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Abstract The Hubbard model is one of the most simple models to describe the motion
and interaction of electrons in solids. It has been widely studied due to its
applications in the description of organic conductors and in the search for
high Tc superconductivity.

In this work, the Hubbard model in a helicoidal lattice is studied, a lattice
identical to the two-dimensional square lattice in the thermodynamic limit.
The magnetic phases of this model are analyzed by building mean �eld
phase diagrams. The thermodynamics of this model is studied in the strong
coupling limit (U →∞). We consider hoppings along and across helix steps.
The hoppings across helix steps generate a mixing of the spin con�gurations,
whose dynamics is also studied.





Resumo O modelo de Hubbard é um dos modelos mais simples para descrever o
movimento e a interacção de electrões em sólidos. Tem sido largamente
estudado pelas suas aplicações na descrição de condutores orgânicos e na
procura de supercondutividade a cada vez mais altas temperaturas.

Neste trabalho, é estudado o modelo de Hubbard numa rede helicoidal,
uma rede idêntica à rede bidimensional quadrada no limite termodinâmico.
As fases magnéticas deste modelo são analisadas através da construção de
diagramas de fase em campo médio. A termodinâmica deste modelo é
estudada no limite de acoplamento forte (U →∞). São considerados saltos
ao longo de passos da hélice e saltos de um passo para outro. Os saltos
entre diferentes passos da hélice geram mistura das con�gurações de spin,
cuja dinâmica também é estudada.
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Chapter 1

Introduction

One of the most important problems in theoretical solid state physics is the Hubbard model.
This model describes electronic correlations in narrow energy bands. In one dimension (1D),
it describes the dynamics of organic conductors, while its twodimensional (2D) version can be
applied to high temperature superconductivity [1] (see Fig. 1.1). Hans Bethe [3] found the
exact solution of the 1D Hubbard Model (wave functions of Bethe ansatz), while the solution
for higher dimensions is still not known [4].

The Hubbard model was independently introduced by John Hubbard, Gutzwiller and
Kanamori [5] around the same time. The Hubbard Hamiltonian has only two parameters:
a hopping amplitude t, describing the motion of electrons in the lattice, and an interaction
amplitude U , which describes the interaction between electrons. The general form of the
Hubbard Hamiltonian assumes the Born-Oppenheimer approximation, i.e., considers a solid
consisting of nuclei forming a static lattice and electrons which can hop between the atoms
of the lattice. For the cases considered in this work, we will also consider the tight-binding
approximation, only allowing electrons to hop between nearest neighbor atoms and only on-site
interaction between electrons.

Under these assumptions, the Hubbard Hamiltonian is

H = −t
∑
〈l,l′〉

c†l,σcl′,σ + U
∑
l

nl↑nl↓, (1.1)

where 〈l, l′〉 denotes nearest neighbor pairs of sites, c†l,σ and cl,σ are the fermion creation and
annihilation operators on site l with spin σ and nl,σ is the respective particle number operator.
The e�ect of the Hamiltonian is show in Fig. 1.2.

In this work, three types of lattice will be studied (Fig. 1.3):

• 1D lattice with periodic boundary conditions, equivalent to a ring;

• 2D lattice with periodic boundary conditions, equivalent to a torus;

• helicoidal lattice, similar to the 2D lattice, but with twisted boundary conditions.

Depending on the number of dimensions, hopping may be allowed along various directions.
In the case of a helix, electrons can hop along a helix pitch, and across nearest pitches as well
(Fig. 1.4). The tight-binding limit (U = 0) includes no interaction term and the strong
coupling limit (U → ∞) does not allow double occupancies. The 1D Hubbard model in the
strong coupling limit has an algebraic solution [6] [7].
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Figure 1.1: The one-dimension Hubbard model describes the dynamics of organic conductors.
On the left, several molecules of TMTCF, a salt intensively explored and the model system
of quasi one-dimensional conductors is shown [2]. Its two-dimensional version is applied to
high-temperature superconductivity. The Yttrium barium copper oxide (YBCO) is shown on
the right, a high temperature superconductor).

Figure 1.2: The tight-binding approximation and on-site interaction between electrons.

Figure 1.3: The types of lattice considered in this work: 1D ring (top left), 2D torus (top
right), 3D with periodic boundaries (bottom left, only presented for reference) and helicoidal
(bottom right).
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Figure 1.4: Illustrating the e�ects of t‖ and t⊥ upon the electrons.

Several approximations have been made in order to obtain solutions for the 2D Hubbard
model, like the 1+1 dimensional Hubbard model using wave functions of Bethe ansatz [8] and
a helical Hubbard model in which �rst-neighbor and third-neighbor hoppings are included [9].

In this work, the helicoidal Hubbard model is presented as one quite similar to the 2D one
(square lattice). The main di�erence is that the helix involves twisted boundary contitions,
that is, when an electron (or a hole) reaches the end of a row, by hopping in the same direction
successively, it then hops to a neighbor row in the helix model, while it hops to the other end
of the row where it was in the 2D model.

Some of the advantages of studying the helicoidal model instead of the 2D one are that the
degeneracy of the tight-binding approximation for the helix with t⊥ = 0 is much lower than
the same approximation for the 2D model with ty = 0, and the eigenstates of the helicoidal
model with t⊥ = 0 remain eigenstates when t⊥ becomes �nite. Another advantage is the 1D
labeling of sites and the consequent unidimensional wave number of the particles.

The crucial approximation in the study of the helicoidal Hubbard model is the assumption
that the atoms (sites) in a helix pitch are much closer to each other than sites on di�erent
helix pitches. Consequently, we will be working in the limit

U � t‖ � t⊥ �
t2‖

U
, (1.2)

where, as shown in Fig. 1.4, t‖ and t⊥ denote the hopping terms between atoms in the same
helix section, and in adjacent helix pitches, respectively.

Organization of the thesis

In chapter 2, the solution of the tight-binding (U = 0) helicoidal model is presented and
compared to the 1D and 2D tight-binding models.

In chapter 3, using the mean �eld approximation, �lling versus interaction parameter phase
diagrams are built for the 1D, 2D and helicoidal Hubbard models, emphasizing ferro- and
antiferromagnetism in these models. Ferromagnetic, antiferromagnetic and spiral phases are
addressed.

In chapter 4, the helicoidal Hubbard model is solved exactly for t⊥ = 0 (Hubbard chain) and
in the strong coupling limit (U →∞), for any number Nh of holes. Thermodynamic functions
of this model are studied.

In chapter 5, the quantum spin queue model is introduced, as a tool to tackle the problem of
t⊥ 6= 0; we solve the model with only one hole and one inverted spin to study the e�ect of t⊥
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on the spin con�guration and the motion of holes (thus factorizing the t⊥ term), and �nally
solve the more general case with Nh holes.
In chapter 6, using some of the results from the previous chapter, the spectral function asso-
ciated to the helicoidal Hubbard model is numerically calculated.
Finally, a short summary of the conclusions of all chapters is presented.



Chapter 2

The helicoidal tight-binding model

In this chapter, we simplify the Hubbard Hamiltonian by considering only the tight-binding
term, and neglecting the interaction term. It becomes very easy to solve under any of the
geometries of this work. The solutions for "square" lattices are presented, as well as the
helicoidal lattice, which is de�ned in this chapter as well.

2.1 "Square" lattices

The solution of the Hubbard model considering only the tight-binding term, i. e., setting
U = 0, is known and quite simple. In a D-dimensional square lattice, the solution is

E = −2

D∑
d=1

td cos kd, (2.1)

where d labels the dimensions (x1, · · · , xd) and

kd =
2π

Ld
nd nd = 0, 1, ..., Ld − 1, (2.2)

Ld being the number of sites in the d direction.

2.2 Helicoidal lattice

A helix is a space curve with parametric equations

x = r cos(t)
y = r sin(t)
z = c t

, (2.3)

where r is the radius of the helix and 2πc is the vertical pitch between the helix's loops.
The helicoidal model is a special case of a 2-dimensional Hubbard model, since we naturally

generate all possible positions of a particle using only one parameter, for example:
10 11 12
7 8 9
4 5 6
1 2 3

 . (2.4)

If this situation was of cylindrical geometry, such as a torus, it would be equivalent to four 3-site
Hubbard rings (plus allowing hopping between corresponding sites in the �rst and last rings),
and mixing in the spin con�gurations would take place due to hoppings both at the boundaries
of the cylinder, at those of each row, and between corresponding sites of adjacent rings. In
a helicoidal lattice, however, spin con�gurations are only mixed when the particle/hole hops
from site 12 to 1, or vice versa, and between corresponding sites in di�erent helix pitches.
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Figure 2.1: Representation of a helix with 12 sites (L = 12), 4 loops of arc length 3 (∆ = 3)
along it and a hole on site 5.

2.2.1 General case

For the helix, we will consider the Hamiltonian

H = −t‖
∑
j,σ

(c†j+1,σcj,σ + c†j,σcj+1,σ)− t⊥
∑
j,σ

(c†j+∆,σcj,σ + c†j,σcj+∆,σ) + U
∑
j

nj,↑nj,↓, (2.5)

where

• j labels all sites on the helix as a 1D system;

• t‖ is the value of the overlap integral between nearest neighbors along the helix (equiv-
alent to tj,j+1 in a 1D lattice);

• t⊥ is the value of the overlap integral between nearest neighbors across the helix (equiv-
alent to tj,j+∆ in a 1D lattice, see �gure 2.1);

• c†j,σ and cj,σ are again the creation and destruction operators of a fermion with spin σ
on site j, respectively.

We will work in the limit U � t‖ � t⊥ � t2‖/U . The reason to consider t‖ � t⊥ is that

the distance between sites is in principle smaller for adjacent ones (along the helix) than for
sites in di�erent helix steps, resulting in a larger orbital overlap along a helix step than across
it.

