DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Artigos >
 Existence of multiple solutions with precise sign information for superlinear Neumann problems
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/5264

title: Existence of multiple solutions with precise sign information for superlinear Neumann problems
authors: Aizicovici, Sergiu
Papageorgiou, Nikolaos
Staicu, Vasile
keywords: Neumann problem
p-Laplacian
Constant sign solutions
Nodal solutions
Second deformation theorem
Linking theorem
Critical groups
issue date: 2009
publisher: Springer Verlag
abstract: We consider a nonlinear Neumann problem driven by the p-Laplacian differential operator and having a p-superlinear nonlinearity. Using truncation techniques combined with the method of upper–lower solutions and variational arguments based on critical point theory, we prove the existence of five nontrivial smooth solutions, two positive, two negative and one nodal. For the semilinear (i.e., p = 2) problem, using critical groups we produce a second nodal solution.
URI: http://hdl.handle.net/10773/5264
ISSN: 0373-3114
source: Annali di Matematica Pura ed Applicata
appears in collectionsMAT - Artigos

files in this item

file description sizeformat
P42_AMPA_188_2009,_679-715.pdf433.1 kBAdobe PDFview/open
Restrict Access. You can Request a copy!
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2