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Resumo 
 
 

Tem havido uma preocupação crescente com a qualidade do ar interior (QAI) 
nas escolas em muitos países. Muitos estudos epidemiológicos têm 
encontrado diferenças regionais entre ambientes interiores. Apesar da elevada 
incidência de asma e rinite na população infantil, praticamente nada se sabia 
sobre a QAI em escolas portuguesas. A percepção dos problemas de QAI é 
crucial para avaliar os riscos para a saúde e rendimento dos estudantes, e 
para sugerir meios de reduzir a exposição a poluentes indesejáveis. Neste 
estudo procurou-se obter as concentrações de poluentes de interesse em 
estabelecimentos de ensino do 1º ciclo de Lisboa e Aveiro, estimar o estado 
atual de casos de asma e rinite em escolas primárias da capital, avaliar a 
influência de diferentes materiais das salas de aula/construção e hábitos 
escolares na QAI, identificar potenciais fontes de poluentes nos interiores e 
exteriores das salas de aula e propor medidas mitigadoras. Catorze escolas de 
Lisboa foram visitadas para obter a caracterização física das construções em 
termos de estrutura, ventilação, materiais de acabamento, produtos de 
limpeza, densidade de ocupação e potenciais fontes interiores de poluição. Os 
estudantes foram questionados sobre os seus hábitos e sintomas respiratórios 
através de inquéritos do modelo ISAAC (International Study of Asthma and 
Allergies in Childhood). Durante a primavera, outono e inverno (2008-2010), 
nas salas de aula e pátios, foram monitorizados, por amostragem passiva, 
compostos orgânicos voláteis (COVs), carbonilos e dióxido de azoto (NO2).
Foram também medidos parâmetros de conforto e níveis de microrganismos. 
Duas escolas localizadas, uma no centro da cidade e outra na região 
suburbana, em Aveiro foram estudadas em 2010. Parâmetros de conforto, 
microrganismos, COVs, NO2, material particulado (PM10) foram medidos no 
interior e no exterior de ambas escolas. Os iões solúveis, carbono orgânico e 
elementar (OC e EC), e compostos orgânicos presentes no material 
particulado foram subsequentemente analisados em laboratório. Uma medida 
mitigadora - fitoremediação - foi avaliada na escola do centro da cidade de 
Aveiro em 2011. Os resultados do estudo mostraram que a QAI é pior do que a 
do ar exterior. Em geral, os níveis de CO2 e dos bioaerosóis excederam os 
níveis máximos aceitáveis para o conforto dos ocupantes estipulado pelas 
regulamentações portuguesas. Quase todos os COVs e carbonilos 
identificados mostraram razões interior/exterior (I/E) maiores que uma unidade, 
o que demonstra a importante contribuição de fontes interiores em todas as 
escolas. As razões I/E das concentrações de NO2 nunca excederam a 
unidade. Os níveis interiores diários de PM10 foram sempre maiores que os 
exteriores, exceto nos fins de semana. Após a colocação de plantas numa das
salas de aula, observou-se uma redução estatisticamente significativa nos 
níveis de CO2, COVs, carbonilos, PM10, OC, e dos iões nitrato, sulfato, amónia, 
cálcio e carbonato. A possível redução dos níveis de poluentes no interior após 
a colocação de plantas pode representar uma solução de baixo custo para 
reduzir a exposição a muitos compostos, melhorar o rendimento e aumentar o 
bem estar dos alunos e professores em sala de aula. 
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Abstract 
 

There is a growing concern about indoor air quality (IAQ) in schools in many 
countries. Most epidemiological studies have found significant differences 
among indoor environments from different regions. Despite the high incidence
of asthma and rhinitis in children, virtually nothing was known about the IAQ in
Portuguese schools. The perception of IAQ problems is crucial to assess health 
risks and students’ performance, and to suggest ways to reduce the exposure 
of children to undesirable pollutants. The main purpose of this study was to 
obtain the concentrations of pollutants of interest in Lisbon and Aveiro schools,
to estimate the actual state for asthma/rhinitis in Lisbon’s primary school 
population, to evaluate the influence of outdoor environment on indoor air, to 
evaluate the influence of different classroom/building materials and school 
habits on IAQ, to evaluate the relevance of both indoor and outdoor air quality 
to the incidence of respiratory symptoms and students’ performance, to identify 
potential outdoor/indoor pollutant sources, and to propose mitigation measures.
Fourteen schools of Lisbon city were visited to obtain the physical 
characterisation of the buildings in terms of structure, ventilation, furniture 
materials, cleaning products, occupant density, and potential indoor pollutant 
sources. Students were questioned about habits and respiratory symptoms
through ISAAC (International Study of Asthma and Allergies in Childhood) 
surveys. During spring, autumn and winter seasons (2008-2010), classrooms 
and playgrounds were monitored by volatile organic compound (VOC),
carbonyl and nitrogen dioxide (NO2) passive sampling. Comfort parameters and 
microorganisms were also measured. Two schools located in Aveiro, one at the 
city centre and another on the outskirts of the city, were the target of the study
in 2010. Comfort parameters, microorganisms, VOCs, NO2 and particulate 
matter (PM10) were measured inside and outside of both schools. The soluble 
ions, organic and elemental carbon (OC and EC) and organic compounds in 
particulate matter were subsequently analysed in the laboratory. A mitigation 
measure – phytoremediation - was evaluated at the city centre Aveiro school in 
2011. The results of this study showed that IAQ is worse than outdoor air. 
Generally, the CO2 and bioaerosol levels were higher than the acceptable 
maximum values stipulated by the Portuguese regulations. Almost all identified 
VOCs and carbonyls showed indoor/outdoor (I/O) ratios higher than one, which 
denotes an important contribution from indoor sources at all schools. In 
general, the I/O NO2 ratios never exceeded the unity. The daily indoor PM10

levels were always higher than those outdoors, except on weekends. After the 
placement of potted-plants in one classroom, a statistically significant reduction 
in the levels of CO2, VOCs, carbonyls, PM10, organic carbon, and ions (nitrate, 
sulphate, ammonia, calcium, and carbonate) was observed. The use of plants 
may represent a low-cost solution to reduce exposure to many compounds and 
lifetime risk, and to further improve performance, attendance and welfare of 
students and teachers in classrooms. 
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1. INTRODUCTION 
 
 

1.1 Indoor air quality 

 

 Indoor air quality (IAQ) in enclosed spaces depends on several factors, including 

thermal, acoustic and visual comfort. Both physical and perceptual parameters are 

important in defining a good indoor environment. The IAQ may have a significant 

influence on health, welfare and comfort of occupants, which may impact the performance 

and productivity (Daisey et al., 2003; Paevere et al., 2008; Simoni et al., 2010; Viegi et al,. 

2004). The IAQ is determined by a constant interaction of factors that affect the types, 

levels and importance of pollutants inside the building. In closed environments, IAQ can 

be related to several causes either chemical (e.g. carbon oxides, environmental tobacco 

smoke, formaldehyde, and volatile organic compounds) (Bakke et al., 2008; Dales et al., 

2008; Giulio et al., 2010; OSHA, 2011) or physical (ventilation rate, dampness, 

temperature, and non-ionising and ionising radiation) (Bakke et al., 2008; Giulio et al., 

2010; OSHA, 2011). In addition, IAQ is also related to bioaerosols (bacteria, virus, fungi, 

and toxins from microbial metabolism) (Douwes et al., 2003; Giulio et al., 2010; OSHA, 

2011). 

 Indoor air pollution is the second most important environmental risk factor, after 

unsafe water. It accounts for twice the number of deaths reported from urban outdoor air 

pollution (Singh and Jamal, 2012). An acceptable IAQ is defined as air without 

contaminants at harmful levels and where the majority of people are satisfied. The IAQ 

depends on both the outdoor air quality and on the emissions of indoor sources. Thus, it is 

necessary an entrance of tempered outdoor air and a sufficient quantity of clean air 

(Amissah, 2005). However, each indoor microenvironment is uniquely characterised, and it 

depends on the outdoor air, specific buildings characteristics and indoor activities (Giulio 

et al., 2010; Stranger et al., 2007).  

 The U.S. Environmental Protection Agency (1999) has classified IAQ among the 

top five environmental risks to public health. The IAQ is characterised by physical factors 
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(ambient temperature, humidity, ventilation rate, for example), air pollutant factors 

(pollutant levels and exposure times) and human factors (activities and health status) 

(Bakke et al., 2008; Dales et al., 2008; Giulio et al., 2010; OSHA, 2011; Paevere et al., 

2008). Other factors that contribute negatively to IAQ are poor cleaning practises, poor 

moisture control (water leaks or damp surfaces), human occupancy (odours, respiration) 

and poor building maintenance (Mi et al., 2006; OSHA, 2011; Paevere et al., 2008; 

Salonvaara et al., 2004; U.S. Environmental Protection Agency, 1999). The modern 

construction with better insulation may result in warmer buildings, but more humid houses 

with poorer availability of fresh air by the ventilation (Järnström et al., 2006; Jones, 2000). 

Low ventilation rates have been associated with several health problems, respiratory 

allergies and asthma, like sick building syndrome (SBS) symptoms (Daisey et al., 2003; 

Fraga et al., 2008; Godwin and Batterman, 2007; Griffiths and Eftekhari, 2008; Kim et al., 

2007a; Mi et al., 2006; Seppanen et al., 1999; Shaughnessy et al., 2006; Yang et al., 2009). 

SBS is a situation in which occupants experience health effects (of mucosal, skin, and 

general symptoms) that seem to be linked to time spent in a building, but no specific illness 

or cause can be identified. The complaints may be localised in a particular room or zone, or 

may be widespread throughout the building. These symptoms include headaches, eye, 

nose, and throat irritation, a dry cough, dry or itchy skin, dizziness and nausea, difficulty in 

concentrating, fatigue, and sensitivity to odours. SBS reduces work performance and may 

also decrease the attendance (Burge, 2004; Daisey et al., 2003; Fang et al., 2004; Li and 

Yang, 2004; Rashid and Zimring, 2008; Syazwan et al., 2009; U.S. Environmental 

Protection Agency, 1999; WHO, 2009). 

 In recent years there has been increased interest in indoor pollutants because 

citizens spend more time (about 90%) inside buildings and many studies have showed 

higher levels inside than outside (Godoi et al., 2009; Jo and Seo, 2005; Kotzias et al., 2009; 

Lee and Chang, 2000; Lee et al. 2001, 2002, Li et al. 2001; Pegas et al., 2010; Pegas et al., 

2011a,b; Yang et al., 2009) 

 Indoor pollution sources are the primary cause of a bad IAQ. Insufficient 

ventilation can exacerbate the IAQ problems, since there is not adequate air renewal to 

dilute the indoor pollutant concentrations and there is not a removal of indoor pollutants to 

the outside (Daisey et al., 2003; Griffiths and Eftekhari, 2008; Mi et al., 2006). High 
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temperatures and humidity may also increase levels of chemical compounds and bioaerosol 

(Burge, 2004; Li and Yang, 2004; U.S. Environmental Protection Agency, 2008). 