2.2.2 Tight-binding case (U = 0)

For U = 0, the helicoidal model becomes very similar to the 2D tight-binding model, as
mentioned above. Its energy dispersion relation is

Ek = −2t‖ cos(k)− 2t⊥ cos(k∆), (2.6)
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with k = 2πn/L and n = 0, 1, ..., L − 1. Assuming ∆ is an integer (and therefore ∆ is the
number of sites L divided by the number of helix steps), as t⊥ increases from 0 to values of
the same order of t⊥, the solution approaches that of the 2D model in the thermodynamic
limit. This can be shown by representing the density of states of both models (Fig. 2.2).

In expression 2.6, only one momentum variable, k, was used to describe a behavior that is
equivalent to the 2D tight-binding one in the thermodynamic limit:

Ekx,ky = −2t‖ cos(kx)− 2t⊥ cos(ky), (2.7)

with
kx = 2π

Lx
nx nx = 0, · · · , Lx − 1

ky = 2π
Ly
ny ny = 0, · · · , Ly − 1.

(2.8)

Imposing a twisted boundary condition upon the 2D model along the x direction so that the
phase gained by hopping Lx sites along the x direction is the same as hopping one site along
the y direction (Fig. 2.3):

eikxLx = eiky . (2.9)

This condition is equivalent to

kx = 2π
Lx
nx =

ky
Lx

+ 2π
Lx
n′

=
ky
Lx + k′x.

(2.10)

The equivalence between the two models requires Lx = ∆ and Ly = L/∆. We can therefore
write the dispersion relation for the 2D model with twisted boundary conditions

E′kx,ky = −2t‖ cos

(
ky
∆

+ k′x

)
− 2t⊥ cos(ky), (2.11)

and, comparing 2.11 and 2.6 (∆ = Lx),

k =
ky
∆

+ k′x ⇔ k∆ = ky + 2πn′, (2.12)

or, in terms of n,
2πn∆

L
=

2πny
L/∆

+ 2πn′ ⇔ n = ny +
L

∆
n′, (2.13)

and consequently,

n′ = int
(

n
L/∆

)
ny = mod

(
n, L∆

)
.

(2.14)

From equation 2.11, two relations between k and (k′x, ky) can be obtained, but they are
equivalent, meaning that 2.12 is enough for the helicoidal and 2D models to be equivalent
in the thermodynamic limit. These expressions will be used in the following chapters for
comparing the 2D model with the helicoidal one.
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Figure 2.2: Representation of the density of states on a helix (left) and on a torus (right)
in the tight-binding limit, considering the lattice constant a = 1 and the overlap integrals
t = t⊥ = t‖ = 1. The number of sites in each case is 900, 2500, 40000, 62500, from top to
bottom. For the torus, Lx = Ly = 30, 50, 200, 250 and for the helix, ∆ = 30, 50, 200, 250, so
that the only di�erence between the two geometries is the angle mentioned in this section.
This fact makes both situations identical as one approaches the thermodynamic limit.
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Figure 2.3: A hop along the x-direction induces a phase eik on a helix (left) or eikx on a
2D lattice (right). A hop along the y-direction induces a phase eik∆ on a helix or eiky on a
bidimensional model. On a helix, hopping ∆ = Lx times in the x-direction induces a phase
eik∆ = eikx∆ = eikxLx = eiky , when a twisted boundary condition is imposed upon the 2D
model.
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Chapter 3

Mean �eld phase diagram of the Hubbard model

The objective of this thesis is to consider both the tight-binding and interaction terms. In
the previous chapter, the energy dispersion relation for the tight-binding term was presented.
In this chapter, we consider the full Hamiltonian and use the simple mean �eld approximation
to obtain the phase diagrams for the 1D, 2D and helicoidal Hubbard models.

When Hubbard inserted the interaction term into the tight-binding Hamiltonian, the di-
agonalization of the model became more complicated. The interaction occurs between every
electron pair in the system, but the diagonal terms (on-site repulsion) are about one order of
magnitude greater than the other repulsion terms. Considering only on-site interaction, the
Hamiltonian can be written as

H = −t
∑
〈l,l′〉,σ

(
c†l,σcl′,σ + c†l′,σcl,σ

)
+ U

∑
l

c†l,↑cl,↑c
†
l,↓cl,↓, (3.1)

where 〈l, l′〉 denotes any nearest neighbor pair of sites.
The di�culty lies upon the interaction term because it is quartic in the fermionic operators.

The mean �eld approach reduces the quartic dependence to a more simple quadratic one, using
the mean values of the particle number operators nl,σ = c†l,σcl,σ. Depending on how those mean
values are chosen, one will �nd di�erent types of magnetism in the Hubbard model [10]:

• in a paramagnetic con�guration, the density of spins nl,σ is the same for all sites l and
spins σ;

• in a ferromagnetic con�guration, the density of spins depends on the spin σ but not on
l;

• in an antiferromagnetic con�guration, nl,σ varies with both site and spin;

• in a spiral state, we assume magnetic moments are aligned in the x− y plane according
to ~S~j = m

2

(
cos( ~Q ·~j), sin( ~Q ·~j)

)
, where ~Q determines the alignment of spins in each

direction and ~j = (jx, jy) is the position of the site. In 1D, both ~Q and ~j are numbers.
For example, Q = 0 along a certain direction generates ferromagnetic states along that
direction, and Q = π gives antiferromagnetic ones.

In this chapter, mean �eld theory will be used to generate phase diagrams for one- and two-
dimensional "square" lattices, as well as the helicoidal model. Note that phase transitions only
occur in three dimensions, but mean �eld theory predicts phase transitions for any number
of dimensions. The results presented in this chapter for 1D and 2D are, however, relevant to
weakly coupled 1D or 2D systems so that they actually become 3D and phase transitions may
occur.
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3.1 One dimension

Let us �rst address the 1D case and build the phase diagrams for its ferromagnetic and
antiferromagnetic con�gurations.

3.1.1 Ferromagnetism

Under mean �eld, we write

nl,σ = nσ + (nl,σ − nσ), (3.2)

thus considering the average value of n is the same on every site, but it varies with the spin
σ (ferromagnetism). In the Hamiltonian, the particle number operators appear as nl,↑nl,↓
(quartic in the fermionic operators), which becomes

nl,↑nl,↓ = (n↑ + (nl,↑ − n↑)) (n↓ + (nl,↓ − n↓))
≈ n↑n↓ + n↑(nl,↓ − n↓) + (nl,↑−n↑)n↓
= n↑nl,↓ + nl,↑n↓ − n↑n↓.

(3.3)

Here, n↑ and n↓ represent the average density of ↑ and ↓ spins, respectively (that is, the
average number of each spin, per site).

The diagonal form of the �rst term in the Hamiltonian 3.1 is known:

−2t
∑
k,σ

cos k c†k,σck,σ, (3.4)

for one dimension, considering only nearest neighbor hopping. If L is the number of sites, k
can take L values:

k =
2π

L
(−L/2 + nk) nk = 1, 2, ..., L, (3.5)

for L even.
Because of the mean �eld approach and since we are considering a ferromagnetic system,

the interaction term immediately becomes diagonal, and the eigenvalues of the full Hamiltonian
are

E = E↑(k↑) + E↓(k↓)− Un↑n↓, (3.6)

where
E↑ = −2t cos k↑ + Un↓
E↓ = −2t cos k↓ + Un↑.

(3.7)

The possible values of k are the same for both spins, up and down.
For each total number of particles N (N↑ spin up particles plus N↓ spin down particles),

the value of U determines whether the ground state is paramagnetic or ferromagnetic. Let us
de�ne a magnetization m such that

m =
n↑ − n↓
n↑ + n↓

, (3.8)

where, again,
n↑ = N↑/N
n↓ = N↓/N.

(3.9)

We can represent the energy of the system as a function of the magnetization (see, for
example, Fig. 3.1). The ground state will be paramagnetic if the minimum energy occurs for
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Figure 3.1: Representation of the energy per site E/L as a function of the magnetization m
for U = 0, U = 2, U = 4.1 and U = 4.4 (from top to bottom) for the 1D ferromagnetic
Hubbard model at quarter (half) �lling on the left (right) with L = 512, N = 256 (N = 512)
and t = 1.

m = 0 and ferromagnetic otherwise. Computationally, this is done �xing the size of the lattice
L, the number or particles N and the interaction parameter U . Then the program loops over
the number of up spins from 0 to N , adds up the lowest N↑ and the lowest N↓ energy levels,
obtaining the total energy E, and �nally represents how E varies with its respective m.

Quarter �lling (n = 1/2)

Quarter �lling means we have 1/4 as many particles as the maximum allowed by the L
sites (2L particles), so we have L/2 particles. Figure 3.1 (left) shows the energy per site,
as a function of the magnetization m. For very low U , the ground state of the system is
paramagnetic, because the ground state occurs for m = 0. As U increases, the state becomes
ferromagnetic. We conclude that, for quarter �lling, the phase transition occurs for some value
of U between 4.1 and 4.4.

Half �lling (n = 1)

For the half �lling case, �gure 3.1 (right) shows the energy as a function of the magnetiza-
tion. Similarly to what happens for quarter �lling, a high enough U turns the paramagnetic
system into a ferromagnetic one. However, comparing the graphics shows that at half �lling
the phase transition occurs for a larger U .
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Figure 3.2: Phase diagram for the 1D ferromagnetic Hubbard model with t = 1. The horizontal
axis contains the �lling n (number of particles per site) and the vertical one has the interaction
parameter normalized to t, U/t.

Phase diagram

As we have seen, for each di�erent doping of the system, the value of the on-site interaction
U that induces the phase transition changes. If one represents, the transition value of U as
a function of the doping, one obtains the phase diagram. The phase diagram shows us if
the behavior of the system is paramagnetic or ferromagnetic for each pair (n,U). Figure 3.2
shows the phase diagram of the Hubbard model described using our mean �eld approach for
ferromagnetism.

3.1.2 Antiferromagnetism

As mentioned above, in a ferromagnetic con�guration, the density of spins ↑ and ↓ is inde-
pendent of the site, that is, nl,↑ = n↑, nl,↓ = n↓, while in an antiferromagnetic con�guration,
all sites alternate between a higher density of up or down spins:

nl,↑ = n+ (−1)lm, nl,↓ = n− (−1)lm, (3.10)

meaning even sites have an extra density of up spins and odd sites have an extra density of
down spins.

