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resumo 
 

 

Um dos grandes desafios da investigação biomédica é ultrapassar as taxas de 

rejeição de próteses implantadas melhorando as suas propriedades como 

biomateriais, garantindo assim maior qualidade de vida aos pacientes. Grande 

parte destas próteses é constituída por componentes metálicas que, por serem 

inertes, surge uma necessidade de as melhorar. Uma das soluções reside no 

revestimento do metal por um polímero, de preferência com capacidade de 

induzir a regeneração óssea.  

Neste trabalho testou-se a adesão entre o aço 316L, material muito utilizado 

como biomaterial, e o ácido poli(L-láctico) (PLLA), um polímero, biocompatível, 

de biodegradação controlável, bioabsorvível, piezoeléctrico e aprovado pela 

Food and Drug Administration (FDA). O filme de PLLA foi depositado no aço 

por spin-coating e procedeu-se à investigação do efeito de diferentes variáveis 

na adesão, nomeadamente tratamento físico de superfície (por polimento), 

tratamento químico de superfície (por silanização), peso molecular do PLLA, 

cristalinidade do filme, espessura, e imersão numa solução tampão de fosfatos 

(PBS). 

A adesão entre os dois materiais foi estudada utilizando um teste qualitativo, o 

teste da fita-cola, seguindo a norma ASTM D3359. Observou-se que os filmes 

preparados da solução de PLLA de menor peso molecular apresentaram os 

melhores resultados no teste da fita-cola, principalmente quando depositada 

nas amostras de aço com maior rugosidade. O efeito da espessura do filme, foi 

testado com diferentes concentrações da solução de PLLA de menor peso 

molecular, concluindo-se que quanto menor a concentração da solução de 

polímero, menor a espessura do filme e melhor a sua adesão ao substrato. Por 

conseguinte, estas condições de polimento (P180 e P400) foram selecionadas 

para prosseguirem para caracterização adicional: cristalização e posterior 

ensaio de degradação em fluido sintético (PBS), com a duração de uma 

semana, um mês e dois meses. Os resultados apontam para uma significativa 

perda de adesão, uma vez que a adesão do filme ao substrato resultou 

enfraquecida após a imersão.  

Ensaios preliminares de silanização dos substratos de aço não revelaram 

melhorias significativas da adesão dos filmes ao substrato comparativamente 

aos obtidos por tratamento físico da superfície.  

Em conclusão, os resultados deste trabalho mostram que é possível produzir 

revestimentos de PLLA sobre aço 316L e controlar a adesão do filme de PLLA 

ao substrato de aço através de tratamentos de superfície e de variações nas 

características do filme. Assim a combinação destes dois materiais parece ser 

adequada para potenciais aplicações biomédicas.   
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abstract 

 
One of the major challenges in biomedical research is to overcome the 

rejection rates of implanted prostheses improving their properties as 

biomaterials, thus ensuring greater quality of life for the patients. Many of this 

prosthesis include inert metallic components, hence the necessity of 

improvement. One of the solutions lies in the polymeric coating, preferably 

one with the ability to induce bone regeneration. 

In this study we tested the adhesion between the 316L stainless steel, a 

material widely used as a biomaterial, and poly (L-lactic acid) (PLLA), a 

polymer, biocompatible, with controlled biodegradation, bioabsorbable, 

piezoelectric and approved by the Food and Drug Administration (FDA). The 

PLLA film was deposited onto the stainless steel samples by spin-coating and 

proceeded to the investigation of the effect of different variables in the 

adhesion, namely substrate surface physical treatment (by grinding), substrate 

surface chemical treatment (by silanization), PLLA molecular weight, film 

crystallinity, film thickness and immersion into phosphate buffered saline 

(PBS) solution. 

The adhesion between both materials was studied using a qualitative test, the 

tape test, following a standard (ASTM D3359). It was observed that films 

prepared with the lower molecular weight PLLA solution presented the best 

results in the tape test, especially when deposited onto the substrates with 

higher roughness. The effect of film thickness was tested with different 

solution concentrations of the lower molecular weight PLLA solution, 

concluding that the lower the solution concentration, the thinner the film and 

the better the adhesion of the film to the substrate. Therefore, these polishing 

conditions (P180 and P400) were chosen for further characterization: 

crystallization and subsequent degradation assay in a synthetic fluid (PBS) for 

one week, one month and two months. These results point at a significant loss 

of adhesion, since the adhesion of the film to the substrate after immersion 

resulted weakened.  

Preliminary tests of silanization of steel substrates showed no significant 

improvements in the film adhesion to the substrate, when compared to the 

results already obtained only with a surface physical treatment.   

In conclusion, the results obtained during this work show that it is possible to 

produce PLLA coatings on 316L stainless steel substrates and to control the 

adhesion of PLLA films to substrate through surface treatments and variations 

in the film characteristics. Therefore, the combination of these materials 

appears to be potentially suitable for biomedical applications.   
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Chapter 1 - INTRODUCTION 

 

1.1 Motivation and Objectives  

 

Metallic materials, such as stainless steels and cobalt-chromium alloys, have been used 

as orthopedic implants since some decades. Despite all of the advantages they present, 

these materials may experience some problems such as deslocation or bone resorption, 

which is the loss of bone substance. As an example, in total hip replacement, prosthesis 

loosening can occur due to bone resorption in the proximal femur, caused by the stress in 

the femoral cortex after metal implementation [1]. Mainly for this reason, it is estimated 

that between 10% and 20% of joint implant need to be replaced within 15 to 20 years 

[2]. In order to overcome these limitations and minimize rejections, the metal coating 

with a material that can stimulate integration or even bone regeneration appears as a 

quite interesting solution. Within this context the use of a piezoelectric biopolymer arises 

as a hypothesis that should be explored. Because of the disadvantages presented by 

metallic and ceramic biomaterials, polymers have been gradually introduced in clinical 

use, presenting great advantages as easy shaping and their low cost, as well as superior 

physical properties. Biodegradable polymers such as polyesters (polylactic acid and 

polyglycolic acid) have been receiving major attention for their use in tissue engineering. 

Moreover, it is known that the electrical activity of a surface can enhance protein 

adhesion and cellular development, all of which are essential in tissue regeneration, 

particularly at the bone-implant interface. It is precisely why poly-L-lactic acid (PLLA), a 

form of polylactic acid (PLA), is of particular interest as a possible coating for metallic 

prostheses parts since it is piezoelectric (i.e. having the ability to generate an electric 

charge by action of a mechanical deformation and vice versa). This peculiarity associated 

with other characteristics such as biodegradability, biocompatibility and bioabsorbability, 

in addition to the fact that it is a FDA (Food and Drug Administration) approved material 

for sutures lines and screws (among others) justifies the exploitation of PLLA coated 

metals to promote bone regeneration process and decrease the prostheses acceptance 

time and rejection rate.  
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Based on these assumptions and evidences this work exploits the adhesion of PLLA 

films to 316L stainless steel (widely used in hip prostheses), in order to optimize the 

adhesion of the polymeric film to the substrate for biomedical applications. 

The main goals of this work comprise the study of the effects of:  

i) polymer molecular weight,  

ii) film thickness,  

iii) substrate roughness,  

iv) crystallization and 

v) silanization.  

