Please use this identifier to cite or link to this item: http://hdl.handle.net/10773/23348
Title: Production of protein nanofibers and their application in the development of innovative materials
Other Titles: Produção de nanofibras proteicas e a sua aplicação no desenvolvimento de novos materiais
Author: Silva, Nuno Hélder da Cruz Simões
Advisor: Freire, Carmen Sofia Rocha
Marrucho, Isabel
Keywords: Bioengenharia
Nanofibras
Soluções iónicas
Biomoléculas
Defense Date: 2018
Publisher: Universidade de Aveiro
Abstract: As nanofibras proteicas, também conhecidas como fibrilas amilóide, estão a ganhar muito interesse devido às suas propriedades únicas, nomeadamente elevada resistência mecânica e propriedades funcionais. Estas nanofibras caracterizam-se por depósitos proteicos que resultam de um processo onde a molécula proteica adquire uma conformação estrutural em folhas-β. Dadas as suas propriedades, estas nanofibras têm sido estudadas como elementos estruturais e funcionais no desenvolvimento de materiais inovadores para aplicação em diferentes áreas como, por exemplo, em biosensores, membranas bioactivas e estruturas tridimensionais (scaffolds) para engenharia de tecidos. No entanto, uma das principais limitações na exploração de nanofibras proteicas está relacionada com o tempo necessário para a sua produção, uma vez que a fibrilação é um processo moroso que pode levar horas, dias ou até mesmo semanas. A utilização de solventes alternativos como agentes promotores de fibrilação, nomeadamente líquidos iónicos (ILs), foi recentemente demonstrada como uma via para reduzir o tempo de fibrilação. Estes resultados serviram de inspiração para estudarmos o processo de fibrilação de uma proteína modelo, a lisozima, em soluções aquosas de líquidos iónicos baseados nos catiões imidazólio ou colina com diferentes aniões derivados de ácidos orgânicos. A presença de qualquer um dos ILs testados no meio de fibrilação demonstrou ser muito eficiente obtendo-se taxas de conversão superiores a 80% de fibrilas. Seguindo uma abordagem semelhante, estudou-se também um solvente eutéctico profundo (DES) baseado em cloreto de colina e ácido acético (1:1) como possível promotor da fibrilação da lisozima, diminuindo-se o tempo de fibrilação de 8-15 h para apenas 2-3 h. Foi também demonstrado que a temperatura tem um papel fundamental na aceleração da fibrilação e tanto a temperatura como o pH influenciam significativamente as dimensões das nanofibras, nomeadamente em termos de comprimento e largura. Com o objectivo de ajustar a razão de aspecto das nanofibras (razão comprimento/largura), foram ainda estudados vários DES baseados em cloreto de colina e com ácidos mono-, di- e tri-carboxílicos, tendo-se observado que o ácido carboxílico do DES desempenha um papel fundamental no comprimento das nanofibras produzidas, sendo as razões de aspecto sempre superiores às obtidas por fibrilação apenas com cloreto de colina. O potencial das nanofibras proteicas como elementos de reforço em materiais compósitos foi avaliado pela preparação de filmes nanocompósitos à base de pululano com nanofibras de lisozima em diferentes proporções. Foram obtidos filmes transparentes com maior resistência mecânica à tracção, particularmente para as nanofibras com razões de aspecto mais elevadas. Além disso, a incorporação de nanofibras de lisozima nos filmes de pululano conferiu propriedades bioativas aos filmes, nomeadamente capacidade antioxidante e atividade antibacteriana contra a Staphylococcus aureus. O aumento do conteúdo de nanofibras nos filmes promoveu um aumento das propriedades antioxidante e antibacteriano dos filmes, sugerindo-se como possível aplicação a utilização destes nanocompósitos como filmes comestíveis e ecológicos para embalagens alimentares bioactivas. As nanofibras de lisozima foram também misturadas com fibras de nanocelulose com o objectivo de produzir um filme sustentável para a remoção de mercúrio (II) de águas naturais. Os filmes foram obtidos por filtração sob vácuo e mostraram-se homogéneos e translúcidos. A incorporação das nanofibras de lisozima nos filmes de nanocelulose promoveu um reforço mecânico significativo. Em termos da capacidade de remoção de mercúrio (II) a partir de água natural, a presença das nanofibras de lisozima proporcionou um aumento muito expressivo com eficiências de 82% (pH 7) < 89% (pH 9) < 93% (pH 11), utilizando concentrações de mercúrio (II) de acordo com o limite estabelecido nos regulamentos da União Europeia (50 μg L-1). Em suma, foi demonstrado nesta tese que o uso de líquidos iónicos e de solventes eutécticos profundos assume um papel fundamental na formação de nanofibras de lisozima morfologicamente alongadas e finas, que podem ser exploradas no desenvolvimento de bionanocompósitos para diversas aplicações desde embalagens bioactivas a sistemas de purificação de água.