Since the average density of spin depends upon the parity of the site, the Hamiltonian for
the 1D antiferromagnetic Hubbard model can be written as

H = −t
∑
j,σ

(
c†j,σcj+1,σ + c†j+1,σcj,σ

)
+ U

∑
j even

(nj,↑nj,↓ + nj+1,↑nj+1,↓) , (3.11)

where j even represents all even sites. Unlike the case of ferromagnetism, the diagonalization
of this Hamiltonian does not follow trivially after applying mean �eld theory. Using equation
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3.10, the interaction term becomes

U
∑
j

[(
n+ (−1)jm

)
nj,↓ +

(
n− (−1)jm

)
nj,↑ − (n+m)(n−m)

]
. (3.12)

Applying the Fourier transforms of the creation and annihilation operators and further replac-
ing (−1)j by eiπj gives

H =
∑
k

(
−2t cos kc†k,↑ck,↑ + Unc†k,↑ck,↑ − Umc

†
k+π,↑ck,↑

)
+

+
∑
k

(
−2t cos kc†k,↓ck,↓ + Unc†k,↓ck,↓ + Umc†k+π,↓ck,↓

)
+

−UL(n2 −m2),

(3.13)

where k has the same L values as before, still from −π to π. This Hamiltonian becomes easy
to diagonalize for up and down spins separately, after a simple transformation. In fact, one
can compute the summation de�ning k in a reduced zone (from −π/2 to π/2) and adding a
few terms so that the result remains unchanged. For up spins (the �rst line in equation 3.13),
the matrix

H↑ =

(
−2t cos k + Un −Um

−Um 2t cos k + Un

)
(3.14)

follows, assuming the {ck,↑, ck+π,↑} basis. For down spins, in the {ck,↓, ck+π,↓} basis, the matrix
is

H↓ =

(
−2t cos k + Un Um

Um 2t cos k + Un

)
. (3.15)

Despite the fact that the matrices are di�erent, their eigenvalues are the same, i. e., the energy
levels for both up and down spins are

E↑(k) = E↓(k) =
U

2
(n2 −m2) +mU ±

√
(2t cos k)2 + (nU)2 (3.16)

where the already diagonal term UL(n2−m2) was divided evenly between the two spin types.
One must keep in mind that, when compared with the ferromagnetic case, we have only half
as many possible values for k (L/2, because of the rede�nition in the reduced zone), but we
also have two di�erent energies for each of them, meaning we still have L energy levels for
each spin type.

Computationally, one no longer loops over N↑, but rather over m = 1/N, 2/N, ..., N/(2L).
A few plots of the on-site energy as a function ofm are shown in �gure 3.3. The phase diagram
is obtained by �nding, for each doping value n, the value of U above which the ground state
does not occur for m = 0. The result is shown in �gure 3.4.

3.2 General case

For the 2D and helicoidal cases, we shall use a more general but similar approach [11]
[12] to that of the 1D case. To make calculations simpler, they will be made for the 1D
Hamiltonian, and then generalized to the 2D case. We begin by applying Fourier transforms
to the fermion creation and annihilation operators in Hamiltonian 3.1,

cjσ →
1√
L

∑
k

eikjakσ (3.17)
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c†jσ →
1√
L

∑
k′

e−ik
′ja†k′σ. (3.18)

We then obtain, for the tight-binding term of the Hamiltonian,

Ht = −t
∑
j
c†j↑cj+1↑ + c†j+1↑cj↑ + c†j↓cj+1↓ + c†j+1↓cj↓

= −2t
∑
k

(a†k↑ak↑ + a†k↓ak↓) cos k,
(3.19)

where a diagonal form was obtained using no mean �eld approximations, because, as mentioned
before, mean �eld will only be necessary to transform the quartic U -term in the Hamiltonian
into a more simple quadratic one. Applying Fourier transforms to the interaction term of the
Hamiltonian gives,

HU = U
∑
j
c†j↑cj↑c

†
j↓cj↓

= U
L2

∑
j

∑
k1

∑
k2

∑
k3

∑
k4

e−i(k1−k2+k3−k4)ja†k1↑ak2↑a
†
k3j
ak4↓.

(3.20)

From the summation over j, one concludes,

k1 − k2 + k3 − k4 = 0
⇒ k3 − k2 = k4 − k1 = Q

⇒
{
k3 = k2 +Q
k4 = k1 +Q

, (3.21)

where Q = 2πn/L, with n = 0, · · · , L − 1, because it is the di�erence between two values of
k. Denoting k1 = k and k2 = k′, the expression simpli�es to

HU =
∑
k,k′

a†k↑ak′↑a
†
k′+Q↓ak+Q↓ (3.22)

Now that we have the interaction term expressed in k-space, the application of mean �eld
yields the result

HU,MF = U
∑
k,k′

(〈a†k↑ak′↑〉a
†
k′+Q↓ak+Q↓

+ 〈a†k′+Q↓ak+Q↓〉a†k↑ak′↑
− 〈a†k↑ak′↑〉〈a

†
k′+Q↓ak+Q↓〉

− 〈a†k↑ak+Q↓〉a†k′+Q↓ak′↑
− 〈a†k′+Q↓ak′↑〉a

†
k↑ak+Q↓

+ 〈a†k↑ak+Q↓〉〈a†k′+Q↓ak′↑〉)

(3.23)

We shall consider the magnetic moments are aligned on the x − y plane. Therefore the z-
component of the local spin operator

~Sj =
∑

α,α′=↑,↓
c†j,α~σαα′cj,α′ , (3.24)

where ~σ = (σx, σy, σz) is the Pauli vector, we conclude that the averages that couple spins in
the same direction are zero on every site (as that coupling is made using the σz matrix).
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Replacing [12] 〈a†k+Q↓ak↑〉 = −∆Q/U , where ∆Q is the gap parameter, we obtain

HU,MF =
∑
k

∆Qa
†
k+Q↓ak↑ + ∆Qa

†
k↑ak+Q↓ +

∆2
Q

U
. (3.25)

Joining the results Ht and HU,MF , we obtain the �nal expression for the Hamiltonian,

HMF =
∑
k

(
−2t cos k +

∆2
Q

U

)
a†k↑ak↑ +

(
−2t cos(k +Q) +

∆2
Q

U

)
a†k+Q↓ak+Q↓

+∆Qa
†
k+Q↓ak↑ + ∆Qa

†
k↑ak+Q↓, (3.26)

or, in matrix form,

HMF =
∑
k

(
εk +

∆2
Q

U ∆Q

∆Q εk+Q +
∆2
Q

U

)
, (3.27)

where εk = −2t cos k is the part of the Hamiltonian that changes when we change the dimen-
sionality or geometry of the system. The eigenvalues are

EMF =
∑
k

[
1

2

(
εk + εk+Q ±

√
(εk − εk+Q)2 + 4∆2

Q

)
+

∆2
Q

U

]
(3.28)

The x- and y- components of the spin operator ~Sj are, for real ∆Q,

Sxj =
∆Q

U
cos(Q · j), (3.29)

Syj =
∆Q

U
sin(Q · j). (3.30)

De�ning the order parameter mQ = 2∆Q/U , we obtain the expectation values of S±j ,

S±j =
1

2
mQe

±iQ·j . (3.31)

Generalizing these results to the bidimensional model, the eigenvalues of the Hamiltonian
are the same, but

εk = −2t(cos kx + cos ky), (3.32)

and

S±~j
=

1

2
mQe

±i ~Q·~j =
1

2
mQe

±i(Qxjx+Qyjy). (3.33)

One easily realizes that changing ~Q changes the relative alignment of the spins. For exam-
ple, Q = 0 on a certain direction implies ferromagnetism along that direction, and Q = π
generates antiferromagnetism. ~Q = (0, π) leads to ferromagnetism along the x direction, and
antiferromagnetism along y. Fig. 3.5 shows the spin con�gurations for a few values of Q in an
arbitrary direction. We obtain a phase diagram for each ~Q. For the speci�c values ~Q = (0, 0)
and ~Q = (π, π), the eigenvalues simplify, respectively, to

EF =
∑
k

[
∆2
Q

U
+

1

2
(2εk ± 2∆Q)

]
=
∑
k

[
∆2
Q

U
− 2t(cos kx + cos ky)±∆Q

]
(3.34)
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Figure 3.5: Spin con�gurations for some values of Q in an arbitrary direction.
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Figure 3.6: Dispersion relations obtained using the approach in [11] for the 2D Hubbard
model, considering mU = 2, and ~Q = (0, 0) (the ferromagnetic limit, left) and ~Q = (π, π) (the
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EAF =
∑
k

[
∆2
Q

U
± 1

2

√
4ε2k + 4∆2

Q

]
=
∑
k

[
∆2
Q

U
±
√

4t2(cos kx + cos ky)2 + ∆2
Q

]
. (3.35)

These two dispersion relations are plotted in Fig. 3.6 for mU = 2. Fig. 3.7 shows the phase
diagram obtained for the 2D Hubbard model for a lattice with 20 × 20 sites. The prediction
of a spiral phase for low �lling is in agreement with reference [13].