It is expected to establish guide lines concerning the most suitable treatment to the 

metal surface and some of the optimal characteristics of the polymeric film, for adhesion 

optimization, in order to continue these studies for further investigation, as for example, 

in vivo studies.  
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1.2 Literature Review  

 

Tissue engineering has become one of the leading areas in the academic and industrial 

world in the past three decades [3]. It is defined as a multidisciplinary field based in 

biological, chemical and engineering principles, aiming at the development of artificial 

constructs for repairing, replacing, maintaining or improving tissue or organ function, with 

recourse to biomaterials, cells and growth factors [4]. A biomaterial, in turn, can be 

described as any material intended to interface with biological systems in order to 

analyze, treat, increase or replace any tissue, organ or body function [5].  The required 

characteristic to qualify a material as a biomaterial is biocompatibility, i.e., the ability to 

create an adequate tissue response in a specific application [6]. This ability is dependent 

on various factors such as chemical, physical and biological properties of the material, as 

well as on the shape and structure of the implant. 

Some biomaterials also exhibit others characteristics such as bioactivity and 

biodegradability. Concerning the type of interaction with living tissues, a biomaterial can 

either be: 

 inert, with none or minimal response from the host tissue; or 

 bioactive, with bonding and integration by the stimulation of new tissue growth [7]. 

The terms biodegradability and bioresorption refer to the case when the material 

dissolves itself in the body with time, offering the possibility to overcome the 

disadvantages of residual solids which may result from abrasion or wear. Some 

requirements must be fulfilled by ideal biodegradable materials such as adequate initial 

strength, stiffness and retention of mechanical properties to assure the proper 

biofunctionality [8] and non-toxicity of degradation by-products [9]. Other properties 

must be met according to their application, as for example controlled mechanical, 

electrochemical and biochemical properties.  

Biomaterials have been widely used in many clinical applications such as orthopedics, 

plastic and reconstructive surgery, cardiovascular surgery and dentistry. Some of the most 

common examples of these materials are breast implants, contact lenses, hip prosthesis, 

dental implants, vascular grafts and stents. These and other applications are represented 

in Figure 1.   

 



 

    

  

 

Biocompatible Polymeric Coatings for Bone Tissue Regeneration 

 

     

 

 

4 
 

 

Figure 1 - Applications of biomaterials throughout the body. [10] 

 

 

1.2.1  PLLA 

 

Poly(α-hydroxyl esters), such as poly(lactic acid) (PLA), are synthetic polymers that 

have been extensively used in tissue engineering. PLA monomer, lactic acid (Figure 2), is 

a chiral molecule that exists as two optical isomers, the L and the D isomer [11], as 

represented on Figure 3, although sometimes it is reported a third isomer, the meso-

lactide (D,L) [12]. Polymeric chains of the first two are usually referred to as PLLA and 

PDLA, respectively, having the same chemical and physical properties. Moreover, they are 

both found in bacterial systems [13], whilst PLLA is more commonly used due to the fact 

that its isomer, L-lactic acid, is released during the PLA hydrolysis, therefore being 

naturally available.  

 

Figure 2 - Poly-lactic acid (PLA) formula. [14] 
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Figure 3 - Molecular structure of PLLA and PDLA, respectively. [12] 

 
 

1.2.1.1. Properties 

PLLA, general formula being poly-(O–CO–CH(CH3))n [15, 16], has been well 

documented for its excellent properties, such as biodegradability, biocompatibility and 

nontoxicity, and has been approved for human uses by the US Food and Drug 

Administration (FDA) [17-20], specifically for the correction of facial lipoatrophy in 

patients infected with the human immunodeficiency virus (HIV) [21]. It was the 

potentially controlled biodegradability characteristic, along with the mechanical stability, 

that made PLLA a complement to ceramic and metal implants, enabling the avoidance of 

a removal surgery [22]. Due to its mechanical properties (Table 1) [9], PLLA appears as a 

suitable material for human bone applications.  

 

Table 1 - PLLA mechanical properties. [9] 
 

 

Young 

Modulus 

(GPa) 

Tensile 

strength 

(MPa) 

Flexural 

Modulus 

(GPa) 

Flexural 

Strength 

(MPa) 

Strain Break 

(%) 

PLLA 3-4 50-70 4-5 100 4 

 

 

PLLA is an optically active semi-crystalline polymer, with reported 37% crystallinity, 

even though this is dependent on the molecular weight and on the processing 

parameters. Pure PLLA has a melting point of 207 ºC although, due to structure 
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imperfections and impurities, typical PLLA melting points are between 170–180 ºC [12, 

23, 24]. Its glass transition temperature is around 60-65 ºC and the water contact angle 

is often reported between 70º and 90º [25]. 

Another essential property of this polymer highlighted in literature [15, 16] is its 

piezoelectricity. This phenomenon, defined as the internal generation of electrical charge 

resulting from an applied mechanical force (direct piezoelectric effect) or the internal 

generation of a mechanical strain resulting from an applied electrical field (inverse 

piezoelectric effect), is is the consequence of the ordering of the chiral carbon atoms 

present in the repeating units. 

 

 

1.2.1.2. Synthesis and Degradation 

Lactic acid can be synthesized not only by natural but also by synthetic ways. 

Naturally, lactic acid is produced in mammalian muscles during glycogenolysis.  It is 

synthesized from pyruvate in the lactic acid dehydrogenase catalyzed reaction under 

oxygen limiting conditions [13]. In contrast, there are different synthetic ways to prepare 

this material, such as polycondensation (condensation polymerization), ring-opening 

polymerization [24] (Figure 4), chain extension and grafting [9].  

 

 

 

Figure 4 - Schematic illustrating of PLA hydrolysis and ring-opening polymerization. [26] 
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In general, all PLA forms are soluble in dioxane, acetonitrile, chloroform, methylene 

chloride, 1,1,2-trichloroethane and dichloroacetic acid. Crystalline PLLA, however, is not 

soluble in acetone, ethyl acetate or tetrahydrofuran [27]. 

As far as degradation is concerned, there are several factors affecting the degradation 

of polymers, namely the polymer characteristics (chemical structure, molecular weight 

and distribution, crystallinity or impurities), the fabrication processes (type of process, 

thermal treatment or surface topography) and the degradation conditions (solution or site 

of implantation) [28]. During metabolization in vivo, PLLA is degraded into lactic acid by 

hydrolytic de-esterification in the carboxylic acid cycle, where the monomers are expelled 

by the lungs as water and carbon dioxide [14-16]. Despite the degradation products being 

already biocompatible, this biocompatibility can be improved by controlling the 

degradation rate, which, in turn, can reduce the intensity of the inflammatory response 

[29]. Therefore it is essential to control the degradation rate, even though it can be 

affected by several factors, such as molecular weight, physical and chemical structure of 

the implant, crystallinity degree, porosity and hydrophobicity [30].  

 

 

1.2.1.3. Advantages and disadvantages 

As stated above, PLLA is one of the most interesting material in tissue engineering as a 

result of the natural degradation metabolites, easy processing into complex shapes [25] 

and a degradation rate that can match the healing time of damaged human tissues [17] 

or be tailored by proper polymer crystallization. In addition, this material is highly 

anisotropic and is a good piezoelectric polymer [16]. 

However, it should be taken into account the handicaps of the material. For instance, 

PLLA can cause inflammatory and allergenic reactions as a result of the hydrolytic 

degradation and the decrease in local pH [31]. Moreover, the released oligomers and 

monomers can involve a potential risk of tumor formation. This also happens because 

PLLA presents low cell adhesion, related to its hydrophobic surface, but many surface 

modification techniques can be applied to overcome such drawback. These modifications 

aim to introduce functional groups or molecules to create cell-biomaterial interfaces, 

conducting to cell attachment and spreading. Examples of such modifications include 

plasma treatment to increase hydrophilicity [22] and the combination of cell-adhesive 
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proteins such as collagen, chitosan and gelatin, proven to significantly improve the 

cytocompatibility [32]. 

