Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Artigos >
 Upper bounds on the Laplacian energy of some graphs
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/4287

title: Upper bounds on the Laplacian energy of some graphs
authors: Robbiano, M.
Martins, E. A.
Jiménez, R.
Martín, B. S.
keywords: Laplacian matrix
Bethe tree
Laplacian energy
issue date: 2010
publisher: University of Kragujevac
abstract: The Laplacian energy L£[G] of a simple graph G with n vertices and m edges is equal to the sum of distances of the Laplacian eigenvalues to their average. For 1 ≤ j ≤ s, let Aj be matrices of orders n j. Suppose that det(L(G) - λIn) = Πj=1s det(Aj- - λI n,j)tj, with tj > 0. In the present paper we prove LE[G) ≤ Σ j=1stj√n j||Aj-2m/n||F≤ √n||L(G) - 2m/nIn||F , where ||·||F stands for the Frobenius matrix norm.
URI: http://hdl.handle.net/10773/4287
ISSN: 0340-6253
source: Match
appears in collectionsMAT - Artigos

files in this item

file description sizeformat
upper bounds on laplacian spectra of some graphs.pdf155.25 kBAdobe PDFview/open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2