3.3 Helix

For the helicoidal Hubbard model, we change εk to

εk = −2t‖ cos(k)− 2t⊥ cos(k∆), (3.36)

which gives the new eigenvalues when inserted into 3.28. Using these eigenvalues we obtain
the phase diagrams for the strong-coupling helicoidal Hubbard model (Fig. 3.8). This Figure
shows how the phase diagram of this model evolves, as we move from the 1D case (t⊥ = 0) to
the helicoidal case with t⊥ = t‖.
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Figure 3.7: Phase diagram for the 20 × 20 2D Hubbard model. Colors represent (positive)
values of Q which minimize the energy for each pair (n,U). The "negative" area represents
the paramagnetic phase (not negative values of Q). The dark blue-colored area (the area
around (n = 0.8, U = 4), for example) represents the paramagnetic phase, the light blue area
(as in (n=0.5,U=16)) corresponds to the ferromagnetic phase ( ~Q = (0, 0)) and the darkest
red area is the antiferromagnetic phase ( ~Q = (π, π)). Although it may seem otherwise, the
antiferromagnetic state ( ~Q = (π, π)) only occurs very close to the vertical axis (n = 0).
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Figure 3.8: Phase diagram for the 20 × 20 helicoidal Hubbard model with t⊥ = 0 (top left),
t⊥ = 0.5 (top right), t⊥ = 0.8 (bottom left) and t⊥ = 1 (bottom right). Colors represent
(positive) values of Q which minimize the energy for each pair (n,U). The "negative" area
represents the paramagnetic phase (not negative values of Q). The area with Q = 0 (as in
(n=0.5,U=16)) corresponds to the ferromagnetic phase and the dark red area with Q = π
is the antiferromagnetic phase. Although it may seem otherwise, the antiferromagnetic state
( ~Q = (π, π)) only occurs very close to the vertical axis (n = 0).

Comparing these results with those in [11], we see the states (Q, π) and (0, π) are strongly
modi�ed, meaning there is a strong dependance on these phases upon the boundary conditions.
Apart from the 20 × 20 lattice, the 30 × 30 lattice was also considered, and the results were
identical to the ones presented here. Future work will�consist of considering even larger
clusters to ensure �nite size e�ects are not greatly a�ecting our approach.
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Chapter 4

The Hubbard model in the strong coupling limit (U/t→
∞)

In this chapter, we consider U →∞, so that all states with double occupancies are pushed
to in�nite energy and are therefore not allowed. The helicoidal model in the strong coupling
limit with t⊥ = 0 (equivalent to the U →∞ Hubbard chain) is solved exactly and some of its
thermodynamic properties are studied. In the strong coupling limit, there can only be one or
zero particles on each site. This means that the only hoppings allowed are the ones involving
holes.

4.1 The t⊥ = 0 limit with one hole

The helicoidal Hubbard model with L sites, in this limit, is equivalent to a ring with L
sites and N = L − 1 spins. The possible states can, therefore, be labeled by indicating the
position of the hole and the spin con�guration on the rest of the ring [7]. For example, the
notation

|2, {σ1, σ2, σ3}〉 , (4.1)

represents the state in which the hole is at site 2, and sites 1, 3 and 4 are occupied by spins
σ1, σ2 and σ3, respectively (implying the helix has 4 sites). Making the substitution c†j =

njc
†
j + (1− nj)c†j and dropping the terms associated to double occupancies, the Hamiltonian

for such a system is

H = −t‖
∑
j,σ

(1− nj,σ̄)c†j,σcj+1,σ(1− nj+1,σ̄) + (1− nj+1,σ̄)c†j+1,σcj,σ(1− nj,σ̄). (4.2)

Considering the hoppings of the particles is equivalent to considering those of the hole. The
hoppings of the hole can be described using a simple tight-binding Hamiltonian, but one
cannot ignore the spin con�guration, because it changes when the hole hops from site L to
1 and vice versa, becoming one of its circular permutations. Let us introduce the circular
permutation operator Q, such that

Q |j, {σ1, σ2, ..., σL−1}〉 = |j, {σL−1, σ1, ..., σL−2}〉 , (4.3)

i. e., the e�ect of Q on a state |j, {σ}〉 is equivalent to causing the hole to perform a full loop
around the ring ( = along the helix). The eigenstates of Q are states invariant in a circular
permutation:

|j, {σ}, q〉 =
1
√
rα

rα−1∑
m=0

eiqmQm |j, {σ}〉 , (4.4)

where
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• rα is the periodicity of the spin con�guration, that is, the number of times the hole has
to perform a full loop around the ring in order for the spins to return to their original
con�guration;

• α is the label of each set of spin con�gurations that are circular permutations of each
other. Spin con�gurations with di�erent α cannot be obtained from each other through
a circular permutation;

• q is the momentum of the spin con�guration

q =
2π

rα
n, (4.5)

where n = 0, 1, ..., rα − 1.

Applying Q to one of its eigenstates gives

Q |j, {σ}, q〉 = 1√
rα
e−iq

rα−1∑
m=0

eiq(m+1)Qm+1 |j, {σ}〉

= e−iq |j, {σ}, q〉 .
(4.6)

In order to express the Hamiltonian in this basis, we need to apply H to all its vectors:

• |j, {σ}, q〉, with j = 2, 3, ..., L− 1

H |j, {σ}, q〉 = t‖ (|j − 1, {σ}, q〉+ |j + 1, {σ}, q〉) (4.7)

• |1, {σ}, q〉
H |1, {σ}, q〉 = t‖ (|2, {σ}, q〉+Q |L, {σ}, q〉)

= t‖
(
|2, {σ}, q〉+ e−iq |L, {σ}, q〉

) (4.8)

• |L, {σ}, q〉
H |L, {σ}, q〉 = t‖

(
|L− 1, {σ}, q〉+Q−1 |1, {σ}, q〉

)
= t‖

(
|L− 1, {σ}, q〉+ eiq |1, {σ}, q〉

)
.

(4.9)

Note that neither the spin con�guration nor its momentum changed after applying the
Hamiltonian, so we will drop them from this point. The Hamiltonian in this subspace becomes

H = t‖

(|2〉+ e−iq |L〉) 〈1|+ (|L− 1〉+ eiq |1〉) 〈L|+
L−1∑
j=2

(|j − 1〉+ |j + 1〉) 〈j|

 . (4.10)

The Hamiltonian can now be made translationally invariant by distributing the phase gain
(or loss) among all L sites, instead of being applied only upon the sites at the frontier, thus
becoming

H = t‖

L∑
j=1

(
e−iq/L |j〉 〈j + 1|+ eiq/L |j + 1〉 〈j|

)
. (4.11)
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This Hamiltonian is equivalent to the usual tight-binding model with an external �ux
φ = φ0q/(2π) = φ0n/rα (here, φ0 = h/e is the �ux quantum), whose eigenvectors are

|k〉 =
1√
L

L∑
j=1

eikj |j〉 (4.12)

with the corresponding eigenvalues

E(k) = 2t‖ cos
(
k − q

L

)
. (4.13)

4.2 The t⊥ = 0 limit with Nh holes

Because there is now more than one hole, the states will be labeled using a set {h} =
{h1, · · · , hNh} of the positions of the holes and a set {σ} = {σ1, · · · , σN} of the positions of
the spins:

|{h}; {σ}〉 =
N∏
j=1

c†bj ,σj |0〉, (4.14)

where bj = j + nj({h}) and nj({h}) is the number of holes to the left of site j.
Let us introduce the slave-fermion representation of the fermionic operators [7] in the zero

double occupancy subspace:

• S†j,σj , the bosonic creation operator of a spin σj on site j;

• e†k, the fermionic creation operator of a hole on site k,

such that (1− nj,σ̄)c†j,σ = S†j,σej . Using slave-fermion notation, state 4.14 is represented as

|{h}, {σ}〉 = (−1)

N∑
j=1

(bj−1) N∏
j=1

S†bj ,σj

Nh∏
k=1

e†hk |0〉sh , (4.15)

where |0〉sh is the vacuum for both spins and holes. The �rst factor is due to the number of

times the operator ej needs to exchange with the e†hk operators present in state
Nh∏
k=1

e†hk |0〉sh.

The Hamiltonian (Eq. 4.2) is represented as

H = t‖

L∑
j=1

∑
σ=↓,↑

(
S†j+1,σSj,σe

†
jej+1 + S†j,σSj+1,σe

†
j+1ej

)
. (4.16)

In order to diagonalize this Hamiltonian, we proceed in a way similar to solving the Nh = 1
case. We begin by building states invariant in a circular permutation Q,

|{h}, {σ}, q〉 =
1
√
rα

rα−1∑
m=0

eiqmQm |{h}, {σ}〉 , (4.17)

where rα is the periodicity of the spin con�guration {σ} (labeled by α), and

q =
2π

rα
n, n = 0, · · · , rα − 1. (4.18)
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Again, we need to apply the Hamiltonian to the |{h}, {σ}, q〉 in order to express it in that
basis. Let ∣∣{h′}〉 = e†j+1ej |{h}〉 . (4.19)

Applying one of the Hamiltonian's j-terms to state |{h}, {σ}, q〉 gives∑
σ

S†j,σSj+1,σe
†
j+1ej |{h}, {σ}, q〉 , (4.20)

without changing the spin con�guration, because a spin is exchanged with a hole, rather than
exchanged with another spin. The Hamiltonian does, however, change the positions of the
holes to {h′} and moves the spin on site j + 1 to site j, implying subtracting 1 to one of the
bj , if j 6= L. If j = L, we need to add L− 1 to one of the bj and a phase q:

∑
σ

S†j,σSj+1,σe
†
j+1ej |{h}, {σ}, q〉 =

{
(−1) |{h′}, {σ}, q〉 ⇐ j 6= L
(−1)L−1eiq |{h′}, {σ}, q〉 ⇐ j = L

(4.21)

The application of Hamiltonian 4.16 can only induce circular permutations of the spin con�g-
uration and therefore does not change the actual cyclic relative positions of the spins. This
means we can discard the terms containing spin operators keeping only the hole operators,
and write the Hamiltonian as

Hq =
L∑
j=1

tj

(
e†jej+1 + e†j+1ej

)
, (4.22)

where tj 6=L = −t‖ and tL = −t‖ei(q−πL).
We apply a gauge transformation like the one in the previous section, thus distributing

the phase q − πL among all L sites, so that

tj = −t‖ei(q−πL)/L = t‖e
iq/L, (4.23)

and the Hamiltonian becomes translationally invariant,

Hq = t‖

L∑
j=1

(
eiq/Le†j+1ej + e−iq/Le†jej+1

)
, (4.24)

re�ecting the fact that, because the spin sequence remains unchanged, the system can be
regarded as a set of Nh independent spinless fermions on a lattice with L sites. The eigenvalues
are

E(k1, · · · , kNh) = 2t‖

Nh∑
j=1

cos
(
kj −

q

L

)
, (4.25)

with

kj =
2π

L
nj nj = 0, · · · , L− 1. (4.26)

The eigenvalues depend only on L, Nh and rα. It is important to note that this implies
that all eigenstates with the same spin con�guration periodicity are associated to the same
eigenvalues, leading to high degeneracy. This degeneracy is lifted when the t⊥ term of the
Hamiltonian is considered.
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4.3 Counting the q states

An approach to the problem of counting the number of eigenstates of the U →∞ Hubbard
chain which have a given momentum q has already been made by Mielke [14]. Here, we present
a faster method for counting how many spin con�gurations have a certain periodicity, which
consequently shortens the time needed for solving the initial problem involving q. The results
given by the new method are veri�ed through comparison with Mielke's. Note that in this
section, we will replace the n in the de�nition of the momentum q of the eigenstates by j, as
explained in the next subsection.