 

 

1.2.1.4. Applications and state of the art 

Plastic products have become viable alternatives for economic, practical and safety 

reasons, not only in the medical field but also in agriculture, textile, packaging and 

hygiene applications. Specifically in medical applications PLLA has been employed in both 

animals and humans since it was approved by the FDA, and an increasing amount of 

literature is devoted to the subject. PLLA has been widely used in many shapes, for 

instance fibers, films, scaffolds or pellets, due its potential applications in orthopedic and 

dental implants and drug delivery systems. Moreover, this polymer can also be used as a 

blender or a co-polymer in order to improve required properties according to the 

application. Some examples of PLLA based polymers used in medical fields ranges from 

sutures, suture anchors, screws, plates, bone pins and rods [24, 33] to drug delivery 

supports. In addition, this material is also well-known for its injectable form to restore or 

correct facial fat loss in people with the human immunodeficiency virus (HIV) [21].  

Concerning PLLA films, research has been extensively done [20, 23, 29, 34-43] with 

different purposes and modifications, even though the predominant goals are focused 

either on the improvement of cell adhesion to the film or on the improvement of 

mechanical properties. However, for the scope of this work, PLLA is not used for neither 

of these reasons, as our goal is to assess PLLA adhesion to another biomaterial (316L 

stainless steel).   

 

 

1.2.2  316L Stainless Steel 

 

Metallic materials are inorganic substances that can be used as a pure element, 

although they are more often mixed with other elements to form an alloy, in order to 

obtain better properties than those presented by each of the elements itself. The choice 

of metals or alloys as biomaterials is influenced by three main factors [44]:  

 biocompatibility,  
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 physical and mechanical properties, such as strength and toughness, and 

 material degradation.  

In general, metallic materials are used in many fields, from mechanics and electronics 

to medicine. The main medical applications for metallic materials are: internal devices, 

orthodontics, artificial organs and orthopedics. In fact, the majority of biomedical devices 

in use nowadays is made from metal alloys, and the most common include cobalt alloys, 

titanium and its alloys, and stainless steels.  

 

 

1.2.2.1. Properties 

Stainless steels are classified as bioinert materials, and are divided into three classes 

according to the main phase constituent of the microstructure: martensitic, ferritic or 

austenitic, being all of them registered in ASTM F899-95 (Standard Specification for 

Stainless Steel for Surgical Instruments) [45, 46]. 

Concerning 316L stainless steel,  the required form as an implant biomaterial under 

ASTM specifications is single-phase austenite face centered cubic (FCC) and there should 

be no free ferritic body centered cubic (BCC) or carbide phases in the microstructure 

(Figure 5) [6]. In opposition to the martensitic and ferritic stainless steels, austenitic 

steels are not magnetic, being the most resistant to corrosion due to the high content of 

chromium and the presence of nickel in the composition [45].   

 

 

Figure 5 - Phase diagram of stainless steel. [47] 
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For implant use, the 316L stainless steel is the most common among the stainless 

steels. The chemical composition of this steel is: 60-65% iron with additions of chromium 

(17-20%) and nickel (12-14%), and small amounts of manganese, nitrogen, phosphorus, 

molybdenum, silicon and sulfur. Since this steel is significantly used as an implant metal, 

it is necessary to reduce the possibility of in vivo corrosion, therefore the low content of 

carbon (less than 0,03%). Above this amount, formation of carbides can occur, 

precipitating at grain boundaries and preventing the formation of a chromium-based oxide 

protective layer [6]. Consequently, since the surface properties determine the success or 

failure of the stainless steel based implant, there might be the need of surface treatment 

to improve corrosion resistance and biocompatibility, without affecting the physical and 

mechanical properties [48]. 

Regarding these mechanical properties, the tensile strength is within the range of 465 

and 950 MPa, depending greatly on the processing, with cold worked metal much 

stronger than the annealed one, and the Young’s modulus being around 200 GPa, apart 

from the type of processing [49].  

 

 

1.2.2.2. Advantages and Disadvantages 

Being a metallic material, 316L stainless steel present advantageous mechanical 

properties, including excellent ductility, good corrosion resistance, high strength under 

elevated temperatures, good weldability, high tensile strength and fatigue resistance, as 

well as low cost, ease of fabrication and good biocompatibility, thus being ideal for 

medical devices and suitable for load bearing applications [7, 50]. 

However, despite the high modulus and toughness, metallic devices are plagued with 

numerous deficiencies and limitations. Among metallic biomaterials, it is frequent to make 

comparisons between titanium alloys, cobalt-chromium alloys and stainless steels, and 

although stainless steels are generally superior in ductility and cyclic twist strength, they 

are weaker in biocompatibility and corrosion resistance comparing to titanium alloys, and 

weaker in wear resistance and stiffness comparing to cobalt-chromium alloys [51].  

Furthermore, according to Holzapfel et al. [7], the much higher Young’s modulus of 

316L stainless steel compared with bone tissues can lead to stress shielding, and 

subsequent bone atrophy (Figure 6). The Young’s modulus of bone can vary from 7 to 25 



 

    

  

 

Biocompatible Polymeric Coatings for Bone Tissue Regeneration 

 

     

 

 

11 
 

GPa, depending on the type of bone, location and age, whilst the 316L stainless steels 

modulus is, as stated, around 200 GPa [52]. 

 

 

Figure 6 - Scheme of stress shielding after hip implant. After the implant insertion the body load is 

carried by both the bone and the implant, resulting in reduced stresses on the bone (represented 

in white), and consequent stress shielding. The dark area represents the overloading on the distal 

end of the femur. [49] 

 

 

More importantly, there is always the risk of corrosion in the body environment, hence 

releasing compounds such as nickel, chromium or cobalt, and although these are not 

antigenic, they can stimulate hypersensitivity reactions through complex formation with 

proteins found in blood, and can even induce carcinogenesis [53]. In addition, as already 

referred, 316L stainless steel contains a considerable amount of nickel, which is widely 

recognized as a high risk element for incompatibility problems [54]. The presence of 

chromium, along with the traces of molybdenum and silicon, is also a downside as all of 

these elements tend to stabilize the ferritic phase, weaker than the desired austenitic 

phase.  
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1.2.2.3. Applications 

Stainless steels were the first implant materials successfully employed in the surgical 

field, and today, along with titanium and its alloys, are widely encountered in dentistry, 

cardiology and orthopedics. Particularly, 316L stainless steel has been extensively used in 

biomedical applications such as bone plates, cranial plates, dental implants, spinal rods, 

joint replacement prostheses, cardiovascular stents and electric terminals, and as 

catheters [48, 51].  

 

 

1.2.3.  Adhesion 
 

Under a chemical point of view, the notion of adhesion between materials derives from 

the establishment of interfacial bonds through forces at the interface of two surfaces, 

although it can also be employed when referring to the energy required to break the bond 

between both materials. High strength must be assured, thus it is required proper surface 

preparation, such as cleaned surface from contaminations, stable interface and suitable 

formation of chemical and physical bonds [55, 56]. Adhesive bonding technology has 

been developing along the last decades since it is crucial in areas such as aircraft and 

automobile industry [57]. 

