used in other works of the same type, to
decide which gear the vehicle should be running on. One of these examples is a Mat-
lab SIMULINK Demo called "Modeling an Automatic Transmission Controller" [27],
in which a gear schedule is implemented for a four-speed vehicle. Another similar ap-
proach can be observed on the article "Control of Integrated Powertrain With Electronic
Throttle and Automatic Transmission" [28], with the slight difference that the power
percentage is used instead of the throttle pedal position.

The first and simpler way to determine the current gear, at which the vehicle should
be running, is to build a fixed shifting schedule. This shifting schedule can be represented
as a two dimensional space, where one dimension’s values correspond to the percentage
of throttle pressed at a given moment, and the other dimension’s values correspond to
the car speed at that same moment. Although the percentage of throttle pressed and
the car speed are time-dependent quantities, the schedule itself is pre-programmed in the
car, and time-independent.

The only purpose of this two dimensional space is to determine the appropriate gear
for the car to be running on at a given time, according to the percentage of throttle and
the vehicle speed at this given time. A graph representative of this approach, and the
first that was used to determine the gear shifts in earlier versions of the Hardware-in-the
Loop simulator, is depicted in Figure 3.7.

The abscissa’s values in the graph of Figure 3.7 correspond to the percentage of
throttle pressed, and the ordinates’ values represent the current vehicle speed. At each
iteration of the simulator, the function that implements the shifting schedule determines
the point on the graph that corresponds to that iteration’s throttle percentage and car
speed values, which corresponds to the gear that should be imposed on the gear selec-
tor mechanism. The coloured curves represent the points of vehicle speed and throttle
position at which a gear shift should take place.

Note that when the driver is not pressing the throttle pedal, the percentage of throttle
corresponds to zero, and the speed at which the car would shift corresponds to the values
directly over the ordinates’ axis. Another interesting characteristic of this approach is
that, for a constant vehicle speed value, the gear communicated to the gear selector
mechanism can be different, depending on the throttle percentage input from the user,
hence the characteristic shape of the curves represented. For example, if the vehicle is
running at 80 Km/h pressing the throttle pedal at only 20%, the car should be running on
a 5th gear, according to the graph from Figure 3.7. If, for some reason, the driver suddenly
presses the throttle until 80%, the system interprets this abrupt throttle percentage
change as a driver’s desire for a fast increment on the car speed, and automatically shifts
to a 4th gear, in order to respond to this request.

The value of the AtlasCar vehicle speed is measured with good precision using the
rotary encoder attached to the rear right wheel. There is also no problem in using the
percentage value of the throttle, because the AtlasCar throttle is already a fully electronic

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

3.Partial Gearbox Simulator 53

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

gear#5

gear#4

gear#3

gear#2

gear#1

% Throttle

C
ar

 S
pe

ed
 [k

m
/h

]
Gear Shifting Schedule

1st<−>2nd
2nd<−>3rd
3rd<−>4th
4th<−>5th

Figure 3.7: Simple Gear Shifting Schedule used on the earlier versions of the HIL Simu-
lator.

system, and this value is used in order to actuate the throttle valve. This method is also
able to compute the current gear very fast, because it uses simple linear interpolation to
build the gear shifting lines present in the graph.

Although the graph from Figure 3.7 easily illustrates the approach used on the sim-
ulator’s gear shifting schedule, and allowed it’s earlier versions to produce relatively
good results, a problem was detected while simulating a particular kind of situation: the
neighbourhood of the gear shifting lines. When slight variations on the values of throttle
percentage or vehicle speed are made near the gear shifting lines between only a few iter-
ations of the simulator, thus making the calculated point go over and under these lines,
there was the risk of provoking gear shifts that were not really necessary. This situation
was corrected by creating up-shift lines in different positions than the down-shift ones,
which did not happen in the gear shifting schedule described above, and depicted in Fig-
ure 3.7, where there is only one line to determine both the up-shift and the down-shift.
This new gear shifting schedule is depicted in Figure 3.8.

In order to obtain a better and more realistic response from this kind of shifting
schedule, an alternative shifting schedule is proposed. This second shifting schedule,
depicted in Figure 3.8, works in a very similar way to the one on Figure 3.8, but is more
complex in the way it uses distinct lines to determine the up-shift and the down-shift.
As shown in Figure 3.8, the lines with the upward-pointing triangle markers and the
continuous line represent the combination of throttle percentage and vehicle speed used
as an up-shifting criteria, and the ones with the downward-pointing triangle markers and
dashed lines represent that same combination of throttle percentage and vehicle speed
used for the down-shifting criteria. The coloured spaces on the graph correspond to
throttle percentage and vehicle speed combinations with a single gear solution.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

54 3.Partial Gearbox Simulator

0 10 20 30 40 50 60 70 80 90 100
0

20

40

60

80

100

120

% Throttle

C
ar

 S
pe

ed
 [k

m
/h

]
Hysteresis Gear Shifting Schedule

1st−>2nd
2nd−>3rd
3rd−>4th
4th−>5th
2nd−>1st
3rd−>2nd
4th−>3rd
5th−>4th

Figure 3.8: Hysteresis Gear Shifting Schedule used on the HIL Simulator, contemplating
the different speeds between the process of shifting up and shifting down.

