DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Física > FIS - Dissertações de mestrado >
 Propriedades da centralidade em redes complexas : distribuição e dependência com a conectividade
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/2597

title: Propriedades da centralidade em redes complexas : distribuição e dependência com a conectividade
authors: Costa, Rui Américo Ferreira da
advisors: Mendes, José Fernando Ferreira
keywords: Engenharia física
Física estatística
Redes complexas
Topologia de rede
Continuidade (matemática)
issue date: 2008
publisher: Universidade de Aveiro
abstract: Em redes scale-free a conectividade exibe uma distribuição em lei de potência com expoenteγ ∈ ]2, ∞[. Em contraste com o carácter local desse parâmetro a distribuição de BC (Betweenness Centrality) é definida globalmente e parece ser universal em cada uma de duas classes de redes [12,13]. As particularidades dos grafos tipo árvore permitem simplificar a definição de BC, e usando a aproximação ao contínuo deduz-se a relação entre conectividade e BC em árvores evolutivas scale-free. Mostrou-se que o expoente na relação g ~ kη [12,15] é para estes grafos η = γ − 1. Este resultado simples, todavia intrigante, conduz quase imediatamente à distribuição de BC, que se conclui inequivocamente ser da forma P(g ) ~ g −2 , independentemente dos detalhes da estrutura. Estes resultados são testados computacionalmente para vários tamanhos de rede e expoentesγ e η , e ambos são corroborados pelas simulações. Mostrou-se ainda analiticamente a relação entre a BC das arestas, referida em [13], e a BC convencional, isto é BC dos nodos. ABSTRACT: In scale-free networks connectivity exhibits a power law distribution with exponentγ ∈ ]2, ∞[. In contrast with the local nature of this parameter, the globally defined BC (Betweenness Centrality) appears to be universal within each of two classes of networks [12,13]. The particularities of tree-like graphs simplify the BC definition, and by applying the continuum approach one derives the relation between connectivity and BC in scale-free evolving trees. One shows that the exponent of the relation g ~ kη [12,15] is in these graphs η = γ − 1. This simple, nevertheless intriguing, result leads almost immediately to the BC distribution, which is clearly concluded to be in the form , regardless of the structure details. P(g ) ~ g −2 This results are computationaly tested for a number of network sizes and exponents γ and η , and both are corroborated by the simulations. One still analytically derives the relation between the edge BC, referred in [13], and the conventional BC, that is node BC.
description: Mestrado em Engenharia Física
URI: http://hdl.handle.net/10773/2597
appears in collectionsFIS - Dissertações de mestrado
UA - Dissertações de mestrado

files in this item

file sizeformat
2008001795.pdf455.85 kBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2