 
 

1.2.3.1. Surface Treatments 

When faced with two physically and chemically different materials, it is very 

challenging to join them together, hence the necessity to use surface treatments as a 

recourse to bonding strength. Substrate pretreatment is usually required in order to 

improve the adhesion between the surface and the coating. The substrate surface can be 

altered by removal of contaminants, by production of an oxide layer, by introduction of 

suitable chemical composition of the oxide, by introduction of chemical functions and by 

increase of surface roughness [57]. By roughness increasing, the contact area between 

both materials is increased, which in general improves the adhesion [58]. 

Chemical and mechanical treatments can improve the adhesion to metallic substrates 

including anodizing, surface grafting, flame treatment, microwave irradiation, sol-gel 
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coating, plasma treatments, grit-blasting and chromic-sulfuric acid treatment, depending 

on the application [56, 58].  

Among these treatments there is silanization, one of the most commonly techniques 

used to bond different materials, and consists in the immobilization of organosilanes to 

surfaces. Silanes usually have the following structure:  

 

X3Si(CH2)n–Y                                                (eq. 1) 

 

where X is the hydrolysable group, Y is the functional group and n is typically 3. Because 

hydrolyzed molecules should not react with each other, silane solutions have very low 

concentrations (0.01–2%), avoiding the formation of oligomers. When the substrate 

comes in contact with the solution, silanol groups (SiOH) adsorb immediately to the 

substrate forming hydrogen bonds, followed by the drying and curing processes, where 

silanol groups react not only with metal hydroxyls forming a covalent bond, but also with 

each other, creating a siloxane network structure. This way, the silane treatment can be 

summarized in three steps: the silane hydrolysis, the silanization of the substrate (Figure 

7) and the thermal curing of the silanized substrate [59]. The variables in this treatment 

must be controlled since they can affect the silane bonding to the surface. Solution 

concentration, solution pH and curing conditions are such examples. Thickness of the 

coupling agent layer is also an important factor to take into consideration since adhesion 

can suffer from too thin or thick layers, even though the optimum thickness varies 

according to the bonded material [59, 60]. Substrate surface roughness can also play its 

role, preventing the silane layer formation or breaking the ordered silane layers, meaning 

that smooth surfaces display beneficial properties [61]. 
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Figure 7 - The chemistry of a typical silane surface modification reaction. [6]. 

 

 

1.2.3.2. Adhesion measurement tests 

Adhesion can be measured quantitatively and qualitatively and there are many 

mechanical and non-mechanical methods. Qualitative methods include x-ray diffraction, 

bend and scratch test, abrasion test, and tape test; and examples of quantitative methods 

are thermal method, nucleation test, capacitance test, scratch test, ultracentrifugal test, 

indentation test and direct pull-off method [62]. Pull-off adhesion test is widely used and 

attempts to evaluate the mechanical tensile strength of an adhesive [56]. Tests can also 

be divided into wear tests, related to the interfacial strength of coatings; thermal tests 

that influence adhesion strength during heating and cooling processes; shear tests that 

reflect the in-service conditions, and peel tests, in order to test the peel force. However, 

since there is still no ideal adhesion test that can satisfy all the requirements, the test 

should be chosen taking into account the materials and the applications. 

 

 

1.2.4. Metal/Polymer interface 
 

Coatings have demonstrated to give adequate protection to metals, and polymeric 

coatings have been largely used by the automotive industry, especially to prevent the 

formation of rust. This principle relies on the attack by the corrosive environment to the 

coating instead of the substrate, therefore reducing or delaying the substrate’s corrosion 

rate [63, 64]. Accordingly, polymer/metal interfaces have been widely studied, and the 

main focuses in this field are generally the adhesion stability and the prevention of 
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degradation. This stability can be controlled by the amount of water present in the 

medium, as well as by the temperature, mechanical stress and the presence of defects 

[63]. Nazarov and Thierry [65] reported that the forces involved in the interaction of 

polymer and metal are van der Waals forces, ionic forces and donor/acceptor bonds. 

Although, when the sample is exposed to high humidity or immersed in an aqueous 

medium, water molecules replace polymer/metal bonds due to higher energy of 

interaction of the hydrogen bonds.  

Some examples of polymeric coatings used onto 316L stainless steel are referred in 

Table 2. In fact, this steel is largely used in biomedical research for being one of the 

metallic materials most employed as an implant biomaterial. Moreover, it is also widely 

used in the industry field, although there is often the need of an application of a 

polymeric coating for corrosion protection. Conductive polymers such as polypyrrole, 

polyaniline and polythiophene, are defined as a promising method for this purpose [66]. 

 

Table 2 - Some examples of polymers coatings used onto 316L stainless steels and due purposes. 

 

Despite the wide research on the interface between polymeric and metallic materials 

for corrosion prevention, this was not the motivation behind this work. Instead, PLLA films 

were chosen for the 316L stainless steel coating in order to promote bone regeneration, 

taking advantage of PLLA piezoelectric characteristic.  

 

 

Polymer Purpose Ref. 

polypyrrole Corrosion prevention [67, 68] 

Parylene Medical applications [69] 

allylamine Cardiovascular stent coating [70] 

poly(5-nitroindole) Corrosion prevention [71] 

chitosan and 

dextran 
Biocompatibility enhancement [72] 

Chitosan coating characterization [73] 

poly(ethylene 

glycol) (PEG) 

Prevention of protein adsorption and bacterial 

adhesion 
[74] 



 

    

  

 

 
 



 

    

  

 

Biocompatible Polymeric Coatings for Bone Tissue Regeneration 

 

 
17 

 

Chapter 2 - EXPERIMENTAL PROCEDURE 

 

The experimental procedure of this work includes the following steps, briefly 

represented in the next flowchart (Figure 8):  

1. characterization and polishing of 316L stainless steel substrates; 

2. preparation and deposition of PLLA solution onto 316L stainless steel 

substrates by spin-coating: i) variation of the PLLA solution concentration 

and PLLA molecular weight to change the film thickness, ii) heat treatment 

of the PLLA films to change the polymer degree of crystallization; 

3. immersion of PLLA films on phosphate buffered saline solution (PBS) for one 

week, one month and two months onto 316L stainless steel; 

4. preliminary studies on substrate silanization using 3-(aminopropyl) 

triethoxysilane (APTES); 

5. characterization of PLLA films onto 316L stainless steel substrates: 

microstructure, thickness and adhesion.  
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Figure 8 - Flowchart of the experimental procedure. 

      

 

2.1. Materials 

Starting materials were PLLA pellets (Purasorb® PL and Purasorb® PL38, both produced 

by Purac), which were dissolved in 1,4 dioxane (Panreac Quimica SA),  and 316L stainless 

steel plates (AISI 316L from Goodfellow) that were cut into 1x1cm2 samples. Waterproof 

abrasive disk paper with ISO grit designation P180 (coarser), P400 and P800 were used 

for the stainless steel abrasive treatment, and the reagents γ-APTES [(3-

aminopropyl)triethoxysilane] and toluene (Panreac) were employed for the silanization 

treatment. 
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2.2. Preparation Techniques 

 

2.2.1. Samples Preparation 

 
PLLA pellets with two different molecular weights (63 624 g.mol-1 and 190 707 g.mol-1) 

were dissolved with 5% (wt/wt) in 1,4 dioxane at 70ºC until completely dissolved (around 

2h with magnetic stirring), 316L stainless steel plates were cut into 1x1cm2 samples 

substrates. Some of these samples remained as received (AR) while some others were 

mechanically grinded with P180, P400 and P800 waterproof abrasive paper, using an 

automatic grinder/polisher (Struers RotoPol-11) (Figure 9). All of these treated samples 

suffered the same surface treatment for 15 minutes (8 minutes in one direction and 7 

more minutes in another direction, represented in Figure 10, in order to produce 

increasing sample roughness) with applied force of 5N.   