A double gear solution happens in the white spaces, between two lines corresponding
to symmetric transitions, like the one existing between the dashed line that represents
the down-shift from 2nd gear to the 1st gear and the continuous line representing the
up-shift from the 1st gear to the 2nd gear. This double solution problem is solved by
passing the current gear into the second version of the function implementing the gear
shifting schedule. This function compares the current gear value with the two possible
gear solutions. This is handled in two different ways:

• If the current gear value is greater than, or equal to the greatest value of both
possible gear solutions, the greatest of these solutions is chosen and imposed to the
gear selector mechanism;

• If the current gear value is smaller than, or equal to the smallest value of both
possible gear solutions, the smallest of these solutions is chosen and imposed to the
gear selector mechanism.

Tendentiously, the driver shifts down at lower car speeds than he shifts up. This
is contemplated in this second gear shifting schedule, as the shift down curve is always
represented below the shift-up one for gear changes between the same gear numbers,
which also adds more realistic behaviour to this model, making it more similar to a gear
shift performed by a human driver.

Another consideration about this mode is that, at the time of adapting the system
to the AtlasCar vehicle itself, all the point values used to build the curves depicted in
Figure 3.8 must be conveniently calibrated, in order to obtain the best vehicle response
and behaviour.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

Chapter 4

Experimental Results

Several laboratory tests were performed on the gear selector mechanism, to the motor
controller printed circuit board, to the Arduino code itself and to the ROS Node that
communicates with the gear selector mechanism’s firmware. This experimental results
Chapter is divided in two distinct Sections: the manual mode testing, and the Hardware-
in-the-Loop simulation.

4.1 Manual Mode Testing

A variety of tests, performed under the manual mode, were taken on the gear selector
system to evaluate the behaviour and performance of two distinct parts:

• The quality of the motor controller PCB;

• The robustness and effectiveness of the firmware manual mode;

4.1.1 Motor Controller PCB

After fully soldering all the components on the motor controller printed circuit board,
some tests were performed in order to determine possible problems. The first test per-
formed was a continuity test on all the printed circuit pathways along with a careful
visual inspection process, to detect possible undesired connections due to errors during
the printing process.

One of the biggest concerns associated with the integrity of the control board was
the correct soldering of the H-bridges integrated circuits, the VNH3SP30-E depicted in
Figure 2.3. The only components that were not manually soldered into the PCB were
the two H-bridges and the two protective N-MOSFETS. These components were soldered
using a reflow oven, due to their surface mount nature. The three "Heat Slug" connectors,
placed directly under the H-bridges’ integrated circuits, are particularly prone to possible
soldering failure. In order to check the quality of the soldering process, the pins of both
H-bridges were also tested using the multimeter in continuity mode, achieving the desired
quality results.

Another major concern associated with the printed circuit board design was the
electric current values consumed by the DC motors while in motion. In order to evaluate
the current passing through the circuit, a laboratory power supply was used to feed the
power circuit. The test consisted on repetitively making the gear selector mechanism

55

56 4.Experimental Results

run through all the six possible gear positions in sequential mode, first in the upward
direction, and then in the downward direction. The first part of the test was performed
without any load applied on the gear selector mechanism, and during the second part of
the test, a force is manually applied to the mechanism central ring.

While testing the unloaded mechanical system situation, the maximum electric cur-
rent peak observed in the current gauge is approximately 1.5 A. The equivalent value
observed for the loaded mechanism situation was never greater than 5 A, and even this
value only occurs during the motors start-up or stop. The power supply used for the test
is known to limit current values above 5.5 A, and the DC motor control system never
activated the current limiting circuit during the tests performed.

Another parameter that deserved some attention during the previous test was the
temperature achieved by the H-bridges’ integrated circuit during the normal operation
of the system. According to the VNH3SP30-E datasheet, the absolute maximum tem-
perature that the integrated circuit package type can withstand is 150◦ C, which also
corresponds to the thermal shut-down protection minimum temperature. Although one
of the H-bridges, namely the one responsible for the vertical paths, presented higher
temperatures than the other, such high temperature values were never achieved, even
after extensive system testing. A termopar, connected to the respective connector on
the multimeter, was used to monitor the H-bridges’ temperature, showing that the value
never ascended the 55◦ Celsius, even after several minutes of continuous operation.