Protein nanofibers, also known as amyloid fibrils, are gaining much attention due to their peculiar morphology, mechanical strength and functionalities. These nanofibers are characterized as fibrillar assemblies of monomeric proteins or peptides that underwent unfolding-refolding transition into stable β-sheet structures and are emerging as building nanoblocks for the development of innovative functional materials for application in distinct fields, for instance, in biosensors, bioactive membranes and tissue engineering scaffolds. However, one of the main limitations pointed out for the exploitation of protein nanofibers is their high production time since fibrillation is a time-consuming process that can take hours, days, and even weeks. The use of alternative solvents, such as ionic liquids (ILs), as fibrillation agents has been recently reported with considerable reduction in the fibrillation time. This fact encouraged us to study the fibrillation of a model protein, hen egg white lysozyme (HEWL), in the presence of several ILs based on imidazolium and cholinium cations combined with different anions derived from organic acids. All ILs used were shown to fibrillate HEWL within a few hours with conversion ratios over than 80% and typically worm-like nanofibers were obtained. In another study, a deep eutectic solvent (DES) based on cholinium chloride and acetic acid (1:1) was studied as a possible promoter of HEWL fibrillation, and a considerably reduction of the fibrillation time from 8-15 h to just 2-3 h was also observed. Temperature has a key role in the acceleration of the fibrillation and both temperature and pH significantly influence the nanofibers dimensions, in terms of length and width. In what concerns the nanofibers aspect-ratio, several DES combining cholinium chloride and mono-, di- and tri-carboxylic acids were studied. It was observed that carboxylic acid plays an important role on the length of the nanofibers produced with aspect-ratios always higher than those obtained by fibrillation with cholinium chloride alone. The potential of the obtained protein nanofibers as reinforcing elements was evaluated by preparing pullulan-based nanocomposite films containing lysozyme nanofibers with different aspect-ratios, resulting in highly homogenous and transparent films with improved mechanical performance, particularly for the nanofibers with higher aspect-ratios. Furthermore, the incorporation of lysozyme nanofibers in the pullulan films imparted them also with bioactive functionalities, namely antioxidant capacity and antibacterial activity against Staphylococcus aureus. The results showed that the antioxidant and antibacterial effectiveness increased with the content of nanofibers, supporting the use these films as, for example, eco-friendly edible films for active packaging. Lysozyme nanofibers were also blended with nanocellulose fibers to produce a sustainable sorbent film to be used in the removal of mercury (II) from natural waters. Homogenous and translucent films were obtained by vacuum filtration and the incorporation of these nanofibers in a nanocellulose film promoted a considerable mechanical reinforcement. In terms of the capacity to remove mercury (II) from natural water, the presence of lysozyme nanofibers demonstrated to increase expressively the mercury (II) removal with efficiencies of 82% (pH 7) < 89% (pH 9) < 93% (pH 11), using realistic concentrations of mercury (II) under the limit established in the European Union regulations (50 μg L-1). In sum, it was demonstrated in this thesis that the use of ionic liquids and deep eutectic solvents can accelerate the formation of long and thin lysozyme nanofibers that can be explored as nanosized reinforcing elements for the development of bionanocomposites with applications ranging from food packaging to water purification systems and nanotechnology
Description: Doutoramento em Engenharia Química
URI: http://hdl.handle.net/10773/23348
Appears in Collections:UA - Teses de doutoramento
DQ - Teses de doutoramento

Files in This Item:
File Description SizeFormat 
Tese.pdf6.18 MBAdobe PDFView/Open


FacebookTwitterLinkedIn
Formato BibTex MendeleyEndnote Degois 

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.