Repositório Institucional da Universidade de Aveiro > Departamento de Química > DQ - Artigos >
 Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/6221

title: Three-dimensional lanthanide-organic frameworks based on di-, tetra-, and hexameric clusters
authors: Shi, Fa-Nian
Cunha-Silva, Luis
Trindade, Tito
Paz, Filipe A. Almeida
Rocha, Joao
issue date: 2009
publisher: American Chemical Society
abstract: Three-dimensional lanthanide-organic frameworks formulated as (CH3)2NH2[Ln(pydc)2] · 1/2H2O [Ln3+ ) Eu3+ (1a) or Er3+ (1b); pydc2- corresponds to the diprotonated residue of 2,5-pyridinedicarboxylic acid (H2pydc)], [Er4(OH)4(pydc)4(H2O)3] ·H2O (2), and [PrIII 2PrIV 1.25O(OH)3(pydc)3] (3) have been isolated from typical solvothermal (1a and 1b in N,N-dimethylformamide - DMF) and hydrothermal (2 and 3) syntheses. Materials were characterized in the solid state using single-crystal X-ray diffraction, thermogravimetric analysis, vibrational spectroscopy (FT-IR and FT-Raman), electron microscopy, and CHN elemental analysis. While synthesis in DMF promotes the formation of centrosymmetric dimeric units, which act as building blocks in the construction of anionic ∞ 3{[Ln(pydc)2]-} frameworks having the channels filled by the charge-balancing (CH3)2NH2 + cations generated in situ by the solvolysis of DMF, the use of water as the solvent medium promotes clustering of the lanthanide centers: structures of 2 and 3 contain instead tetrameric [Er4(μ3-OH)4]8+ and hexameric |Pr6(μ3-O)2(μ3-OH)6| clusters which act as the building blocks of the networks, and are bridged by the H2-xpydcx- residues. It is demonstrated that this modular approach is reflected in the topological nature of the materials inducing 4-, 8-, and 14-connected uninodal networks (the nodes being the centers of gravity of the clusters) with topologies identical to those of diamond (family 1), and framework types bct (for 2) and bcu-x (for 3), respectively. The thermogravimetric studies of compound 3 further reveal a significant weight increase between ambient temperature and 450 °C with this being correlated with the uptake of oxygen from the surrounding environment by the praseodymium oxide inorganic core.
URI: http://hdl.handle.net/10773/6221
ISSN: 1528-7483
publisher version/DOI: dx.doi.org/10.1021/cg8004932
source: Crystal Growth & Design
appears in collectionsDQ - Artigos

files in this item

file description sizeformat
Crystal Growth & Design, Vol. 9, No. 5, 2009.pdf5.02 MBAdobe PDFview/open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2