The main indoor sources include combustion sources (oil, gas, kerosene, coal, 

wood, and tobacco products), building materials and furniture (both new and deteriorated), 

asbestos (used in insulation), carpet, hardwood, plywood, wall paneling, particleboard, 

fiberboard, paints, paint strippers, and other solvents, wood preservatives, aerosol sprays, 

cleansers and disinfectants, moth repellents and air fresheners, stored fuels and automotive 

products, hobby supplies, dry-cleaned clothing, central heating and cooling systems and 

humidification devices (Cerón et al., 2007; Daisey et al., 2003, Guo et al., 2004, Mendell, 

2007; Ugucione et al., 2009; U.S. Environmental Protection Agency, 2008). In some cases, 

the age of a specific source and its conservation status may increase or decrease emissions 

and pollutants that are emitted (Järnström et al., 2006; Yang et al., 2009). Moreover, the 

emissions are variable in length over time. For example, building materials, architectural 

finishes and furniture release pollutants more or less continuously, while cleaning and 

hobby activities, kerosene and gas space heaters, woodstoves, fireplaces, and gas stoves 

release pollutants intermittently. Changes in construction designs in order to conserve 

energy (higher heat and sound insulation, for example) and the increasing application of 

synthetic products have contributed to the enhancement of the number of complaints about 

IAQ at several environments (Järnström et al., 2006; Sundell et al., 1994; Yang et al., 

2004). The application of insulation and energy efficiency measurements has a negative 

effect on air renovation causing the accumulation of harmful compounds to human health 

(Agência Portuguesa do Ambiente, 2009; Brickus and Aquino-Neto, 1999). 

Health effects from a poor IAQ may be experienced during exposure or, possibly, 

years later. Most pollutants to which people are exposed indoors constitute an additional 

risk factor in the development of several pathologies (Daisey et al., 2003; Mendell, 2007; 

Simoni et al., 2010; Singh and Jamal, 2012; Sundell et al., 1994). Immediate effects 

include eyes, nose, and throat irritation, allergic rhinitis, flu-like symptoms, headaches, 

difficulty in concentration, fatigue, dry or itchy skin, difficulty in breathing and nausea 

feeling sick. Symptoms of some diseases, including asthma, wheezing, rhinitis and hay 

fever, may be aggravated by exposure to pollutants (Daisey et al., 2003; Mendell, 2007; 

U.S. Environmental Protection Agency, 2008). Long term-effects include respiratory 



 6 

diseases, heart disease, and cancer, which can lead to death (Bernstein et al., 2008; 

Guieysse et al., 2008; Jie et al., 2011; Rios et al.; 2009; Samet and Spengler, 2003). 

 

1.2 Guidelines for indoor air quality 

 

 Many of the regulations for IAQ are incomplete and fragmented. Some institutions 

or groups have introduced general specifications and/or guidance notes addressing IAQ 

issues. This section tries to summarise some recommendations for acceptable indoor air 

quality levels for the main indoor pollutants, such as carbon dioxide (CO2), carbon 

monoxide (CO), particle matter < 2.5 µm (PM2.5), particle matter < 10µm (PM10), ozone 

(O3), nitrogen dioxide (NO2), microorganisms, volatile organic compounds (VOCs), 

formaldehyde, and polycyclic aromatics hydrocarbons (PAHs). 

In the United States of America, the Occupational Safety and Health Act of 1970 

created both the Occupational Safety and Health Administration (OSHA) and the National 

Institute for Occupational Safety and Health (NIOSH). OSHA was created to assure safe 

and healthful working conditions. The standards were developed through a formal rule-

making process, and the limits can only be changed by reopening this process. It does have 

standards about ventilation and standards on some of the air contaminants that can be 

involved in IAQ problems. NIOSH is the federal agency responsible for researches and 

recommendations for the prevention of work-related injury and illness. It helps to assure 

safe and healthful working conditions for working men and women by providing research, 

information, education, and training in the field of occupational safety and health. It 

recommended maximum exposures for industrial environments, but these 

recommendations are not reviewed regularly, and in some cases levels are set above those 

needed for health reasons, because commonly available industrial hygiene practices do not 

reliably detect substances at lower levels. Also created in 1970 in the USA, the 

Environmental Protection Agency (EPA) is an organisation of the federal government 

which was created with the purpose of protecting human health and the environment by 

writing and enforcing regulations. EPA does not have regulations or standards related to 

IAQ, but has been developing guidance documents. The National Ambient Air Quality 
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Standards (NAAQS) developed by EPA have standards for outdoor air quality, but they are 

also applicable to indoor air contaminant levels. The concentrations are set conservatively 

in order to protect the most sensitive individuals, such children, the elderly, and those with 

asthma. The American Society of Heating, Refrigerating, and Air-Conditioning Engineers 

(ASHRAE) in its documents “Ventilation for Acceptable Indoor Air Quality” (ASHRAE 

62-2001) and “Thermal Environmental Conditions for Human Occupancy” (ASHRAE 55-

2004) promulgated standards, which are currently adopted not only in the USA, but also in 

other regions of the world. The American Council of Governmental Industrial Hygienists 

(ACGIH) is a member-based organisation dedicated to the industrial hygiene and 

occupational health and safety industries. Their guidelines are applicable for normal 

industrial working conditions (40 hours per week), and for single contaminant exposure. 

These recommendations are guidelines, rather than enforceable standards, and are not 

selected to protect the most sensitive people. These guidelines were developed in 1987 and 

updated in 1999. They are intended for application to both indoor and outdoor exposures, 

but are guidelines rather than an enforceable standard. The Canadian Occupational Safety 

and Health Regulations (COSHR) established requirements for maintaining a healthy and 

safe working environment. COSHR requires that indoor contaminant concentrations be 

kept within the limits set by the ACGIH. The World Health Organisation (WHO) Office 

for Europe, based in Denmark, developed guidelines to be used in non-industrial settings.  

The Portuguese Legislation lays on some rules for IAQ, defined by the National 

System for Energy and Indoor Air Quality Certification of Buildings (Regulamento dos 

Sistemas Energéticos de Climatização de Edifícios - RSECE, Decree-Laws 78/2006 and 

79/2006). This set of laws establishes a technical note with the methodology to the audit of 

IAQ in buildings. To perform an audit, the following tasks are necessary: i) gathering all 

relevant information about the building (plans, description of the ventilation system, 

special areas, number of occupants, registration of complaints and symptoms); ii) 

preliminary visit to the building (verify the accuracy and update the information given by 

the owner, gather additional information, interviews with occupants); iii) check the CO2 

levels inside and outside the building (near the air intakes, like windows, balconies or 

external openings of the ventilation system); and iv) pre-assessment of hygiene and 

maintenance of heating, ventilation and air conditioning (HVAC) system, when it exists 

(RSECE, 2006). 
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 PM10 represent particles of any substances that are less than or equal to 10 

micrometres diameter. Particles in this size range make up a large proportion of dust that 

can be drawn deep into the lungs. Respirable particulate matter is released from a wide 

range of biogenic and anthopogenic sources. Continuous exposure to PM10 contributes to 

the risk of developing cardiovascular and respiratory diseases, as well as of lung cancer 

(Sloan et al., 2012). The World Health Organisation has set a guideline of 20 µg m-3 for the 

annual mean. A threshold of 150 µg m-3 for indoor PM10 without a temporal base has been 

established by the Portuguese Legislation (RSECE, 2006).  

Indoor CO2 levels are an indicator of the adequacy of outdoor air ventilation 

relative to indoor environment. The National System for Energy and Indoor Air Quality 

Certification of Buildings establishes an acceptable maximum value of 1800 mg m-3 of 

CO2 for buildings in Portugal (RSECE, 2006). This measurement is useful to know if the 

confined space meets reference concentration to ensure the welfare of the occupants and 

comply with the ventilation rates recommended by RSECE (8.33 l s-1 per person). The 

minimum value recommended by the ANSI/ASHRAE Standard 62-1999 is only 2.5 l s-1 

per person.  

Acute exposure to CO, a pollutant resulting from combustion processes, is related 

to reduction of exercise tolerance and increase in symptoms of ischaemic heart disease 

(WHO, 2009). At lower levels of exposure, CO causes mild effects that are often mistaken 

for the flu. These symptoms include headaches, dizziness, disorientation, nausea and 

fatigue. The effects of CO exposure can vary greatly from person to person depending on 

age, overall health and the concentration and length of exposure. While the WHO has sets 

limits for CO concentrations in accordance with the exposure period, RSECE only 

establishes an acceptable maximum value.  

Ozone at ground level is formed by the reaction in the presence of sunlight 

(photochemical reaction) of pollutants such as nitrogen oxides (NOx) from vehicle and 

industry emissions and biogenic VOCs or emitted by vehicles, solvents and industry. The 

highest levels of ozone pollution occur during periods of sunny weather. High ozone 

concentrations may cause breathing problems, trigger asthma, reduce lung function and 

cause lung diseases (WHO, 2010). The Portuguese legislation establishes a limit of 200 µg 

m-3 without specifying further conditions for ozone exposure.  
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Formaldehyde is, in general, the most abundant carbonyl compound in indoor air. 

This volatile compound is released from a variety of sources, including building materials, 

consumer products and furniture. It is classified as a human carcinogen by the International 

Agency for Cancer Research (IARC). Exposure to moderate levels of formaldehyde 

(hundreds of ppb or greater) can cause a number of irritant symptoms, including temporary 

burning of the eyes or nose, and a sore throat. RSECE has set a limit of 0.1 mg m-3 without 

further information about the duration of exposure (RSECE, 2006). The formaldehyde 

guideline (30 min average) recommended by WHO was target in order to prevent effects 

on lung functions, as well as nasopharyngeal cancer and myeloid leukaemia (WHO, 2009). 

Among all VOCs, benzene, toluene, ethylbenzene and xylenes (BTEX) are of 

particular interest due to their known carcinogenic effects. It has been demonstrated that 

vehicular emissions and industrial sources are the major sources of ambient BTEX, while 

the indoor sources are quite numerous (e.g. combustion by-products, cooking, construction 

materials, furnishings, paints, varnishes and solvents). Benzene is a genotoxic carcinogen 

in humans and, according to WHO, no safe level of exposure can be recommended. The 

risk of toxicity from inhaled benzene would be the same whether the exposure were 

indoors or outdoors. Thus there is no reason that the guidelines for indoor air should differ 

from ambient air guidelines (WHO, 2010). RSECE establishes a target of 600 µg m-3 for 

total VOCs in indoor environments (RSECE, 2006).  

Also among VOCs, chlorinated compounds (e.g. trichloroethylene and 

tetrachloroethylene) have received increasing attention. Trichloroethylene (TCE) is 

primarily used as a solvent to remove grease from metal parts. As a solvent or as a 

component of solvent blends, it is used in adhesives, lubricants, paints, varnishes, paint 

strippers, carpet shampoos and waterproofing agents. Consumers may be exposed to 

trichloroethylene when using products containing the substance, especially if there is not 

good ventilation. Because TCE is used in many consumer products, short-term indoor 

concentrations may be elevated above the levels considered safe. Exposure to moderate 

amounts of TCE may cause headaches, loss of balance, and tremors. Larger exposures will 

cause dizziness or sleepiness, and at very high levels may cause unconsciousness. Very 

large exposures may cause irreversible cardiac problems, nerve and liver damage, and 

death. TCE is mildly irritating to the eyes, nose and throat. Chronic (long-term) exposures 
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to TCE have been shown to cause nausea, intolerance to fatty foods, respiratory irritation, 

renal (kidney) toxicity, and immune system depression (DSEWPC, 2001). IARC has 

classified TCE as a probable human carcinogen. WHO (2010) reported an unit risk 

estimate of 4.3 × 10–7 per µg m-3. The concentrations of airborne TCE associated with an 

excess lifetime cancer risk of 1:10 000, 1:100 000 and 1:1 000 000 are respectively 230, 23 

and 2.3 µg m-3 (WHO, 2010). Tetrachloroethylene, also known as perchloroethylene 

(PERC), is used in the dry-cleaning industry. It can be added to solvent soaps, printing 

inks, adhesives, sealants, polishes, lubricants and silicones. Consumers may be exposed to 

PERC when using consumer products containing the compound, by spending time in dry-

cleaning facilities or by bringing dry-cleaned clothes into their homes. In high 

concentrations, in air, with closed or poorly ventilated areas, single exposures to PERC 

may cause central nervous system effects (DSEWPC, 2001). PERC was classified as a 

probable human carcinogen by IARC. Carcinogenicity was not selected by WHO as the 

end-point for setting the guideline value for three reasons: the epidemiological evidence is 

equivocal, the animal tumours detected are not considered relevant to humans, and there 

are no indications that PERC is genotoxic. Based on studies of dry cleaning workers, the 

lowest level for which adverse effects on kidneys are observable after long-term exposure 

was considered to be 102 mg m-3, while a minimal risk level of 0.28 mg m-3 has been 

estimated for chronic inhalations (WHO, 2010). Based on these outcomes, WHO set an 

annual average of 0.25 mg m-3. Naphthalene is the most volatile PAH. Most airborne 

emissions result from combustion, and key sources include industry, open burning, tailpipe 

emissions, and cigarettes. The second largest source is off-gassing, specifically from 

naphthalene’s use as a deodoriser, repellent and fumigant. Exposure to naphthalene has 

been linked to a number of adverse health effects. The major non-cancer endpoints are 

hyperplasia and metaplasia in respiratory and olfactory epithelium, respectively, and the 

cancer endpoint of concern are nasal tumors (Jia and Batterman, 2010). Is has been 

classified as possibly carcinogenic to humans by IARC. A guideline of 0.01 mg m-3 

(annual average) has been recommended by WHO. This value was assumed to prevent 

potential malignant effects in the airways.  

