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palavras-chave 

 

Modelação de dano, laminados, ensaios de flexão em 3 pontos, 
método dos elementos finitos. 

resumo 

 

 

Polímeros reforçados por fibras (PRF) tem sido utilizados durante 
muito tempo para aplicações estruturais, particularmente com 
laminados. No projeto de laminados é importante caracterizar o seu 
comportamento mecânico. 
 
O comportamento mecânico é caracterizado por uma rigidez inicial 
e pela fractura. A estratégia de modelação utilizada nesta 
dissertação permite não só prever o “first-ply-failure”, como 
também modelar a sequência de eventos a seguir, como a 
delaminação e a fractura final da estrutura. Para isso é utilizado um 
modelo para a interface e para as camadas, permitindo a interação 
entre eles.   
 
A rigidez inicial também é avaliada com diferentes ratios 
comprimento para espessura, permitindo também diferentes 
contribuições do cisalhamento transversal e de flexão. 
 
Nesta dissertação com o método dos elementos finitos (FEM) é 
investigado o comportamento estrutural de uma viga compósita 
sobe ensaios de flexão em três pontos. Para este fim o programa 
comercial Abaqus é utilizado, permitindo simulações numéricas 
com elementos continuum casca e elementos convencionais 
casca. Também são realizadas simulações numéricas de modo a 
preparar a resultados para uma futura experiência, para o qual o 
tamanho do provete é escolhido com recomendações do EN ISO 
14125. 
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abstract 

 

Fiber-reinforced polymers (FRP) have been used for a long 
time for structural applications, particularly with laminates. It 
is important to characterize the mechanical behavior of 
laminates for their design.   
 
This behavior is characterized by an initial stiffness and by 
failure. The modeling strategy used in this thesis allows to 
predict not only first-ply-failure (FPF), but also to model the 
sequence of events afterwards, such as delamination and 
the final failure of the structure. This is achieved by using a 
damage model for the ply and for the interface, allowing the 
interaction between them. 
 
The initial stiffness is also evaluated with different length to 
thickness ratios, allowing different contributions from 
transverse shear and bending. 
 
In this thesis, with the finite element method (FEM) the 
structural behavior of a laminate composite beam under a 
three point bending configuration is investigated. For this 
purpose the commercial FEM package Abaqus is used, 
allowing numerical simulations with continuum shell and 
conventional shell elements. Also simulations are 
conducted, in order to prepare a future experiment for which 
the specimen size was chosen with recommendations from 
EN ISO 14125. 
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1. Introduction 

 

1.1. Composite engineering 

 

Composite engineering is widely used in the development of structures that require a 

higher strength in one direction. The higher strength can be achieved by using fiber 

reinforced composites (FRC). The matrix is reinforced by short or long fibers oriented in a 

certain direction, which gives orthotropic behavior for the composite. The fibers can be 

also randomly disposed in the matrix with no preferential direction, then giving an 

isotropic behavior. Both fiber and matrix can be metal, ceramic or polymer material. In 

cases where the matrix is polymer these are called fiber reinforced polymers (FRP).  

 

The fiber has typically high strength and low density, while the matrix can be ductile or 

brittle. The composite’s final compressive and tensile strength and stiffness depend on the 

fiber volume fraction, type and arrangement. The effective or overall material parameters 

of the composite are usually obtained through experimental methods. When such data is 

not available except of constituent parameters, then numerical or analytical micro-

mechanical techniques are required. 

 

In most cases composite engineering requires the use of laminates. These consist of several 

plies or laminae with different orientations connected together through a bonding interface, 

choosing the correct stacking sequence is important for the overall strength and stiffness of 

the structure. The combination of a type of matrix and fiber allows for applications not 

possible with conventional materials, but on the downside they are more expensive, so the 

design of composites must be chosen based on their cost and should be structurally 

beneficial, because perpendicular directions are weaker (transverse direction for a single 

ply and out-of-plane direction for a laminate). 
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1.2. Composite applications 

 

Metallic structures have been replaced in many applications by composites. The 

comparison between metals and composites can be found in Figure 1.1 [14]. Specific 

strength and stiffness are much higher for the unidirectional lamina, but the clear 

disadvantage is the lack of isotropy. If the in-plane loading is equal in both directions, then 

a biaxially isotropic laminate can be used, but then the advantage of using composite 

material is not so pronounced. 

 

 

Figure 1.1 - Specific stiffness and strength comparison between the composites and metals (reproduced 

from Ref. 14) 

 

Beyond a clear advantage of the high specific strength and stiffness, other benefits of using 

composites are their vanishing conductivity (mostly, with some exceptions e.g. carbon-

fiber), improvement in fatigue resistance, corrosion prevention and others such as potential 

fabrication cost advantages for parts with complex shapes or performance (e.g. damage 

tolerance). But there are also disadvantages, as composite parts are difficult to inspect and 

when damaged, they are usually hard to repair, so the whole part may have to be replaced. 

Making the decision to repair or replace is not so straightforward. 
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Due to the adaptability of composites to different situations, the applications for 

composites are quite wide including boat decking, transport, civil engineering, general 

engineering, aerospace and sports. They provide ample scope and receptiveness to design 

changes, materials and processes. 

 

In aviation composites have been experimented since the 1920s, but the situation was held 

for many years without a proper material for production. In the 1950-60s glass fiber 

reinforced plastics (GFRP) were introduced. These are not appropriate for structural 

applications with heavily loaded aircrafts, such as commercial or high performance 

aircrafts. Nowadays advanced composite materials such as carbon fiber reinforced plastics 

(CFRP) or boron reinforced plastics (BFRP) are used for these applications. For light 

loaded aircrafts aramid reinforced plastics are used, they possess a high tensile strength, 

however a low compressive strength. Also glass fiber is an option for the light loaded 

aircrafts. 

 

The evolution of composite material allowed the development of complete FRP airframes. 

This follows with weight saving, with improvement in performance, durability, corrosion 

prevention and drag reduction. This naturally leads to the reduction in operating costs due 

to fuel saving.  
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Figure 1.2 – Evolution of composite usage in structural weight in aviation (reproduced from Ref. 13) 

 

An example of such application is Boeing 787 Dreamliner (Figure 1.2), the first full-size 

commercial aircraft with composite wings and fuselage. The estimated composite 

structural weight is 50% and a 19:1 part reduction. In contrast, Boeing 777 consists of only 

12% of the composite structural weight. [10] 

 

The development of composite materials is a time consuming process as compatible base 

material A and B must be developed. Therefore time to market for composite materials is 

also long. Unlike aluminium, composite materials require a more extensive certification 

process and more tests are required. 

 

For future research and development other enabling technologies are needed for better 

structural performance. Enabling technologies include process molding, material property 

prediction, failure prediction and damage modeling. Breakthrough in manufacturing 

technologies is needed to reduce significantly the production cost. [27] 
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1.3. Failure mechanisms 

 

The failure mechanisms in fiber-reinforced composite (FRC) materials include 

delamination, intralaminar matrix cracking, longitudinal matrix splitting, fiber/matrix 

debonding, fiber pull-out, and fiber fracture.  

 

With unidirectional composite material, when a tensile load is applied in the direction of 

the fibers, these tend to rupture first, because the allowable strains for the fibers is smaller 

than to those of the matrix. Depending on the fiber volume fraction, the matrix might be 

able to support the load. Local failure modes will occur at a much lower stress level (e.g. 

50% of ultimate strength), such as fiber pull-out, debonding of fibers, interface-matrix 

shear failure, etc. Compressive loading can cause stress concentration on the matrix around 

the fibers due to the Poisson effect. Then fiber matrix interface failure or transverse 

splitting may occur. Again, the failure mode is also dependent on the fiber volume fraction, 

because when fibers act independently and are further away from each other, fiber 

buckling may occur, otherwise fiber-kinking.  

 

It was explained what happens with loadings in the fiber direction (longitudinal loading). 

As for the transverse tensile loading, the final strength is even lower than of the matrix 

alone as there are stress concentration due to the fibers, because they are constraining the 

matrix. With compressive transverse loading similar effects can be observed, the 

associated failure mode is usually matrix shear failure accompanied with debonding. At 

last, the in-plane shear loading failure mode is very much dependent on the fiber-matrix 

interface strength. If the interface is weak then the failure doesn’t depend on the fibers or 

the matrix. 

 

With laminates, which are constituted of several plies and bonding interfaces between 

them, it is not so straightforward to understand the failure. It can occur on both, on the ply 

or on the interface. Interface failure would cause delamination to occur. Ply failure can 

occur in different forms as referred above and is very much dependent on the stress state 

and load case. Therefore when dealing with a laminate, the stress concentration and stress 

distributions are different. The analytical solutions that have been developed for individual 

plies are not sufficient to describe failure in laminates. Therefore, in classical lamination 

http://en.wikipedia.org/wiki/Delamination
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theory there are several criteria to predict first ply failure (based on intralaminar stresses) 

or delamination (based on interlaminar stresses).  

 

First-ply-failure (FPF) is not always sufficient for the failure analysis, because the failure 

of a ply does not necessarily mean the failure of a whole structure. Often the stresses are 

redistributed in such a way that the structure does not fail and a new crack may or may not 

initiate in another position. More details on failure mechanisms can be found in Ref. 22. 

 

1.4. Scope of the present work 

 

As referred earlier, laminates allow interesting applications, therefore the numerical study 

of their properties becomes important for their development. In the study of laminates it is 

important to model damage to predict failure. For this purpose the finite element method is 

used with the general purpose FEM package ABAQUS/Standard 6.11 (Dassault Systèmes 

Simulia Corp., Providence, RI, USA).  

 

In the preceding section, it was stated that the FPF is not always sufficient. A modeling 

strategy which allows to model damage further after FPF is intended, where delamination 

can also occur. In this thesis, damage modeling of the ply and of the interface is performed, 

allowing the interaction between them. The behavior of this modeling strategy is linear just 

until the first-ply-failure or interface failure, afterwards it is non-linear due to stiffness 

degradation from damage evolution.  

