Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Artigos >
 Nonlinear resonant periodic problems with concave terms
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/6935

title: Nonlinear resonant periodic problems with concave terms
authors: Aizicovici, Sergiu
Papageorgiou, Nikolaos S.
Staicu, Vasile
keywords: Critical groups
Ekeland variational principle
Concave term
Strong deformation retract
Homotopy equivalent
Contractible space
issue date: 1-Mar-2011
abstract: We consider a nonlinear periodic problem, driven by the scalar p-Laplacian with a concave term and a Caratheodory perturbation. We assume that this perturbation f (t, x) is (p−1)- linear at ±∞, and resonance can occur with respect to an eigenvalue λm+1, m 2, of the negative periodic scalar p-Laplacian. Using a combination of variational techniques, based on the critical point theory, with Morse theory, we establish the existence of at least three nontrivial solutions. Useful in our considerations is an alternative minimax characterization of λ1 > 0 (the first nonzero eigenvalue) that we prove in this work.
URI: http://hdl.handle.net/10773/6935
ISSN: 0022-247X
publisher version/DOI: http://dx.doi.org/10.1016/j.jmaa.2010.09.009
source: Journal of Mathematical Analysis and Applications
appears in collectionsMAT - Artigos

files in this item

file description sizeformat
Aiz_Pa_St_JMAA_375_2011_342_364.pdfFull paper286.03 kBAdobe PDFview/open
Restrict Access. You can Request a copy!

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2