4.1.2 Manual Mode Programming Tests

The manual mode consists of a sequential gear shifting process, as described in Chapter
2. Due to the high responsibility role of the gear selector mechanism in the AtlasCar,
both the user interface with the Arduino, based on the adapted Renault Mégane audio
pad, and the sequential behaviour of the manual mode code needed to be further tested.

The gear pad buttons are already equipped with the necessary pull down resistors,
and the input pins on the Arduino do not present any unwanted fluctuations. This is
the reason why no pull-down resistors are placed in the printed circuit board design on
these digital input pins.

Another recurring problem in this kind of button pressing systems is the button de-
bouncing. This problem is due to the high frequency voltage peaks that occur prior to
the signal stabilization, at the moment of pressing a button. There are two different ways
of solving this problem:

• Hardware de-bounce, using passive, low pass filtering;

• Software de-bounce, using timers or delays.

The up and down-shift buttons do not require any de-bounce methods, because when
the user presses them while in manual mode, the system automatically starts moving to
the next position, and during this movement process any pulse variation on the button,
being it intentional or not, is ignored. The same does not happen with the button used
to switch between the manual and the automatic modes. If no de-bounce is executed on
this button, the modes can switch very quickly between them, and the user can easily
loose track of the mode currently selected. The de-bounce method selected to solve this
problem was the software de-bounce, applied directly on the Arduino firmware code.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

4.Experimental Results 57

Another situation tested during the manual mode was the communication failure
with the PC. The Ethernet connection was deliberately interrupted while the system
was both in a stationary position and while moving from one position to another, to
ensure that a communication failure did not compromise the normal working of the gear
selector mechanism. This fact was confirmed: the communication function running on
the Arduino is not blocking, and the Ethernet connection can be interrupted at any
time, without any damage inflicted to the gear selector mechanism, or the AtlasCar gear
system.

4.2 Automatic Mode Testing

In this Section, the tests performed using the gear selected mechanism while in automatic
mode will be described.

4.2.1 ROS Node Testing

The number of tests that can be performed using the ROS node created to communicate
with the gear selector mechanism, without the system being installed on the AtlasCar
vehicle, is very limited. The only two characteristics that could be tested were the
frequency at which the device could communicate with the controlling PC, and the
quality of the message protocol defined.

In what concerns to the communication frequency, the use of a dummy message
cycle within the ROS Node showed that it communicates with the Arduino at a steady
frequency of 13 Hz, with small fluctuations of 0.5 Hz, even when the DC motors are
moving. Similar to what happened during the Manual Mode tests, the interruption of
the communication process did not affect the performance of the Arduino programming or
the gear selector mechanism. The gear change occurring at the time of the communication
interruption is completed successfully.

The messaging system established between the gear selector mechanism and the ROS
Node was also tested, by forcing all its predicted situations, producing the expected
results, since the Node could interpret the message without any trouble, and publish it
in the corresponding ROS Topic.

4.2.2 "Hardware in the Loop" Testing

Using the Hardware-in-the-Loop simulator described in Chapter 3, some tests were per-
formed on the gear selector mechanism control system. In the following Sub-subsections,
two possible real situations are simulated and explored, and the behaviour of the mech-
anism is monitored and described.

4.2.2.1 Test 1 - Normal vehicle driving

This test is performed using the default initial conditions of the simulator. The descrip-
tion of this test is the following:

1. The car is already at 10 km/h, without any pressure on the throttle or brake pedal;

2. 5 seconds later, the throttle pedal is set to 20%;

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

58 4.Experimental Results

3. After all the gear changes, the car is accelerated further until it reaches approxi-
mately 100 km/h;

4. At second 53, the throttle pedal is set to 0%;

5. At second 57 the brake pedal is fully pressed;

6. The car reaches a stationary position at second 64.

The result of the Hardware-in-the-Loop test described above is depicted in the graphs
on Figure 4.1.

The car starts at 10 km/h with the gear selector mechanism set to the first gear.
According to the second gear logic method described in Section 3.4, and implemented
on the simulator version used, the gear should start changing for a vehicle speed greater
than 20 km/h. According to the clutch position graph, this gear shift is verified because
the clutch starts moving towards its fully activated position at second 6.2, which is also
the time value at which the vehicle speed becomes greater than 20 km/h. At this point, a
signal is sent to the Arduino, to inform it about the number of the following gear needed,
and the gear selector mechanism performs the movements required in order to obey that
command. Note that while the gear selector system is moving, the clutch stays pressed,
until the simulator receives confirmation from the Arduino firmware program confirming
that the gear change was successfully performed. Similar behaviour can be observed
for the following simulated gear changes, except for the final gear shift, which will be
explained later.