 

 

Figure 9 - Grinder/polisher used in this work. 

 

 

 

 
Figure 10 - Simplified representation of the stainless steel sample aspect after the grinding 

treatment. 
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2.2.2. Film Deposition (spin-coating) 

 

The PLLA films were deposited onto the stainless steel substrates by spin-coating 

(Chemat Technology spin-coater KW-4A) (Figure 11), under the following conditions: 

solution drop of approximately 50µL, spin velocity of 4000rpm and 30 seconds as spinning 

time.  

 

 

 

Figure 11 - Outer side and inner side of the spin-coater used in this work. 

 

 

The spin-coating technique is often used in thin polymeric films deposition and is an 

alternative to dip coating and spray coating since it can produce uniform coatings in a 

considerable large area [35, 75]. The typical process consists in the deposition of a drop 

of the polymer solution onto the substrate, followed by a high speed rotation of the 

substrate (Figure 12). Due to spinning, and therefore the centrifugal forces, the liquid 

flows radially covering the substrate, the solvent evaporates, and the excess is ejected off 

the edge [35, 76].  

 

 

Figure 12 - Spin coating process model. [77] 
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2.2.3. In situ Crystallization  
 

After the film deposition, the films were subjected to a cold-crystallization treatment, 

which was based and adjusted from some procedures in the literature [78] and expected 

to produce structural rearrangements as depicted in Figure 13. These samples were 

placed in the heater for 1h at 115 ºC, and afterwards left at room temperature in order to 

cool down at a non-controlled rate. Worth noting that, in this step, the samples were only 

grinded with P180 or P400 abrasive paper, and the chosen coating was the lower 

molecular weight PLLA solution (PLLA1). 

 

 

 

 

Figure 13 - Schematic diagram of sequential ordering at atomic scale during cold crystallization of 
PLLA. [79] 

 

 

2.2.4. In-vitro degradation studies 
 

Aiming to study the body environment degradation effect on the adhesion of PLLA 

films on stainless steel substrates crystallized and non-crystallized samples of PLLA1 

deposited on the P400 and P180 grinded stainless steel substrates were immersed in 10 

mL of PBS solution (P3813, Sigma) and kept at 37,4 ºC for one week, one month or two 

months.  

 

 

2.2.5. Thickness Effect 
 

The film thickness was expected to vary between PLLA solutions with different 

molecular weights and concentrations. Two different molecular weight PLLA pellets have 
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been used: PLLA1 with a molecular weight of 63 624 g.mol-1 and PLLA2 with a molecular 

weight of 190 707 g.mol-1. The thickness effect was also studied varying the solution 

concentration of the polymer PLLA1. PLLA1 solutions with 2,5% (wt/wt) and 7,5% 

(wt/wt), besides the 5% (wt/wt), were prepared and deposited by spin-coating on P180 

or P400 surface treated stainless steel substrates. 

 

 

2.2.6. Silanization 
 

Notwithstanding the physical surface treatment, a chemical one was performed, 

namely silanization. As previously described, this is a methodology that aims at the 

adsorption of the silanol groups to the stainless steel substrates, expected to improve the 

adhesion of the coatings to the substrate. Therefore, both the non-grinded samples and 

the samples grinded with P800, P400 and P180 abrasive paper, were sonicated three 

times in acetone for 5 minutes each, before being soaked in a solution of 1 vol% APTES 

in toluene. After 1h, the samples were rinsed in toluene and ethanol, and then sonicated 

in ethanol for 5 minutes. Finally, the samples were dried in air and kept at around 100-

105 ºC for 10 minutes in the stove. This procedure was adapted from the one described 

in Yoshioka et al. [80], although the heating step was skipped since the attempts showed 

a burning effect on the stainless steel substrates.  

 

 

2.3. Characterization Technique 
 

2.3.1. DSC 
 

The differential scanning calorimetry (DSC) is a technique used for the determination 

of the thermal events (exo and endothermic), such as phase transformations, glass 

transitions, crystallizations or melting, that occur on materials when heated or cooled. The 

method is based on the comparison of the material behavior with another material not 

subjected to changes at those temperatures. Therefore, in a typical polymer DSC curve it 

is possible to observe the exothermic reactions (crystallization and oxidation) and the 

endothermic changes (glass transition, melt and degradation) [81].  
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In order to address the crystallization behavior a DSC assay was underwent by Tecoflex 

SG80A in the temperature range of 20 ºC to 200 ºC, with a heating rate of 10 ºC/min.  

 

2.3.2. AFM 
 

The atomic force microscopy (AFM) allows to generate surface topographic maps, 

permitting the detection of changes after surface treatment, being also able to measure 

surface roughness [82], contributing in this way with valuable information to adhesion 

strength. In the scope of this work, this technique was used to monitor the morphology of 

differently treated stainless steel substrates and films, and to measure their roughness, 

owing to the fact that the rugosimeter proved to be unfeasable. AFM was equally to 

assess the crystallization state of some samples.  

 

2.3.3. SEM 
 

The scanning electron microscopy (SEM) is one of the most used surface analysis 

techniques, and its principle is based on the intensity detection of the secondary electrons 

and X-rays emitted after the sample is bombarded with electrons, consequently 

generating a three dimensional surface image [83]. In doing so, this approach was widely 

used in this research, usually with an accelerating voltage of 25 kV, especially to survey 

morphology modifications after the samples were immersed in PBS. In addition, for the 

purpose of thickness measurement, cross-sections of the samples were visualized. Figure 

14 shows the samples prepared for SEM visualization. 

 

 

Figure 14 - SEM samples preparation for a) surface visualization and b) cross-section 

visualization. 

a) b) 
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2.3.4. XRD 
 

X-ray diffraction (XRD) method is a commonly used technique to analyze structural 

features of materials, such as crystallographic systems, crystallite size, crystallographic 

orientations, information of phase compositions, among others [84]. In this work, XRD 

analysis (with Rigaku Geigerflex Dmax-C apparatus) was conducted to assess the 

crystallinity of stainless steel and PLLA films in general, and in particular, crystallized and 

non-crystallized films after PBS immersion.  

 

2.3.5. Tape Test 
 

There are many qualitative and quantitative tests available for adhesion 

measurements. Among all, the chosen test for the scope of this work was the tape test, 

following the standard test method for measuring adhesion, ASTM D3359. This test 

method was developed to measure the adhesion of coating films to metallic substrates, 

through the application of a pressure-sensitive tape. Accordingly, a crosshatch pattern 

was performed with a diamond cutter tool on the polymeric film (Figure 15a), and the 

pressure-sensitive tape was applied covering the entire sample surface. The tape was 

then removed quickly by pulling it off with an angle of 180º (Figure 15b) and the 

adhesion was assessed using a scale from 0 to 5, where 5 represents the highest level of 

adhesion whilst 0 represents the lowest (Figure 16). 