 

1.4.1. Linear elastic behavior 

 

Regarding the linear elastic behavior, modeling the interface in ABAQUS should not, in 

theory, affect the overall stiffness of the laminate, but this may not be the case, as results 

were found with similar tests where the transverse shear stiffness was overestimated when 

modeling with conventional shell elements with a cohesive surface for the interface [16]. 

For a better understanding of how the latter influences the transverse shear and bending 

stiffness (even though conventional shell elements are quite good in dealing with bending), 

a 3-point bending model is considered with a 0/90 ply lay-up on a laminate. The reason is 
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the relative simplicity of this model, therefore avoiding additional geometric complexity, 

and the availability of an analytical solution. The beam when deformed, in the 3-point 

bending test, has a contribution from bending and from transverse shear. The length-to-

thickness ratio determines the percentage of contribution from each. By changing the 

boundary conditions, different characteristic lengths are used, where effects of transverse 

shear are higher. This is desired, to verify if the modeling strategy also works well when 

dealing with high transverse shear loads. Even though the transverse shear isn’t considered 

in to the damage model, there is a linear superposition in the displacement contributions 

from bending and transverse shear, therefore the amount of bending will also be different. 

The interest in the elastic behavior is justified by the fact that accurate computation of 

stresses and stiffness is important for FPF, as it is the first step in damage modeling. 

 

The stiffness of the conventional shell elements model is compared not only with the 

analytical solution, but also with the 2D fully integrated continuum elements and 

continuum shell elements. Continuum elements provide quite accurate results, but they 

require a more refined mesh as they do not have rotational degrees of freedom. In the end, 

for continuum elements the total number of degrees of freedom is higher, making the 

computation more expensive. Continuum shell elements are interesting, because their 

formulation is somewhere in between continuum elements and conventional shell 

elements. Visual representation of the models can be seen in Figure 1.3. More details will 

be given in Chapter 3. 
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Figure 1.3 – Modeling approach for layered composite beam with 2D Continuum elements in plane 

strain and two layer conventional shell elements. The comparison between the models is established by 

applying equivalent boundary conditions. 

 

1.4.2. Damage modeling 

 

For this part of the thesis, the question is whether the damage is computed correctly and if 

ply failure interacts correctly with delamination. Again, the 3-point bending test with 0/90 

orientation is adequate, because the expected behavior (with a long beam and significant 

contribution from bending) would be a crack growing from the bottom on the center of the 

beam. When the 90º layer fails through the thickness of the ply until the interface surface, 

then delamination should occur, see Figure 1.4. For a short thick beam the results are not 

so clear, because even though transverse shear is not included in the damage model, there 

could still be indirect influence on the damage modeling. 
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Figure 1.4 – Expected damage progression in a 3-point bending test on a cross-ply laminate 

(reproduced from Ref. 17) 

 

Unfortunately, there is no experimental data to compare the results. Since modeling 

damage is a non linear computation, there are no analytical solutions to compare with our 

data. Also there is no damage model for continuum elements in plane strain. Therefore, it 

is of interest to find a configuration where failure occurs in a clear sequence of events, this 

way creating the possibility for a future experiment for the purpose of comparing 

experimental and modeling data. Recommendations are taken from EN ISO 14125, 

although not strictly followed, for the lay-up computed for the future experiment. 

 

1.4.3. Content summary 

 

Chapter 2 presents the theory behind the elastic behavior of the beam. The Euler beam 

describes how to obtain the deflection from bending by applying a vertical load at the 

center of a beam. The Timoshenko beam extends the solution with a larger deflection due 

to bending and first order transverse shear contributions. Finally, lamination theory is 

required to calculate the stiffness matrices of the 0/90 layer composite beam, as originally 

the Euler and Timoshenko beam analytical solutions are given for homogeneous beams. 

The analytical solutions are obtained to calculate the maximum deflection by applying a 

concentrated load on a 3-point bending configuration. 

 

Chapter 3 provides the detailed description of the modeling used to build the finite element 

model. Specimen size, element size, loading rate, applied displacement, the punch 

modeling and boundary conditions are defined. In addition the boundary conditions are set 
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so that the shell element model can be compared with the continuum element model in 

plane strain. Material data is defined, including the damage model for the ply and the 

interface. Also a model with continuum shell elements is defined for comparison. Finite 

element formulation that is relevant for the modeling is explained in this chapter. 

 

The results of the calculations are presented in Chapter 4. At first, the results concerning 

the initial model (the elastic behavior with different elements types) are presented, then 

follows the damage modeling complemented with a comparison between the continuum 

and conventional shells. In the second part of the Chapter are presented the computational 

results within the experimental model, with a realistic geometry of the specimen. The 

force-displacement plots are presented along with discussion and relevant figures 

presenting the results. 

 

Finally, Chapter 5 contains the final conclusions and remarks of the thesis. 

 

1.5. Literature review 

 

The literature review presented in this work is based on a review – thesis by Lista [16], 

because the damage modeling strategy, ply and interface damage models and material 

parameters are the same ones as used in [16].  

 

Classical lamination theory serves as a basis for the understanding of laminates. It is 

required to obtain effective stiffness based on their lay-up, to understand the 

simplifications and assumptions made. Therefore, a textbook on the topic by Jones [14] is 

recommended. 

 

Regarding ply damage, the first-ply-failure prediction is required. One of the most known 

criteria was developed by Puck [18]. Later, it was extended by Puck and Schürmann [19] 

and Knops [20]. This criterion is quite accurate and is based on classical lamination theory 

(details are given in [22]). The distinction is made between the fiber failure and matrix 

dominated failure. It is based on the Mohr’s fracture hypothesis. It was first used by 

Hashin [11] for uni-directional composites where four failure modes are considered fiber 

tension, fiber compression, matrix tension and matrix compression.  
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In the present thesis, the Hashin criterion is used for modeling the ply damage with 

ABAQUS and it is included in the FEM package. The damage initiation model was 

developed by Lapczyk [15]. The damage evolution model is a simplification of the model 

developed by Camanho and Davila [6] for interlaminar stresses. The latter is an energy 

approach which accounts for the stiffness degradation through the release of energy due to 

damage. There is another damage model developed in the Institute of Lightweight Design 

and Structural Biomechanics (ILSB) in Vienna University of Technology, which is based 

on the Puck criterion. The ILSB damage model was developed by Schuecker and 

Pettermann [24, 25] and Flatscher and Pettermann [7]. 

 

More details on the validity of current ply failure theories can also be found in [12] or in a 

recent review on current progressive degradation damage models [9]. 

 

Regarding delamination, several studies have been concluded on natural composites in 

1980’s. It was the starting point in the field of delamination. The origin and growth of 

delamination in stability problems was performed by Garg [8] and Bolotin [4]. In this 

thesis the traction-separation approach is adopted, with a quadratic strength criterion for 

damage initiation on the interface. Later studies have been performed by Brewer [5]. As 

for damage evolution, mixed energy modes are used introducing an effective displacement, 

see Ref. 6 for details. When the critical fracture energy is the same along the first and 

second shear direction during deformation, then the criterion by Benzeggagh and Kenane 

[3] were useful. The same criterion is used in the present thesis.  

 

In order to avoid the introduction of a delaminated area, even though computationally more 

expensive, methods such as the introduction of a cohesive zone element to model the 

interface [2] are used. 

 

 

 

 

 



12 

 

2. Theoretical background 

 

2.1. Euler Beam 

 

The Euler beam allows to predict the load or the deflection under bending and the stress 

and strain fields as well. Therefore, it is only valid for high length-to-thickness ratios, 

when the contribution from transverse shear is negligible. It is valid under the assumptions 

of small strain and small rotations. Classical beam theory describes the elastic behavior 

through Hooke’s law, which was originally meant for homogeneous beams, the solution 

can be extended for composite beams in combination with lamination theory. This section 

follows the content adapted from Ref. 29. 

 

The Euler beam theory describes the elastic behavior of the beam. The deflection can be 

calculated, as well as the moments and forces, which in posterior allow computing the 

stresses. The stress distributions just with consideration of bending are normal stresses, 

which are maximum on the surface of the beam. Depending on the loading direction the 

maximum tensile stresses are on the upper or lower layer and on the opposite surface the 

maximum compressive stresses. Naturally, in our example, as the maximum bending 

moment is on the center of the beam, the stress concentration is also in the center. This is 

important for understanding, why would the 0/90 layer composite beam fail at first on the 

lower ply surface with a significant contribution from bending.  

 

The differential equation for the static beam is 

 

  

   
   

   

   
      (Eq. 2.1) 

 

where   is the Young modulus,   is the second moment of inercia and   is the deflection 

with a certain distributed load  . 
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 The curvature is defined as 

 

  
  

  
   (Eq. 2.2) 

 

and the curvature change as 

 

  
   

   
   (Eq. 2.3) 

 

The curvature change is required to describe the bending moment: 

 

        
   

   
   (Eq. 2.4) 

 

 

The analytical solution for a 3-point bending with a concentrated load in the middle is 

obtained. The analytical solution for the maximum deflection is 

 

  
   

    
   (Eq. 2.5) 

 

where   and   are defined as represented on Figure 2.1. 

 

 

Figure 2.1 – 3-point bending beam (reproduced from Ref. 29) 
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2.2. Timoshenko beam  

 

From the analytical solution of the Euler beam, it is calculated only the contribution from 

bending of the vertical load (with a known displacement). The deflection, without 

transverse shear considerations for a beam with low length-to-thickness ratio, will be under 

predicted. But with the Timoshenko beam theory, this contribution is calculated, making it 

compatible for the analysis of short thick beams [26]. The ordinary differential equations 

governing the behavior are, 

 

  

   
   

  

  
    (Eq. 2.6) 

and 

 

  

  
   

 

   

   

   
   (Eq. 2.7) 

 

 

 

Figure 2.2 – Shear contribution on the angle in the Timoshenko beam (reproduced from Ref. 28) 

 

Some similarities can be observed with the Euler beam, except that, 
  

  
 is no longer equal 

to  , because there is another contribution to the angle now from the transverse shear, as 

see Figure 2.2. Therefore the angle is no longer perpendicular to the deformed beam axis. 