Another interesting characteristic that can be observed directly on the clutch percent-
age graph, is the different gear shifting execution times. Although the time represented
on the graphs is an estimated value, the time that the clutch stays activated is notori-
ously different for certain gear shifts. One example of this behaviour can be seen between
the 1st to 2nd gear shift and the 2nd to 3rd gear shift. This is due to the more complex
trajectory that needs to be travelled by the gear lever while moving from the second
to the third gear. This trajectory involves moving both DC motors, contrarily to what
happens while moving from the first gear to the second, which corresponds to a simple
vertical movement. This situation had already been foreseen at the time of writing the
Arduino firmware program, and is now confirmed with experimental results.

At the second 58, the brake is fully activated and a drastic deceleration is imposed to
the vehicle until it reaches a complete standstill at second 64. During this deceleration
process, multiple gear numbers are consecutively set on the message sent to the gear
selector mechanism. Due to the firmware programming, as soon as the motors start
moving the gear shift process can not be interrupted, so once a gear number is set on
the message going to the Arduino, the mechanism will start executing the required gear
change, and will ignore any incoming message updates. This will result on the gear
selector mechanism executing some gear shifts that were set from a previous message,
while new messages with different requested gears are being sent. However, the simulator
is prepared to deal with this situation, and determines if the gear currently read from the
device corresponds to the gear sent on the last message, prior to start the de-clutching
process. This is the reason why the graphic representation shows a direct change from
the fifth gear to the Neutral, while the real behaviour of the gear selector mechanism
was a change made from the fifth gear to the fourth, and only then a change from fourth
gear to the neutral.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

4.Experimental Results 59

0 10 20 30 40 50 60 70
0

0.5

1

Time (s)

%
 T

hr
ot

tle

0 10 20 30 40 50 60 70
0

0.5

1

Time (s)

%
 B

ra
ke

0 10 20 30 40 50 60 70

0

50

100

Time (s)

S
pe

ed
 [k

m
/h

]

0 10 20 30 40 50 60 70

0

0.5

1

Time (s)

%
 C

lu
tc

h

0 10 20 30 40 50 60 70

R
N
1
2
3
4
5

Time (s)

G
ea

r

Figure 4.1: Graphs representative of Test number 1. From the top to the bottom, the
graphs represent the Throttle Percentage, the Brake Percentage, the Vehicle Speed, the
Clutch Percentage and the Gear Numbers. The black line on the "Gear" graph represents
the moments at which the gearbox is disengaged from the engine.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

60 4.Experimental Results

The behaviour of the system while the car is stopped can be watched from the second
63 until the end. This behaviour is comprised of two distinct measures, to prevent the
engine from stalling:

• The clutch is pressed;

• The Neutral is set on the gear selector mechanism device.

4.2.2.2 Test 2 - Start-up situation

Another situation tested using the Hardware-in-the-Loop simulator was the start-up
situation, which consists of the interruption of the vehicle’s stationary state. This test
is depicted in Figure 4.2. The stationary state can evolve in two distinct movement
directions, since the vehicle can move both in the forward direction by inserting the first
gear, or in the backward direction, by inserting a reverse.

This test is performed using all the default initial conditions of the simulator, except
for the initial speed, that is set to zero. The description of this test is the following:

1. The simulation starts with the car at 0 km/h, and the neutral inserted. Although
the clutch pedal starts on a deactivated position, the simulator starts pressing the
pedal automatically;

2. At second 4, the throttle pedal is pressed until it reaches more than 30% of its total
stroke;

3. The car is randomly accelerated and some gear changes take place;

4. At second 36, the car is made to move in the backward direction;

5. At second 45, the brake is activated;

6. At second 49 the car is immobilized again.

At the beginning of the simulation, the neutral was already selected on the gear
selector mechanism, but the clutch was not pressed. Pressing the clutch is always the
first operation executed by the simulator. Soon after detecting more than 20% of throttle
pressed, the car starts moving in the forward direction. Note that for this first start-up
situation, the "reverse" push button on the graphical user interface is not pressed.

While the vehicle is running in normal operation, from second 7 to second 21, the
gear changes happen sequentially. At second 21 the first brake interval on the simulation
starts taking place, until the system reached the stationary state at second 27. Similarly
to what happened during test number 1, the gear selector mechanism was sent to a
neutral gear, and the clutch is completely actuated, for security reasons and to keep the
engine from stalling.

At this point of the simulation, and in order to change the direction of the vehicle
movement, the "Reverse" button is pressed. As soon as the throttle pedal is pressed
more than 20%, the gear selector mechanism is set to the reverse gear. The clutch is
then deactivated and the vehicle starts moving in reverse.