PAHs are combustion products that constitute a large group of organic compounds 

with two or more benzenic rings. Low-molecular-weight PAHs (two and three rings) occur 

predominatly in the vapour phase, whiles five or more ringed PAHs are largely bound to 
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particles. Benzo[a]pyrene (B[a]P) is often used as a marker for total exposure to 

carcinogenic PAHs, as the contribution of B[a]P to the total carcinogenic potential is high. 

According to WHO (2010), no threshold can be determined and all indoor exposures are 

considered relevant to health. The unit risk for lung cancer for PAH mixtures is estimated 

to be 8.7 × 10–5 per ng m-3 of B[a]P. The corresponding concentrations for lifetime 

exposure to B[a]P producing excess lifetime cancer risks of 1/10 000, 1/100 000 and 1/1 

000 000 are approximately 1.2, 0.12 and 0.012 ng m-3, respectively. 

NO2 is a pollutant associated with combustion sources. It is an irritant gas and can 

increase susceptibility to airway infections and impair lung function in exposed 

populations. Short-term human controlled exposure experimental studies indicated minor 

changes in pulmonary function in people with asthma exposed to 560 µg m-3 nitrogen 

dioxide for up to 2½ hours. Small increases in airway reactivity to a range of stimuli in 

asthmatics at repeated short exposures to 500 µg m-3 were also observed. Meta-analysis of 

studies on association of lower respiratory illness in children showed that an increase in 

indoor nitrogen dioxide of 28 µg m-3 above the background of ca. 15 µg m-3 can be 

associated with a 20% increased risk of lower respiratory illness in children (WHO, 2010). 

A 1-hour indoor nitrogen dioxide guideline of 200 µg m-3 was recommended by WHO. No 

standard is provided in the Portuguese legislation. 

 Bacteria found in indoor environments typically come from human sources (skin 

and respiration) or from the outdoors. Like mould, most of the bacteria found in the air in 

buildings are saprobes, meaning they grow on dead organic matter. As far as building 

envelopes are concerned the primary preoccupation is about bacteria colonies that may 

grow in damp areas. Exposure to bacterial and mould may cause allergic reactions, asthma, 

and other respiratory complaints, excluding pathogenic bacteria that trigger specific 

diseases. The Portuguese legislation establishes an indoor limit of 500 colony forming 

units per cubic meter (CFU m-3) for the levels of both bacterial and fungal populations 

(RSECE, 2006).  

 A summary of IAQ guidelines for selected pollutants comparing RSECE, 

WHO/Europe, NAAQS/EPA, OSHA/ASHRAE, NIOSH, ACGIH and COSHR. is shown 

in Table 1.1. 
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Table 1.1. Summary of IAQ guidelines for selected pollutants: RSECE, WHO/Europe, 
NAAQS/EPA, OSHA/ASHRAE, NIOSH, ACGIH and COSHR. 
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1.3 Indoor air quality in schools 

 

 The increased traffic and industrial emissions caused an increased concern about 

outdoor air quality in the last 50 years. At the same time, studies have shown that citizens 

spend most of their time in buildings and are far more exposed to pollution indoors than 

outdoors (Blondeau et al., 2005; Rodrigues, 2008; Yu et al., 2009). Schools constitute a 

particular indoor environment because children represent a special susceptible group of the 

population (Geller et al., 2007). In an extensive review work, Mendell and Heath (2005) 

concluded that school IAQ need to be studied with the aim of finding connections between 

pollutants and performance or attendance, due to two main reasons: schools normally have 

environmental deficiencies since chronic shortages of funding contribute to inadequate 

operation and maintenance of facilities; and children have greater susceptibility to 

pollutants than adults because they breathe higher volumes of air relative to their body 

weights and their organs are actively growing. Moreover, children are less likely than 

adults to comprehend and clearly communicate their symptoms. 

Levels of specific contaminants in indoor air may be significantly higher than 

outdoors. Contaminants found at increased levels indoors include formaldehyde, VOCs, 

moulds and bacteria, PM, CO, CO2 and NO2 (Godish, 1989). Many indoor sources can 

contribute to indoor air pollution in a school, as shown in Figure 1.1.  
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Figure 1.1. Examples of indoor pollutant sources in a school. 

 

Students, teachers, and other staff members need a healthy and comfortable indoor 

environment in schools, because poor IAQ may lead to discomfort or illness, which may 

reduce productivity, attendance and academic performance. The control of IAQ in a school 

is a special problem due to the fact that students and teachers often work more closely 

together in classrooms than people in typical office buildings. In addition, approximately 

four times more people may occupy a given area of floor in a school classroom as than in 

an office (U.S.EPA, 1999). Thus, there is a growing concern about IAQ in schools in many 

countries.  

Most studies in schools have been performed in northern Europe (Kim et al., 

2007a,b; Zhao et al., 2006), USA (Godwin and Batterman, 2007; Shaughnessy et al., 2006) 

and China (Kim et al., 2007b, Mi et al., 2006; Zhao et al., 2006). Significant differences 

among indoor environments from different regions have been found (Mi et al., 2006; Zhao 

et al., 2006). Data are needed on air quality in schools, since children are assumed to be 

more vulnerable to health hazards and spend a large part of their time in classrooms (Bayer 

et al., 2000). 
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Daisey et al. (2003) compiled information about IAQ and health problems in 

schools. Generally, the CO2 concentrations in schools indicated inadequate air exchange 

rates, since the CO2 measurements (above 1000 ppm) do not meet the ASHRAE Standard 

62-1999 for minimum ventilation rate (Blondeau et al., 2005; Brennan et al., 1991; Casey 

et al., 1995; Fisher et al., 1994; Fromme et al., 2007; Griffiths and Eftekhari, 2008; Lee 

and Chang, 2000; Madureira et al., 2009; Menzies et al., 1993; Milton et al., 2000; Nielsen 

et al., 1984; Norback, 1995; Smedje et al., 1996, 1997; Thorne, 1993; Turk et al., 1987, 

1989, 1993; Willers et al., 1996). Fromme et al. (2007) performed a study in 64 schools in 

Munich and a neighbouring district outside the city boundary during the winter of 2004 

and 2005 and found correlations between high CO2 levels, inadequate ventilation, 

occupancy rates and poor IAQ. The accumulations of pollutants and poor ventilation rates 

have been related to asthma and allergies commonly reported by students and teachers 

(Bornehag et al., 2004, 2005; Seppanen et al., 1999; Sundell et al., 1994). Wargocki et al. 

(2000) observed that increasing ventilation decreased the percentage of subjects 

dissatisfied with the air quality and the intensity of odour, and increased the perceived 

freshness of air. It also decreased the sensation of dryness of mouth and throat, eased 

difficulty in thinking clearly and made subjects generally better.  

Chaloulakou and Mavroidis (2002) investigated indoor and outdoor CO 

concentrations in Greek schools. The outdoor CO levels were higher than indoors. 

However, indoor CO concentrations were higher during winter than during summer, 

showing a variation dependent on the season. Rundell et al. (2006) and Ali and Athar 

(2008) studied schools in different traffic locations and also found higher CO levels 

outdoor. On the other hand, Chen et al. (2000) reported an increase of 3.79% absence rate 

for increases of 1 ppm in indoor CO concentrations, in elementary schools (Chen et al., 

2000). 

Persuasive evidence links higher indoor NO2 concentrations to reduced school 

attendance (Ali and Athar, 2008; Brunekreef et al., 1997; Janssen et al., 2001, 2003; Mi et 

al., 2006; Peacock et al., 2003; Pénard-Morand et al., 2005; Piloto et al., 1997; Singer et 

al., 2004; Van Roosbroeck et al., 2007; Wargocki and Wyon, 2007). A well-designed study 

on the effects of emissions from gas heaters in both school and home settings reported a 
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significant dose-response relationship with increasing NO2 exposure for increased rates of 

sore throat, colds and absences from school (Pilotto et al., 1997). 

Few measurements of speciated VOCs in schools are reported in the literature. 

Most studies have been focused on total VOCs (Bayer and Dowing, 1992; Black and 

Worthan, 1995; Casey et al. 1995; Cavallo et al., 1993; Norback, 1995; Smedje et al., 

1996). Black and Worthan (1995) reported total VOC concentrations of 0.45 and 0.2 mg 

m-3 under occupied and unoccupied conditions for a school in Washington State. In two 

US schools with humidity and mould problems, the total VOC levels ranged from 1 to 23 

mg m-3 (Bayer and Dowing, 1992). A cross-sectional study in Swedish secondary schools 

performed by Smedje et al. (1996) reported a loss in student performance due to IAQ 

problems related to multiple indoor exposures and conditions, including the high 

concentrations of total VOCs. Huang et al. (2008) measured indoor and outdoor 

concentration of 82 VOCs in one elementary school in Beijing. They found that total 

VOCs were higher inside the school than at playgrounds. The chemical speciation of 

indoor VOCs was similar to the outdoor air. The most common species of VOCs found 

were isopentane, benzene, propanal, propene and dichloromethane. Madureira et al. (2009) 

characterised the IAQ in Oporto schools to evaluate cases of health symptoms reported by 

teachers and to study the impact of pollutants on the prevalence of these symptoms. The 

results showed that schools near heavy traffic roads had higher concentrations of benzene 

and toluene. In Turkish schools, Sofuoglu et al. (2011) evaluated VOCs indoors and 

outdoors. Benzene and toluene were the most abundant compounds, followed by 

naphthalene and xylenes.  

Two controlled exposure studies evaluated the effects of a mixture of 22 VOCs on 

sick-building syndrome patients relative to asymptomatic controls (Kjaergaard et al., 1991; 

Mǿlhave et al., 1986). Along with increasing symptom reports of irritation with increasing 

VOC exposure (0, 5, 25 mg m-3), Mǿlhave et al. (1986) reported reduced performance on 

digit span among SBS subjects. This finding was not replicated, however, when this study 

was conducted with young, healthy male subjects. Kjaergaard et al. (1991) also found 

impaired digit span performance in SBS-sensitive subjects but not among non-SBS 

subjects with exposure at 25 mg m-3 VOC mixture, which is roughly equivalent to 7 ppm 

toluene. Otto et al. (1992) suggested that differential effects may be due to differential 
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sensitivity of the subject groups as well as relative insensitivity of many of the current 

neurobehavioural methods. Nasal swelling, congestion, inflammation, irritant symptoms 

(nose, throat, eyes and skin) and other symptoms typical of SBS are related to VOC 

exposure (Gyntelberg et al., 1994; Madureira et al., 2009; Mǿlhave et al., 1986; Sundell et 

al., 1993; Willers et al., 1996). 