In a situation where there is only shear deformation (pure shear) the angle does not change 

in comparison to its original configuration.  
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The analytical solution of the Timoshenko beam [26], for the beam shown in Figure 2.1, as 

described in the previous section is 

 

    
 

    
 

  

    
  (Eq. 2.8) 

 

where   is the shear correction factor, ABAQUS uses       as standard for shells (true 

assumption for the homogeneous beam, but for the composite beam other values have to be 

adopted),   is the area of the cross-section of the beam. The shear modulus   can be 

defined for isotropic material as 

 

  
 

      
   (Eq. 2.9) 

where   is the Poisson ratio. 

 

In Equation 2.8, the first term in the brackets is due to transverse shear contribution and the 

second term is due to bending.  

 

2.3. Lamination theory 

 

As referred earlier lamination theory deals with the material parameter prediction of 

laminates such as stiffness, based on the ply lay-up or failure prediction with first ply 

failure (FPF) criteria. Interlaminar stresses are also evaluated. This section follows ideas 

outlined in Ref. 22. 

 

The constitutive relations of the individual uni-directional (UD) layer are defined as 

 

   

 

 
 

   

   

   
   
    

 
 

 

 

  
 

               

         

          

       

           

  
 

 

 

 
 

   
   
   

   

    

 
 
  (Eq. 2.10) 
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where the subscript   refers to the local orthotropy axes, which are   and  , referring to 

longitudinal (fiber direction) and transverse direction respectively. The out-of-plane 

direction is  . There are no normal out-of-plane components (only the first-order shear 

components) as plane stress state is assumed for laminas. The normal stresses are defined 

as  , the shear stresses as   , the normal strains   and the shear angles as   with the 

respective subscripts (each stress or strain component has a direction associated to it). 

 

The individual components       ,         and        are normal in-plane parameters. 

       is the in-plane shear parameter. The other two parameters         and        are 

the transverse shear in the longitudinal and transverse direction. In certain cases these can 

be removed, as for long thin plates or shells where bending is the predominant loading. 

The individual components are further defined as 

 

   

       
  

       
   

  

       
  

       
   

  

                
          

               

                  

     (Eq. 2.11) 

 

where      is the in-plane Poisson ratio,      is the in-plane shear modulus,     and     are 

the out-of-plane shear modulus in the longitudinal and transverse direction respectively,    

refers to the longitudinal Young modulus and    to the transverse Young modulus. 

 

The deformation behavior of the UD-layer is described by the plate and shell theory by 

Reissner [23]. Shear out-of-plane deformations are considered without any normal (out of 

plane) deformations. These considerations are the same as in the Timoshenko beam except 

that it can be applied to plates. The difference is that there are two angles, because two 

transverse shear directions are considered. The strains for the Mindlin-Reissner kinematics 

are defined as: 
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    (Eq. 2.16) 

 

where   describes the strains of the mid-surface,   are the curvature changes,   are the 

transverse shear angles,   are the mid-surface displacements,   is the longitudinal angle 

and   is the transverse angle. 

 

After the behavior of individual UD layers has been defined, the elasticity matrix of each 

layer must be rotated relative to the global axes through the rotation matrix, following the 

equations 

 

     

 

 
 

         
          
             
     
       

 
 
    (Eq. 2.12) 

 

and 

 

              
           (Eq. 2.13) 

 

where   is the fiber orientation angle,   is         and   is         
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The stiffness matrices are defined as 

 

   

         
    

         

 

   

      
  

    
     

 
 

 

   

      
  

    
     

 
 

 

   

           
    

          

 

   

      (Eq. 2.14) 

 

where n refers to the ply number, N is the total number of plies, h is the ply thickness,    is 

the out-of-plane coordinate from the mid-surface,   is the elasticity matrix without out-of-

plane consideration, and    are the last two terms of the elasticity matrix for the transverse 

shear directions. In the matrix    the shear correction   must be specified for both the first 

and second directions. For more details on shear corrections factors for laminates see Ref. 

21. 

 

The constitutive behavior of laminates can be defined as  

 

 
 
 

   
  
  

    
 
     

     

  (Eq. 2.15) 

 

where N, M and Q are the normal stress resultants, bending moment stress resultants and 

transverse shear stress resultants vectors, respectively, for the directions defined in the 

Equation 2.10. 

 

With all UD-layers defined in the global axes, the stresses can be integrated over the 

thickness to obtain the stress resultants for the laminate. The terms are then reorganized to 

form the stiffness matrices A, B and D. These matrices are called extensional, coupling and 

bending stiffness matrices, respectively. This way of solving laminates is more interesting, 

because if the coupling matrix B is not zero, then coupling between extension and bending 
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can be observed, such as bending in a cross-ply or warping in a ply-angle laminate. To 

avoid this effect, symmetric laminates can be made by creating the same plies from the 

mid-surface, this means same   , same thickness and same orientation  . Quasi-

orthotropic laminates for pure in-plane loading can be defined if the terms     and     are 

zero. For 0º and 90º orientations they are indeed zero. For other angles, for each lamina 

with    must exist a –   angle. By using 0º or 90º plies or by using alternate angle-plies, it 

is possible to achieve a structure where there is no coupling between normal stresses and 

shear strains. The same effect is observed in the bending stiffness matrix D for the terms  

    and    , except here the angles must be alternating in respect to the mid-surface, 

making it hard to achieve symmetric laminates, except for cross-ply laminates. The 

solution is the usage of many thin plies in an angle-ply, which would make the terms 

nearly zero, achieving homogeneous orthotropic behavior. 

 

In a short note, lamination theory does not provide a good prediction for the stresses near 

the free edges, where they are supposed to be zero (not all the components). The farther 

away from the edges, the less pronounced this effect is.  
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3. Modeling 

 

3.1. Overview 

 

The damage model, contact model and geometric discretization model used in this thesis 

are integrated in the ABAQUS FEM package. 

 

With traditional modeling strategies, where only FPF is intended, composite sections are 

applied to shell elements. With composite sections the assumption is the same as with 

classical lamination theory – the interface is perfect. In the context of this work, in order to 

model delamination, the interface is damageable. So each ply is modeled as an individual 

shell layer. By assigning a surface (or two surfaces, depending on the amount of layers) to 

each shell layer, it is possible to couple them together through a cohesive surface. The 

latter is modeled with a traction-separation approach, so the thickness of the interface is 

assumed to be zero. Then, a damage model can be defined, creating a damageable interface 

as required. Additionally, contact formulation must be assigned with a master and a slave 

surface, for this a small sliding approach is chosen, meaning that the nodes from the slave 

should not slide further away than the corresponding element from the master surface. 

Choosing which surface in the laminate is master and slave has a significant influence over 

damage modeling, which is some sort of defect in ABAQUS. Also the damage model is 

defined for the ply material, which would also be the same as for composite sections. 

 

3.2. Element type 

 

The three element types used in the present thesis are conventional shell elements (S4), 

continuum shell elements (SC8R), and 2D continuum elements (CPE8R). The theory 

presented in this section follows the ABAQUS Manual [1]. 
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3.1.1. General purpose shell elements 

 

General purpose shell elements (S4) are appropriate for structural applications as one 

direction is considered to be smaller than the other. Therefore, plane stress is imposed, 

allowing reduced number of degrees of freedom and computation time. Since conventional 

shell elements possess rotational degrees of freedom, they can reproduce bending quite 

accurately, because of this, they do not require such a refined mesh as continuum elements. 

Composites also have the thickness direction (the ply thickness) smaller than the other 

directions, making conventional shell elements suitable for this application. Even though 

plane stress assumption is made, there is still variation of thickness due to the Poisson 

effect, but only when finite strain formulation is adopted. In ABAQUS this is achieved by 

using non-linear geometry. 

 

S4 elements are valid for thin and thick shells, which allow for the first-order shear 

deformation. The rotational degree of freedom is computed normal to the surface reference 

and then deformed depending on the amount of transverse shear. But, when Kirchhoff 

theory isn’t applied as in thin shell theory, then shear locking may occur in the transverse 

direction. For this, ABAQUS uses a dimensionless factor to prevent the transverse shear 

stiffness becoming too large in thin shells, which depends on the element area and shell 

thickness. The effective transverse shear is defined as, 

 

   

  
      

     (Eq. 3.1) 

 

where    
   is the actual transverse shear stiffness calculated by Abaqus.   and   refer to 

the surface directions on the shell. The dimensionless factor is defined as, 

 

                 
 

  
     (Eq. 3.2) 

 

which is dependent on the element size A and the shell thickness t. 

 

Also an assumed strain method based on the Hu-Washizu principle is used for the 

treatment of transverse shear. In the mid-surface of S4 elements there are 4 integration 
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points inside the element and linear interpolation is used. By combining the original 

integration points (Figure 3.1) with the new points (Figure 3.2) a new strain field can be 

obtained, which is much more immune to overestimated values of transverse shear. 

 

 

Figure 3.1 – Conventional shell elements S4 (reproduced from Ref. 1) 

 

For this, the transverse shear strains are obtained from the original and deformed shell 

normals for the points A, B, C and D as represented on Figure 3.2. Then they are averaged 

into to strain fields for the first and second shear directions. 