To end the simulation, at second 45 the brake pedal is pressed again, and as the vehicle
looses speed the standard safety measure are taken, namely the complete pressing of the
clutch pedal followed by the imposition of a neutral gear on the gear selector mechanism.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

4.Experimental Results 61

0 10 20 30 40 50
0

0.5

1

Time (s)

%
 T

hr
ot

tle

0 10 20 30 40 50
0

0.5

1

Time (s)

%
 B

ra
ke

0 10 20 30 40 50
−50

0

50

100

Time (s)

S
pe

ed
 [k

m
/h

]

0 10 20 30 40 50

0

0.5

1

Time (s)

%
 C

lu
tc

h

0 10 20 30 40 50

R
N
1
2
3
4
5

Time (s)

G
ea

r

Figure 4.2: Graphs representative of Test number 2. From the top to the bottom, the
graphs represent the Throttle Percentage, the Brake Percentage, the Vehicle Speed, the
Clutch Percentage and the Gear Numbers. The black line on the "Gear" graph represents
the moments at which the gearbox is disengaged from the engine.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

62 4.Experimental Results

4.2.2.3 Test 3 - Steep road

The last situation explored and described in this work is the behaviour of the gear selector
mechanism when the vehicle is climbing a steep road using only its inertia. The test is
depicted in Figure 4.3. During this test, the user does not accelerate, and the only forces
acting on the vehicle are the gravity force, the rolling resistance force and the drag force.
This is the reason why the first graph depicted is not the throttle percentage, like the
previous tests. The only input from the driving pedals is the brake action, at the end of
the test.

Similarly to what happened in the previous test, all the default initial conditions
of the simulator are kept, except for the initial speed, that is set to 120 km/h. The
description of this test is the following:

1. The simulation starts with the car at 120 km/h, and the fifth gear inserted. At
this point the vehicle is also on a flat road, as depicted in the first graph;

2. The vehicle looses some speed for approximately 15 seconds;

3. At second 16, the angle of the street suddenly changes from 0◦ to 6◦, which means
that the vehicle starts climbing the road, and consequently, loosing speed;

4. At second 43, the car stops and starts moving backwards;

5. At second 51, the user finally presses the brake pedal completely, to stop the vehicle;

6. At second 54 the car is immobilized, and remains like this until the end of the test.

At the beginning of this simulation, the vehicle was already running at 120 km/h on
a flat ground, the fifth gear was already selected on the gear selector mechanism and the
clutch was not activated. During the first fifteen seconds of the simulation, the vehicle
looses some speed. Because of the high speed of the car, this loss of speed is mainly due
to the drag force, with some contribution of the rolling resistance force.

At second 16, the road angle suddenly changes from the flat ground, or 0◦, to 6◦. This
sudden change makes the vehicle loose speed in a fast way, because the x axis gravity
force component increases. At second 26 the speed of the vehicle justifies the insertion
of a fourth gear. Although the fourth gear is inserted on the gear selector mechanism,
at second 30, the speed is evaluated again, prior from releasing the clutch, and another
gear shift occurs, and a third gear is inserted soon after second 32.

The car continues loosing speed and at second 34.5 a new gear shift is initiated from
the third gear to the second gear, and completed at second 38.8. The car continues
running on a second gear, until the speed is too low, and the default process of activating
the clutch and inserting the Neutral. Note that, due to the Dijkstra’s algorithm, the
mechanism was able to skip the first gear.

At second 43 the car stops completely, and since the gravity force continues acting,
the vehicle starts moving backwards. Note that the simulator does not insert the Reverse
in this situation, since no input from the user is present. At second 51 the user finally
presses the brake pedal completely, in order to stop the vehicle, which happens soon after
second 54. The Neutral remains inserted in the gear selector mechanism, and the clutch
remains pressed.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

4.Experimental Results 63

0 5 10 15 20 25 30 35 40 45 50
0

5

10

Time (s)

R
oa

d
A

ng
le

 [
°]

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

Time (s)

%
 B

ra
ke

0 5 10 15 20 25 30 35 40 45 50
−50

0

50

100

Time (s)

S
pe

ed
 [k

m
/h

]

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

Time (s)

%
 C

lu
tc

h

0 5 10 15 20 25 30 35 40 45 50

R
N
1
2
3
4
5

Time (s)

G
ea

r

Figure 4.3: Graphs representative of Test number 3. From the top to the bottom, the
graphs represent the Road Angle, the Brake Percentage, the Vehicle Speed, the Clutch
Percentage and the Gear Numbers. The black line on the "Gear" graph represents the
moments at which the gearbox is disengaged from the engine.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

64 4.Experimental Results

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

Chapter 5

Conclusions

During the present Chapter, a final and conclusive analysis of the developed hardware and
software solutions proposed and executed during this work will be made. The objectives
that were fully accomplished will be presented, and the ones which did not match the
initial expectations will also be exposed. Some proposals about possible future tasks and
new work fronts will also be proposed.