The first measurements of formaldehyde in schools were reported by Olsen and 

Dossing (1982). They measured formaldehyde in 10 Danish daycares centres. The average 

formaldehyde concentration for mobile buildings was 0.35 ppm, while the level for 

permanent buildings was 0.065 ppm. Health symptoms were three times more frequent 

among the staff in the mobile buildings than permanent buildings. Black and Worthan 

(1995) reported formaldehyde concentrations of 0.01 ppm e before and during occupancy 

in a complaint school of Washington State after the adoption of mitigation measures. 

Formaldehyde concentrations for 10 schools in Milan, Italy (Cavallo et al., 1993) and 10 

schools in Paris, France (Laurent et al., 1993) were at or near 0.05 ppm. Both studies 

reported a relationship between irritation and formaldehyde exposure. High concentrations 

of formaldehyde were related to a significant prejudice in mental performance in 627 

Swedish secondary school students (Smedje et al., 1996). Sodré et al. (2008) evaluated the 

main carbonyls at indoor public spaces, including 6 classrooms. Formaldehyde levels 

ranged from 12.4 to 1034 mg m-3. Levels were above the threshold limit of OSHA in 49 of 

the 50 analysed samples. Acetaldehyde and acetone were below the limits in all samples. 

Formaldehyde was one of the most abundant pollutants measured indoors and outdoors of 

three Turkish schools during spring, autumn and winter (Sofuoglu et al., 2011). 

Formaldehyde was either the highest concentration compound among those measured in 

this study or was at comparable levels with toluene and benzene. The mean and median 

concentrations were all close and ranged from 19 to 55 µg m-3. The most pronounced 

difference among the three schools in formaldehyde concentrations were observed in fall 

campaign (the difference between two of the schools was 36 µg m-3), while the gap was not 

as wide in winter (14 µg m-3) and spring (8 µg m-3). Health outcomes like lung 

inflammation, nasal, throat, eyes, skin irritations, SBS symptoms and cancer are related to 

formaldehyde exposure (Franklin et al., 2000; Norback et al., 2000; Pazdrak et al., 1993; 

Samet et al., 1988; Sundell et al., 1993; Wantke et al., 1996). 
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Several studies have reported that exposure to bioaerosol (diverse variety of agents 

from biological sources) in indoor environment is often associated with allergies, asthma, 

rhinitis, hypersensitivity pneumonitis and SBS symptoms (Beaumont, 1988; Dales et al., 

1991; Li and Hsu, 1997; Meyer et al., 2002; Norback et al., 2000; Roponen et al., 2002; 

Siersted and Gravensen, 1993; Sigsgaard et al., 2002). Reported microbiological 

contaminants included allergens in deposited dust, fungi, and bacteria. Levels of specific 

allergens were sufficient to cause symptoms in allergic occupants (Norback et al., 2000; 

Roponen et al., 2002; Sigsgaard et al., 2002). There is evidence that low ventilation rates, 

occupant density, and high humidity level can lead to increased airborne microorganisms 

in classrooms (Brundage et al., 1998; Fisk et al., 2001; Smedje et al., 1996). Many studies 

report airborne bacteria measurements ranging from 7 to 19500 CFU m-3 (Bates and 

Mahaffy, 1996; Black and Worthan, 1995; Cousins and Collett, 1989; Gallup et al., 1993; 

Maroni et al., 1993; Meklin et al., 1996; Mouilleseaux et al., 1993; Thorne, 1993). 

The studies investigating causal relationships between health symptoms and 

exposures to specific pollutants suggest that such symptoms in schools are related to bad 

ventilation and exposures to allergens, VOCs, formaldehyde, moulds and microbial VOCs 

(Mi et al., 2006; Taskinen et al., 2002).  

Little is known about the characterisation of PM found inside the classrooms. The 

increased PM concentrations in schools could be from the students’ physical activity that 

contributes to a constant process of resuspension of sedimented particles, from their owner 

class activities, from skin desquamation or clothing, and from outdoor sources (Brunekreef 

et al., 1997; Diapouli et al., 2008; Ekmekcioglu and Keskin, 2007; Fromme et al., 2007; 

Janssen et al., 2003; Lee and Chang; 2000; Peacock et al., 2003; Pénard-Morand et al., 

2005;. Richmon-Bryant et al., 2009; Van Roosbroeck et al., 2007). Brunekreef et al. (1997) 

studied 13 schools located 35 – 645 m from a motorway. The PM10 levels ranged from 

6.73 to 20.8 µg m-3 in schools farthest from the road, and from 9.20 to 32.8 µg m-3 in 

schools nearest from the road. Lee and Chang (2000) found PM10 concentrations above the 

acceptable maximum values stipulated by the local legislation at five schools in Hong 

Kong. Branis et al. (2005) studied the effects of outdoor air and human activities in PM10, 

PM2.5 and PM1 concentrations in Prague schools. The results confirmed that human 

activities are an important factor for high indoor particulate levels and that outdoor 
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concentrations influence the indoor environment. Five elementary schools in Istanbul, 

Turkey, showed PM10 levels varying from 27.9 to 289 µg m-3 according to the traffic 

intensity (Ekmekcioglu and Keskin, 2007). In 64 schools in Munich, Fromme et al. (2007) 

observed indoor PM concentrations lower in the summer and twice higher during the 

winter. The high occupants’ number associated with the small size of classrooms and poor 

ventilation contributes to increased concentrations of PM in the winter. Seven primary 

schools in Athens, Greece, have been reported to present higher indoor PM10 (229 µg m-3) 

than outdoor levels (166 µg m-3) (Diapouli et al., 2008). 

Mejía et al. (2011) compiled information about data collection, analysis and health 

effects of air pollutants in school children. The compilation has demonstrated that indoor 

normally exceed outdoor levels and that IAQ is affected by the penetration of outdoor 

pollutants, wall absorption, emissions from furniture and other materials, level and length 

of occupancy, quality of ventilation, and resuspension by children movement around 

during their school day. The study also points to the fact that there is strong evidence that 

low socioeconomic level is highly correlated with the proximity of the school to pollution 

sources.  

An increase in the prevalence of asthma and rhinitis has been documented in the 

last decades in Europe. For many reasons shown before, school population is a susceptible 

group, and there are evidences on the potential detrimental role to health of a variety of 

indoor pollutants that can be found in classroom environments. Recently, many European 

projects have been carried out to characterise indoor and outdoor environments, possible 

pollutant sources and relationships between pollutants and health in schools. 

Various IAQ problems in schools from European countries, a lack of standardised 

methodologies, and an absence of studies on consequences to health or on the effect of 

different local policies regarding school buildings were reported by the European 

Federation of Allergy and Airways Diseases Patients Associations (EFA, 2002). 

Several common IAQ problems in schools were detected by a preliminary study 

conducted by the HESE (“Health Effects of Schools Environment”) project, mainly 

inadequate ventilation (Ciarleglio et al., 2006a; Norback et al., 2006). This study also 

encountered a lack of preparation of educators and officials to deal with environmental 



 20 

issues and health problems of more sensitive students, such as asthmatics and allergy-

suffers (Ciarleglio et al., 2006b).  

In 2008, the “European Indoor Air Monitoring and Exposure Assessment Project” 

(AIRMEX) evaluated the exposure to indoor air chemicals and possible health risks, 

mainly the effect of VOCs (aromatics, carbonyls, and terpenoids) on human health. Many 

measuring campaigns were performed in public buildings (town halls, guild halls), schools 

and kindergartens in various cities from Southern and Central Europe. It was concluded 

that personal exposure concentrations are higher than the indoor (generally twice times) or 

outdoor (significantly higher) concentrations (Geiss et al., 2011; Kotzias, 2005; Kotzias et 

al., 2009). In most cases, indoor pollutant concentrations were higher at homes than at 

public buildings and school/kindergartens, probably because there are stronger indoor 

sources at dwellings (Geiss et al., 2011; Kotzias et al., 2009). From investigations using 

microarray-based gene expression profiling (toxicogenomics), it was concluded that 

toluene, benzene and other single aromatic compounds in indoor air enhance non-

carcinogenic responses, such as inflammation (Kotzias et al., 2009). Key findings highlight 

the need for further research to assess the burden of indoor air pollution at schools and 

kindergartens in Europe. 

The “School Environment and Respiratory Health of Children” (SEARCH) 

constituted a research project implemented within the international frameworks of the EU 

Action Plan on Environment and Health; and the World Health Organisation's Children’s 

Environment and Health Action Plan for Europe. The first phase of the SEARCH project 

(2006–2009) led to the creation of a comprehensive environment and health database 

through assessments in selected European countries. Stakeholders and experts requested a 

follow-up project to continue the valuable research activities. SEARCH II was developed 

in order to expand the monitoring of children’s health and air quality. This follow-up 

project included the design of environment and health capacity-building programmes for 

school staff and training for local implementation strategies. Four new countries, Belarus, 

Kazakhstan, Tajikistan and Ukraine, have joined the SEARCH I participants Albania, 

Bosnia and Herzegovina, Hungary, Italy, Serbia and Slovakia. The project contributed to 

the European legal and policy framework for sustainability in schools, since children’s 

health and educational potential depend on the quality of the school environment. 
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Classrooms painted with water-resistant paints presented great levels of benzene, xylenes 

and ethylbenzene, and the occupants of these classrooms showed more prevalence of 

allergies. The presence of new furniture was related to high ethylbenzene and xylene 

concentrations. Classrooms with carpets on the floor showed increased VOC and NO2 

levels, which were related to students woken by wheezing at night. Schools located near 

heavy traffic and/or industry areas had an adverse effect on children exposure. An elevated 

number of students in a classroom were associated with higher CO2 and PM10 levels. 

Insufficient ventilation during the class period was related to increased levels of CO2 and 

formaldehyde and a high number of chronic bronchitis and asthma cases (Csobod et al., 

2010). Recommendations were made for improving the school environment, buildings and 

energy consumption based on an analysis of data from the 10 countries.  

The “Binnenlucht in Basisscholen” – BiBa project (Dutch acronym for indoor air in 

primary schools) evaluated IAQ in classrooms of thirty Flemish primary schools. The 

assessment included classroom inspections, measurements of ventilation rates, relative 

humidity, temperature, and medical tests for respiratory function in more than 1500 

children, and measurement of exposure to chemical pollutants, such as PM2.5, PMx, 

benzene, toluene, tetrachlorethene, ethylbenzene, xylenes, 1,2,4-triethylbenzene, total 

VOCs, formaldehyde, acetaldehyde, and total other aldehydes. A very high variability in 

concentrations among classrooms was observed, BiBa concluded that concentrations of 

many chemicals were much higher indoors than outdoors. Formaldehyde, benzene, total 

VOCs, CO2 and other parameters often exceeded the Flemish indoor environment 

guidelines (Stranger et al., 2010). 

The project “Health Effects of Indoor Pollutants: Integrating Microbial, 

Toxicological and Epidemiological Approaches” (HITEA) has been studying the 

relationship between the role of biological agents present in indoor air and long term 

respiratory, inflammatory and allergic health impacts among children and adults. HITEA 

focused on many indoor exposures and factors, like allergens, chemicals, cleaning agents, 

traffic exhaust and poor ventilation, but the main objective focused on microbial exposures 

due to dampness and moisture problems of buildings. Other important objective of this 

project was to propose new approaches to characterise indoor biological exposures, by 

using novel methods to measure airborne exposure and by characterising the house dust for 
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its in vitro toxicity, inflammatory properties and microbial toxin content. The HITEA has 

already tested if exposure to endotoxin could be associated with increased respiratory 

symptoms and injury in lung function in adults. Bakolis et al. (2012) found endotoxin 

levels varying from 0.1 to 402.6 EU mg-1. However, there was no evidence of cause-effect 

of endotoxin exposure and lung function problems. 