 

 

Figure 3.2 – Shell midsurface (reproduced from Ref. 1) 

 

Now, the transverse shear forces are obtained from the St. Venant-Kirchhoff constitutive 

model for the Kirchhoff curvilinear components,  

 

 
  

  
      

 
 

 
 

  (Eq. 3.3) 
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where the strain fields  
 
 and  

 
 for both transverse shear directions,    and    the 

respective shear forces. The transverse shear stiffness    for an isotropic plate is defined 

as, 

 

   
 

 
     

     

          (Eq. 3.4) 

 

When specified, the section properties are integrated throughout the analysis. Then the 

properties throughout the thickness, such as the stiffness for in-plane bending and out-of-

plane shear response are computed, because output data is required not only on the mid-

surface of the shell element. For that integration points are specified, the amount depends 

on the accuracy required. Naturally, more integration points will lead to a longer 

computation time. As for the integration, there are two schemes available in ABAQUS - 

the Gauss quadrature and Simpson’s rule. The Gauss quadrature has no integration point 

on the shell surfaces, but has a higher accuracy with the same number of integration points 

than the Simpson’s rule. In this thesis the Simpson’s rule is used as output is required for 

the shell surfaces. 

 

As for stress output, the conventional shell elements are quite accurate for the in plane 

components as these are obtained from the constituent parameters of the material. Which is 

no longer the case for transverse shear stresses – the strain energy from the transverse 

shear deformation is equated to the transverse shear stress distribution energy of a 

unidirectional beam bending (parabolic distribution, with maximum value on shell mid-

surface and zero on outer surfaces of the shell). The transverse shear stiffness for 

composite sections is also calculated by these means. In the shell formulation only first-

order shear strains are considered within the rotational degree of freedom, just as in the 

Timoshenko beam or Mindlin plate theory. Therefore they require a shear correction 

factor, which for homogeneous plates is well known to be 5/6, providing quite accurate 

results. But for the composite sections Abaqus has to recalculate this value to provide a 

more correct estimate, when using non-symmetric laminates, the transverse stiffness and 

stresses can be less accurate as the shell section directions are considered to be the 

principal bending directions. Abaqus computes the transverse shear stiffness only once at 

the beginning of the analysis based on the elastic properties. Any changes that occur in the 
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transverse shear stiffness due to changes in the material stiffness during the analysis are 

ignored. 

 

3.1.2. Continuum shell elements 

 

The continuum shell elements do not have rotational degrees of freedom as the 

conventional shells and are only available with reduced integration, making them 

susceptible to “hourglassing”, for this purpose ABAQUS uses hourglass control for such 

elements. Each element is defined by 8 nodes, in contrast to conventional shells where only 

the mid-plane surface is defined. The integration point is in the middle of the element, as 

shown in Figure 3.3. Continuum shell elements use finite strain formulation. 

 

 

Figure 3.3 – Continuum shell elements SC8R (reproduced from Ref. 1) 

 

The section for continuum shell elements is specified in the same way as for conventional 

shell elements (Gauss quadrature or Simpson’s rule as integration schemes), with 

integration points over the thickness and the calculation of transverse shear stresses and the 

shear correction factor is the same as for conventional shells, with unidirectional bending 

over one axis to equate the strain energy. The exception is for specifying the thickness, 

which is done with nodal coordinates, instead of in the shell section. The ply thickness 

specified in the section will be used for other section properties, such as hourglass control. 

 

3.1.2. 2D plane strain continuum elements 

 

CPE8R are 8-noded bi-quadratic elements in plane strain with reduced integration. The 

high amount of bending in the elements was the reason for using bi-quadratic elements, 

therefore allowing them to assume a curvilinear shape. As referred earlier, the continuum 

elements can compute accurately the stresses and forces for bending and transverse shear 



25 

 

load cases, but their use does not go that far, because there is no damage model for 

continuum element in plane strain and 3D continuum elements are too expensive. 

 

The nodes in these elements have 2 degrees of freedom and must be defined in the x-y 

directions (one and two). The node and integration point locations on the element can be 

seen in Figure 3.4. 

 

 

Figure 3.4 – 2D continuum elements in plane strain CPE8R (reproduced from Ref. 1) 

 

3.2. Bonding interface 

 

To model the bonding interface a cohesive surface behavior is used. The other option 

would be to use cohesive zone elements (CZE), but since conventional shell elements for 

ply modeling use no offset, there would be an additional complexity as constrains would 

have to be defined.  

 

When modeling the cohesive surface behavior, the surface properties must be chosen for 

the two surfaces defined by the upper ply and lower ply. This is done by specifying the 

corresponding element set and normal direction of the surface. For conventional shells 

SPOS (it is the direction used with the right hand rule) or SNEG. For continuum shells the 

correspondent normals are S2 and S1 respectively. For 2D continuum elements it is enough 

to specify the element set and the faces that are in contact are used. 

 

Then the contact formulation must be chosen for the surfaces defined earlier, such as an 

appropriate discretization. In ABAQUS two approaches are available, the surface-to-

surface and the node-to-surface discretization. The tracking approach must be chosen as 

well, these include a finite-sliding approach and a small-sliding approach. A contact 
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property model is specified. Additionally, the initial conditions are specified as well, in 

order to guarantee that both surfaces are in contact in the beginning of the simulation. 

 

The theory presented in this section follows the ABAQUS Manual [1]. 

 

3.2.1. Contact property model 

 

For the contact property model, a “hard” pressure-overclosure relationship is chosen to 

minimize the penetration of the slave surface in the master surface at the constrain 

location, without transfer of tensile stress across the interface. With this relationship, when 

there is contact, then any pressure is possible on the surface, when there isn’t then there is 

no contact pressure, as shown in Figure 3.5.  

 

 

Figure 3.5 – “hard” contact pressure-overclosure relationship (reproduced from Ref. 1) 

 

3.2.2. Contact Formulation 

 

The node-to-surface discretization allows each node from the slave surface to interact with 

a group of nodes from the master surface. The slave node does not penetrate the master 

surface, but the master nodes can penetrate the slave surface. Within this discretization the 

contact direction is normal of the master surface and the geometry (normal surface 

direction and curvature) of the slave surface is not relevant. 
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With the surface-to-surface discretization there is a higher accuracy regarding the contact 

pressure, as it considers the geometry of both master and slave surfaces. Contact conditions 

are enforced in an average sense nearby an approximate slave node region. Within this 

formulation there is some penetration, but not large or undetected. In contrast to node-to-

surface formulation, the contact direction is an average normal determined by the slave 

surface nearby a slave node. This formulation provides more accurate stress and pressure 

results, because of smoothing effects which averages over a surface instead of individual 

node and is less sensitive to master and slave definition than the node-to-surface 

formulation. Never the less, it can also be more expensive when a large fraction of model 

is in contact, the master surface is more refined than the slave surface or when there are 

multiple shell layers in contact, where one shell is master of one surface and slave of the 

other. In general, the surface-to-surface formulation is used in situations where normal 

directions of both surfaces are opposite and node-to-surface for edges or corners. For ply 

modeling the two surfaces have the normal direction opposite, making the choice for 

surface-to-surface formulation a clear option, as it provides more accurate results. 

 

As for the tracking approach, the finite-sliding approach is the most general one and allows 

for arbitrary relative separation, sliding and rotation. But the small-sliding approach can be 

used when approximations are reasonable, providing computational savings and an added 

robustness. This formulation accounts for relatively little sliding, but for non- 

-linear geometry large rotations are considered. It is based on a linearized approximation of 

a master surface per constrain. The group of nodes involved with the individual contact 

constrains are fixed throughout the analysis, but the status of the constrains can change to 

active or inactive. Therefore a slave node will always interact with the same area of the 

master surface, transferring the loads always to the same master nodes, these nodes are 

chosen based on their proximity from the initial configuration. Therefore, when the sliding 

is not “small”, naturally there will be errors in the calculation. There are pre-requisites for 

defining a sliding as “small”, such as that slave nodes should slide less than an element 

length and still be contacting their tangent plane (with a curved master surface just a 

fraction of an element length). Also the local tangent planes formed by ABAQUS should 

be a good approximation of the mesh geometry. At last, the rotations and deformation of 

the master surface should not cause a bad representation of the local tangent planes. Please, 

see Figure 3.6 for a visual representation of the local tangent plane defined on the master 
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surface and how deformation of the master surface can lead to inaccurate results. For the 

present thesis the small-sliding approach is chosen as the pre-requisites are fulfilled. 

 

As for the master and slave surface definition, according to the ABAQUS manual, it is 

always better to choose the smaller surface as slave. If both surfaces have same size, then 

the master surface should be the stiffer (not alone in material properties, but structurally). 

If still no distinction between size and stiffness, then the surface with the coarser mesh 

should be the master surface. For this thesis, 0º and 90º layer plies are modeled. The 0º 

layers have a higher stiffness and should be specified as the master surface according to 

these rules, but the choice is not so straightforward for modeling damage as they provide a 

completely different response (apparently due to a flaw in ABAQUS), depending on which 

surface is defined as master. Further discussion on this topic will be made in Chapter 4. 

 

 

 

Figure 3.6 – Master surface deformation vs. local tangent plane (reproduced from Ref. 1) 
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3.2.3. Cohesive behavior based on a traction-separation law 

 

The traction-separation law is intended for bonded interfaces, it is used with a cohesive 

surface and it is appropriate for modeling delamination. For this purpose, first the linear 

elastic behavior which occurs before damage is explained, then how fracture energy can be 

specified, in order to determine the failure of the interface characterized by progressive 

degradation of material stiffness. 

 

The forces are divided by the original area at each integration point obtaining the nominal 

tractions. Through a constitutive elasticity matrix, defined as,  

 

   

  
  
  

   
               

               

               

  

  
  
  

     (Eq. 3.5) 

 

which is a linear elastic law that relates the nominal tractions to the nominal strains, the 

nominal strains are then obtained.   is the traction,   the stiffness,   the strain and the 

subscripts  ,   and  , refer to normal, first and second shear direction respectively. The 

stiffness used throughout the simulations is defined as                  MPa. 

 

Since the constitutive thickness defined in ABAQUS as default is 1.0, the strains 

correspond to the separation, 

 

   
  

  
     

  

  
     

  

  
 (Eq. 3.6) 

 

where    is the constitutive thickness. This thickness does not correspond to the 

geometrical thickness which is close to zero.  