5.1 Conclusions

One of the main objectives of this work was to project and build a robust and reliable
control board to drive both DC motors, as well as performing all the auxiliary tasks, like
the potentiometer’s reading system, the digital decoders, the 7-segment display and the
manual or automatic selector switch. This objective has been fully accomplished, since
the circuit has proven to be robust enough to withstand the laboratory tests, along with
all the demanding firmware code development process. Note that only one printed circuit
board version was manufactured and used throughout the whole development process,
which is precisely the same one that is still driving the gear selector mechanism on the
present day. There were no amendments made on the original design, whose drawing
can be observed in the Annexes, and no electronic components had to be replaced due
to damage during the execution of this work.

The Arduino-based control system also turned out to be a good option. Although
its frequency limitations, and the higher rigidity of the system when compared to the
Microchip PIC-based systems for example. The easy code development functionalities
and the huge community developing new and more effective libraries, provided by the
Arduino, have proven to be very helpful during the execution of this project.

In what concerns to the firmware programming itself, the Dijkstra’s algorithm was
successfully implemented on the Arduino firmware with the expected results, and the
initial objective of a less rigid, non-sequential gear selector system could be reached.
This firmware programming showed to be suited for the mechanism to successfully reach
all the necessary gear positions.

The communication process between the firmware and the control software, which
uses an Ethernet cable and the TCP/IP protocol, has proven to be very stable as initially
expected. The messaging system used both to control the gear selector mechanism and to
read its current state is very complete, and this characteristic has been achieved without
the need do sacrifice the simplicity of the message sent and received by the device.

65

66 5.Conclusions

Other software modules were also developed and tested to aid the use of the gear se-
lector mechanism. The calibration software created has shown to be particularly useful,
allowing the recalibration of the system to new conditions without editing the Arduino
code directly by hand. The existence of such calibration software is important within
projects involving many people, like the AtlasCar project, since other people in the
project do not need to know or understand everything about the gear selector mecha-
nism’s programming to use it and calibrate it.

The ROS Node, also developed during this work, allows the communication with
the gear selector mechanism using the mew ROS architecture, which is currently the
one present in the AtlasCar control PC. This Node was created to facilitate the future
mounting of the device in the Atlascar vehicle, and its integration with the already
developed software.

The simplified Hardware-in-the-Loop simulator, written in Matlab, also allowed the
further testing of the gear selector mechanism. This simulation was useful to anticipate
some particular situations or problems that may occur when the mechanism is mounted
on the AtlasCar vehicle, and correct them.

The AtlasCar gear selector mechanism’s power transmission system, using the belts
and pulleys, may not be the most adequate to mount it directly on the AtlasCar vehicle.
Although the DC motors’ planetary gearboxes easily develop the necessary torque in
order to move the gear lever, the belts may have not enough grip to drive the lever to its
correct place. The original idea of using belts to transmit power was thought to allow
the system to skip pulley teeth if the mechanism jammed, or if the controller failed for
some reason. The problem is that the belts may fail when exposed to smaller tensions
than the ones required to move the gear lever, which was noticed in the laboratory. The
use of a more consistent power transmission system, like a chain and sprocket, would
probably solve the problem.

5.2 Future Work

The most important future tasks that still need to be performed in the AtlasCar are listed
below. These tasks would guarantee the proper operation of the gear selector mechanism
on the AtlasCar, and would create the necessary conditions for the development of new
and more daring manoeuvres:

• Mounting of the system in the AtlasCar vehicle’s gear lever, and correction of
possible problems that will inevitably appear during that process. The replacement
of the belt and pulley system by an alternative system, like the chain and sprocket
referred in the previous Section, may be necessary;

• Possible corrections and modifications on the code that controls the DC motors,
to ensure the correct positioning of the gear lever. These corrections can only be
executed after mounting the gear selector mechanism on the vehicle;

• Implementation of a closed loop speed control on the vehicle, once the mechanism
is working properly;

• Implementation of certain low-level manoeuvres involving the gearbox, the clutch
and the throttle, needed for a particular set of precision driving situations. Some

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

5.Conclusions 67

examples are the parking manoeuvre or the start of movement in a steep slope,
where the biting point is needed to prevent the vehicle from rolling backwards.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

68 5.Conclusions

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

6 References

[1] ATLAS project. (May 2012) Obtained from: atlas.web.ua.pt

[2] Tiago Rocha. Piloto Automático para Controlo e Manobras de Navegação AtlasCar.
Master’s thesis, Universidade de Aveiro, 2011.

[3] power train. [Art]. Encyclopædia Britannica Online. (June 2012) Obtained from:
http://www.britannica.com

[4] Oscar Gearbox. (June 2012) Obtained from: oscarsautomatictransmission.com

[5] Robert Bosch. Automotive Handbook (5th ed.). SAE Automotive Society of Engi-
neers, 2003.

