DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Artigos >
 Continuous selections of solution sets to evolution equations
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/5105

title: Continuous selections of solution sets to evolution equations
authors: Staicu, Vasile
issue date: 1991
publisher: American Mathematical Society
abstract: We prove the existence of a continuous selection of the multivalued map £ —»& ~(Ç), where ^"(i) is the set of all weak (resp. mild) solutions of the Cauchy problem x(t)€Ax(t) + F(t,x(t)), x(0)=i, assuming that F is Lipschitzian with respect to x and -A is a maximal monotone map (resp. A is the infinitesimal generator of a C0-semigroup). We also establish an analog of Michael's theorem for the solution sets of the Cauchy problem x(t) € F(t, x(t)), x(0) = £, .
URI: http://hdl.handle.net/10773/5105
ISSN: 0002-9939
publisher version/DOI: http://www.ams.org/publications/journals/journalsframework/proc
source: Proceedings of the American Mathematical Society
appears in collectionsMAT - Artigos

files in this item

file description sizeformat
P9_Proc_AMS_113_1991_403_413.pdf841.7 kBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2