 

For this Master thesis an uncoupled constitutive elasticity matrix is used. Only the values 

for    ,     and     are defined, meaning that normal and shear strain will not induce 

traction forces in other directions than their own. 
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There are two parameters that must be set, damage initiation and damage evolution. For 

damage initiation a quadratic stress criterion is used [5], for that the tensile strength must 

be specified for the normal direction and the strength for the shear directions 

 

 
  

  
  

 

  
  

  
  

 

  
  

  
   

 

      (Eq. 3.7) 

 

where    is the tensile strength for the different directions. When the equation is satisfied 

at a point in the interface, there is damage initiation that will lead to damage evolution. 

Notice that pure compression will not lead to damage initiation. 

 

A linear damage evolution model is used, the mixed-mode based on an energy approach, 

 

   
  

  

   
  

  

   
  

  

     (Eq. 3.8) 

 

and 

 

              (Eq. 3.9) 

 

There are three energy measures for the work done by traction, each measure for each 

direction (normal and two shear directions),   ,    and   . Figure 3.7 illustrates how such 

a work measure relates to stiffness degradation. 
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Figure 3.7 – Traction-separation law for cohesive surfaces. (reproduced from Ref. 1) 

 

The portion of energy related shear work per area is defined as         . When the 

critical energy from both directions is the same (  
    

 ) it is particularly useful to use 

the Benzeggagh-Kenane approach [3]. Then the evolution law is as specified as 

 

     
     

    
   

  

  
 
 

  (Eq. 3.10) 

 

where    is the total fracture energy rate dissipated during the damage process and   is a 

material parameter. The value for   used in this thesis is two. 

 

Table 3.1 lists the fracture energy rates used throughout this thesis, unless specified later 

otherwise and in Table 3.2 the strengths for the normal, first shear and second shear 

directions are presented, respectively. 

 

  
    

    
  

0.133  0.459  0.459  

Table 3.1 – Interface fracture energy rates in      

 

  
    

    
  

60 110  110 

Table 3.2 – Interface strengths in MPa 
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3.3. Ply material 

 

In this section the material data, damage initiation and damage evolution for the ply 

material are specified and explained. 

 

3.3.1. Elastic properties 

 

The elastic properties of the lamina are defined in Table 3.3, with plane stress, as in 

Chapter 2, regarding lamination theory (Equations 2.10 and 2.11). 

 

                  

146000 9000 0.34 4270 2800 

Table 3.3 – Material properties of lamina in MPa 

 

3.3.2. Damage model for ply 

 

For fiber-reinforced composites the damage initiation criterion is given by Hashin’s theory 

[11], it requires that the behavior of the undamaged material is linear elastic. Within this 

theory there are four criteria to consider four damage modes. The following are matrix 

tensile, matrix compressive, fiber tensile and fiber compressive damage initiation criteria 

respectively. 

 

For fiber tension (   
   

> 0): 

 

  
   

   
   

  
 

 

   
   
   

  
 

 

    (Eq. 3.11) 

 

For fiber compression (   
   

< 0): 

 

  
   

   
   

  
 

 

    (Eq. 3.12) 
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For matrix tension (   
   

> 0): 

 

  
   

   
   

  
 

 

  
   
   

  
 

 

    (Eq. 3.13) 

 

For matrix compression (   
   

< 0): 

 

  
   

   
   

    
 

 

   
  

    
 

 

   
   

   

  
  

   
   

  
 

 

    (Eq. 3.14) 

 

Where   ,   ,   ,   ,    and     refer to the longitudinal tensile, longitudinal 

compressive, transverse tensile, transverse compressive, shear longitudinal and transverse 

shear strength, respectively. The directions one and two from the stress components refer 

as well to the longitudinal and transverse directions, respectively. The coefficient   

determines the contribution of shear stresses for the fiber tensile initiation criterion and the 

value used throughout the computations in the thesis is zero. Notice that the effective stress 

components are used for the criterion, which are obtained from 

 

           (Eq. 3.15) 

 

in vectorial notation, without any damage they correspond to the true stresses. The matrix 

M is defined as: 

 

  

 
 
 
 
 
 
 

 

      
  

 
 

      
 

  
 

       
 
 
 
 
 
 

    (Eq. 3.16) 

 

The three terms   ,    and    are damage variables. The term    specifies shear damage 

and it is dependent on other damage modes. Since there are four damage modes depending 

whether we have compressive or tensile stresses, they can be defined as: 
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 (Eq. 3.17) 

 

The damage variables are activated when Hashin’s criterion is fulfilled. These variables 

grow with progressive damage evolution and stiffness degradation is achieved by equating 

the matrix M to the elasticity matrix E, in order to obtain material parameters of the 

damaged material, 

 

   
 

 
 

                          

                          

            

   (Eq. 3.18) 

 

where    and    are the Young modulus in the fiber and matrix direction respectively and D is 

defined as: 

 

                         (Eq. 3.19) 

 

In order to alleviate mesh dependency during softening, a stress-displacement constitutive 

model is used. The approach is based on [6], which originally was intended for modeling 

delamination with linear damage evolution and fracture energy dissipation. For this, the 

equivalent stresses and displacements are defined in the equations below. 

 

For fiber tension (   
   

> 0): 

 

   
  

                

   
  

 
                  

   
  
   

    (Eq. 3.20) 
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For fiber compression (   
   

< 0): 

 

   
  

         

   
  

 
            

   
  

   

    (Eq. 3.21) 

 

For matrix tension (   
   

> 0): 

 

   
                 

   
   

                 

   
     

    (Eq. 3.22) 

 

For matrix compression (   
   

< 0): 

 

   
                  

   
   

                   

   
     

    (Eq. 3.23) 

 

In the equations above the    refer to the Macaulay bracket operator, which is defined for 

every              . Also, a characteristic length (  ) is introduced, which is 

dependent on element geometry and formulation. For shell elements the characteristic 

length is calculated from the square root of the element area. 

 

Now the damage factor must be obtained for each of the failure mode from the equivalent 

displacements, 

 

  
   

 
        

  

       
 

    
  

    (Eq. 3.24) 

 

where    
  is the initial equivalent displacement at which damage initiates and    

 
 the 

displacement at which damage evolution is maximum. At last by defining the dissipated 

energy associated with each failure mode the value for    
 

 can be calculated: 
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     (Eq. 3.25) 

 

where    is the total fracture energy rate dissipated. 

 

In the present thesis, for all computations, unless referred otherwise, the fracture energy 

rates for the failure modes fiber tensile (  ), fiber compressive (  ), matrix tensile (  ) 

and matrix compressive (  ) are specified in Table 3.4 and the strengths for damage 

initiation in Table 3.5. 

 

   
     

     
     

  

89.8  78.3  0.2  0.76  

Table 3.4 – Ply fracture energy rates in      

 

                   

2100  1407  82  249  110 110 

Table 3.5 – Ply strengths in MPa 

 

3.4. Local softening and damping 

 

In unstable problems, such as softening, a negative stiffness maybe observed on the force 

displacement graph, this leads to convergence problems. Therefore, usually an artificial 

damping is required. For this, viscous regularization of the constitutive equations is used 

both for the interface and ply material data. 

 

For the traction-separation law the evolution equation for the regularization process is 

defined as 

 

    
 

 
         (Eq. 3.26) 
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where   is the viscous parameter representing the time relaxation, D is the degradation 

variable evaluated in the inviscid backbone model,    is the viscous stiffness degradation. 

Small value for the viscous parameter (small compared to time increment) should improve 

convergence rate without compromising the results. When the value is specified as zero, no 

viscous regularization will occur. The viscous parameter used for the interface throughout 

the simulations in this thesis is 0.001.  

 

Viscous-regularization may also be applied to the damage response of elements with plane-

stress formulation for fiber-reinforced materials. Except of this situation, in order to 

compute the damaged elasticity matrix, four stabilization parameters must be defined for 

each failure mode. For the present thesis the values used are defined in Table 3.6, where   

is the stabilization parameter and the subscripts refer to the same failure modes already 

specified in the section above. 

 

                

0.002  0.002  0.004  0.004 

Table 3.6 – Stabilization parameters for the ply damage 

 

It is important to refer that the viscous parameter is dependent on the loading rate. In order 

to keep the viscous parameter unaltered throughout the simulations, the loading rate is also 

maintained constant at a value of 0.5 mm/s, as this value will give the best convergence 

and accuracy.  

 

3.6. Geometrical model 

 

3.6.1. Initial model 

 

The specimen size of the initial model had already been shown in Chapter 1 in Figure 1.4. 

The beam lengths used are 1 mm, 4 mm and 10 mm, as referred earlier, for this load case 

the beam length determines the amount of contribution from transverse shear and bending. 

The width used is 0.03 mm and the ply thickness is defined as 0.175 mm for a cross-ply 

lay-up. The units used throughout the simulations are mm, N and MPa. 
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The discretization is made with three element types: conventional shell elements (S4); 

continuum shell elements (SC8R); 2D plane strain continuum elements (CPE8R).  The 

element size for all element types is 0.025. The out-of-plane direction of the 2D continuum 

elements corresponds to the plate width, which here is specified as 0.03 mm, meaning that 

the resulting force must consider the true thickness of the plate.  

 

The 2D continuum model is defined in the X-Y plane, which for the shell elements 

corresponds to the X-Z plane. The position of the mid-surface of the conventional shells 

corresponds to an equivalent position in the 2D plane strain model, meaning that the 

boundary conditions and displacement should also be applied in the same position to 

obtain comparable results between the two models. See Figure 3.8 for details. 

 

 

Figure 3.8 – Plane strain and conventional shell model 

 

Another consideration is that the “plane strain” boundary conditions have to be set for the 

shell model. They shouldn’t have any secondary curvature or displacements in the out-of-

plane direction of the plane strain model (in the shell model corresponds to the Y-

direction). Therefore for all nodes the displacement in the plane strain direction and the 

rotations in that plane is zero. 