 

 

 

 

 

Figure 15 - Schematic representation of the tape test: a) performing a crosshatch pattern, 

followed by b) the application and removal of the tape with an angle of 180º. 
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Figure 16 - Classification of the removed area (represented in black) according to the ASTM 
D3359. 
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Chapter 3 - RESULTS AND DISCUSSION 
 

3.1.  Substrate characterization 
 

The 316L stainless steel substrates were grinded with P800, P400 and P180 abrasive 

papers in order to increase substrate roughness and to study its effect on PLLA film 

adhesion. As seen in the optical micrographs (Figure 17), the stainless steel sample 

without abrasive treatment presents a uniform smooth surface as opposed to the other 

samples, which were submitted to physical treatment and as a consequence reveal 

obvious scratched surfaces. It is also noticeable that the scratches density increases with 

the increase of the average particle diameter of the abrasive papers (P800 > P400 > 

P180), with obvious increasing when comparing surfaces grinded with P800 and P400 

(samples 2 and 3, respectively). In accordance, the scratches density is highest in the 

surface grinded with P180 paper (sample 4) comparing to sample 3.  

This effect is corroborated by the SEM analysis (Figure 18), where the first sample’s 

surface (1) is obviously different comparing to the other three samples, since there was 

no physical treatment. The SEM micrograph displays the characteristic grained surface of 

steels in which some grain and grain boundaries can be observed and no scratches are 

noted. The grinded samples exhibit clear scratches, being the scratch density increased 

for the samples grinded with P400 and P180 abrasive papers (3 and 4, respectively) as 

expected. As the density of scratches increases the grained microstructure becomes more 

difficult to be observed. 
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Figure 17 - Optical micrographs of 316L stainless steel samples: (1) as-received; and grinded 

with (2) P800; (3) P400 and (4) P180 abrasive papers. 

 

 

 

 

Figure 18 - SEM pictures of 316L stainless steel samples: (1) as-received; and grinded with (2) 

P800; (3) P400 and (4) P180 abrasive papers. 
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As a complementary characterization technique, the x-ray diffraction analysis of the 

stainless steel substrates to assess the phase composition was conducted. Figure 19 

shows the XRD patterns of the stainless steel used in this work. As expected, peaks 

correspondent to the austenitic and ferritic phases are present. Austenitic phase peaks 

occur at approximately 2θ = 43º, 2θ = 51º and 2θ = 75º, associated to the diffraction 

plans (111), (200) and (220), respectively. Ferritic phase peaks were detected around 2θ 

= 45º and 2θ = 65º, associated to the diffraction plans (110) and (200), respectively. No 

other phases were detected. Figure 20 shows the XRD of the 316L stainless steel found in 

the literature [85] that exhibits a very similar XRD pattern to the one under study in this 

work.  
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Figure 19 - X-ray diffraction of the 316L stainless steel used in this work. 
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Figure 20 - X-ray diffraction of the 316L stainless steel reported in the literature. [85] 

 

 
 

 

Atomic Force Microscopy (AFM) was used as an additional tool for surface imaging 

and roughness quantification. The results here presented correspond to just some 

samples. Unfortunately, due to an apparatus malfunction not all the samples were 

analyzed. Consequently, for substrate characterization only samples grinded with P180 

and P400 abrasive paper have been analyzed. The topography images are presented in 

Figure 21 along with their roughness measurements and the mean roughness of three 

different areas. The AFM roughness measurements confirm that the higher the abrasive 

paper particle diameter, the rougher is the substrate surface; surfaces grinded with P180 

abrasive paper have a mean roughness of 131±15 nm, while the substrates grinded with 

P400 abrasive paper have 116±15 nm, being possible to make such affirmation. 
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 AFM micrograph Roughness measurement 
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Figure 21 - AFM topography images, roughness measurements and mean roughness values of 

stainless steel samples grinded with P180 and P400 abrasive papers. 

 

 

 

 

A well-known alternative surface treatment for steels is silanization, via which the 

surface of the steel substrate is functionalized with Si terminations to improve, by 

chemical reaction, the adhesion of the coating to the substrate. Preliminary studies were 

attempted in this work and after the silanization treatment SEM-EDS analysis was 

performed with SEM apparatus. Figure 22 represents EDS spectra of the substrate without 

any treatment whilst Figure 23 represents the substrate after this treatment. In both 

figures, peaks of stainless steel main constituents (iron, chromium and nickel) were 

detected. Nevertheless, in Figure 23 another peak is visible, and corresponds to the silicon 

element, which clearly suggests the presence of silicon on the treated substrate.  
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Figure 22 - EDS spectra of a non-silanized stainless steel substrate. 

 

 

 

 
 

Figure 23 - EDS spectra of a stainless steel substrate after silanization treatment, demonstrating a 

clear silicon peak. 
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3.2. Film characterization 

 

Figure 24 shows the SEM micrographs of the differently treated stainless steel 

substrates (both as received and grinded with the abrasive papers) coated with PLLA 

films. The film is clearly transparent since the scratches from the samples’ surfaces are 

still visible, although not that perceptible as seen in Figure 18, due to the film covering. 

 

 

Figure 24 - SEM micrographs of PLLA1 coated stainless steel samples: (1) as-received; and 

grinded with (2) P800; (3) P400 and (4) P180 abrasive papers.  

 

The film thickness was measured for the two PLLA films used in this work by SEM. 

Figure 25 illustrates the cross-section views of the studied samples. For a better 

visualization a cut in the middle of every sample was made and the thickness measured.  
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 PLLA1 PLLA2 

AR 

  

 463 nm 1,99 µm 

P800 

  
 478 nm 1,59 µm 

P400 

  

 366 nm 1,47 µm 

P180 

  

 499 nm 1,14 µm 

Figure 25 - SEM cross-section micrographs of the as-received (AR) and grinded with the P800, 

P400 and P180 abrasive papers stainless steel samples, coated with PLLA with two different 

molecular weights: PLLA1 with the lowest molecular weight, and PLLA2 with the highest molecular 

weight. Thickness values were measured with the SEM software, and are indicated below the 

correspondent sample. “F” indicates the film, and “S” indicates the stainless steel substrate. 
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There is an obvious difference between PLLA films derived from different polymer 

molecular weights. As expected, PLLA films prepared from the higher molecular weight 

(PLLA2) are thicker when compared to the PLLA films prepared from the lower molecular 

weight (PLLA1). PLLA1 films have thickness in the range of around 400 nm, while the 

PLLA2 ones have thickness between 1 and 2 µm. In terms of film thicknesses there is no 

obvious difference between the films deposited on treated and non-treated substrates. If 

there are differences, they are relatively small and a more accurate process should be 

used. For some samples it was possible to visualize an additional layer on the top of the 

PLLA film, possibly due to several carbon depositions. 

 

The effect of the film thickness on the film adhesion to the substrate was also studied 

by changing the polymer concentration, besides the molecular weight of the polymers. 

Accordingly solutions of different concentrations of the same PLLA (PLLA1) were 

prepared, namely solutions of 2,5% (wt/wt), 5% (wt/wt) and 7,5% (wt/wt) were 

synthesized and deposited by spin coating on the 316L substrates grinded with P400 and 

P180 abrasive paper. SEM micrographs of these films are shown in Figure 26. The 

measured film thickness for the 2,5% (wt/wt) solution is in the range of 200 nm, around 

400 nm for the films of the 5% (wt/wt) solution and approximately 1µm for the films 

derived from 7,5% (wt/wt) solution.  Comparing these results, there is a confirmation that 

the higher the solution concentration, the thicker is the film.   
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 P400 P180 

2,5% 

(wt/wt) 

  
 159 nm 198 nm 

5%  

(wt/wt) 

  
 366 nm 499 nm 

7,5% 

(wt/wt) 

  

 942 nm 992 nm 

Figure 26 - SEM cross-section micrographs of stainless steel samples grinded with P180 and 

P400, and coated with different solution concentrations of the same PLLA: 2,5% (wt/wt), 5% 

(wt/wt) and 7,5% (wt/wt). Thickness values were measure with the SEM software, and are 

indicated below the correspondent sample. “F” indicates the film and “S” indicates the stainless 

steel substrate. 