The “Large Analysis and Review of European housing and health Status” (LARES) 

project evaluated relationship between housing and health focusing indoor air pollution, 

the effect of cold homes and dampness, noise effects, and domestic accidents. The LARES 

project achieved a more comprehensive understanding of housing and health in the WHO 

European region. The WHO/LARES concluded that the main features of housing 

impacting health were often related to thermal comfort, indoor air quality (dampness, 

moulds, indoor emissions, infestations, and others), noise, home safety, and social and 

physical quality of the housing (WHO, 2007). This study corroborates the importance of 

studying the indoor school environment since it is the second place where children spend 

more time, after their homes. 

The project “Schools Indoor Pollution and Health: Observatory Network in 

Europe” (SINPHONIE) is currently ongoing with a special focus on schools and childcare 

centres. Thirty-eight environment and health institutions from 25 countries have been 

involved in SINPHONIE tasks. This study aims at capitalising on the existing knowledge 

and information and taking this opportunity to extend the spectrum of information 

available covering the new and some assessing countries through a standardised procedure 

in order to be able to produce a set of policies, guidelines and good practices manual that 

assure the best indoor environment for children in schools within the European Union. In 

Portugal, six elementary schools and two kindergartens has been studied in Aveiro and 

Oporto cities.  

In Portugal, the “Health and The Air We Breathe” (SaudAR) studied the relation 

between outdoor and indoor air quality and human health in Viseu city. The study region 

was characterised in terms of air quality, economical and social development and 

population health. Two different populations of children with wheezing symptoms were 

compared, but no differences were found concerning the prevalence of wheezing 

(Neuparth et al., 2006). The SaudAR project pointed out that state of buildings and 
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ventilation are one of the major problems in schools. In the frame of SaudAR study, 

Valente (2010) evaluated IAQ at 4 schools in the city of Viseu, Portugal, during the 

summer and winter of 2006 and 2007. The PM concentrations ranged according to the 

season. Values were higher in summer. PM concentrations were higher indoors than 

outdoors. The low levels observed during weekends suggested that higher PM 

concentration during week days are related to human activities. 

Portugal participated in the International Study of Asthma and Allergies in 

Childhood Program (ISAAC) in 1993. The ISAAC program was created in 1991 with the 

aim to assess the prevalence and progression of asthma and allergic diseases, using a 

standardised written questionnaire, translated and adapted to several languages, including 

Portuguese (Asher et al., 1995). The survey questionnaire was distributed to students 

between 13 and 14 years old in five geographic areas (Lisbon, Oporto, Coimbra, Funchal 

and Portimão). In Lisbon, Funchal and Portimão, 6 and 7 years old children were also 

questioned (Pinto et al., 2006; Trindade, 1999). This study pointed to significant regional 

differences in terms of prevalence of respiratory symptoms, recommending further studies 

to define evolutionary trends and identify risk factors. Khan et al. (2007) applied an 

adapted version of the ISAAC questionnaire to 995 children in 2006. This survey study 

was compared with the results, interpretations and correlations obtained in the ISAAC 

2002 programme, which questioned 2484 children from 6 to 7 years of age from the basic 

schools of Lisbon, fromNovember 2002 till March 2003. It was observed a decrease for 

wheeze and rhinitis and an increase for asthma between the ISAAC studies in 2002 and 

2006.  

Fraga et al. (2008) evaluated the association between the IAQ in Oporto schools 

and the prevalence of allergic and respiratory symptoms in adolescents. High CO2 

concentrations were associated with greater respiratory symptoms. Madureira et al. (2009) 

characterised the IAQ in Oporto schools to evaluate cases of health symptoms reported by 

teachers and to study the impact of pollutants on the prevalence of these symptoms. CO2 

concentrations exceeded the reference values and the increasing of PM concentrations was 

associated with the use of chalk.  

As far as it is known, an extended characterisation of the IAQ in elementary 

schools in Lisbon and Aveiro has not been performed before. Besides contributing to 
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understand regional differences, the evaluation of IAQ in Portuguese institutions is a 

critically important aspect of creating and maintaining school facilities, helping to resolve 

or alleviate problems of contaminated air if they do arise, seeking to eliminate potential 

sources of contamination that originate from outdoors as well as indoors, and taking steps 

to ensure a safe and healthy working environment for staff and students. It also constitutes 

an opportunity to develop and apply routine methodologies of evaluating IAQ and making 

a reflection on the necessity of updating or reviewing the applicable legislation. 

 

1.4 Objectives  

 

The urban inhabitants spend about 90% of their days in indoor environments, such 

as homes, workplaces, schools, universities, shopping centres and vehicles. 

Epidemiological studies have shown that a poor IAQ is associated with adverse health 

effects, including higher rates of chronic disease and mortality due to cardiovascular and 

respiratory diseases. Studies on IAQ in schools found in scientific literature have 

demonstrated that school environment usually presents higher levels of pollutants than 

outdoor environments. It is observed that the health problems caused by indoor 

environments with low ventilation and high levels of pollutants may reduce the 

performance of the occupants. However, little is known about the specific composition and 

characterisation of indoor air in schools. 

The main purpose of this study is to evaluate the IAQ in elementary schools of 

Lisbon and Aveiro. Specific goals were: 

- to measure the physical parameters and chemical and biological pollutants of 

indoor (and related outdoor) air in schools; 

- screening of conditions that could be the cause for poor IAQ in schools, 

identifying potential outdoor/indoor pollutant sources and evaluating the influence of 

different classroom/building materials and school habits on the air quality indoors; 

- to get the actual state for asthma/rhinitis in primary school population in Lisbon; 

- to propose possible mitigation measures; 
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- to test the use of houseplants as a mitigation measure in a school indoor 

environment. 

 

1.5 Description of locations covered in the study 

 

 Lisbon is located at the mouth of the Tagus river (38º42’49.75”N, 9º8’21.79”W) 

and is the westernmost capital of Europe. It is the largest city of Portugal with a population 

of 547,631 within its administrative limits on a land area of 84.8 km2. However, the Lisbon 

metropolitan area extends on an area of 958 km2 with about 3 million people. The climate 

is characterised by mild winters and warm to hot summers. The average annual 

temperature is 21ºC during the day and 13ºC at night. In January, the coldest month, the 

maximum temperature typically ranges from 10 to 18ºC during the day, while the 

minimum values range from 4 to 12ºC at night. In August, the warmest month, the 

maximum temperature ranges from 27 to 33ºC during the day, while the minimum 

temperature ranges from 18 to 22ºC at night. 

 The elementary schools involved in this study are located at different civil parishes: 

Santa Maria de Belém (I), Ajuda (J), Alcântara (H), Santo Condestável (M), São José (C), 

Benfica (G), Campolide (L), São João de Brito (B), Alvalade (N), Marvila (F) e Santa 

Maria dos Olivais (A, D and E) (Figure 1.2). 
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Figure 1.2. Location of schools involved in the study in the city of Lisbon. 

 

 Aveiro is located at 40º43’23”N, 8º31’44”W, in the central coastal region of 

Portugal. The city extends on an area of 199.9 km2 with a population of 78,450. The 

average annual temperature is about 18ºC during the day and 11ºC at night. In January, the 

coldest month, the mean maximum temperature is 13.4ºC during the day, and the mean 

minimum temperature is 6.4ºC at night. In August, the warmest month, the mean 

maximum temperature is 21.9ºC during the day, whereas the mean minimum temperature 

is 15ºC at night. 

 The two elementary schools of this study are located at different civil parishes: 

Glória (A) and Vera Cruz (B) (Figure 1.3). 
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Figure 1.3. Location of the two involved in the study in the city of Aveiro.  

 

1.6 General overview of the work performed 

 

Parents of the students from the Lisbon schools were invited to answer a 

questionnaire similar to that of the International Study of Asthma and Allergies in 

Childhood Program (ISAAC) between October and December 2008 (Chapter 2). The 

survey aimed at identifying children with respiratory problems (wheezing, asthma and 

rhinitis), and assessing the nutrition habits, environmental aspects and housing conditions. 

 Indoor and outdoor air samples were collected at three schools in Lisbon in 

December 2008. These schools were located in the city centre and were previously 

considered representative of all the elementary-level educational institutions for the 

preliminary study (Chapter 3). VOCs, formaldehyde and NO2 were passively monitored 

over a two-week period. Bacterial and fungal colony-forming units and comfort parameters 

were also monitored at classrooms and playgrounds. This campaign was important to 

define methodologies that were subsequently used at all 14 schools in Lisbon. 
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 Chapters 4 and 5 evaluated the indoor and outdoor levels of NO2, speciated VOCs 

and carbonyls at fourteen primary schools in Lisbon during spring, autumn and winter. 

Three of these schools were also selected to be monitored for comfort parameters, such as 

temperature and relative humidity, CO2, CO, total VOCs, and both bacterial and fungal 

colony-forming units per cubic metre. The three monitoring campaigns enabled carrying 

out a seasonal evaluation of outdoor and indoor air quality at Lisbon schools. 

 Chapter 6 investigated pollutant concentrations inside and outside school buildings 

at different locations (city centre and suburban) in Aveiro, between April and June 2010. 

The aim was to evaluate simultaneously comfort parameters (temperature, CO2 and CO) 

and indoor and outdoor concentrations of VOCs, NO2, PM10 and bioaerosol. PM10 samples 

were analysed and characterised, for the first time, for the water soluble inorganic ions 

(WSII), organic carbon (OC), elemental carbon (EC), carbonates, and detailed organic 

speciation. 

 To evaluate the efficacy of a possible mitigation measure, Chapter 7 presents the 

effect of using common houseplants on the indoor air quality in a classroom of a school in 

Aveiro. Based on previous test-chamber studies carried out in the USA, the three species 

chosen were Dracaena deremensis “Janet Craig” (Janet Craig), Dracaena marginata 

(Marginata) and Spathiphyllum “Mauna Loa” (Peace lily). Indoor and outdoor 

concentrations of VOCs, carbonyls, and PM10 (inorganic ions, OC and EC) were measured 

in the absence and presence of plants and the IAQ between both periods was compared. 

 

1.7 Details of experimental work carried out 

 

1.7.1 Comfort parameters 
 

 Continuous measurements of temperature, relative humidity (RH), CO2 and total 

VOCs were performed with an automatic portable Indoor Air IQ-610 Quality Probe 

(GrayWolf® monitor) at schools (Figure 1.4). 
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Figure 1.4. Indoor air quality monitor IQ-610 - GrayWolf®. 

 

This IAQ monitor includes a Pt100 probe for measuring temperature in a range 

from 5º to 160ºF (-15ºC to +70ºC) with accuracy of ± 0.3ºC; and a capacitance probe to 

sense RH in a range from 0 to 100% with accuracy of ± 2% RH for values under 80% (± 

3% RH for values above 80% RH). The monitor also includes a CO2 non-dispersive 

infrared sensor (NDIR) in a range from 0 to 10,000 ppm with accuracy of ± 3% rdg ± 50 

ppm, and an electrochemical sensor to measure CO in a range from 0 to 500 ppm with 

accuracy of ± 2 ppm under 50 ppm, and ± 3% rdg above 50 ppm. To track total VOCs over 

time, the monitor encompasses a photo-ionisation detector (PID) operating in the 5-20,000 

ppb range with resolution of 1 ppb and a limit of detection under 5 ppb. It is possible to 

select TVOCs units among ppb, ppm, µg m-3 and mg m-3. The PID sensor does not respond 

to VOCs with ionisation potentials above 10.6, such as ethane, methane or formaldehyde. 