 

The support of the beam is specified by applying a zero displacement boundary condition 

on the respective nodes in the vertical direction, leaving the horizontal direction free to 
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move. Also, a punch is modeled with a radius of 0.2 mm. On the latter, a vertical 

displacement is applied and all the other degrees of freedom are locked. The node which is 

in the exact symmetry of the beam, with which the punch is in contact, is locked in the 

horizontal direction, to assure a purely symmetrical deformation. 

 

Another important note is that when using symmetry, damage is not modeled the same way 

as it is without symmetry, because the nodes on the symmetry have double the fracture 

energy associated. So symmetry is only used for computing the elastic properties. 

 

The discretization with 2D continuum plane strain, conventional shell and continuum shell 

elements are represented in Figure 3.9, Figure 3.10 and Figure 3.11, respectively. 

 

 

Figure 3.9 – 0/90 2D continuum plane strain (CPE8R) discretization 

 

 

 

Figure 3.10 – 0/90 Conventional Shell elements (S4) discretization 
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Figure 3.11 – 0/90 Continuum Shell elements (SC8R) discretization 

 

For the continuum shells, constrain equations are defined in order to apply the boundary 

conditions for the supports in the middle of the ply thickness (exactly where the mid-

surface would be positioned for the conventional shells) to make a more accurate 

comparison between the models. 

 

For stiffness computation there are some differences in the geometrical model, such as, no 

punch was used and symmetry boundary conditions were applied. An element size of 0.1 

was used for shell elements. Also the full beam length was used and the beam length was 

set by setting the boundary conditions for the support on the respective length. 

 

3.5.2. Experimental model  

 

Considering again a 3-point bending problem, the specimen size specification, for which 

guidelines are followed from EN ISO 14125 – “Fibre-reinforced plastic composites - 

Determination of flexural properties”. The length of the specimen is 50 mm and 100 mm, 

and a width of 15 mm. The ply thickness is 0.125 mm. The radius of the punch is 5 mm. 

The orientations used are 0/90, where twelve plies are 0º plies and the other twelve are 90º. 

As well a 0/90/0/90/90/0/90/0 lay-up is considered, where each three plies have the same 

orientation. 
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The discretization is made with conventional shell elements and typically each shell layer 

will correspond to a different number of plies (except for the 0/90/0/90/90/0/90/0, where 

only an eight shell layers model is possible). A two layer model considers that each shell 

layer has twelve plies, a four shell layers model considers that each layer has six plies, a 

eight shell layers model considers that each layer has three plies and the same logic applies 

no matter what the number of layers is. The total amount of plies is 24 with the laminate’s 

thickness equal to 3 mm. An element size of 0.25 is used. See Figure 3.12 for a visual 

representation of the eight shell layers model. The same boundary conditions are used as 

with the initial model and also a displacement is applied on the punch in the Z-direction.  

 

 

Figure 3.12 – 0/90 Eight shell layers model discretization with conventional shells (S4) with 50mm 

length 

 

Another consideration within this model is that the upper layer always has an extra element 

comparing to the other layers, see Figure 3.13. This is chosen because the damage 

propagation is easier if it is done in the middle of the element and not in the node. The 

reason for modeling the upper layer different is thus because a zero displacement boundary 

condition must be applied on the node in contact with the punch in the X-direction. 
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Figure 3.13 – 0/90 Eight shell layers model discretization with conventional shell elements (S4) zoomed 

in the middle of the beam 
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4. Results 

 

4.1. Initial model results 

 

4.1.1. Elastic properties 

 

Table 4.1 are represents the different stiffness values obtained for different beam lengths, 

these values are calculated by obtaining the force from the output and dividing them by a 

known displacement (0.01 mm). The values serve as a comparison between different 

element types, as referred earlier, because with conventional shell elements with a cohesive 

surface the stiffness is overestimated [16]. Also it is interesting to know if the stiffness is 

overestimated because of the cohesive surface, so a composite section is also used, this 

refers to the one layer models. In fact, the one layer models do not have much use, as the 

interface is not damageable, but in this case we are dealing with linear elastic simulations. 

What can be concluded is that for the conventional shell elements the stiffness is only 

overestimated when using a cohesive surface. Such influence cannot be found on other 

element types. Even so, this conclusion is valid only for small length-to-thickness ratios, 

where the effect of transverse shear is higher, then the difference in stiffness becomes 

particularly large between them. The difference in stiffness between the Euler and 

Timoshenko beam is a good comparison of the amount of transverse shear, if the 

difference between them is insignificant, then the transverse shear is negligible.  In order to 

figure out the reason of the overestimated transverse shear stiffness attempts were made 

within simpler models. An isotropic beam was used with a cohesive surface and two shell 

layers. Also, a one element model was used, with pure bending and pure transverse shear 

load cases. In the end, the results were inconclusive. 
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Stiffness for 0/90 

model 

Beam length / length-to-thickness ratio 

1mm / 2.86 4mm / 11.4 10mm / 28.6 

Conventional shell 

1 layer 
66.16 2.251 0.1639 

Conventional shell 

2 layers 
115.9 2.362 0.1653 

Continuum shell 

1 layer 
44.16 2.183 0.1632 

Continuum shell 

2 layer 
53.36 2.210 0.1634 

2D continuum 

(plane strain) 
64.44 2.884 0.2013 

2D continuum 

(plane stress) 
54.50 2.350 0.1626 

Timoshenko beam 70.13 2.379 0.1629 

Euler beam 165.1 2.580 0.1651 

Table 4.1 – Stiffness values in MPa for different element types and beam lengths for the 0/90 beam 

 

Another consideration regarding the results in Table 4.1 is the overestimated stiffness with 

the 2D continuum plane strain elements. Especially, the value for the 10 mm beam that has 

an approximate error of 20% when compared with the other models or with the analytical 

solution. The difference arises from the implicit plane stress assumption of classical beam 

theory. Naturally, the zero strain will make the beam stiffer. The same simulations were 

done with 2D continuum quadratic elements in plane stress with reduced integration 

(CPS8R) and the results fit better with the other element types and the analytical solution, 

at least, for the 10mm beam. 

 

For future considerations it may be interesting to see what will happen with the transverse 

shear when more than one cohesive surface is used. 
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4.1.2. Damage modeling 

 

In this section, a comparison between continuum shell elements and conventional shell 

elements is provided. From the thesis [16] there is a lot of description of damage modeling 

with conventional shell elements, but no information on continuum shell elements was 

provided. These elements are known to provide good results with load cases where the 

contribution from transverse shear is high [1] and, as seen in the section above, they are 

better with the initial stiffness. But with damage modeling this is not the case, as the 

transverse shear stresses or strains are not included in the damage model and failure occurs 

due to bending. For the latter, these elements are not the most adequate, as they have no 

rotational degrees of freedom and they are bilinear elements. Additionally, they are 

susceptible to “hourglassing”. These results are evident on the force-displacement graphs 

on Figure 4.1, Figure 4.2 and Figure 4.3 for the 1 mm, 4 mm and 10 mm beams, 

respectively. Their length-to-thickness ratio is represented in the preceding section in Table 

4.1. Also, what can be observed is that the difference in initial stiffness becomes larger as 

the contribution from the transverse shear increases. 

 

Figure 4.1 – Force-displacement plots represented for the 0/90 continuum shell and conventional shell 

models with two layers and a cohesive surface for the 1mm beam 

0 0,05 0,1 0,15 0,2 0,25 

0 

0,5 

1 

1,5 

2 

2,5 

Displacement [mm] 

Fo
rc

e 
[N

] 

1mm Beam 
Conventional shell elements 

Continuum shell elements 



46 

 

 

Figure 4.2 – Force-displacement plots represented for the 0/90 continuum shell and conventional shell 

models with two layers and a cohesive surface for the 4mm beam 

 

Figure 4.3 – Force-displacement plots represented for the 0/90 continuum shell and conventional shell 

models with two layers and a cohesive surface for the 10mm beam 
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From the analysis of the plots above it can be observed that there is a structural softening. 

It occurs in the region where the tangent stiffness matrix has negatives values. Such 

softening occurs after FPF with the conventional shell element models. The exception 

holds for the 1 mm beam model where the specimen size is rather small. When the 

specimen size increases the structural softening region increases as well, as the amount of 

fracture energy is also higher. On the experimental model, further in this thesis, this will be 

clearer. For all the beam lengths, the conventional shell models fails through the lower 

layer with matrix tensile damage growing until the interface and then delamination. 

 

Such a structural softening normally occurs with delamination, but it cannot be observed 

with continuum shell elements. The softening observed in the case of the 4 mm beam is 

rather more common to single ply failure, with high non-linearity in the beginning and 

softening in the end. In any case, damage initiation of the interface can be observed, but no 

visible opening (Figure 4.4).  

 

 

Figure 4.4 – Interface damage initiation criterion represented on the lower layer for the 0/90 

continuum shell model with two layers and a cohesive surface. (F = 0.4251 N, w = 0.5951 mm) 
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As for the crack growth (with matrix tensile damage) through the 90º layer ply, it is not in 

the center of the beam as expected (Figure 4.5). This could be due to “hourglassing” and 

symmetric thickness reduction in the center of the beam (Figure 4.6). Continuum shell 

elements are susceptible to “hourglassing” as they use reduced integration. 

 

 

Figure 4.5 – Matrix tensile damage represented on the lower layer for the 0/90 continuum shell model 

with two layers and a cohesive surface. The upper layer is hidden for better observation. 

 (F = 0.4251 N, w = 0.5951 mm) 
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Figure 4.6 – Thickness variation represented on the lower layer for the 0/90 continuum shell model 

with two layers and a cohesive surface. (F = 0.4251 N, w = 0.5951 mm) 

 

With continuum shell elements, in the case of the 10 mm beam there is no softening. The 

exception holds for the 1 mm continuum shell beam, which in any case, fails on the 

supports and not in the middle of the beam (as with conventional shell model, with failure 

on the element in the center of the beam on the lower layer). It would be unlikely that 

delamination would occur at a free edge. A comparison between the conventional and 

continuum shell models with visible delamination of the 1 mm beam can be made based on 

Figures 4.7 and 4.8. 