[6] Marc Ross. Fuel efficiency and the physics of automobiles. Contemporary Physics,
1997.

[7] About Cars. (May 2012) Obtained from: cars.about.com

[8] Vitor B. Sabbagh, Elias J. R. Freitas, Guilherme M. M. Castro, Michelle M. San-
tos,Maurício F. Baleeiro, Tiago M. da Silva, Paulo Iscold, Leonardo A. B. Torres
and Guilherme A. S. Pereira. Desenvolvimento de um Sistema de Controle para um
Carro de Passeio Autônomo. XVIII Congresso Brasileiro de Automática, 2010.

[9] Michael A. Kluger and Denis M. Long. An Overview of Current Automatic, Manual
and Continuously Variable Transmission Efficiencies and Their Projected Future
Improvements. SAE Automotive Society of Engineers, 1999.

[10] Siemens. (May 2012) Obtained from: www.automation.siemens.com

[11] ST Microelectronics. VNH3SP30-E datasheet. Datasheet. ST Microelectronics.

[12] NXP Semiconductors. 4555B 1-of-4 decoder/demultiplexer. Datasheet. NXP Semi-
conductors.

[13] Vishay Spectrol. 7/8"(22.2 mm) Multiturn Wirewound 533: 3 Turns. Datasheet.
Vishay Spectrol.

[14] RS Components. (June 2012) Obtained from: pt.rs-online.com

[15] Vishay Telefunken. Standard 7-Segment Display 13 mm. Datasheet. Vishay Tele-
funken.

[16] Fairchild Semiconductor. DM7447A BCD to 7-Segment Decoders/Drivers.
Datasheet. Fairchild Semiconductor.

69

70 6 REFERENCES

[17] Arduino. (May 2012) Obtained from: arduino.cc

[18] A. Krause. Foundations of GTK+ Development, 1st ed. 2007. Corr. 2nd printing ed.
Apress, 2007.

[19] Morgan Quigley, Brian Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs,
Eric Berger, Rob Wheeler and Andrew Ng. ROS: an open-source Robot Operating
System. ICRA Workshop on Open Source Software, 2009.

[20] Alex Serrarens, Marc Dassen and Maarten Steinbuch. Simulation and Control of an
Automotive Dry Clutch. American Control Conference, 2004.

[21] Ian Millington. Game Physics Engine Development - How to build a commercial-
grade physics engine for your game, Second Edition. Morgan Kaufmann Publishers,
2010.

[22] G. K. Batchelor. An Introduction to Fluid Dynamics. Cambridge University Press,
2000.

[23] National Academy of Sciences. Transportation Research Board Tires and Passen-
ger Vehicle Fuel Economy: Informing Consumers, Improving Performance - Special
Report 286. National Academy of Sciences, 2006.

[24] S. K. Clark and R. N. Dodge A Handbook for the Rolling Resistance of Pneumatic
Tires. Industrial Development Division - Institute of Science and Technology - Uni-
versity of Michigan, 1979.

[25] Juan R. Pimentel and Michael T. Loeffler. A Real-Time Engine Simulator Using
Multiple Microcomputers. IEEE Transactions On Industrial Electronics, 1983.

[26] ALLPAR. http://www.allpar.com/ Retrieved on May, 2012.

[27] (May 2012) Obtained from: http://www.mathworks.com/products/stateflow/demos
.html?file=/products/demos/shipping/simulink/sldemo_autotrans.html

[28] Daekyun Kim, Huei Peng, Shushan Bai and Joel M. Maguire. Control of Integrated
Powertrain With Electronic Throttle and Automatic Transmission. IEEE Transac-
tions on Control Systems Technology, 2007.

