DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Dissertações de mestrado >
 Geometrias finitas
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/4565

title: Geometrias finitas
authors: Silva, Maria Emília Resende
advisors: Catalano, Domenico Antonino
keywords: Matemática
Teses de mestrado
Geometrias finitas
issue date: 2002
publisher: Universidade de Aveiro
abstract: Neste trabalho o objectivo principal é fazer um estudo das estruturas de incidência mais tradicionais na geometria finita: o plano afim, o plano projectivo e ainda uma abordagem ao espaço afim e ao espaço projectivo. Os conceitos introdutórios serão apresentados no primeiro capítulo. No segundo capítulo exibimos alguns resultados que caracterizam o plano afim e projectivo. Mostramos que todo o plano afim se pode obter de um plano projectivo e reciprocamente. Mostramos também que a existência de um plano afim (projectivo) de ordem n equivale à existência de um conjunto completo de quadrados latinos de ordem n. Estudamos alguns tipos de colineações do plano afim e projectivo, dando no plano projectivo uma maior importância às (C,l)-colineações, visto que a partir destas podemos construir algumas configurações, nomeadamente a configuração de Desargues. Mostramos que todo o plano projectivo finito admite várias configurações de Desargues mas, no entanto, nem todo o plano projectivo finito é um plano de Desargues. Finalmente fazemos uma abordagem ao plano de Möbius, no sentido de dar mais um exemplo de uma estrutura de incidência. No terceiro capítulo abordamos o plano projectivo e afim em termos algébricos. Introduzimos coordenadas nestas estruturas de incidência por dois processos diferentes. Mostramos que a partir de um corpo finito podemos obter um plano projectivo (afim) finito de Desargues e reciprocamente. Mostramos ainda que todo o plano projectivo de Pappus é um plano de Desargues, sendo o recíproco verdadeiro só no caso finito. No quarto capítulo fazemos um pequeno estudo do espaço projectivo e afim, que será visto como um espaço projectivo sem um hiperplano. Mostramos que, sendo S um espaço projectivo de dimensão d ? 3, S é um espaço projectivo de Desargues e todo o plano do espaço afim S\H, onde H é um hiperplano de S, é um plano de Desargues.

The main aim of this work is to study more traditional incidence structures in finite geometry: the affine plane, the projective plane, and the affine and projective spaces. The introductory concepts will be presented in the first chapter. In the second chapter, some results that characterize the affine plane and the projective plane will be shown. It will be demonstrated that every affine plane can be obtained from a projective plane and vice-versa. It will also be demonstrated that the existence of an affine (projective) plane of order n is equivalent to the existence of a complete set of latin squares of order n. Several types of collineations of affine and projective planes will be studied, with a higher importance given in the projective plane to (C, l)-collineations, since they generate some configurations, for instance Desargues configuration. It will also be demonstrated that every finite projective plane allows several Desargues configurations, but not all finite projective planes are Desarguesian planes. Finally, the Möbius plane is analysed, to show yet another example of an incidence structure. In the third chapter, the projective and affine plane is analysed in algebraic terms. Coordinates are introduced in these incidences structure through two different processes. It will be shown that starting from a finite field it is possible to obtain a finite Desarguesian projective (affine) plane and vice-versa, and that every Pappian projective plane is a Desarguesian plane, while the opposite is true only in the finite case. In the fourth chapter, we will give a small study of the projective and affine space that will be considered as a projective space less a hyperplane. It will be demonstrated that being S a projective space with dimension d ? 3, S is a Desarguesian projective space and that every plane of an affine space S\H, where H is a hyperplane of S, is a Desarguesian plane.
description: Mestrado em Matemática
URI: http://hdl.handle.net/10773/4565
appears in collectionsMAT - Dissertações de mestrado
UA - Dissertações de mestrado

files in this item

file description sizeformat
231.pdf6.09 MBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2