Repositório Institucional da Universidade de Aveiro > CIDMA - Centro de Investigação e Desenvolvimento em Matemática e Aplicações > CIDMA - Artigos >
 Highest rank of a polytope for An
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/18271

title: Highest rank of a polytope for An
authors: Cameron, Peter
Leemans, Dimitri
Mixer, Mark
Fernandes, Maria Elisa
keywords: Abstract Regular Polytopes
String C-Groups
Alternating Groups
Permutation Groups
issue date: 2017
publisher: London Mathematical Society
abstract: We prove that the highest rank of a string C-group constructed from an alternating group An is 3 if n = 5; 4 if n = 9; 5 if n = 10; 6 if n = 11; and the floor of of (n-1)/2 if n>=12. Moreover, if n = 3; 4; 6; 7 or 8, the group An is not a string C-group. This solves a conjecture made by the last three authors in 2012.
URI: http://hdl.handle.net/10773/18271
ISSN: 0024-6115
publisher version/DOI: https://doi.org/10.1112/plms.12039
source: Proceedings of the London Mathematical Society
appears in collectionsCIDMA - Artigos

files in this item

file description sizeformat
2017CFLM.pdfDocumento Principal586.75 kBAdobe PDFview/open
Restrict Access. You can Request a copy!

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2