Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Artigos >
 Positive solutions for nonlinear periodic problems with concave terms
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/7652

title: Positive solutions for nonlinear periodic problems with concave terms
authors: Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
keywords: Concave and convex nonlinearities
Mountain pass theorem
Local minimizer
Bifurcation-type theorem
Positive solution
issue date: 15-Sep-2011
publisher: Elsevier
abstract: We consider a nonlinear periodic problem, driven by the scalar p-Laplacian, with a parametric concave term and a Carathéodory perturbation whose potential (primitive) exhibits a p-superlinear growth near +∞, without satisfying the usual in such cases Ambrosetti– Rabinowitz condition. Using critical point theory and truncation techniques, we prove a bifurcation-type theorem describing the nonexistence, existence and multiplicity of positive solutions as the parameter varies.
URI: http://hdl.handle.net/10773/7652
ISSN: 0022-247X
publisher version/DOI: http://dx.doi.org/10.1016/j.jmaa.2011.04.013
source: Journal of mathematical analysis and applications
appears in collectionsMAT - Artigos

files in this item

file description sizeformat
Aiz_Pa_St_JMAA_381_2011_866_883.pdfFull paper231.11 kBAdobe PDFview/open
Restrict Access. You can Request a copy!

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2