4.3.1 Mielke's approach

This approach involves the Möbius function (de�ned in the appendix), used to invert a
formula in Mielke's calculations. Let us consider a chain of N spins, N↓ of which are down
spins. The number of possible con�gurations is the number of N↓-combinations of a set of N
elements, (

N
N↓

)
=

N !

N↓!(N −N↓)!
. (4.27)

Out of all those possible con�gurations, in the general case, there are combinations with
di�erent periodicities, which are the numbers we obtain by dividing N by the common divisors
of N and N↓. For example, with N = 6 spins and N↓ = 4 down spins, the period of the
con�gurations can be 6 (6/1) or 3 (6/2).

Let f(N/d,N↓/d) be the number of con�gurations of N/d spins with N↓/d down spins and
period N/d. Then, f must satisfy the condition∑

d|N,N↓

f(N/d,N↓/d) =

(
N
N↓

)
. (4.28)

Using the Möbius inversion formula, we obtain

f(N,N↓) =
∑

d|N,N↓

µ(d)

(
N/d
N↓/d

)
. (4.29)

Now that the function f is well de�ned, we can write the number of eigenstates of the Hamil-
tonian with N spins and N↓ down spins which have a given momentum

q =
2π

N
· j, (4.30)

as ∑
d

f(N/d,N↓/d)

N/d
, (4.31)

where d is a divisor of N , N↓ and j.

4.3.2 A simpler approach

Let us consider a chain of N spins. The periodicity of that chain may range from 1 to N .
Not all values are possible, though, only those that divide N . In order to better understand
this concept, we may think of a spin chain with N spins and periodicity n, as a set of N/n
equal parts with periodicity n. For example, a chain of length N = 12 could be

↑↑↓↑↑↓↑↑↓↑↑↓ . (4.32)



28 The Hubbard model in the strong coupling limit (U/t→∞)

1 2 3 4 5 6 7 8 9 10
0

100

200

300

400

500

600

700

800

900

1000

n

P
(n

)

Figure 4.1: Plot of the P (n) function for n ∈ [1, 10]. For each n, P (n) gives the number of
spin con�gurations which have period n.

Its periodicity is n = 3 and it is composed of 12/3 = 4 parts

↑↑↓, (4.33)

with periodicity 3. Thus, the problem of calculating the number of possible spin con�gurations
of a chain with N spins and periodicity n is reduced to that of calculating the number of spin
con�gurations of a chain with only n spins and periodicity n.

For example, calculating the number of spin con�gurations that have periodicity 3 for a
chain with 90 spins is equivalent to calculating the ways in which 3 spins can be arranged to
form a chain with periodicity 3. Those ways are

↑↓↓, ↓↑↓, ↓↓↑
↓↑↑, ↑↓↑, ↑↑↓, (4.34)

where ↑↑↑ and ↓↓↓ are not included because their periodicity is 1. In the general case, the
number of spin con�gurations with periodicity n is 0 if n does not divide N , and

P (n) = 2n −
∑
d

P (d), (4.35)

if n divides N . The sum involves all divisors d of n, except for n itself. The plot of this
function for the �rst 10 values of n is shown in Fig. 4.1. For large n, the function approaches
2n, so that if the y axis had a logarithmic scale, we would see the line y = log(2)x.

We can also represent, for each N , how many spin con�gurations exist for each possible
periodicity (Fig. 4.2). Because the number of con�gurations increases very quickly with n,
the logarithmic scale was used for the y axis.

In the speci�c case of N prime, spin con�gurations can only have periodicity 1 or N . The
ones with periodicity 1 are ↑↑↑ · · · and ↓↓↓ · · · ; all the remaining 2N − 2 con�gurations have
periodicity N .

Now that we know how many con�gurations exist for each periodicity, it becomes easier
to calculate the number of eigenstates for each momentum q. The de�nition of q is, again,

q =
2π

rα
j j = 0, 1, · · · , rα − 1. (4.36)
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Figure 4.2: Plots of the number of possible spin con�gurations with periodicity n, for N = 10
(top left), N = 20 (top right), N = 32 (bottom left) and N = 60 (bottom right). For each N ,
it is only possible to �nd a spin con�guration with period n if n is a divisor of N .
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Let us assume, for instance, that we have N = 6 spins and we want to know how many
eigenstates have the momentum

q =
2π

6
· 4. (4.37)

The immediate answer would be "the number of eigenstates with momentum 2π/6· 4 is the
number of con�gurations with periodicity 6, divided by 6" (we need to divide by 6 because
each eigenstate is the superposition of 6 con�gurations that are circular permutations of each
other, implying that there are less eigenstates than con�gurations), i. e., the answer would be

P (6)

6
. (4.38)

However, since we have

q =
2π

6
· 4 =

2π

3
· 2, (4.39)

there are P (3)/3 eigenstates made up of con�gurations with periodicity 3 which can also have
this momentum value. Therefore, in the general case, if the number of spins is N , the number
of eigenstates with momentum

q =
2π

N
· j (4.40)

is ∑
g

P (N/g)

N/g
, (4.41)

where the possible values of g are the common divisors of N and j. If we add the result of
expression 4.31 for all N↓ = 0, 1, · · · , N , we obtain the result given by 4.41, as long as∑

N↓

f(N,N↓) = P (N). (4.42)

We can verify this equality by plotting ∑
N↓

f(N,N↓)

P (N)
, (4.43)

for some values of N . Fig. 4.3 shows the resulting plot, providing a con�rmation that Mielke's
approach gives the same result as ours.

4.3.3 Results

Fig. 4.4 shows the number of eigenstates for each value of q (recall q = 2π/(N) · j, with
j = 0, · · · , N−1), for di�erent lengths of the spin chain. In some plots, the scale of the vertical
axis shows the same value for all points. This is a precision issue, due to the fact that, for N
greater than 20, the di�erence between the maximum and minimum number of eigenstates is
tens of orders of magnitude lower than the number of eigenstates itself (of the order of 2N ).
Nevertheless, it can still be easily seen that the values of q with the most eigenstates are those
whose respective j is a multiple of some divisor of N .

Fig. 4.5 shows the di�erence between the number of eigenstates for each value of q and the
minimum value, for 4 di�erent N . The values of N used here were 40, 60, 80, 100, in order
to simulate the thermodynamic limit. The plots show that, as N increases, the di�erence
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Figure 4.3: Plot of the quotient between the number of states with periodicity N given by
Mielke's formula and our formula. The results obtained using Mielke's formula were computed
in 8.2 seconds, while ours took only 0.1 seconds.

between the maximum and minimum values for the number of states increases at a high rate.
Prime numbers also follow this pattern, but their respective plots are all similar to that of
N = 23.

From all of the plots presented, one realizes that, as we approach the thermodynamic limit,
the plotted function,

Ns(N, q) =
∑
g

P (N/g)

N/g
≈ 2N

N
, (4.44)

which is an expression that does not depend on q, justifying the numerical di�culty of repre-
senting this function.
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Figure 4.5: Representation of the di�erence between the number of eigenstates of 4.24 and its
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4.4 Thermodynamics

Using the results from the last subsections, one easily calculates thermodynamic functions
of the helicoidal Hubbard model in the strong-coupling limit with t⊥ = 0. We begin by
de�ning the partition function Z as

Z =
∑
r

e−Er/(kBT ), (4.45)

where r labels all possible states of the system.

We know that no more than one hole can occupy each k state. This implies that each of
the Nh holes can have any value of k as long as no other hole has it. Therefore, the number of
eigenstates the holes can occupy is obtained by counting the number of combinations of Nh

values that can be extracted from the list of L possible values of k, that is,
(
L
Nh

)
.

For the N = L − Nh spins, we know from the previous subsection that the number of
states with spin momentum q is given by the function Ns(N, q).

The partition function can be numerically calculated for �xed L and Nh using the expres-
sion

Z =
∑
{k}

∑
q

Ns(N, q)e
−E({k})/(kBT ), (4.46)

where:

• the �rst summation is taken over all the di�erent combinations of Nh values of k;

• the second summation is taken over q = 2π/N · j with j = 0, · · · , N − 1 (the counting
of the spin periodicities that are divisors of N is included in Ns(N, q));

• the energy eigenvalues are E({k}) = 2t‖
Nh∑
i=1

cos
(
ki − q

L

)
.

The partition function was used to calculate the thermodynamic energy,

〈E〉 = −∂ lnZ

∂β
, (4.47)

the heat capacity,

Cv =
∂〈E〉
∂T

, (4.48)

and the entropy of the system,

S =
∂

∂T
(kBT lnZ) , (4.49)

as a function of kBT .

Energy

Figure 4.6 shows a few plots of the energy as a function of kBT , each corresponding to
Nh = 1, · · · , 5, and �xed L = 10. It can be seen that, as the number of holes increases, the
energy decreases. Additionally, we see that for high T , the energy goes to 0, which is explained
by the fact that holes and particles have the same probability of occupying a state. There are
as many positive eigenvalues as there are negative ones, thus their average is zero.
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Figure 4.6: Average energy 〈E〉 (left) and heat capacity Cv (right) of the strong-coupling
helicoidal Hubbard model in the t⊥ = 0 limit, with L = 10. The plots for Nh and for L−Nh

are identical, due to particle-hole symmetry of Hamiltonian 4.24.

