DSpace
 
  Repositório Institucional da Universidade de Aveiro > CESAM - centro de estudos do ambiente e do mar > CESAM - Artigos >
 Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/17053

title: Study on bioaccumulation and biosorption of mercury by living marine macroalgae: Prospecting for a new remediation biotechnology applied to saline waters
authors: Henriques, Bruno
Rocha, Luciana S.
Lopes, Cláudia B.
Figueira, Paula
Monteiro, Rui J. R.
Duarte, A. C.
Pardal, M. A.
Pereira, E.
keywords: Mercury
Organo-metallic forms
Marine macroalgae
Biosorption
Bioaccumulation
Kinetic modeling
issue date: 2015
publisher: Elsevier
abstract: This study aimed to assess and explore the bioaccumulation capabilities of three different macroalgae species, Ulva lactuca (green), Gracilaria gracilis (red) and Fucus vesiculosus (brown), very common on temperate coasts and estuaries, for the removal of mercury (Hg) from contaminated waters (with high salinity), using environmentally realistic concentrations of metal (10–100 lg L 1). Levels of Hg accumulated by all seaweeds ranged between 20.8 and 208 lg g 1, corresponding to bioconcentration factors of c.a. 2000. A comparative evaluation of bioaccumulation (living biomass) and biosorption (dried biomass) was performed for U. lactuca, which had displayed the best performance in accumulating Hg. The removal conducted by the living seaweed (mmacroalgae/Vsolution 500 mg L 1), although slower, was more promising since all Hg levels were reduced by about 99%, fulfilling the European criteria for drinking water quality. Pseudo-second-order and Elovich models described quite well the experimental data, assuming a process essentially of chemical nature. Determination of total Hg content in algal biomass over time, allowed to confirm and to follow the uptake of this metal by the living organism. Volatilization of Hg or its conversion to organo-metallic forms (0.02–0.05%) was negligible during the decontamination process. Overall, the results are a contribution for the development of an efficient and cost-effective water remediation biotechnology, based on the use of living macroalgae to promote the removal of Hg.
URI: http://hdl.handle.net/10773/17053
ISSN: 1385-8947
publisher version/DOI: http://dx.doi.org/10.1016/j.cej.2015.07.013
source: Chemical engineering journal
appears in collectionsCESAM - Artigos

files in this item

file description sizeformat
Henriques et al. - 2015 - Study on bioaccumulation and biosorption of mercur.pdf920.8 kBAdobe PDFview/open
Restrict Access. You can Request a copy!
statistics

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

 

Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2