DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Matemática > MAT - Dissertações de mestrado >
 Transformações de Möbius em RO
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/2880

title: Transformações de Möbius em RO
authors: Vieira, Nelson Felipe Loureiro
advisors: Cerejeiras, Paula Cristina Supardo Machado Marques
keywords: Matemática
Transformações conformes
Álgebra de Clifford
issue date: 2005
publisher: Universidade de Aveiro
abstract: O principal objectivo deste trabalho texto consiste em estudar a influência das transformações Möbius, em vários aspectos da análise de Clifford. No capítulo zero introduziremos as definições e resultados preliminares, necessários para boa compreensão do texto; encerraremos este capítulo com o problema de Dirichlet na bola unitária em C. O primeiro capítulo é dedicado ao problema de Dirichlet para o caso da bola unitária em R0,n. Serão obtidas as generalizações dos resultados apresentados no capítulo zero para o caso complexo. No capítulo seguinte serão introduzidas as coordenadas projectivas e algumas definições associadas. Com este tipo de coordenadas, estabeleceremos um isomorfismo entre (R ) 2x2 e R . Com base nesta relação, estabeleceremos uma descrição matricial das superfícies esféricas, a qual conduzirá a uma conveniente representação matricial das transformações Möbius – dita representação de Vahlen. Na secção final deste capítulo será feita uma caracterização do grupo de Clifford (1,n+1) em termos destas matrizes. p,q p+1,q+1 No terceiro e último capítulo estudaremos a métrica diferencial invariante sob a acção das transformações de Möbius. Finalmente, concluiremos com o estudo do comportamento dos operadores de Laplace e de Dirac sob a acção das transformações de Möbius. ABSTRACT: The main objective of this work is to study the influence of the Möbius transformations in some aspects of Clifford analysis. In the preliminary chapter we introduce some definitions and preliminary results which are necessary for a good comprehension of the present text; we finish this chapter with the Dirichlet problem over the complex unit ball. The first chapter is dedicated to the study of the Dirichlet problem in the ndimensional unit ball. We will obtain the generalizations of the results presented in the complex case. In the next chapter we will introduce projective coordinates and some associated definitions. With this kind of coordinates we will establish an isomorphism between (Rp,q)2x2 and Rp+1,q+1. With this relation we will also establish a matricial description of the unit sphere which implies a convenient matricial representation of Möbius transformation - usually called Vahlen representation. In the final section we will characterized the Clifford group Γ(1,n+1) in terms of these matrices. In the third chapter we will study the invariant differential metric under the action of Möbius transformation. Finally, we will study the behaviour of Laplace and Dirac operator under the action of Möbius transformations.
description: Mestrado em Matemática
URI: http://hdl.handle.net/10773/2880
appears in collectionsMAT - Dissertações de mestrado
UA - Dissertações de mestrado

files in this item

file sizeformat
2007001358.pdf748.82 kBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2