DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Dissertações de mestrado >
 Problema da árvore de suporte de custo mínimo com restrições de diâmetro
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/4855

title: Problema da árvore de suporte de custo mínimo com restrições de diâmetro
authors: Santos, Eulália Maria Mota
advisors: Agra, Maria Cristina Saraiva Requejo
keywords: Matemática
Árvores (matemática)
Optimização combinatória
Heurística
Redes de telecomunicações
issue date: 2007
publisher: Universidade de Aveiro
abstract: Nesta tese desenvolvem-se alguns métodos heurísticos para o Problema da Árvore de Suporte de Custo Mínimo com Restrições de Diâmetro que é um problema de Optimização Combinatória. Este problema tem aplicação na área das telecomunicações e insere-se no âmbito de problemas do Desenho Topológico de Redes de Telecomunicações. O Problema do Desenho de Redes de Terminais consiste em encontrar a melhor maneira de ligar n terminais em diferentes localizações a um nodo central. A topologia óptima deste problema corresponde a uma árvore de suporte de custo mínimo. No Problema da Árvore de Suporte de Custo Mínimo com Restrições de Diâmetro pretende-se determinar uma árvore de suporte de custo mínimo cujo diâmetro não ultrapasse um determinado valor máximo (D). Esta imposição melhora o desempenho da rede. Apresentam-se três heurísticas greedy que seleccionam iterativamente uma aresta a ser incluída na árvore e que se distinguem apenas na forma como são escolhidos os elementos iniciais (nodo/aresta). Descreve-se uma heurística de trocas locais (ou melhoramento) que efectua algumas trocas de arestas de acordo com uma regra estabelecida. Descrevem-se quatro heurísticas de aproximação que adaptam soluções de outro problema ao problema em questão. Na primeira destas heurísticas eliminam-se arestas da árvore de suporte de custo mínimo e, depois, constrói-se a árvore a partir da subárvore obtida. Na segunda proíbe-se a presença na solução de cada uma das arestas de um dado conjunto. Na terceira heurística exige-se que cada aresta de um dado conjunto esteja na solução e, na última exige-se que cada uma das arestas de um dado conjunto esteja na solução e que um conjunto de arestas não esteja na solução. Apresentam-se resultados computacionais que mostram que as Heurísticas de Aproximação são as que obtêm melhores resultados.

In this thesis we present some heuristics methods developed to the Diameter constrained Minimum Spanning Tree problem (DMST), which is a Combinatorial Optimization Problem. This is a telecommunication network design problem and the terminal layout problem consists of finding the best way to link n terminals, at different locations, to a central node. The optimal topology for these problems corresponds to a minimum spanning tree. In the DMST we want to obtain a minimum spanning tree which diameter does not surpass a maximum value (D). The diameter constraint improves the performance of the network. We present three greedy heuristics that iteratively select an edge to be added to the tree and are distinguished in the form how initial elements (a node or an edge) are selected. We describe a local exchanges heuristic where improvements are accomplished with some edges exchanges according to an established rule. We also describe four approximation heuristics that adapt solutions from another problem to this problem. On the first heuristic we start it by eliminating edges from the minimal spanning tree and then we build the new tree from the obtained subtree. On the second heuristic, the presence of each edge of a certain set is forbidden in the solution. On the third heuristic, it is demanded that each edge of a certain set is present in the solution, and on the last heuristic it is demanded that each one of the edges of a certain set is present in the solution and that a set of edges is not in the solution. Our computational experience shows that the best results are achieved with the approximation heuristics.
description: Mestrado em Matemática
URI: http://hdl.handle.net/10773/4855
appears in collectionsMAT - Dissertações de mestrado
UA - Dissertações de mestrado

files in this item

file description sizeformat
2008000130.pdf743.75 kBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2