Heat capacity

Figure 4.6 contains plots of the heat capacity as a function of kBT , for L = 10 and di�erent
values of Nh, ranging from 1 to 5. Both on the Cv and 〈E〉 plots, particle-hole symmetry is
present (the Hamiltonian 4.24 has particle-hole symmetry), so that the functions Cv(T ) or
〈E〉(T ) for have the same expression for Nh and L−Nh.

Entropy

The entropy S(T ) (Fig. 4.7) is the thermodynamic function whose analysis is the most
interesting one. The symmetry present in the previous two functions is not valid anymore. In
fact, as S is a measure of the number of available states, it changes when a spin is replaced
by a (spinless) hole.

For T →∞, all states are equally probable, and we can calculate the entropy analytically
in this limit. The number of states accessible to the Nh holes is

(
L
Nh

)
and the number of states

accessible to the spins is 2N , therefore

S(T →∞)/kB = ln

(
L!

Nh!N !
2N
)
, (4.50)

which is a result con�rmed by the plots in �gure 4.7. Another e�ect that can be seen from the
plots is the fact that, for low T , more holes mean lower entropy. The holes occupy the k states
which lead to lowest energies. However, for high T , the system with the highest Nh is no
longer the one with the highest entropy. This occurs because S∞(Nh) has a maximum, which
can be calculated analytically, using Stirling's approximation lnN ! ≈ N lnN − N , allowing
the approximation of

dS∞(Nh)

dNh
= kB

d

dNh
ln

(
L!

Nh!(L−Nh)!
2L−Nh

)
, (4.51)

to

1

kB

dS∞(Nh)

dNh
≈ − ln 2 +

d

dNh
(−Nh lnNh +Nh − (L−Nh) ln(L−Nh) + (L−Nh)) ; (4.52)
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Figure 4.7: Entropy S of the strong-coupling helicoidal Hubbard model in the t⊥ = 0 limit,
with L = 10. For high T , the maximum entropy occurs for Nh = L/3 rounded to the nearest
integer which, in this case, is 3.

the equation dS∞(Nh)
dNh

= 0 has only one solution,

Nh =
L

3
. (4.53)

This is the solution for continuous Nh. For our discrete case, the maximum will occur for L/3
rounded to the nearest integer. For L = 10 (Fig. 4.7), that integer is 3, providing the reason
why the plot of S for Nh = 3 has the highest value when T →∞.

Let us now study what happens to the entropy when we only allow ferromagnetic states
(rα = 1). The lattice is now made of Nh holes and L−Nh equal spins, which implies particle-
hole symmetry is present once again, because the spin chain is only allowed two states (↑↑↑ · · ·
and ↓↓↓ · · · ), independently of the number of spins. Figure 4.8 shows the entropy S(T ) for
lattices with 9 (top) and 10 (bottom) sites. In the T →∞ limit, the entropy goes to

S∞ = kB ln(number of spin states× number of hole states)

= kB ln

[
2

(
L

Nh

)]
= kB ln

[
2

L!

Nh!(L−Nh)!

]
(4.54)

independently of the parity of L and Nh.
However, in the T → 0 limit, the spins will still have only 2 allowed states, while the holes

may have 1 or 2 ground k states. Let us recall the de�nition of the momentum of the holes,

k =
2π

L
n n = 0, · · · , L− 1. (4.55)

Regarding this de�nition,
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Figure 4.8: Entropy of the ferromagnetic strong-coupling helicoidal Hubbard model in the
t⊥ = 0 limit, for L odd (9, left) and even (10, odd). In this limit, entropy shares the particle-
hole symmetry with the average energy and the heat capacity, because only two states are
allowed to the spin chain, independently of its length.

Figure 4.9: Representation of the hole energy band for a lattice with an arbitrary even number
of sites, considering the strong-coupling helicoidal Hubbard model in the t⊥ = 0 limit. In such
a lattice, all k states except k = π are degenerate, and that degeneracy is relevant when the
number of holes if even (4, in this plot).
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• the ground state k = π is only allowed for L even. If the number of holes is odd, one of
them will occupy the bottom of the band, and the rest will �ll it in pairs, symmetrically,
meaning the ground state of the holes is unique. If the number of holes is even, one hole
will remain after symmetrically �ling up the states; this hole can either occupy the "left"
or the "right" lowest free state in the band (�gure 4.9), leading to a doubly degenerate
global ground state;

• for an odd L, holes can no longer occupy the k = π state. Consequently, there are two
band states with the lowest energy. Unlike what happens for L even, an even number
of holes can only occupy one global ground state, while an odd number of holes has two
possibilities for its global ground state.

These results for the ferromagnetic con�guration are summarized in the following table (where
S is in kB units):

S(T = 0) S(T →∞)

Nh even ln 4 ln(2×
(
L
Nh

)
)

L even

Nh odd ln 2 ln(2×
(
L
Nh

)
)

Nh even ln 2 ln(2×
(
L
Nh

)
)

L odd

Nh odd ln 4 ln(2×
(
L
Nh

)
)

For example, the entropy of the ferromagnetic strong-coupling helicoidal Hubbard model
with an even number of sites (L) and an odd number of holes (Nh) at T = 0 is ln 2.



Chapter 5

The quantum spin queue model

In this chapter, the e�ect of a �nite t⊥, such that U � t‖ � t⊥ � t2‖/U , will be considered

(in �rst order perturbation). The e�ect of this term is to partially lift the spin degeneracy. We
�rst diagonalize the t⊥ term of the Hamiltonian of the helicoidal model with one hole and one
di�erent spin in order to introduce the ∆-permutation operator. This operator leads to spin

queue whose dynamics gives the solution of the tight-binding helicoidal Hubbard Hamiltonian
in this limit.

5.1 The t⊥ 6= 0 limit with one hole and one up spin

In the Hamiltonian of the helicoidal Hubbard model in the strong coupling limit,

H = −t‖
∑
j,σ

(1− nj,σ̄)c†j,σcj+1,σ(1− nj+1,σ̄) + h.c.

−t⊥
∑
j,σ

(1− nj,σ̄)c†j,σcj+∆,σ(1− nj+∆,σ̄) + h.c.,
(5.1)

t‖ induces a permutation in the spin con�guration if the hole does a full loop along the helix,
while one single hop across helix pitches due to t⊥ is enough to induce such a permutation.
In the strong coupling limit, these permutations are easier to be treated if we consider all of
the spins have the same orientation except for one, so that the spin con�guration states can
be labeled using only one number: the position of the di�erent spin.

5.1.1 The ∆-permutation operator

Let us consider an invariant state |j, {σ}, q〉 = |q〉 as de�ned in 4.4. Considering the one-
site translation operator Q de�ned earlier, one obtains, for an arbitrary operator Âi acting
upon site i,

〈q| Âi |q〉 = 〈q|Q−1QÂiQ
−1Q |q〉 . (5.2)

Since
〈q|Q−1 = eiq 〈q| ,
Q |q〉 = e−iq |q〉 ,
QÂiQ

−1 = Âi+1,

(5.3)

we conclude that

〈q| Âi |q〉 = 〈q| Âi+1 |q〉 . (5.4)

It immediately follows that

〈q| Âi |q〉 =
1

N
〈q|

N∑
i=1

Âi |q〉 . (5.5)
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Figure 5.1: When the hole jumps from site i to site i + ∆, it induces a circular permutation
of the spins between sites i+ 1 and i+ ∆.

Figure 5.2: A ring or helix with one hole and particles with spin can be regarded as the
tensorial product of a ring with one free hole and a ring with spins only.

Let us introduce the ∆-permutation operator Qi,i+∆ [15] whose action upon the spin con�g-
uration is equivalent to the hopping of the hole from site i to site i+ ∆. For example, if the
hole hops from site 1 to site 5, we can write the action of the permutation operator as

Q1,5 |σ1, σ2, σ3, σ4, σ5, σ6, σ7〉 = |σ4, σ1, σ2, σ3, σ5, σ6, σ7〉 , (5.6)

Therefore, assuming Âi is the ∆-permutation operator Qi,i+∆, the average value

〈j, {σ}, q|Qi,i+∆ |j, {σ}, q〉 (5.7)

is the same for any i and

〈j, {σ}, q|Qi,i+∆ |j, {σ}, q〉 =
1

N
〈j, {σ}, q|

N∑
i=1

Qi,i+∆ |j, {σ}, q〉 , (5.8)

where N is the number of spins.

5.1.2 The e�ect of t⊥ in the spin con�gurations

The t⊥ term of the Hamiltonian has two e�ects upon the states: it changes both the
position of the hole and the spin con�guration of the helix. This is illustrated in Fig. 5.1.
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Thus, we can rewrite (1−nj,σ̄)c†j,σcj+∆,σ(1−nj+∆,σ̄) when acting on a state |j, {σ}, q〉 as (see
Fig. 5.2)

(1− nj,σ̄)c†j,σcj+∆,σ(1− nj+∆,σ̄)→ e†j+∆ej ⊗
1

N

N∑
j=1

Qj,j+∆. (5.9)

The position of the hole is changed by applying e†j+∆ej and the spin con�guration is changed by
the permutation operator Qi,i+∆. Solving both these terms gives the solution of the helicoidal
Hubbard model in the limit de�ned above. In the following subsections, the solution with one
hole and one di�erent spin is presented.

