Repositório Institucional da Universidade de Aveiro > CIDMA - Centro de Investigação e Desenvolvimento em Matemática e Aplicações > CIDMA - Artigos >
 Fischer Decomposition and Cauchy-Kovalevskaya extension in fractional Clifford analysis: the Riemann-Liouville case
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/16925

title: Fischer Decomposition and Cauchy-Kovalevskaya extension in fractional Clifford analysis: the Riemann-Liouville case
authors: Vieira, N.
keywords: Fractional monogenic polynomials
Fischer decomposition
Almansi decomposition
Cauchy-Kovalevskaya extension theorem
Fractional Clifford analysis
Fractional Dirac operator
Riemann-Liouville derivatives
issue date: Feb-2017
publisher: Cambridge University Press
abstract: In this paper we present the basic tools of a fractional function theory in higher dimensions by means of a fractional correspondence to the Weyl relations via fractional Riemann-Liouville derivatives. A Fischer decomposition, Almansi decomposition, fractional Euler and Gamma operators, monogenic projection, and basic fractional homogeneous powers will be constructed. Moreover, we establish the fractional Cauchy-Kovalevskaya extension ($FCK$-extension) theorem for fractional monogenic functions defined on $\BR^d$. Based on this extension principle, fractional Fueter polynomials, forming a basis of the space of fractional spherical monogenics, i.e. fractional homogeneous polynomials, are introduced. We studied the connection between the $FCK$-extension of functions of the form $\x ~P_l$ and the classical Gegenbauer polynomials. Finally we present an example of an $FCK$-extension.
URI: http://hdl.handle.net/10773/16925
ISSN: 0013-0915
publisher version/DOI: https://doi.org/10.1017/S0013091516000109
source: Proceedings of the Edinburgh Mathematical Society
appears in collectionsCIDMA - Artigos

files in this item

file description sizeformat
artigo33_VF.pdfDocumento Principal415.89 kBAdobe PDFview/open
Restrict Access. You can Request a copy!

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2