However, it responds to the vast majority of VOCs. All sensors exhibit an extremely fast 

response; most reading are registered in less than 1 minute. It displays measurements in 

real time allowing logged data to be downloaded to the WolfSense® PC software for 

analysis. The operating range is 0 to 90% RH at -15 to 60ºC for VOCs, and 0 to 98% RH at 

-15 to 70ºC for other sensors. The equipment was supplied with a factory calibration 

certificate, but it is checked prior to next use with appropriate calibration kits (Figure 1.5). 

For the calibration of VOCs, it is recommended to use isobutylene in a known 

concentration. To make the zero point for VOCs, CO2 and CO, it is recommended to use 

nitrogen gas. For correction of the CO calibration straight line, a certified cylinder 

containing this gas at a concentration of 330 ppm was used. For the correction of the CO2 
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calibration, CO2 gas at 350 ppm for the lower point and 1,000 ppm for the higher point was 

employed. 

 

 

Figure 1.5. Gas calibration hood and certified cylinders used with the air quality monitor. 

 

 

1.7.2 Microorganisms 
 

Taking into account that the National System for Energy and Indoor Air Quality 

Certification of Buildings (DL 79/2006, RSECE) restricts the bioaerosol measurements to 

bacterial and fungal colony-forming units per cubic metre of air (CFU m-3), only viable 

and culturable fungi and bacteria were quantified. Viable microorganism levels were 

monitored by liquid impinger sampling (May and Harper, 1957) in the classrooms and 

playgrounds. The liquid impinger was first described by Greenburg and Smith (1922) as a 

dust cloud sampler. More recently, the device has come into wide use for bioaerosol 

sampling, as it is often very convenient for this purpose both in laboratory and in the field. 

The positive aspects that were decisive in choosing the method were: it is compact and 

inexpensive; the sample fluid can be plated out simultaneously on different culture 

medium, thus ensuring optimum growth conditions for organisms of interest; an extreme 

range of airborne concentrations can be accommodated by the serial dilution technique; the 

particle retention efficiency is very high (all particles down to about 0.5 µm are effectively 

trapped in the impinger fluid); it gives a measure of the number of individual viable 
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organisms (colony-forming units), it acts as its own constant flow metering device; and, it 

is unaffected by the repeated autoclaving of the material.  

The apparatus used for the liquid impinger sampling is shown in Figure 1.6. The 

sampling train was composed of an impinger flask, a vacuum pump, a calibrated flow 

meter and a flow control valve. May and Harper (1957) concluded that sonic velocity 

impingement has a lethal effect on the more sensitive types of bacterial cells. The 

recommended optimum impingement velocity is of roughly 3.0 - 2.5 l min-1. Sampling 

took one hour at each sampling place, totalising samples of 180 l and 150 l of air. 

 

 

   

Figure 1.6. Liquid impinger sampling in classroom and at playground. 

 

To capture bioaerosols, 0.1% peptone water was used. This solution is used for the 

capture and/or the cultivation of microorganisms. It is a minimal growth medium, 

containing peptone as a source of carbon, nitrogen, vitamins and minerals. Sodium 

chloride maintains the osmotic balance. The peptone water solid formula was dissolved in 

the needed amount of purified water, mixed thoroughly, separated at doses of 60 ml for 

each sample in Schott bottles, and autoclaved at 121ºC for 15 minutes.  

A non-selective and a selective culture media were used for microorganisms’ 

growth. Tryptic soy agar (TSA) is a general purpose culture medium for cultivation and 

isolation of microorganisms or for maintenance of stock culture. The TSA composition is 

casein peptone (pancreatic), soya peptone (papainic), sodium chloride and agar. To prepare 
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this medium, 40 g of dehydrated media were suspended in 1 l of purified water. The 

medium was sterilised at 121ºC for 15 minutes, cooled to 45-50ºC, mixed gently and 

dispensed into sterile Petri dishes. Chloramphenicol rose bengal agar (CRBA) is used for 

the selective isolation and enumeration of yeasts and moulds. CRBA is composed of 

mycological peptone, dextrose, monopotassium phosphate, magnesium sulphate, rose 

bengal, chloramphenicol, and agar. To prepare this medium, 32.15 g were suspended in 1 l 

of purified water, boiled to dissolve the medium completely, and sterilised by autoclaving 

at 121°C for 15 minutes. It was mixed thoroughly and dispensed into sterile Petri plates. 

The peptone water bottles and the TSA and CRBA Petri dishes were storage at 4-8ºC after 

the preparation.  

After sampling, over a flame to avoid contamination, the amount of 60 ml of 

peptone water was immediately filtered (Figure 1.6) or storage under refrigeration. The 

amount of 60 ml was used to have enough sampled solution for all the replicates and 

pipette washing. Five replicates of 10 ml of solution were filtered under vacuum through a 

membrane filter with porosity of 0.45 µm (Millipore), which retained bacteria cells and 

fungal spores. The membrane was placed on a selective culture medium (TSA for bacterial 

and CRBA for fungal) contained in a Petri dish (Figure 1.6). Before each filtration, the 

solution was agitated for homogenisation of peptone water with microorganisms. After 

filtration, the Petri dishes were incubated for 5 and 7 days for bacterial and fungal, 

respectively, in dark boxes with constant ambient temperature (25oC) (Figure 1.7). The 

Petri dishes were observed and the colonies formed on the membrane were counted every 

day. 
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Figure 1.7. Filtration of peptone water through a Millipore membrane and 

microorganism’s growth in Petri dishes during the incubation period. 

 

1.7.3 NO2 
 

 For sampling and quantification of NO2, passive samplers based on absorption of 

ion nitrite by triethanolamine (TEA) were used. These devices are small, lightweight, 

reusable, relatively cheap and efficient since they are not noisy and do not need a power 

source. Their operation is based on the principle of molecular diffusion. The pollutant is 

diffused from the zone with higher concentration (open end) to the absorbent that is placed 

at the opposite side of the tube. The samplers were exposed in the classroom and at 

playgrounds during an extended period (2 weeks) to provide the average concentration of 

the pollutant. A drawback of passive samplers is the impossibility of providing information 

on maximum levels. So passive sampling is less suitable for compliance checking.  

 The NO2 passive samplers consist of a cylindrical acrylic tube of 7.1 cm in length 

and 1.1 cm internal diameter, with two polyethylene lids that fit perfectly in each end. Two 

wire meshes are placed in one lid to hold up the absorption solution (TEA). The tubes are 

placed on polyvinyl chloride (PVC) supports in vertical position to avoid ingress of rain, 

with the impregnated cap at the top and without cap at the opposite end. Together with 3 

replicate tubes, a blank (double side capped) was collected at each sampling point. The 

concentration of NO2 was calculated based on the average value of the three tubes 

exposed, subtracting the blank value (Bhugwant and Hoareau, 2003).  

 The preparation of the tubes involved the placement of two stainless steel mesh 

juxtaposed in one of the lids of each tube to which 30 µl of triethanolamine in acetone 
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(1:1) solution were directly added (Gair et al., 1991; Heal et al., 1999). For the 

identification, the lid with impregnated mesh was marked abroad. 

 The analytical procedure followed that described in Methods for the Determination 

of Indoor Pollutants (Winberry et al., 1993) with some modifications adopted in most 

British laboratories (Atkins and Lee, 1995). For calibration, a set of seven standard 

solutions were prepared with different concentrations (0 to 0.00035 mg ml-1) from a 

sodium nitrite stock solution (1,725 g l-1).  

After the exposure, the samples were stored in a refrigerator and analysed within 24 

to 48 hours. For each sample, the lid without mesh was removed and 5 ml of a combined 

reagent were added into the tube. This reagent is composed of 20 parts of 1% 

sulphanilamide solution in 2.5% phosphoric acid and one part of 0.14% N-1-naphtilene 

diamine (NEDA) solution. The tube was closed and agitated. After 20-30 minutes, the 

absorbance of the solutions was read in a spectrophotometer at 540 nm in a 1 cm cell.  

Figure 1.8 depicts at a glance the steps from sampling to analysis.  
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Figure 1.8. PVC holders, NO2 diffusive tubes, spectrophotometer, and an example of 

calibration line to calculate the concentrations in each sample.  

 

 

 

1.7.4 VOCs 
 

 Passive samplers for VOCs from Radiello® were used to obtain a screening of 

heavy and light molecular weight compounds. Indoor passive samples were collected at a 

height of about 1.5 m above the floor. They were positioned at a distance that should 

exceed 1 m from a window or a door. Outdoor passive samples were collected at heights of 

about 2 m above the ground.  

One of the techniques recommended for analysis of these VOCs samples is gas 

chromatography coupled to flame ionisation detector (GC-FID). The GC is an instrument 

able to separate chemicals compounds in a complex mixture sample. It uses a capillary 

column through which different chemical constituents of a sample pass in a gas stream, 



 36 

called carrier gas (mobile phase) at different velocities depending on their chemical and 

physical properties and their interaction with the column coating (stationary phase). The 

stationary phase separates the components, causing each one a different retention time. 

Beyond the stationary phase, other components are determinant in the retention time, such 

as the carrier gas flow rate, type of carrier gas, column length, diameter and coating 

material, and temperature ramp in the oven. When the chemical compounds exit at the end 

of the column, they are detected by FID (Branco, 2005). A schematic representation of a 

GC-FID is shown in the Figure 1.9. 

 

 

 

Figure 1.9. Schematic representation of a GC-FID.  

 

 

 FID is a non-selective detector used in conjunction with a GC. It works by directing 

the gas phase output from the column into the hydrogen flame. The high temperature is 

needed to make sure that as soon as the carrier gas (eluent) exits the column, it does not 

come out of the gaseous phase and deposit on the interface between the column and the 

FID. This deposition would result in loss of eluent and errors in detection. As the eluent 

travels up the FID, it is mixed with the hydrogen fuel and then with the oxidant. The 
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eluent, fuel and oxidant mixture continues to travel up to the nozzle head where a positive 

bias voltage exists. A voltage is applied between the flame and an electrode located away 

from the flame. This positive bias helps to repel the reduced carbon ions created by the 

flame pyrolysing the eluent. The ions are repelled up toward the collector plates that are 

connected to a very sensitive ammeter, which detects the ions hitting the plates, then feeds 

that signal to an amplifier, integrator and display system. Although the signal current is 

very small, the noise level is also very small. Except for a very few organic compounds 

(e.g. carbon monoxide) the FID detects all carbon containing compounds (Scott, 2003). A 

schematic representation of a FID is depicted in Figure 1.10. 

 

 

Figure 1.10. Schematic representation of a FID.  