5.1.3 The hole hopping term

In the previous subsection, we separated the t⊥ terms of the Hamiltonian in a product of
two: Hh, the term with one hole and empty sites, and Hs, the term with spins and no hole.
The �rst of those terms (considering only the hole hopping to the right, for example) reads

Hh = t⊥

L∑
j=1

e†j+∆ej , (5.10)

where L is the number of sites on the helix and e†j is the creation operator of the hole on site
j. Clearly, this Hamiltonian is a simple tight-binding one, with hopping range ∆ instead of
the usual nearest neighbor range. The eigenstates of t‖ are also eigenstates of this term. In
the case of one hole,

|kh〉 =
1√
L

L∑
j=1

eikhj |j〉 , (5.11)

with

kh =
2πn

L
n = 0, · · · , L− 1, (5.12)

and the eigenvalues are
t⊥e
−ikh∆. (5.13)

In this explanation, we have not included the phases due to the gauge transformation of section
4.2. These will be considered in the following sections.

5.1.4 The spin exchange term

The second Hamiltonian term associated with the previous one, from the splitting in 5.9,
is

Hs =
N∑
j=1

Qj,j+∆, (5.14)

where N = L − 1 is the number spins and again, only the hole hopping "to the right"
(j → j + ∆) is being considered. In order to solve this part of the Hamiltonian, we shall
forget about the hole and consider only the spin con�guration. The states |j〉 will be labeled
according to the position j of the di�erent spin (↑) in the chain. For example, for N = 6:

|↓↓↑↓↓↓〉 = |j = 3〉 . (5.15)

Applying the operator Q4,6 to this state will change the spin con�guration in the same way
as if there was a hole on site 4, and that hole hopped to site 6. The operator Q4,6 was chosen
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so that its application to the state mentioned does not change it, because the ↑ spin will still
be in position 3. If we applied Q5,3 instead, we would be simulating the hopping of the hole
from site 5 to site 3, so that the ↑ spin will now be in position j = 4:

Q5,3 |j = 3〉 = |j = 4〉 . (5.16)

When the Hamiltonian acts upon a state |j〉, it simulates all possible hoppings of the hole.
One of them involves the hole exchanging with the ↑ spin, so that the resulting state is

|j −∆ + 1〉 . (5.17)

When the jump of the hole makes a ↓ spin go from the right to the left of the ↑ spin, we
obtain

|j + 1〉 . (5.18)

The number of Q operators that make the hole perform such a jump is ∆−1. If the hole hops
in any other way, the state is not changed.

To sum up, applying Hs to a state |j〉 gives

Hs |j〉 = |j −∆ + 1〉+ (∆− 1) |j + 1〉+ (N −∆) |j〉 . (5.19)

The eigenstates of Hs in this subspace with one inverted spin are given by a superposition of
the basis states |j〉,

|q〉 =
1√
N

N∑
j=1

eiqj |j〉 , (5.20)

and the eigenvalues are found by applying the Hamiltonian to these states:

Hs |q〉 = 1√
N

∑
j
eiqj [|j −∆ + 1〉+ (∆− 1) |j + 1〉+ (N −∆) |j〉]

=
[
eiq(∆−1) + (∆− 1)e−iq +N −∆

]
|q〉 ,

(5.21)

which, recalling q = 2πn/rα = 2πn/N , because we have only one up spin, gives the eigenvalues

exp

(
i(∆− 1)

2πn

N

)
+ (∆− 1) exp

(
−i2πn

N

)
+N −∆ (5.22)

Combining the results 5.13 and 5.22, we obtain

Ekh,q = t⊥

(
e−ikh∆

(
eiq(∆−1) + (∆− 1)e−iq +N −∆

)
+ h.c.

)
(5.23)

5.2 The t⊥ 6= 0 limit with Nh holes

Having solved the t⊥ = 0 limit with Nh holes allows a few immediate simpli�cations of
the t⊥ term. The energy correction due to this term lifts the degeneracy of the eigenvalues in
4.26.

The t⊥ term of the Hamiltonian is

H⊥ = −t⊥
∑
j,σ

(1− nj,σ̄)c†j,σcj+∆,σ(1− nj+∆,σ̄) + h.c., (5.24)
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which, using slave-fermion notation, is written as

H⊥ = t⊥
∑
j,σ

e−i(q/L−π)∆S†j+∆,σSj,σe
†
jej+∆ + h.c. (5.25)

where the gauge transformation which distributes the q − πL phase among all sites has been
considered, so that (q/L − π)∆ is the phase loss when an electron jumps from site j to site
j + ∆.

Let us consider the helix con�guration

↑↑↓ 0 ↑ 0 ↓↓↑ 0 ↑↓, (5.26)

where 0 represents an empty site. If ∆ = 4, the jump of the spin on site 2 to site 6 on this
helix con�guration corresponds to the jump of spin 2 to site 4 on the spin con�guration (called
the squeezed spin chain). The di�erence (6-4) is due to the hole that spin 2 had to jump over.

In the general case, the jump

j → j + ∆, (5.27)

on the helix con�guration, corresponds to the jump

j′ → j′ + ∆′, (5.28)

on the squeezed spin chain, where j′ depends on the number of holes to the left of site j, and
∆′ is a function of the number of holes between sites j and j + ∆. When there are Nh holes
between sites j and j + ∆, then ∆′ = ∆− 1−Nh.

The condition t⊥ = 0 turns the helix into a ring, as mentioned before, and a ring has
∆ = 1. In the t⊥ = 0 limit studied in the previous chapter, all jumps had ∆ = 1 and Nh = 0,
implying ∆′ = 0. This is another way to understand why the squeezed spin chain always
remained unchanged.

Just like what happened with one hole and one di�erent spin, the jump

i→ i+ ∆ (5.29)

makes the spins between sites i′ and i′ + ∆′ + 1 jump one site to the left (on the squeezed
spin chain). This is the quantum spin queue model: spins jump a certain number of sites in
a given direction, and all spins between the initial and �nal sites are pushed one site in the
opposite direction, inducing a circular permutation of the con�guration formed by these spins
(see Fig. 5.1).

This jump can therefore be written as

e†iei+∆S
†
i+∆,,σSi,σ = e†iei+∆

∆−1∑
nh=0

Pi,i+∆(nh)Qi′,i′+∆′ , (5.30)

where nh is the number of holes between sites i and i+∆; if there are less holes on the system
than ∆− 1, then the sum is taken only up to the number of holes Nh. Additionally,

Pi,i+∆(nh) =
∑
{b}

 nh∏
j=1

ni+bj

∆−1∏
j=nh+1

(1− ni+bj )

 , (5.31)
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is a projection operator which imposes there are nh holes between sites i and i+∆; the sum is
calculated over the number of nh-combinations of a set of ∆−1 elements,

(
∆−1
nh

)
, and nb = e†beb

is the number of holes on site b (0 or 1).
The permutation operator Qi′,i′+∆′ can be written as [15]

Qi′,i′+∆′ =

i′+∆′∏
j=i′

(
2Sj · Sj+1 +

1

2

)
. (5.32)

Replacing 5.30 in the Hamiltonian 5.25 gives

H⊥ = t⊥
∑
j,σ

e−i(q/L−π)∆e†jej+∆

∆−1∑
nh=0

Pj,j+∆(nh)

L−nh∑
j′=1

1

L− nh
Qj′,j′+∆′ + h.c. (5.33)

In order to determine the �rst order energy corrections due to this term, we have to evaluate〈
{k}, {σ′}, q

∣∣H⊥ |{k}, {σ}, q〉 , (5.34)

where {k} is the set that includes the value of k for every hole. The terms of the sum over nh
can be factorized and we obtain

〈{k}, {σ′}, q|H⊥ |{k}, {σ}, q〉 =∑
nh

[〈{k}|
∑
j,σ
t⊥e
−i(q/L−π)∆e†jej+∆Pj,j+∆(nh) |{k}〉

× 〈{σ′}, q| 1
L−Nh

L−Nh∑
j′=1

Qj′,j′+∆′ |{σ}, q〉] + h.c.

(5.35)

where the summation over nh goes from nh = 0 to nh = min(Nh − 1,∆ − 1), re�ecting the
fact that the total number of holes may be less than ∆ − 1 (the maximum number of holes
that can be present between sites i and i+ ∆, as mentioned above). So we have reduced the
helicoidal Hubbard model to a Hubbard chain plus a correction (spin queue model ⊗ hole
correlation function).

We now need to calculate the average value

〈e†iei+∆Pi,i+∆(nh)〉 =
∑
{b}

〈e†iei+∆

nh∏
j=1

ni+bj

∆−1∏
j=nh+1

(1− e†i+bjei+bj )〉 (5.36)

In Appendix A, we show how these averages can be calculated. We will now present the �nal
energy dispersion for the case of one hole.

5.2.1 The Nh = 1 case

If the system has only one hole, that hole must be on site i+ ∆, for the jump i→ i+ ∆ to
occur, meaning there are no holes between sites i and i+∆, and nh = 0. Then, both products
in 5.36 simplify to 1, and the average value simpli�es to∑

{b}

〈e†iei+∆〉. (5.37)
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Since we have nh = 0, then
(

∆−1
nh

)
= 1, and

〈e†iei+∆Pi,i+∆(nh)〉 =
1

L
eikh∆, (5.38)

allowing us to write the matrix element 〈{k}, {σ′}, q|H⊥ |{k}, {σ}, q〉 as

t⊥
N
ei∆(kh+π−q/L)

N∑
j′=1

〈Qj′,j′+∆〉, (5.39)

where N = L− 1 is the number of spins. Inserting the solution 5.22 for one inverted spin, the
matrix elements �nally become

t⊥
N
ei∆(kh+π−q/L)

(
eiq(∆−1) + (∆− 1)e−iq +N −∆

)
+ h.c., (5.40)

corresponding to the eigenvalues of the Hamiltonian,

2t⊥
N
{cos [Φ∆] (N −∆) + cos [Φ− q] (∆− 1) + cos [Φ + (∆− 1)q]} , (5.41)

where Φ = kh + π − q/L.
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Chapter 6

Spectral function

As an example of application of the results from the previous chapters, we can calculate
the spectral function. The spectral function is directly obtained when performing an Angle
Resolved Photoemission Spectroscopy (ARPES) experiment. This technique probes both the
momentum and energy of electrons on a material, usually a solid. Standard photoelectric
e�ect measures only the energy of electrons in metals, by impinging monochromatic light
upon the material, and measuring the energy of the ejected electrons. This provides us with
information on the distribution of the electrons of the metal among the allowed energy levels.
If we measure not only distribution of energies but also that of angles, we obtain information
about the electrons' momenta. Spectral functions include all this information. In particular,
it has been an important tool to probe spin-charge separation in quasi unidimensional metals
and the pseudo-gap regime in high temperature superconductors [16].

