DSpace
 
  Repositório Institucional da Universidade de Aveiro > Departamento de Electrónica, Telecomunicações e Informática > DETI - Teses de doutoramento >
 Adaptive biped locomotion from a single demonstration using motion primitives
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/17303

title: Adaptive biped locomotion from a single demonstration using motion primitives
other titles: Locomoção bípede adaptativa a partir de uma única demonstração usando primitivas de movimento
authors: Rosado, José Fernando Fachada
advisors: Silva, Filipe Miguel Teixeira Pereira da
Santos, Vítor Manuel Ferreira dos
keywords: Engenharia electrotécnica
Primitivas (Matemática)
Aprendizagem automática
Sistemas adaptativos
Robótica
Sensores Androides - Locomoção humana
issue date: 2016
publisher: Universidade de Aveiro
abstract: Este trabalho aborda o problema de capacidade de imitação da locomoção humana através da utilização de trajetórias de baixo nível codificadas com primitivas de movimento e utilizá-las para depois generalizar para novas situações, partindo apenas de uma demonstração única. Assim, nesta linha de pensamento, os principais objetivos deste trabalho são dois: o primeiro é analisar, extrair e codificar demonstrações efetuadas por um humano, obtidas por um sistema de captura de movimento de forma a modelar tarefas de locomoção bípede. Contudo, esta transferência não está limitada à simples reprodução desses movimentos, requerendo uma evolução das capacidades para adaptação a novas situações, assim como lidar com perturbações inesperadas. Assim, o segundo objetivo é o desenvolvimento e avaliação de uma estrutura de controlo com capacidade de modelação das ações, de tal forma que a demonstração única apreendida possa ser modificada para o robô se adaptar a diversas situações, tendo em conta a sua dinâmica e o ambiente onde está inserido. A ideia por detrás desta abordagem é resolver o problema da generalização a partir de uma demonstração única, combinando para isso duas estruturas básicas. A primeira consiste num sistema gerador de padrões baseado em primitivas de movimento utilizando sistemas dinâmicos (DS). Esta abordagem de codificação de movimentos possui propriedades desejáveis que a torna ideal para geração de trajetórias, tais como a possibilidade de modificar determinados parâmetros em tempo real, tais como a amplitude ou a frequência do ciclo do movimento e robustez a pequenas perturbações. A segunda estrutura, que está embebida na anterior, é composta por um conjunto de osciladores acoplados em fase que organizam as ações de unidades funcionais de forma coordenada. Mudanças em determinadas condições, como o instante de contacto ou impactos com o solo, levam a modelos com múltiplas fases. Assim, em vez de forçar o movimento do robô a situações pré-determinadas de forma temporal, o gerador de padrões de movimento proposto explora a transição entre diferentes fases que surgem da interação do robô com o ambiente, despoletadas por eventos sensoriais. A abordagem proposta é testada numa estrutura de simulação dinâmica, sendo que várias experiências são efetuadas para avaliar os métodos e o desempenho dos mesmos.

This work addresses the problem of learning to imitate human locomotion actions through low-level trajectories encoded with motion primitives and generalizing them to new situations from a single demonstration. In this line of thought, the main objectives of this work are twofold: The first is to analyze, extract and encode human demonstrations taken from motion capture data in order to model biped locomotion tasks. However, transferring motion skills from humans to robots is not limited to the simple reproduction, but requires the evaluation of their ability to adapt to new situations, as well as to deal with unexpected disturbances. Therefore, the second objective is to develop and evaluate a control framework for action shaping such that the single-demonstration can be modulated to varying situations, taking into account the dynamics of the robot and its environment. The idea behind the approach is to address the problem of generalization from a single-demonstration by combining two basic structures. The first structure is a pattern generator system consisting of movement primitives learned and modelled by dynamical systems (DS). This encoding approach possesses desirable properties that make them well-suited for trajectory generation, namely the possibility to change parameters online such as the amplitude and the frequency of the limit cycle and the intrinsic robustness against small perturbations. The second structure, which is embedded in the previous one, consists of coupled phase oscillators that organize actions into functional coordinated units. The changing contact conditions plus the associated impacts with the ground lead to models with multiple phases. Instead of forcing the robot’s motion into a predefined fixed timing, the proposed pattern generator explores transition between phases that emerge from the interaction of the robot system with the environment, triggered by sensor-driven events. The proposed approach is tested in a dynamics simulation framework and several experiments are conducted to validate the methods and to assess the performance of a humanoid robot.
description: Doutoramento em Engenharia Eletrotécnica
URI: http://hdl.handle.net/10773/17303
appears in collectionsUA - Teses de doutoramento
DETI - Teses de doutoramento

files in this item

file description sizeformat
Thesis_JFR_vf_fms_vs.pdf4.59 MBAdobe PDFview/open
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2