 

As seen in Figure 4.8 it is important to refer that the thickness represented by the 

conventional shells is only a post processing expansion of the shell mid-surface. But it is 

also important to refer that in the post processing the rotational degrees of freedom are not 

represented. This expansion was only used to make delamination visible with an opening 

between the two shell layers. 
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Figure 4.7 – Continuum Shell model for 1mm beam, with failure on the supports and delamination 

 

 

 

Figure 4.8 – Conventional Shell model for 1mm beam, with failure in the element in the middle of the 

beam and delamination 

 

On the final conclusions made on the continuum shell elements, the results obtained are 

not trustable, due to “hourglassing”, symmetric reduction of thickness, no crack growth 

through the center of the beam (where the bending stresses are expected to be maximum) 

and no structural softening after FPF. Therefore, for the next section of the thesis, where 

are the results for the experimental model, only conventional shell elements will be used. 
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4.2. Experimental model results 

 

In this section, the modeling results are presented for the future experiment. The focus of 

study in this section is the influence of different contact formulations. As referred already, 

the behavior will be different depending on which surface is defined as master or slave. 

This is a flaw of ABAQUS. Also, the surface-to-surface or node-to-surface will provide 

different results as contact pressures between the shell layers are calculated with different 

contact formulations. Changed interface strength and toughness are applied, which will be 

discussed in more detail in the sections below. Finally, it is also interesting to investigate 

the difference in the behavior by using a different number of layers. These comparisons 

will provide useful information for the analysis of experiment data, as some computations 

will be more accurate and others less accurate. The structure of the results in this section is 

explained in Table 4.2, where the configurations that have been computed are marked by 

crossess. Typically, but with some exceptions, the results will be presented by force-

displacement plots grouped together by rows or columns from the table. 

 

Configuration 
 

 

 

Ply lay-up 

0º as master 90º as master 

Normal 
interface 

values 

Changed 
interface 

values 

Normal 
interface 

values 

Changed 
interface 

values 

Surface to 
Surface 

 

0/90 2-layer     

0/90 4-layer     

0/90 8-layer     

0/90 12-layer     

0/90 16-layer     

0/90 24-layer     

[0/90/0/90]S 
 8-layer     

Node to 
Surface 

 

0/90 2-layer     

0/90 4-layer     

0/90 8-layer     

0/90 12-layer     

0/90 16-layer     

0/90 24-layer     

[0/90/0/90]S 
 8-layer 

    

Table 4.2 – Simulations for the experiment model 
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4.2.1. The reference eight layers 0/90 model 

 

The presentation of the results starts with the eight shell layer model, as it is the reference 

model. The other models will be presented in the following sections. Figure 4.9 represents 

the force displacement dependence. The sequence of events for damage initiation and 

damage evolution are as well marked on the graph, which follows what was initially 

expected and already seen with the initial model, with conventional shell elements. 

Marking the sequence of events is important for characterizing the behavior of a laminate. 

Where the matrix tensile damage initiates corresponds exactly to FPF. The simulation 

before FPF is linear, as the non-linearity occurs due to stiffness degradation with damage 

evolution. What happens afterwards is the matrix tensile failure, which is characterized by 

a crack growth through the thickness. This means that ply failure has only occurred after 

the elements in the center of the beam in the 90º layers, through the thickness have the 

matrix tensile damage evolution criterion equal to one. Then naturally the damage will start 

on the interface and again failure is considered only when the damage evolution criterion 

for the interface is one. 

 

Figure 4.9 – Force-displacement graph of the eight shell layers 0/90 model with surface-to-surface 

formulation and the lower layers defined as master surface 
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Even though the loads and displacements are well marked on the force-displacement plots, 

it is always useful to take a look at the damage distribution throughout the model (Figure 

4.10). In this case we have a visible delamination at two interfaces. The first delamination 

occurs between the two 90º/90º layers, then the damage spreads to the sides creating a 

second delamination between the two 0º/90º layers. As discussed further in this Chapter all 

simulations will typically delaminate only between the 0º/90º layers, even so it does not 

mean that this result is less correct. 

 

 

Figure 4.10 – Delamination (visible opening) and matrix tensile damage (color contours). 0/90 eight 

shell layers model with surface-to-surface formulation and the lower layers defined as master.  

(F = 593 N, w = 2.5 mm) 

 

From the eight shell layers model the results appear to be reasonable, but further 

simulations with other configurations are interesting to have more information on different 

modeling strategies. 
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4.2.3. Influence of curing stresses 

 

During the manufacturing of laminates, thermal stresses are introduced, and these tend to 

decrease the strength of the structure. This occurs due to different expansion factors for 

different directions. When the laminate is constrained it cannot expand, then residual 

stresses remain afterwards. To account for this, an initial temperature of 177 ºC is set and 

in an additional step another temperature of 20 ºC is applied. Orthotropic thermal 

expansion coefficients are defined in the material data as      1e
-06

,      1.8e
-05

 and 

     1.8e
-05

 [1/ºC]. 

 

In Figure 4.9 a force-displacement graph represents the influence of curing stresses within 

the model described above. The displacement does not assume negative values, because 

during the step where thermal stresses are introduced, the punch has a zero displacement, 

not allowing the laminate to expand. The effect of the curing stresses on the strength is 

quite large, but afterwards both force-displacement plots follow the same path. 

 

 

Figure 4.11 – Force-displacement graph showing influence of curing stresses with the 0/90 eight shell 

layers model with surface-to-surface formulation and the lower layers defined as master 
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Another influence of the curing stresses is that delamination occurs only between the 0º 

and 90º layers, in contrast to that without curing stresses (Figure 4.8). 

 

4.2.3. Influence of the number of shell layers 

 

In this section the influence of the number of shell layers is investigated for the same 

specimen. The latter possesses 24 plies with each ply thickness of 0.125 mm. In the 

modeling approach, different number of plies per layer are experimented in order to figure 

out if there is a effect of the number of shell layers modeled, because the same specimen 

can be modeled with a different number of shell layers. The difference is due to the fact 

that increasing the number of layers imply also an increased number of interfaces. In 

theory this should not affect damage modeling as the total fracture energy is dependent on 

the element size. But this is not the case, because damage tends to spread out through the 

ply instead of through the thickness with an increasing number of layers. 

 

 

Figure 4.12 – Force-displacement graph with different numbers of shell layers for the 0/90 beam with 

surface-to-surface formulation and the lower layers defined as master 
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The reference eight shell layers model with three plies per layer is compared to the two, 

four, 12, 16 and 24 shell layers models in a force-displacement graph shown in Figure 

4.12. What is important to note here as well is that the 16-layer does not correspond to a 

real amount of plies (every shell layer corresponds to 1.5 plies). However it is useful for 

the understanding of the effect of the number of shell layers on damage modeling. 

 

It can be observed in this Figure that just the two shell layers model converged until the 

failure of the whole structure, nevertheless all the models converge until the structural 

softening along with delamination, see Figure 4.13 for details. The final failure of the 

structure is dependent on the 0º orientation shell layers, as after the structural softening the 

90º orientation shell layers have already failed. It can be assumed that convergence until 

the final failure of the structure is easier with the two layer model, because there is only 

one 0º orientation layer, while other models have more and have to deal with the interfaces 

in between as well. 

 

 

Figure 4.13 – Softening region zoom up of Figure 4.12 



57 

 

In Figure 4.13 it can be observed that as the number of layers increases, the strength 

increases as well. The exception holds for the 24-layer model, which has an intermediate 

strength between the eight layer model and the twelve layer model. In fact, this is a 

positive result, as it could mean that the strength is not proportionally increasing with the 

number of layers, but further simulations should be made with more layers to confirm the 

tendency. 

 

As already mentioned the increase in the strength, could be related to a bigger number of 

interfaces, which affects the damage distribution. In order to confirm this, Figure 4.14 

shows the damage distribution in the 16 shell layers model and Figure 4.10 presents the 

damage distribution in the eight shell layers model. With more layers, the damage is more 

spread out inside the shell layer, and this could be caused by the additional interfaces. 

 

 

Figure 4.14 – Delamination (visible opening) and matrix tensile damage (color contours) of the 0/90 16 

shell layers model with surface-to-surface formulation and the lower layers defined as master.  

(F = 608 N, w = 2.5 mm) 
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4.2.4. Influence of the variation of interface parameters 

 

This section presents results in a similar structure as set in the previous section, except of 

using increased strength and toughness values for the interfaces between shell layers with 

the same ply orientation. Initially, identical values were used for all interfaces, but it could 

be that interfaces with same orientation have higher strength and toughness than those with 

different orientations. Therefore, average values of these are calculated between the ply 

transverse values and the original interface values. The new interface parameters values for 

the toughness and strength are represented in Table 4.3 and Table 4.4, respectively. 

 

  
    

    
  

0.1665  0.5746 0.5746 

Table 4.3 – Changed interface fracture energy rates in      

 

  
    

    
  

71 110  110 

Table 4.4 – Changed interface strengths in MPa 

 

In Table 4.4 only the normal value for the strength   
  is increased, as the shear direction 

values already correspond to the ply material strength. 

 

The force-displacement graph for the changed interface values can be seen in Figure 4.15, 

with a zoom up on the softening region in Figure 4.16. The two shell layers model is 

represented only as a reference to compare the values, as it possesses no interfaces with 

same ply orientations, therefore the variation of the interface parameters cannot be applied 

to this model. 

 



59 

 

 

Figure 4.15 – Force-displacement graph with different numbers of shell layers for the 0/90 beam with 

surface-to-surface formulation, the lower layers defined as master and changed interface values 

 

 

Figure 4.16 – Softening region zoom up of Figure 4.15 
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From Figure 4.14 it can be observed that the trend for the increasing strength with number 

of layers is still valid, except for the case of the four shell layers model, which will be 

presented in a separate category. 

 

Figures describing damage distribution and delamination are not presented in this section, 

as there is not much useful information to add, except of the fact that delamination occurs 

just in the interface between the 0º orientation layer and the 90º orientation layer. This is 

explained by the lower fracture energy at these interfaces when compared to those between 

same orientation layers. 