In this chapter, known results for the U → ∞ Hubbard chain at half-�lling are used to
generate the spectral function of the helicoidal Hubbard model with t⊥ = 0 (work still in
progress).

6.1 1D Hubbard model

The spectral function of a system can be calculated from the Green's function G(k, ω) of
that system, given by

G(k, ω) =
〈
Ψ0
∣∣ c†k↑(ω + E0 −H − iδ)−1ck↑

∣∣Ψ0
〉
, (6.1)

for the U →∞ Hubbard model with one hole, where
∣∣Ψ0
〉
is the nondegenerate ground-state

wave function of the undoped system and E0 is its respective energy. From G(k, ω), the
spectral function A(k, ω) is obtained simply by computing

A(k, ω) =
1

π
Im G(k, ω). (6.2)

Parola and Sorella [17] calculated A(k, ω) for the 1D Hubbard model in the thermodynamic
strong coupling limit, and obtained

A(k, ω) = (L− 1) [Z(Q+(k, ω)) + Z(Q−(k, ω))]N(ω), (6.3)

where
Q±(k, ω) = k ± arccos(−ω/2), (6.4)

N(ω) =
1

2π

1√
4− ω2

, (6.5)
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Figure 6.1: Plot of the spectral function A(k, ω) for the 1D Hubbard model, as a function
of the binding energy −2 − ω, for several values of k: 10 values ranging from 0 to π/2 (left)
and 50 values (right). More values of k in the [0, π] range represent a larger system. In order
to avoid superposition of all the lines, a value proportional to k was added to each line, thus
maintaining the behavior of the lines.

and

(L− 1)Z(Q) =

{
a+ b√

cosQ
⇐ |Q| < π/2

0 ⇐ |Q| ≥ π/2
(6.6)

where a = −0.393 and b = 0.835.
Figure 6.1 shows the plot of the spectral function using di�erent amounts of values of k,

from 0 to π/2. In 1D, the spectral function of any model has a double peak structure (see, for
example, [18]). One of the peaks is determined by the spin velocity Eb = kvs and the other is
determined by the charge velocity vq. In the strong coupling limit, the spin velocity vanishes,
since vs is proportional to t

2/U , thus explaining why one peak is always at Eb = 0.
Clearly, these graphics can be joined in a density plot on the (k,E) plane, as shown in

�gure 6.2.

6.2 Helicoidal Hubbard model

As discussed in the previous chapters, the helicoidal Hubbard model with t⊥ = 0 is equiv-
alent to the Hubbard chain. However, the momentum in the helicoidal Hubbard model keeps
its "meaning" when transformed according to relation 2.12.

For the representation of the spectral function in the case of the helicoidal Hubbard model,
we use expression 2.12, so that we can map the 2D twisted wave vector (k‖, k⊥) into a 1D one
and continue to use Parola's expression:

Q±(k, ω)↔ Q±(ky/∆ + k′x, ω) (6.7)

The result is shown in Fig. 6.3. The intervals chosen are

[0, 0] → [π, 0]
[π, 0] → [π, π]
[π, π] → [0, 0]

(6.8)

as written on the plot.
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Figure 6.2: Density plot of the spectral function of the 1D Hubbard model, on the (k,E)
plane.

Figure 6.3: Spectral function for the helicoidal Hubbard model, as a function of the binding
energy −2− ω, for several values of ~k = (k‖, k⊥), as shown on the plot.
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Chapter 7

Conclusions

The helicoidal Hubbard model was studied numerically and analytically in the U � t‖ �
t⊥ � t2‖/U limit.

A mean �eld approach allowed the numerical calculation of the magnetic phase diagram of
the helicoidal Hubbard model. The phase diagrams of the 2D model and the helicoidal model
with t‖ = t⊥ are very similar. For instance, the antiferromagnetic phase is strictly con�ned to
n = 0, and, at half �lling, a transition from a paramagnetic phase to a ferromagnetic phase
occurs at around U = 12t in both models. The prediction of a spiral phase for low �lling is in
agreement with reference [13]. In order to achieve a better agreement between our results and
those in the literature, future studies will include an increase of over an order of magnitude
in the number of sites of the lattices used.

The thermodynamics of the tight-binding Hubbard model was also studied, using the exact
diagonalization of the tight-binding 1D model with Nh holes as a �rst approach to the strong-
coupling helicoidal Hubbard model with t⊥ = 0. While the di�culty lied in the computation
time required, for example, to count the number of states with each momentum, we were able
to reduce that time by a factor of around 80 using a simpler method. Obtaining faster results
meant we managed a more detailed study of the thermodynamic functions considered, whose
results agreed with our expectations.

In order to study the t⊥ 6= 0 limit of the helicoidal Hubbard model, the quantum spin
queue model was introduced. Our calculations led to the exact diagonalization of the strong-
coupling helicoidal Hubbard model in the U � t‖ � t⊥ � t2‖/U limit, whose results agreed

with numerical ones. The particular case of one hole (Nh = 1) and one di�erent spin was
studied, due to the simplicity of the eigenvalues of the Hamiltonian for this case. Future work
regarding these results may shed some light upon the study of the 2D Hubbard model and
consequently, high temperature superconductivity.

Finally, we numerically calculated the spectral function of strong-coupling helicoidal Hub-
bard model using some results from its exact diagonalization when t⊥ = 0 and at half-�lling,
where the spin dynamics is determined by the Heisenberg Hamiltonian. Since spectral func-
tions can be obtained from ARPES experiments, these calculations may be used to experi-
mentally con�rm the analytical results used.
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Appendix A

Correlation functions for spinless fermions

In this section, a way to calculate correlation functions such as 〈e†i+∆ei〉 (e
†
i is the creation

operator of a spinless fermion on site i) is presented. For application in this work, we shall
treat the spinless fermions as holes. We begin by considering the usual de�nition of the wave
number

k =
2π

L
n n = 0, · · · , L− 1. (A.1)

Applying Fourier transforms to 〈e†i+∆ei〉 gives

〈e†i+∆ei〉 =
1

L

∑
k,k′

ei(kxi+∆−k′xi)〈e†kek′〉 =
1

L

∑
k

eik∆〈e†kek〉. (A.2)

The summation can be calculated in terms of n,

〈e†i+∆ei〉 =
1

L

∑
n

ei
2π∆
L
n. (A.3)

If we assume the occupied states are the ones with lowest energy, with the relation dispersion
in �gure A.1, the non-vanishing terms are the ones that correspond to occupied states, that
is, the occupied states are those with n = n1, n1 + 1, · · · , n2 and

〈e†i+∆ei〉 =
1

L

n2∑
n=n1

ei
2π∆
L
n =

1

L
ei
π∆
L

(n1+n2) sin π∆
L M

sin π∆
L

, (A.4)

where M = n2−n1 + 1 is the number of holes. For the dispersion relation in �gure A.1, since
we have M states which are occupied with spinless fermions and those states are centered in
terms of the values of k, we have

n1 =
L

2
− M

2
n2 =

L

2
+
M

2
. (A.5)

Replacing these in the previous result, and denoting the hole concentration by m = M/L,

〈e†i+∆ei〉 =
1

L
eiπ∆ sin(π∆m)

sin
(
π∆
L

) . (A.6)

In the thermodynamic limit (L→∞), the expression simpli�es to

〈e†i+∆ei〉 = eiπ∆ sin(π∆m)

π∆
. (A.7)
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Figure A.1: Graphical representation of the relation dispersion for the 1D Hubbard model.
The occupied states are the ones that correspond to values of n between n1 and n2.

Wick's theorem

Let us illustrate Wick's theorem by calculating a correlation function which requires its
usage:

A = 〈(1− e†i+1ei+1)(1− e†iei)〉 = 1− 〈e†i+1ei+1〉 − 〈e†iei〉+ 〈e†i+1ei+1e
†
iei〉, (A.8)

where 〈e†iei〉 is the average number of holes per site (m), which simpli�es the above to

A = 1− 2m+ 〈e†i+1ei+1e
†
iei〉. (A.9)

The last term in this equation can be calculated using Wick's theorem, which states that

〈e†αeβe†γeδ〉 = 〈e†αeβ〉〈e†γeδ〉+ 〈e†αeγ〉〈eβe†γ〉. (A.10)

In our case, Wick's theorem transforms A.9 into

A = 1− 2m+ 〈e†i+1ei+1〉〈e†iei〉 − 〈e
†
i+1ei〉〈e

†
iei+1〉, (A.11)

which, denoting the concentration of particles by n = 1−m, �nally becomes

〈(1− e†i+1ei+1)(1− e†iei)〉 = n2 − sin2(πm)

π2
(A.12)
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The Möbius inversion formula

The Möbius function µ(d) can only take 3 distinct values:

µ(d) = 1 ⇐ d = 1
µ(d) = (−1)k ⇐ d is the product of k distinct prime numbers
µ(d) = 0 ⇐ d is divisible by a square number greater than 1

(B.1)

This function is used in the Möbius inversion formula, which is the following proposition:
Let f(n) and g(n) be functions or a natural number n. Then,

f(n) =
∑
d|n

g(d), (B.2)

where d|n denotes "d divides n", if and only if

g(n) =
∑
d|n

µ(d)f(n/d). (B.3)

Likewise, for functions f and g of m natural numbers n1, · · · , nm, it can be shown that

f(n1, · · · , nm) =
∑

d|n1,··· ,nm

g(n1/d, · · · , nm/d) (B.4)

is equivalent to

g(n1, · · · , nm) =
∑

d|n1,··· ,nm

µ(d)f(n1/d, · · · , nm/d). (B.5)
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