Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Artigos >
 Multiplicity theorems for superlinear elliptic problems
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/5510

title: Multiplicity theorems for superlinear elliptic problems
authors: Papageorgiou, Nikolaos
Rocha, Eugenio
Staicu, Vasile
issue date: 2008
publisher: Springer
abstract: In this paper we study second order elliptic equations driven by the Laplacian and p-Laplacian differential operators and a nonlinearity which is (p-)superlinear (it satisfies the Ambrosetti–Rabinowitz condition). For the p-Laplacian equations we prove the existence of five nontrivial smooth solutions, namely two positive, two negative and a nodal solution. Finally we indicate how in the semilinear case, Morse theory can be used to produce six nontrivial solutions.
URI: http://hdl.handle.net/10773/5510
ISSN: 0944-2669
source: Calculus of Variations and Partial Differential Equations
appears in collectionsMAT - Artigos

files in this item

file description sizeformat
P38_Calc Var PDE_33(2008)_199-230.pdf305.13 kBAdobe PDFview/open
Restrict Access. You can Request a copy!

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2