 

 

VOCs adsorved in activated charcoal Radiello® cartridges (RAD 130, Sigma-

Aldrich) were recovered by 2 ml of carbon disulfide (CS2 from Aldrich) with the internal 

standard 2-fluorotoluene with 7.2 ng µl-1 (Sigma-Aldrich), during 30 min. Depending on 

the sampling campaign, analyses were performed by gas chromatography in a Chrompack 

CP 9001 or a Thermo Scientific Trace GC Ultra, coupled to flame ionisation detectors 

(GC-FID), using nitrogen or helium as carrier gas at constant pressure of 20 psi. Injections 

Flame Ionisation Detector 

+300V 
Polarising voltage 
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of 4 µl of each standard solution or sample were made, with a split ratio of 25:1. A 100% 

dimethylpolysiloxane column (0.2 mm, 50 m, film thickness 0.5 µm) was used under the 

following temperature programme: 50oC for 5 min, 5oC min-1 up to 80oC, 15oC min-1 up to 

135oC, 20oC min-1 up to 220oC, final isotherm for 20 min. The injector and detector 

temperatures were 240 and 300oC, respectively. The equipments were calibrated before 

and during the analyses of samples by injecting standard solutions of all compounds 

identified in CS2, specifically: butanol, ethanol, acetone, pentane, n-hexane, cyclohexane, 

n-heptane, n-butyl acetate, styrene, eucalyptol, nonane, α-pinene, sabinene, β-pinene, n-

decane, (+)-3-carene, limonene (all from Fluka), methyl acetate, ethyl acetate, isooctane, 

m,p-xylene, o-xylene (all from Merck), benzene (AnalytiCals), toluene (Lab-Scan), 

ethylbenzene, methyl cyclohexane, n-undecane, naphthalene, tridecane, 4-metil-2-

pentanone, 2-etoxietanol, n-heptane, propyl acetate, isopropanol, γ-terpinene (all from 

Aldrich), and dichloromethane (Fischer Scientific). Standard solutions containing these 

compounds in CS2 and internal standard have been prepared. The analytes in these 

standard solutions were present in concentrations of 40, 20, 10 and 5 ng µl-1. From the 

calibration, it was possible to obtain the relative response factor (RRF) for each compound 

or chemical group. The RRF is calculated through the following equation: 

 

ISc

cIS

Am

Am
RRF

×
×

=                                                                                                           (1.1) 

where mIS is the injected mass of internal standard (ng), Ac is the area in the chromatogram 

of the compound injected, mc is the injected mass of the compound, and AIS is the area of 

internal standard. After calculation of RRF values, by inverting equation (1.1), it is 

possible to determine the amounts of analytes in the samples (m
C
). 

 All the chromatograms were analysed and integrated by Xcalibur Software for 

Thermo Scientific. 

Average concentration (in µg m-3) over the whole exposure time is calculated 

according to the following expression: 
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1000000×
×

=
tQ

m
C                                                                                                     (1.2) 

where C is the concentration of a specific VOC in the air (µg m-3), m is the mass of analyte 

in µg, Q is the sampling rate at the temperature K, and t is the exposure time in minutes. 

Sampling rates were calculated as follows: 

5.1

298 298







= K
QQK                                                                                                      (1.3) 

where QK is the sampling rate at the temperature K and Q298 is the reference value at 298 

K. This produces a variation of ±5% for 10 °C variation (upwards or downwards) from 25 

°C. The sampling rate is invariant with humidity in the range 15-90% and with wind speed 

between 0.1 and 10 m s-1. The average concentration over the exposure time interval is 

therefore calculated from the mass of analyte found onto the cartridge and exposure time 

without introducing any corrective factor, apart from corrections due to average 

temperatures different from 25 °C. 

Figure 1.11 illustrates the procedure, from sampling to analysis, for the 

determination of VOCs.  
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Figure 1.11. Cartridge RAD130 with the white diffusive tube and triangular support for 

sampling, cartridge after sampling in the glass tube for extraction, GC-FID, and example of 

chromatogram.  

 

 

 

1.7.5 Carbonyls 
 

 Carbonyls collected in Radiello® cartridges filled with 2,4-dinitrophenylhydrazine 

(RAD165, Sigma-Aldrich) react and are converted into the corresponding 2,4-

dinitrophenylhydrazones. These were extracted with 2 ml of acetonitrile (from Fisher 

Scientific). The glass vials were shaken for approximately 30 minutes and the extract 

filtered through 0.45 µm disc membrane filters (filtration kit RAD 174) and injected into 

the high-performance liquid chromatography (HPLC) system. The analytical system 

consisted of a Jasco PU- 980 pump, a Rheodyne manual injection valve (sample loop of 20 

µl), a Supelcosil LC-18 column (250×4.6 mm; 5 µm; Supelco) and a Jasco MD-1510 diode 

array detector, all connected in series. Isocratic elution at room temperature was performed 

using an acetonitrile/ultrapure water solution (60/40, v/v) as the mobile phase at a flow rate 
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of 1.5 ml min-1. Ultrapure water (Milli-Q system, Millipore) was used for the preparation 

of eluent for HPLC. The carbonyl concentrations were quantified with external calibrations 

curves. A standard solution containing 15 DNPH derivatives (TO11/IP6A carbonyl – 

DNPH Mix from Supelco) was used for the identification and quantification of the 

carbonyl compounds in the samples. The compounds present in the original calibration  

mix were: formaldehyde, acetaldehyde, acetone, acrolein, propionaldehyde, 

crotonaldehyde, butiraldehyde, benzaldehyde, isovaleraldehyde, valeraldehyde, o-

tolualdehyde, m-tolualdehyde, p-tolualdehyde, hexaldehyde, and 2,5-

dimethylbenzaldehyde, all of them in a concentration of 15 µg ml-1. The original standard 

was diluted in acetonitrile to obtain solutions with 3.0, 1.0, 0.5, 0.25, and 0.0 µg ml-1. The 

calibration line constructed from the standard solutions was confirmed every day before 

the analysis (U.S. EPA, 1999). The limit of detection (LOD) ranged from 1.29 to 2.09 µg 

ml-1. 

The average concentration of carbonyls in passive samples over the whole 

sampling period is derived from the following equation: 

1000000×
×

=
tQ

m
C                                                                                                    (1.4) 

where C is the concentration of carbonyl compound in the air (µg m-3), m is the mass of 

aldehydes or ketones (µg), Q is the sampling rate at the temperature K, and t is the 

exposure time in minutes. The sampling rate varies with the effect of the temperature and 

can be calculated by the following equation: 

35.0

298 298







= K
QQK                                                                                                     (1.5) 

where QK is the sampling rate at the temperature K and Q298 is the reference value at 298 

K. As mentioned for VOCs, there is not variation in the sampling rate with humidity in the 

range 15-90% and with wind speed between 0.1 and 10 m s-1. 

Figure 1.12 illustrates the steps for the determination of carbonyl compounds. 
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Figure 1.12. Cartridge RAD165 with the blue diffusive tube and triangular support for 

sampling, cartridge after sampling in the glass tube for extraction, filtration kit RAD174 to 

filter the extracts, HPLC, and example of chromatogram.  

 

Active sampling of carbonyls was carried out by pulling air through Sep-Pak® 

DNPH-silica cartridges. The sampling train consisted of a Thomas pump to draw in air at a 

flow rate of 2 l min-1 for a sampling time of one or two hours in agreement with the 

classroom cycles, through the silica gel cartridges impregnated with 2,4-

dinitrophenylhydrazine reagent, a dry gas meter to register the volume of air and ozone 

scrubbers to minimise ozone interferences. The analytes were extracted with 5 ml of 

acetonitrile using sonication extraction. The extracts were filtrated through gravity feed 

elution with the filtration kit RAD174, collected in 3 ml vials, and afterwards analysed in 

the same HPLC system as passive samples (ASTM, 1997). The calibration was made with 

the same standard solutions as previously described. Figure 1.13 shows some details of the 

carbonyl active sampling and analysis. 
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Figure 1.13. Sampling components (cartridge Sep-Pak®, Thomas pump and dry gas 

meter), cartridge after sampling for extraction of carbonyls with acetonitrile, HPLC, and 

example of chromatogram.  

 

 

1.7.6 Particulate matter 
 

 Quartz fibre filters with a 47 mm diameter have been used as particle collection 

substrates. All filters used in this work were wrapped in aluminium foil and pre-baked at 

550ºC for 6 hours to eliminate organic contaminants. The filters were placed in a 

desiccator overnight. Before and after sampling the gravimetric determination was 

performed with a microbalance Mettler Toledo AG245 (readability- 0.1 mg/0.01 mg) 

(Figure. 1.14). The filter weights were obtained from the average of about 5-6 weights 

with similar values. Typically it was necessary to weigh each filter approximately 10 times 

to have 5-6 equal measures. The gravimetric determinations were done at 45-50% relative 

humidity.  
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Figure 1.14. Filter loaded with PM10 being weighted in the microbalance. 

 

 

 To carry out the PM10 collection two pairs of samplers were simultaneously used 

one in the classroom and other at the playground (Figures 1.15 and 1.16). One of the 

sampling systems was a Tecora with PM10 European inlet. The flow was controlled 

automatically and set at 38 l min-1, in accordance with the EN 12341 standard. The other 

sampling systems were composed of Gent heads with 10 µm cut-off containing a filter 

holder, a dry gas meter, and a vacuum pump. These assemblies were operated at a flow 

rate of about 12 l min-1.  

 Outdoors, sampling was performed at a height of about 3 m. The Gent inlet was 

protected against bad weather conditions by covering with an inverted bucket. 
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Figure 1.15. Indoor PM10 sampling.  

 

 

 

Figure 1.16. Outdoor PM10 sampling.  

 

 

 To perform the calibration of the PM10 Gent samplers, the sampling pump, the dry 

gas meter and a calibrated mass flow meter were connected in series. The volume 

registered over a period of time by the dry gas meter was compared with the value obtained 

by the mass flow meter, and a conversion factor was calculated.  

 Since two different sampling systems (Gent and Tecora) have been used, it was 

necessary to determine if the samplers led to comparable concentrations of PM10. From 

parallel samplings, it was concluded that measurements by both systems correlate well 

(Figure. 1.17). 
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Figure 1.17. Relationship between PM10 concentrations determined by Gent and Tecora 

samplers. 

 

 

1.7.7 Carbonaceous content of PM10 
 

The carbonaceous material (organic carbon, elemental carbon and carbonate) of 

PM10 was analysed by a home-made thermal-optical transmission system. The principle of 

operation is related to the volatilisation and oxidation of all the carbonaceous material to 

CO2 (Pio et al., 1994). The temperature programme allows the separation of two different 

organic carbon fractions.  

The samples were previously acidified to minimise interference of carbonates in the 

quantification of EC and OC. Punches of the filters were exposed to vapours of 

hydrochloric acid (HCl – 6 M) for approximately 4 hours. After this period, the samples 

were transferred to a desiccator containing hydroxide sodium (NaOH), where they were 

kept overnight. The purpose of this process is to neutralise any excess of acid in the sample 

to protect de CO2 analyser from corrosive HCl fumes. 
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The thermo-optical system comprises a quartz oven with two distinct heating zones 

with a thermocouple each one to monitor the evolution of the temperature. It also contains 

a helium-neon laser (632.8 nm) and a detector connected to a transducer. Associated with 

the laser, there is a chopper whose function is to eliminate interferences that may occur due 

to the existence of other light sources. To detect the amount of carbon in various stages of 

heating, the system has a calibrated infrared non-dispersive CO2 analyser. The temperature 

programme is imposed by a controller. To control the flow of gases (N2 and O2) passing 

through the analysis system, a mass flow meter is used. A computer terminal makes the 

data acquisition every second, recording various parameters, such as temperature, flow 

rate, and CO2 concentrations. Figure 1.18 depicts a schematic representation of the 

thermo-optical system. 
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Figure 1.18. Scheme of the thermo-optical analyser to determine OC, EC and carbonate 

(Cerqueira et al., 2004). 

 

For each filter, two 9 mm diameter punches were used in each analytical run. To 

start the analysis, a purge to remove all traces of CO2 is carried out until zero is read by the 

analyser. The data acquisition can be started as soon as the purge is completed. Due to the 

existence of two distinct zones of heating, the analysis is done in two stages. In the first 

phase, the sample is subjected to an anoxic environment where there is only nitrogen. 

Controlled heating in anoxic conditions is performed to separate OC into two fractions of 

increasing volatility. The first fraction corresponds to the volatilisation at T<200°C of 

lower molecular weight organics (OC1). The second fraction is related to the 

decomposition and oxidation of higher molecular weight species at temperatures ranging 

from 150 to 600°C (OC2). The last fraction of OC is identified by transmittance and 

corresponds to pyrolysed organic carbon (PC) produced in the previous heating steps 

(Alves et al., 2011).  

The second stage starts by opening a valve that introduces air into the oven. 