Pedro Filipe Pinto Pinheiro Dissertação de Mestrado

7 Annexes

71

VNH3SP30

VNH3SP30

+12V

N

3.3K

3.3K

3.3K

3.3K

1K

1K

1K

1K

1K

1K

N

1K

1K

1K

1K

1K

1K

1K

N

+5V

+5V

+5V

+5
V

+5V

+5V

+5
V

+5
V

N N

+12V

+5
V

N

1K 1K 1K

N

N

1K
1K

N

0.1uF

10
0n

F
47

0u
F

+12V

10
0n

F
47

0u
F

IRF3704S100K

+12V

N

ZTE

IRF3704S100K

+12V

N

ZTE

INA
INB

IA A
IA B

PWM

2818
3

1

15

30
25

16
21

1920 27 26

2313MOTOR_CONTROL_1

N AN B

O
U

TA
O

U
TB

VCC

INA
INB

IA A
IA B

PWM

2818
3

1

15

30
25

16
21

1920 27 26

2313MOTOR_CONTROL_2

N AN B

O
U

TA
O

U
TB

VCC

TO_MOTOR_1_A

TO_MOTOR_1_B

TO_MOTOR_2_A

TO_MOTOR_2_B

1
2
3
4
5

IO_8_SLOTS

6
7
8

1
2
3
4
5

ANALO _6_SLOTS

6

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

VSSVSS

Q3AQ3A

Q2AQ2A

Q1AQ1A

Q0AQ0A

BABA

AAAA

EAEA V V

EB EB

AB AB

BB BB

Q0B Q0B

Q1B Q1B

Q2B Q2B

Q3B Q3B

R11

R12

R13

R14

R15

R16

R17

C
1

C
2

TO_SAFETYBUTTON

FROM_SAFETYBUTTON

R
18

R
19

R
20

123
JP

1

123
JP

2

1
2
3
4

JP3

1
2
3
4
5

IO_8_SLOTS_1

6
7
8

R
28

R
29

1
2
3
4
5

POWER_6_SLOTS

6C3

C
4

C
5

C
6

C
7

Q1R21

1

Q2R22

2

PWR_IN_12V
N

A

B

C

E

1 2 3 4 5 6 7 8

A

B

C

E

1 2 3 4 5 6 7 8

+

+

pin_0 [RX]
pin_1 [TX]
pin_2
pin_3 [PWM]
pin_4 [S CS]
pin_5 [PWM]
pin_6 [PWM]
pin_7

pin_8
pin_9 [PWM]
pin_10 [ETHCS]
pin_11 [PWM]
pin_12 [SPI]
pin_13 [SPI]

N
AREF

pin_A5
pin_A4
pin_A3
pin_A2
pin_A1

Vin
N
N

5V
3.3V
RESET

Pedro Pinheiro

pin_A0

74
LS

47
N

270

270

270

270

270

270

270

1K

1K

1K

1K

G
N

D

VCC

G
N

D

1234

P
1

A
7

B
6

C
4

D
2

E
1

F
9

G
10

D
P

G
1

3

G
2

8

8
16

IC1G$2 G
N

D
V

C
C

IB
1

IC
2

LT
3

B
I/R

B
O

4

R
B

I

ID
6

IA
7

E
9

D
10

C
11

B
12

A
13

G
14

F
1

IC
1

R1

R2

R3

R4

R

R6

R7

R8

R9

R10

R11

A B C D

1
2

3
4

6

A B C D

1
2

3
4

6

A

B

C

D

E

F

G

D
P

MOTOR_CONTROL_1

MOTOR_CONTROL_2

TO_MOTOR_1_A

TO_MOTOR_1_B

TO_MOTOR_2_A

TO_MOTOR_2_B

IO_8_SLOTS

ANALOG_6_SLOTS

R1

R2

R3

R4

R

R6

R7

R8

R

R10

R
11

R
12

R
13

R
14

R
1

R
16

R
17

C
1

C2

TO
_S

A
FE

TY
B

U
TT

O
N

FROM_SAFETYBUTTON
R18

R1

R20

JP1

JP2

JP3IO_8_SLOTS_1

R28

R2

POWER_6_SLOTS

C3

C4

C

C
6

C7

Q1

R
21 D
1

Q2

R22

D2

P
W

R
_I

N
_1

2V

GND

	Introduction
	The ATLAS Project
	The AtlasCar Actuators
	The Clutch and Brake Pedals
	The Handbrake
	The Throttle
	The Ignition
	The Steering
	The Lights

	Objectives
	Dissertation Structure
	Automatic Gearboxes

	Automatic Gearbox
	Solution Study
	Mechanical System
	Control System
	DC Motor Controller
	Analogue value from the Potentiometers
	Manual/Automatic Switches
	Seven Segment display
	Printed Circuit Board

	Arduino Programming
	The Setup Cycle
	The Loop Cycle
	The Manual Mode
	The Automatic Mode

	Communication Protocol
	Pc to Arduino Messages
	Arduino to Pc Messages

	The Calibration Software
	The Calibrator Graphical User Interface
	The Calibrator Communication Process
	The Calibration Process

	Integration with ROS

	Partial Gearbox Simulator
	The Power Train System
	Car Physics
	The Drag Force
	The Rolling Resistance Force
	The Braking Force
	The Gravity Force
	The Engine Force

	The Simulator GUI
	Shifting Logic

	Experimental Results
	Manual Mode Testing
	Motor Controller PCB
	Manual Mode Programming Tests

	Automatic Mode Testing
	ROS Node Testing
	"Hardware in the Loop" Testing
	Test 1 - Normal vehicle driving
	Test 2 - Start-up situation
	Test 3 - Steep road

	Conclusions
	Conclusions
	Future Work

	6 References
	7 Annexes