 

 

 

 

As already mentioned, AFM was a helpful tool to survey film surface imaging and to 

quantify the film surface roughness. Figure 27 presents the topography images along with 

their roughness measurements and the mean roughness for some of these films (PLLA1 

films stainless steel samples grinded with P180 and P400); the film thickness is in the 

range of 400 nm. As the roughness of the substrate increases the roughness of the 

surface of the film increases as well, from 61 to 90 nm. Within this film thickness the film 
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roughness mimics the substrate surface roughness. When comparing these results with 

those represented in Figure 21 it is clear that the non-coated substrates have more visible 

scratches than the samples coated with the films, in which the scratches seem to be more 

blurred, hence corroborating the results from SEM previously presented (Figure 18 and 

Figure 24). Indeed substrates coated with the PLLA films present lower mean roughness 

than the non-coated stainless steel substrates: for the P180 grinded sample, the coated 

samples analyzed present a mean roughness of 90±9 nm while the substrates have 

131±15 nm, and for the P400 grinded sample, the coated samples present a mean 

roughness of 61±3 nm against 116±15nm of the non-coated grinded substrates.  

 

 

 

 

 AFM micrograph Roughness measurement 

Mean 
roughness 

(nm) 

S
ta

in
le

s
s
 S

te
e

l 
3

1
6

L
 

(P
1

8
0

) 
+

 P
L
L
A

1
 

  

90 ± 9 

S
ta

in
le

s
s
 S

te
e

l 
3

1
6

L
 

(P
4

0
0

) 
+

 P
L
L
A

 1
 

  

61 ± 3 

      
Figure 27 - AFM topography images and roughness measurements of stainless steel substrates 

grinded with P180 and P400 coated with the lower molecular weight PLLA (PLLA1). 
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In order to assess the effect of the crystallization on the adhesion of the PLLA films to the 

stainless steel substrates differential scanning calorimetry was performed to study the 

thermal behavior of PLLA1 films. Owing to the fact that manual detachment of PLLA films 

from stainless steel substrates is very difficult, films for the calorimetric studies were 

deposited and crystallized onto Pyrex glass substrates. 

The DSC measurements were made at the heating rate of 10 ºC/min, in the 

temperature range of 25 ºC < T < 200 ºC, described in Figure 28. It was observed that 

melting temperature (Tm) for the non-crystallized film was 176 ºC while for the 

crystallized ones was 178 ºC. 

 

 

 

Figure 28 - DSC curves of crystallized and non-crystallized PLLA1 films on glass substrates. 

Melting temperatures were measured, being 176 ºC for the non-crystallized film and 178 ºC for the 

crystallized one. 

 



 

    

  

 

Biocompatible Polymeric Coatings for Bone Tissue Regeneration 

 

 
39 

 

Although the distinction between the areas of both peaks is evident, the crystallinity 

degree (Xc) was calculated for each sample, using the following equation:  

 

 

 

where  represents the measured enthalpy of fusion and  is the calculated enthalpy 

of fusion of a wholly crystalline material (93 J/g for PLLA) [86]. Therefore, the calculated 

crystallinity degree of the non-crystallized sample is around 20% whilst the crystallinity 

degree of the crystallized sample is 36%.  

 

Figure 29 shows the XRD patterns of crystallized and non-crystallized PLLA films 

prepared under the current work. Both spectra are characterized between 10 and 80º 2θ 

and both exhibit the correspondent peaks of the stainless steels substrates. However for 

films crystallized at 115 ºC the XRD spectrum presents a new diffraction peak at around 

17º, characteristic of PLLA. Similar peaks at 17º (2θ) have been reported in the literature 

[87, 88]. Likewise, Cao et al [88] observed the increasing of the intensity of this peak 

with the increasing temperature of the heat treatment. 

 
 

 

Figure 29 - XRD patterns of crystallized and non-crystallized PLLA films deposited on stainless 

steel substrates. 
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Figure 30 shows the SEM micrographs of the samples immersed in PBS and in almost 

all the samples a surface crystallization process was detected. It is possible that upon an 

uncontrolled drying the NaCl present in the PBS solution or any other residue induced a 

surface crystallization on the PLLA films.  

 

 

 

Figure 30 - SEM micrographs of crystallized and non-crystallized PLLA1 on 316L stainless steel 

substrates grinded with P180 or P400 abrasive papers that were immersed in PBS for one week, 

one month and two months. 
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3.3. Adhesion Measurements 

Tape test based on the ASTM D3359 norm was performed in the as-received and the 

surface treated stainless steel samples coated with PLLA films. The effect of substrate 

surface roughness, film thickness, polymer molecular weight, and polymer degree of 

crystallization was assessed and the results presented and discussed in the next section. 

Table 3 exhibits the main results related with the effect of the substrate roughness and 

polymer molecular weight, i.e. film thickness.  

PLLA1 films (with molecular weight 63 624 gmol-1) deposited on the stainless steel 

substrate without physical treatment, i.e. as received (AR) show a very poor adhesion, 

since the polymer coating was completely removed during the tape test. In opposition, 

films on the top of the scratched substrate surfaces (P180 and P400) present a better 

adhesion performance in terms of the tape test. The films on substrates grinded with the 

P800 abrasive paper, that showed the lowest scratch density, present the worst results of 

adhesion between the treated substrates. From these results the abrasive treatment 

proved to be beneficial in terms of film adhesion. 

Concerning the polymer molecular weight, i.e. film thickness, the adhesion is improved 

when comparing non scratched with scratched substrates. However for PLLA2 films (with 

molecular weight 190 707 gmol-1), for which the thickness is higher, the best adhesion is 

observed for the substrates treated with P800 and decreases for the substrates treated 

with P400 and P180. These results clearly indicate that the film thickness plays a crucial 

role and that the effect of the substrate roughness on the adhesion of the PLLA films 

depends on the film thickness. The results also indicate that there is a thickness limit or 

an ideal thickness that should be determined for each polymer and substrate roughness. 

 

 Overall, the PLLA1 (with the lowest molecular weight) provided the best performance 

when comparing to PLLA2. For this molecular weight polymer (PLLA1), the optimized 

adhesion performance was obtained, as expected, for the highest scratch concentration, 

i.e., samples grinded with the P180 abrasive paper, followed by the samples grinded with 

P400 abrasive paper coated with the same film solution.  
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Table 3 - Tape test results of PLLA films with two different molecular weights (PLLA1 and PLLA2), 

on 316L stainless steel substrates, as received (AR) and after grinded (P800, P400 and P180), 

according to the ASTM D3359. Percentage of area removed indicated between brackets. The film 

thickness is around 400 nm for PLLA1 and 1-2 µm for PLLA2. 