 

4.2.5. Node-to-surface contact formulation 

 

All previous results were presented with surface-to-surface contact formulation, which are 

known to give more accurate results on contact pressures. Still it is interesting for the 

modeling strategy to establish a comparison with node-to-surface formulation. 

 

A particular observation can be made, that node-to-surface in comparison to surface-to-

surface formulation typically tends to increase the strength of all models and the strength 

increases as well with the number of layers. The direct comparison between surface-to-

surface and node-to-surface formulation is not made in this section. This comparison can 

be found further in the thesis, where the two shell layers, four shell layers and eight shell 

layers are presented. In this section only the results concerning node-to-surface formulation 

are shown.  

 

Figure 4.17 presents the different models with node-to-surface contact formulation. The 

two, four and eight shell layers models have a softening region, while the 12 shell layers 

model failure can be seen exactly before convergence ends and the 16 and 24 shell layers 

models do not fail. Also the final failure of the structure cannot be observed in the two 

shell layers, as it can be with the surface-to-surface formulation. This is expected at a 

relatively high displacement (20% of the beam length). 
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Figure 4.17 – Force-displacement graph with different numbers of shell layers for the 0/90 beam with 

node-to-surface formulation and the lower layers defined as master 

 

 

Figure 4.18 –matrix tensile damage of the 0/90 24 shell layers model with node-to-surface formulation. 

(F = 802 N, w = 2.5 mm) 
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With the increase in the strength for node-to-surface in comparison to surface-to-surface 

formulation the same increase can be found in the damage distribution, see Figure 4.18. 

This contact formulation does not provide trustable results when modeling with more than 

eight shell layers, because the damage corresponding to a crack growth should be localized 

and not spread out on the whole beam. 

 

4.2.6. Node-to-surface contact formulation and influence of the variation of 

interface parameters 

 

The results were previously interpreted with the variation of the interface values with 

surface-to-surface formulation. In this section the same is repeated with node-to-surface 

formulation.  

 

 

Figure 4.19 – Force-displacement graph with different numbers of shell layers for the 0/90 beam with 

node to surface formulation, the lower layers defined as master and changed interface values 
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Figure 4.19 shows the force-displacement graph with node-to-surface contact formulation 

and with the changed interface values, already given in the preceding section. Again, the 

two shell layers model is represented only as a reference to compare the values, as it 

possesses no interfaces with same ply orientations. 

 

No particular observations could be made from using the normal interface values or the 

changed interface values in the force-displacement graphs, as the results for both are 

practically identical. As for the delamination the interfaces that are between layers of same 

orientations are naturally stronger and tougher, so they do not fail, only the interface 

between the 0º layer and the 90º layer. The results from this section and the section with 

surface-to-surface changed interface values are consistent with each other. 

 

4.2.7. The two shell layer 0/90 model 

 

Force-displacement plots previously presented were grouped together with different 

number of layers. Here the results are grouped together with same number of shell layers, 

but different contact formulations and master/slave surface definition. Therefore, in this 

section a direct comparison between switching the master/slave surfaces and between the 

surface-to-surface and node-to-surface formulations is made. Figure 4.20 represents the 

force-displacement plot for the two shell layers model. 
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Figure 4.20 – Force-displacement graph for the 0/90 beam with two shell layers 

 

 

By changing master and slave, several softening regions can be observed in this plot. This 

applies for both node-to-surface and surface-to-surface formulations. This occurs due to 

stress redistribution, in a way that more matrix tensile damage initiates in different 

locations, see Figure 4.21 for details. This would be the expected behavior if the interface 

would be perfect, which also would explain why there is no visible delamination. This is 

apparently a flaw of ABAQUS. It is important to remember that “normal” master/slave in 

the plot refers to a master surface defined at the lower layer with 90º orientation and 

“changed” master/slave refers to a master surface defined at the upper layer with 0º 

orientation. 
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Figure 4.21 – Delamination and matrix tensile damage of the 0/90 beam with two shell layers model 

with surface-to-surface formulation and the upper layer defined as master (F = 1104 N, w = 5 mm) 

 

Also, the contact formulation has an influence on the final failure of the structure, with 

surface-to-surface, in any master/slave configuration, the structure fails (at approximately 

20% of the beam length). This is in contrast to node-to-surface formulation, where in any 

master/slave configuration the structure does not fail at a relatively high displacement. This 

result was already known from a previous section, but here it can be directly seen on the 

force displacement plot. 
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4.2.8. The four shell layers 0/90 model 

 

The purpose of this section is the same as for the previous one, to understand further the 

influence of “changed” master/slave and the influence of the contact formulations. First is 

presented the force-displacement graph of the four shell layers model in Figure 4.22.  

 

 

Figure 4.22 – Force-displacement graph for the 0/90 beam with four shell layers 

 

As in the two layers model, changing the master/slave has also a big influence on the 

curve, but in this case, because of the asymmetric damage evolution on the cohesive 

surface between the two 0º layers. A second delamination can be observed in this surface, 

see Figure 4.23. In the force-displacement plot it can be observed for “changed” 

master/slave a much bigger structural softening after FPF and after the softening the 

stiffness is much lower. This makes sense, as the failure of the interface between the 0º 

orientation layers causes additional dissipated fracture energy and stiffness degradation 

when compared to “normal” master/slave configuration where this interface does not fail. 
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Figure 4.23 – Interface damage of the 0/90 two shell layers model with surface-to-surface formulation 

and the upper layers defined as master (F = 366 N, w = 1.55 mm) 

 

As for the contact formulation it influences the strength, as mentioned before, but without a 

direct comparison in the force-displacement graph, such an observation can be made now. 

The node-to-surface gives a higher strength when compared to surface-to-surface. 

Regarding the final failure of the structure, it was stated with the two layers model, that it 

does not occur with the node-to-surface formulation as it does with the surface-to-surface 

formulation. This cannot be confirmed with the four layers model, because convergence is 

limited and does not reach 20% of the beam length (same displacement where the two 

layers model failed with surface-to-surface formulation). 
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4.2.9. The eight shell layers 0/90 model 

 

The eight shell layers model is presented in this section. The main difference with this 

model is that “changed” master/slave configuration, which referred earlier to be a possible 

flaw in ABAQUS, has particularly no influence in the force-displacement graph, see 

Figure 4.24. The question remains if by modeling more layers this difference in behavior 

can be avoided or if this occurs only with the eight shell layers model. This is unknown, 

because simulations were not made with the twelve layers model in different master/slave 

surface configuration. 

 

 

Figure 4.24 – Force-displacement graph for the 0/90 beam with 8 shell layers 

 

As mentioned above for the four shell layers model, the same conclusion can be drawn 

here, i.e. the models with surface-to-surface contact have a lower strength than the models 

with node-to-surface contact. As for the final failure of the structure no analysis could be 

made as convergence is limited. 
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4.2.7. The eight shell layers [0/90/0/90]s model 

 

This section presents a model with a different ply layup, previously all models had a 0/90 

layup. In this case the model has a symmetric layup (0/90/0/90/90/0/90/0) with eight shell 

layers and each shell layer represents three plies with a individual thickness of 0.125mm. 

 

Not many results could be obtained with this model, as convergence is limited. FPF could 

be observed with matrix tensile damage initiation and interface damage near the boundary 

conditions. The damage on the boundary conditions would already suggest not so credible 

results, as failure is expected in the center of the beam. 

 

 

Figure 4.25 – Force-displacement graph for the [0/90/0/90]S 50mm beam with eight shell layers 

 

The force-displacement graph is represented in Figure 4.25. Non-linear behavior can be 

observed after damage initiation. In an attempt to obtain further convergence, the 

stabilization parameters of the ply damage model were increased two times, but without 

any success. These parameters are related to viscous regularization and increasing them 

should enhance convergence. 
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5. Conclusions 

 

The problem for this thesis was to investigate the initial transverse shear stiffness, this was 

done by using different beam characteristic lengths for the supports and observing the 

response of the beam. Models were used with a composite section or with two shell layers 

and an interface, this was necessary to figure out what influence could the interface have 

over the transverse shear stiffness. In fact, it should have none, but it could be observed 

that the stiffness is overestimated. This occurred only with conventional shell elements. 

With continuum shell elements such observations could not be made. 

 

The other topic is related to damage modeling. The strategy adopted was to couple several 

shell layers together through an interface, allowing the interaction between them. In this 

topic, it was interesting also to perform numerical simulations not only with conventional 

shell elements, but also with continuum shell elements, establishing a direct comparison 

between them. Several problems were encountered with continuum shells, such as 

“hourglassing”, symmetric thickness reduction and no structural softening (as expected).  

 

Because of trouble encountered with continuum shells, it was decided to proceed only with 

conventional shell elements in the numerical simulations for the preparation of a future 

experiment. The eight shell layers model that was presented in the thesis provided positive 

results with a crack growth and delamination in the center of the beam. These results make 

sense, because the crack growth is where the tensile stresses are maximum according to 

classical beam theory.  

 

Additional simulations were made to compare different contact formulations. A higher 

strength could be observed with node-to-surface formulation as with surface-to-surface 

formulation. The same observation could be made when increasing the number of shell 

layers to model the specimen. Also, the damage distribution of matrix tensile damage 

would increase over the length of the ply. Another observation on node-to-surface 

formulation is that with the two shell layers model final failure of the structure could not be 

observed at a high displacement (20% of the beam length) as it could be with surface-to-

surface contact.  
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Further simulations were made to figure out what is the influence of changing master/slave 

definition on the surfaces. It is important to refer that typically this would have no 

influence or few influences over the results, especially when using surface-to-surface 

formulation, but in this case there appears to be a flaw in Abaqus. A very different 

behavior in the two shell layers and four shell layers models could be observed when 

switching master/slave. With the eight shell layers model this made no difference in the 

results.  

 

At last, the changed interface values do not have a significant influence over the 

simulations and provide comparable results. 
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