Repositório Institucional da Universidade de Aveiro > CIDMA - Centro de Investigação e Desenvolvimento em Matemática e Aplicações > CIDMA - Artigos >
 Linear and nonlinear fractional voigt models
Please use this identifier to cite or link to this item http://hdl.handle.net/10773/16625

title: Linear and nonlinear fractional voigt models
authors: Chidouh, Amar
Guezane-Lakoud, Assia
Bebbouchi, Rachid
Bouaricha, Amor
Torres, Delfim F.M.
keywords: Creep phenomenon
Fixed point theorem
Fractional differential equation
Initial value problem
Mittag-Leffler function
Differential equations
Functional analysis
Ordinary differential equations
Existence results
Fractional generalization
Generalized Mittag Leffler function
Linear modeling
Volterra representation
Fixed point arithmetic
issue date: 2017
publisher: Springer Verlag
abstract: We consider fractional generalizations of the ordinary differential equation that governs the creep phenomenon. Precisely, two Caputo fractional Voigt models are considered: a rheological linear model and a nonlinear one. In the linear case, an explicit Volterra representation of the solution is found, involving the generalized Mittag-Leffler function in the kernel. For the nonlinear fractional Voigt model, an existence result is obtained through a fixed point theorem. A nonlinear example, illustrating the obtained existence result, is given. © Springer International Publishing AG 2017.
URI: http://hdl.handle.net/10773/16625
ISSN: 1876-1100
publisher version/DOI: http://dx.doi.org/10.1007/978-3-319-45474-0_15
source: Lecture Notes in Electrical Engineering
appears in collectionsCIDMA - Artigos

files in this item

file description sizeformat
[350]fractional_Voigt_model.pdf159.31 kBAdobe PDFview/open
Restrict Access. You can Request a copy!

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.


Valid XHTML 1.0! RCAAP OpenAIRE DeGóis
ria-repositorio@ua.pt - Copyright ©   Universidade de Aveiro - RIA Statistics - Powered by MIT's DSpace software, Version 1.6.2