 
 AR P800 P400 P180 

PLLA1 

S1 0B (>65%) 4B (<5%) 4B (<5%) 5B (0%) 

S2 0B (>65%) 3B (5-15%) 3B (5-15%) 5B (0%) 

S3 0B (>65%) 3B (5-15%) 3B (5-15%) 5B (0%) 

S4 0B (>65%) 3B (5-15%) 4B (<5%) 
 

PLLA2 

S1 0B (>65%) 4B (<5%) 3B (5-15%) 2B (15-35%) 

S2 0B (>65%) 4B (<5%) 2B (15-35%) 1B (35-65%) 

S3 0B (>65%) 4B (<5%) 3B (5-15%) 1B (35-65%) 

S4 
   

2B (15-35%) 

 
 

The effect of the film thickness on the adhesion performance to the stainless steel 

substrates was further assessed for PLLA1 films prepared with different solution 

concentration and the results are summarized on  

Table 4. Films processed from the 2,5% (wt/wt) solution, with average thickness of 

200 nm do not present any pealing for both grinded substrates surfaces, providing the 

best results in terms of adhesion performance.  

Concerning 5% (wt/wt) solution, films with an average thickness of 400 nm films show 

a similar behavior as the previous ones for the substrates grinded with P180, since PLLA 

films was not detached from the substrate. However, in the case of the substrates 

grinded with P400 these PLLA films peeled off.  

For the case of the thicker films, derived from the 7,5% (wt/wt) solution, independent 

on the polishing treatment of the substrate PLLA films were detached from the substrate 

during the tape test. The obtained results are a clear evidence of the role of the film 

thickness; as the film thickness increases, the ability to be detached from the substrate 

increases, i.e., film adhesion decreases. As the previous results (Table 2) there is a 

thickness limit, above which the adhesion of the films decreases, independently of the 

roughness of the substrate. 
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Table 4 - Tape test results of two different PLLA1 solutions [7,5% and 2,5% (wt/wt)] deposited 

onto stainless steel samples grinded with P400 and P180 abrasive paper. Percentage of area 

removed indicated between brackets. 

  
P180 P400 

2,5% (wt/wt) 

S1 5B (0%) 5B (0%) 

S2 5B (0%) 5B (0%) 

S3 5B (0%) 5B (0%) 

5% (wt/wt) 

S1 5B (0%) 4B (<5%) 

S2 5B (0%) 3B (5-15%) 

S3 5B (0%) 3B (5-15%) 

7,5% (wt/wt) 

S1 2B (15-35%) 4B (<5%) 

S2 2B (15-35%) 3B (5-15%) 

S3 1B (35-65%) 3B (5-15%) 

 

 

 

Based on these previous results and because not all the samples showed proper 

adhesion the film to the substrate, some films were selected to proceed with further 

characterizations, namely the crystallization and PBS degradation effect. Therefore, PLLA1 

films on stainless steel substrates grinded with P400 and P180 abrasive paper were 

crystallized under the conditions previously described. These samples, along with non-

crystallized samples, were then submitted to degradation in PBS for one week, one month 

and two months. The tape test was assessed after these times, and the results are shown 

in Table 5.  
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Table 5 - Tape test results of three crystallized (C) and non-crystallized (NC) PLLA1 on stainless 

steel substrates, grinded with P400 and P180 abrasive paper, that were immersed in PBS for 1 

week,  1 month and 2 months. Percentage of area removed indicated between brackets. 

 

 
 P400 P180 

 
 

Crystallized 
Non-

crystallized Crystallized 
Non-

Crystallized 

1  
week 

S1 3B (5-15%) 2B (15-35%) 2B (15-35%) 3B (5-15%) 

S2 2B (15-35%) 2B (15-35%) 2B (15-35%) 3B (5-15%) 

S3 2B (15-35%) 1B (35-65%) 2B (15-35%) 2B (15-35%) 

1 
month 

S1 2B (15-35%) 2B (15-35%) 2B (15-35%) 2B (15-35%) 

S2 1B (35-65%) 2B (15-35%) 1B (35-65%) 1B (35-65%) 

S3 1B (35-65%) 1B (35-65%) 1B (35-65%) 0B (>65%) 

2 
months 

S1 0B (>65%) 0B (>65%) 0B (>65%) 0B (>65%) 

S2 0B (>65%) 0B (>65%) 0B (>65%) 0B (>65%) 

S3 0B (>65%) 0B (>65%) 0B (>65%) 0B (>65%) 

 
 
 

According to these results, there were no significance differences between the 

crystallized and non-crystallized samples. However, there is a visible loss of adhesion with 

the immersion time. After the first week in PBS the film adhesion was noticeably weaker, 

tending to aggravate with the increasing of immersion time. After two months in PBS, all 

the films were completely detachment from the substrates, independently on the 

substrate roughness. 

 The film was probably detached from the substrate due to water penetration under 

the coating, which can induce changes in the chemical composition and microstructure 

[89]. 
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As an attempt to clarify the adhesion outcome after the insertion of silicon onto the 

substrate, the tape test was carried out on the silanized samples. The preliminary results 

are presented in Table 6.  

 

Table 6 - Tape test results of the silanized substrates, both as received (AR) and after grinded 

(P800, P400 and P180), coated with PLLA1. Percentage of film area removed indicated between 

brackets. 

 
AR P800 P400 P180 

S1 0B (>65%) 0B (>65%) 2B (15-35%) 4B (<5%) 

S2 0B (>65%) 0B (>65%) 2B (15-35%) 4B (<5%) 

S3 0B (>65%) 0B (>65%) 1B (35-65%) 3B (5-15%) 

 

 

For the silanized substrates not only the samples with the smoothest surface (AR) but 

also the samples grinded with the P800 abrasive paper scored poorly on this test, since 

there was a total delamination of the film. In contrast, the samples grinded with the P400 

and P180 abrasive papers presented better results. Indeed, the film of the P180 samples 

showed almost optimal results, with a small percentage of detached polymeric film. 

However, it is self-evident that these findings on the whole are by no means as good as 

the samples without the presence of silicon (Table 3). Although preliminary, these results 

raise the question whether the silanization of 316L stainless steel substrates would in fact 

improve the adhesion between the PLLA and the substrate. This requires more systematic 

studies and a clear identification of the silanization of the substrate surface. 
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Chapter 4 - CONCLUSIONS 

 
In this work, biocompatible stainless steel 316L substrates were successfully coated 

with biocompatible, biodegradable and piezoelectric PLLA films, after the modification of 

the steel surface, in order to improve film adhesion. The adhesion of the polymeric films 

to the substrate was assessed by a qualitative test, the so called tape test, following the 

ASTM D3359 standard. 

Stainless steel 316L substrates were polished with different abrasive papers (P800, 

P400 and P180) to increase the substrate’s roughness. A first set of preliminary tests on 

the silanization of the steel substrates was conducted aiming at the functionalization of 

the substrates and their effect on the adhesion of PLLA films. 

In addition, two PLLA solutions with different molecular weights (PLLA1 and PLLA2) 

were used and PLLA films deposited onto the stainless steel substrates by spin-coating. 

The thickness of the films prepared under the same conditions increased with the 

increasing polymer molecular weight. The degree of crystallinity of the films was changed 

by changing the heat treatment. 

It was observed that the adhesion of PLLA films on stainless steel 316L substrates: 

1. is improved with the increasing of the substrate roughness; 

2. depends on the film’s thickness; although in this work a critical thickness has not 

been identified, it is shown that the adhesion decreases for thick films (> 1 

micron);  

3. doesn’t depend on the degree of crystallinity of the PLLA films; 

4. decreases with immersion in PBS and with the immersion time. 

Overall, the combination of the PLLA films and 316L stainless steel substrates appears 

to be suitable for potential biomedical applications. 

Future Work 

Despite the fact that this work presented successful outcomes, there were some 

limitations. Therefore the following ideas are suggested:  

 to explore the possibility of other adhesion measurement tests, preferentially 

quantitatively; and 

 to proceed to functionalization of the substrate surface. 
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