Oxygen will join the existing stream of nitrogen and will transform the atmosphere of the 
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first heating zone in a oxidising atmosphere. This factor, coupled with a further increase in 

temperature, promotes oxidation and volatilisation of EC. The remaining fraction is 

sequentially evaporated/burnt under a gas flow containing O2. This last carbon fraction 

contains initial EC plus OC that has pyrolysed during heating under an inert atmosphere. 

The interference between PC and EC can be controlled by continuous evaluation of the 

blackening of the filter using a laser beam and a photodetector measuring the filter light 

transmittance. At the point where the laser reaches the value of signal value is equal to the 

initial point of separation of EC and pyrolitic carbon (Castro, 1997). It is considered that 

whole pyrolitic carbon is the carbon mass recorded since it introduces oxygen into the 

system until the value of the transmittance of the laser to reach its initial value. From this 

point, it is considered the carbonaceous mass being present as EC. The second heating 

zone has a constant temperature of 650ºC and the atmosphere inside comprises air and 

nitrogen. The walls of this area are coated with a catalyst (CuO), which certifies the 

conversion of any carbonaceous material to CO2 and can thus be ensured that there was 

complete oxidation of carbon volatilised in the previous zone. This procedure was 

originally developed by Pio et al. (1994) and Carvalho et al. (2006) and was adapted by 

Alves et al. (2011). 

 Since it was analysed only a portion of the filter, it is needed to estimate the mass 

of carbon in the whole filter area. 

To determine the carbonate (CO3
2-) concentration in indoor and outdoor PM10 

samples, the same CO2 analyser of the thermal-optical system was used. The carbonate 

measurement setup comprises basically four components: a mass flow meter, a reaction 

cell, the CO2 analyser, and a computer terminal for data acquisition. A portion of each 

filter with diameter 9 mm was punched. This fraction was subsequently dipped in an acid 

medium to covert the carbon carbonate to CO2, which is then detected by the infra-red 

analyser. The acidifying agent used was phosphoric acid (H3PO4) 20%, which, as a 

solution wispy volatile, represents less danger for the entire system. The setup used for 

analysis of the carbonate is shown in Figure 1.19. 
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Figure 1.19. Carbonate system analyser. 

 

 The method includes placing of approximately 15 ml of acid in a clean flask. The 

flask is sealed with a stopper, which has a sample holder. The stopper is pierced by two 

tubes, one of them allowing the nitrogen inlet (carrier gas) and the other one providing the 

output to the gas analyser. These tubes are controlled by two valves, which promote the 

transfer between the cell reaction and a short circuit, avoiding cell reaction. Once the filter 

is placed on the holder, a purge to eliminate CO2 inside the impinge flask is done (long 

circuit). The purge is maintained until the moment when the CO2 analyser registers a 

concentration of zero. Then, carrier gas is passed through the short circuit and the filter is 

dropped in the acid solution. After 3 minutes (reaction time), the gas carrier is transferred 

to the long circuit and all the CO2 evolved is detected by the analyser (Almeida, 2009). The 

carrier gas flow rate used was approximately 200 ml min-1. This flow is defined according 

to two factors. The first factor is the rate at which the gas reaches the analyser to determine 

the type of peak obtained. The second factor is the intensity of the flow rate. If it is used a 

flow rate very high, it is possible that some droplets of acid solution contact with the filter 

in the sample holder before starting the reaction after the purge. The system was calibrated 

with solutions with known concentrations of carbonate. Three filters impregnated with 

three different standards were used to check the reliability of the CO2 analyser readings.  
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1.7.8 Water soluble inorganic ions 
 

 The water soluble inorganic ions in PM10 were analysed by ion chromatography. 

The separation taking place in this method is based on different tendencies of the ionic or 

ionised compounds from the sample to carry out an exchange with ions present in the 

stationary matrix. The separation is due to competition between the ions in the sample and 

counter-ions from the stationary matrix. Basically, the analyser consist of an integrated 

system that includes an adjustable flow rate pump, an injection valve, an exchange column, 

a differential detector and a data acquisition terminal. The sample is introduced into the 

upstream zone of the separation column (stationary phase) and then dragged by the solvent 

(mobile phase) until the separation of components in different areas. The signal differential 

detector measures the instantaneous concentrations. It represents the total amount of each 

component present in the analysed samples. The set of signals (peaks) is sent by the 

detector to the differential data acquisition terminal constructing a chromatogram.  

In this work, Dionex AS14 and CS12 chromatographic columns with Dionex AG14 

and CG12 guard columns coupled to Dionex AMMS II and Dionex CMMS III 

suppressors, respectively for anions and cations, have been used (Figure 1.20).  
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Figure 1.20. Ion exchange chromatographic system. 

 

 

 To make the extraction of the water soluble inorganic material, a known portion of 

each filter was cut and introduced into small plastic containers previously cleaned. The 

containers were washed, dipped in ultra-pure water and sonicated during 15 min. This 

procedure was repeated three times. The samples were extracted in 2.5 or 2 ml of ultra-

pure water (varying with the campaign) by sonication for 15 minutes. After this, the 

samples were transferred to the vials, previously cleaned as described for the containers, 

using Acrodisc® syringe filters (0.45 µm pore). The amount of solution to be analysed was 

split in two portions: one part for anion analysis, and other part for cation analysis. The 

same procedure was done for some blank filters. Sets of multi-cation and anion standards 

were prepared from a stock solution with 1000 mg l-1 for each ion. This method made 

possible to identify and quantify three anions (chlorides (Cl-), nitrates (NO3
-), and 

sulphates (SO4
-2)), and five cations (sodium (Na+), potassium (K+), magnesium (Mg2+) and 
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calcium (Ca2+). The concentration of each ion in each sample was obtained through the 

individual calibration curves  

 

 

1.7.9 Organic speciation 
 

 To identify and quantify the organic compounds present in the PM10, it was 

necessary to separate the constituents with analytical interest from a mixture by dissolving 

in a solvent where only those constituents are soluble. This process is called extraction. 

The organic constituents of PM10 were extracted from filters by refluxing 300 ml of 

dichloromethane (DCM from Fischer Scientific) for 24 hours. Some filters were combined 

to meet the limits of detection from speciated organic compounds. During this process, the 

filters were placed with the solvent in a round-bottom flask connected to a condenser. 

Under heating, the solvent boils and a water cooled condenser prevents vapours from 

escaping, enabling the recovery of the solvent (Figure 1.21). The liquid extraction of a 

solid matrix results in dilution of the sample in a large volume of solvent. 

 

 

Figure 1.21. Heating blankets, glass flasks with samples and DCM, and condensers.  
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 After extraction, the DCM was first subjected to filtration to remove pieces of 

filters (Figure 1.22). Filter pieces were then extracted 3 times with 75 ml of methanol for 

10 min, each extraction, in an ultrasonic bath. Then the solvent was concentrated to a 

volume of about 4 ml using a rotary evaporator (IKA HB10 basic and Laborota 4002 – 

Digital) at a constant temperature bath of 33°C (Figure 1.23). The second extraction step 

with methanol aims at increasing the efficiency of removal of polar compounds. The 

efficiency increased from approximately 70%, when a simple extraction with DCM is 

done, to more than 90%, when subsequent extractions with methanol combined with DCM 

are performed. The total organic extract was transferred to vials and then subjected to a 

stream of nitrogen at low flow, to dry it up.  

 

 

Figure 1.22. Filtration of the organic extracts and concentration of the solvent in a rotary 

evaporator (IKA HB 10 basic and Laborota 4002 – Digital, respectively).  

 

The dry total organic extracts were subjected to a fractionation procedure by flash 

chromatography in a silica gel column. This technique uses eluents of increasing polarity 

in order to separate different families of organic compounds present in the sample. The 

laboratorial setup includes glass pear-shapedround flasks to collect the eluents and a 

nitrogen-pressurised glass column (30×0.7 cm) with adsorbent material (1.5 g of silica gel 

3-6 mm (from Panreac), previously activated at 150°C during 3 hours). A needle valve is 

used to regulate the nitrogen flow through the column (Figure 1.23). The vial, containing 



 55 

the total organic extract, was washed three times with different mixtures of eluents for each 

fraction of interest, subjected to mechanical agitation by vortex (Heildolph Vortex Mixer) 

and the mixture was transferred to the top of the silica column. The following solvents 

were used to elute the different compound classes: (1) 15 ml n-hexane (from Fisher 

Scientific) [fraction 1, aliphatics]; (2) 15 ml toluene–n-hexane (9.6 + 5.4 ml, from Lab 

Scan and Fisher Scientific) [fraction 2, polycyclic aromatic hydrocarbons (PAHs)]; (3) 15 

ml n-hexane–dichloromethane (7.5 + 7.5 ml, from Fisher Scientific) [fraction 3, carbonyl 

compounds]; (4) 20 ml ethyl acetate–n-hexane (8 + 12 ml, from Merck and Fisher 

Scientific) [fraction 4, n-alkanols, sterols and other hydroxyl compounds]; and (5) 30 ml 

solution of pure formic acid in methanol (4%, v/v, from Merck and Sigma Aldrich) 

[fraction 5, acids and sugars]. The different fractions were passed successively through the 

silica column with the help of a nitrogen stream. For each fraction collected in pear-shaped 

flasks, the solvent was concentrated on the same rotary evaporator used after extraction, 

approximately up to 2 ml, maintaining the bath temperature at about 33°C. Then, the 

resulting extracts were transferred to 1.8 ml vials and dried under a nitrogen stream. 

Recovery efficiency tests for several compounds can be found in Alves (2001), Carvalho 

(2003), and Oliveira et al. (2007). 

 

 

 

 

 

 

 

 

Figure 1.23. Flash chromatography in a silica gel column to separate compounds based on 

differences in polarity.  
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Fractions 4 and 5 followed a derivatisation process before the chromatographic 

analysis. Thus, both fractions were subjected to a silylation procedure. Silylation is one of 

the most used modes of derivatisation, due to the fact that there are a wide variety of 

chemical agents available. The N,O-bis(trimethylsilyl)-trifluoroacetamide (BSTFA) has 

been widely used as a reagent for silylation, because its products are enough volatile, rarely 

interfering with the analyte peaks in the chromatograms. For GC-MS analysis, the addition 

of trimethylchlorosilane groups (TMCS) to polar compounds gives thermal and chemical 

stability, as well as an increase in volatility (Evershed, 1993). The silylation of fractions 4 

and 5 was carried out by adding BSTFA:TMCS (99:1) (Supelco 33149-U) at a ratio of 1:1 

(one part of internal standard in pyridine to one part of BSTFA:TMCS solution in each 

vial) with subsequent heating to 70 °C for 3 hours in an oven. 

GC-MS is the union between a gas chromatographer and a mass spectrometer. GC 

can separate volatile and semi-volatile compounds with great resolution but can not 

identify them. MS can provide detailed structural information on most compounds such 

that they can be exactly identified, but it can not separate those (Hites, 1997). Figure 1.24 

shows a schematic representation of a GC-MS. 

 

 

Figure 1.24. Scheme representing a GC-MS.  



 57 

 

 

The fractionated extracts were analysed with a GC model 6890, quadrupole MSD 5973 

from Hewlett Packard (fractions 4 and 5), and a GC Trace Ultra, quadrupole DSQ II from 

Thermo Scientific (fractions 1 and 2), both equipped with TRB-5MS 60 m×0.25 mm×0.25 

µm columns. Fraction 3 was not analysed because in previous works it was found that 

carbonyl compounds in the particulate phase are not relevant since most carbonyls are 

semi-volatile (Báez et al., 2001; Grosjean et al., 2002; Ho et al., 2002; Pang et al., 2006; 

Pang and Lewis, 2011). Data were acquired in the electron impact (EI) mode (70 eV). The 

oven temperature programme was as follows: 60 °C (1 min); 60–150°C (10°C min−1), 

150–290°C (5°C min−1), 290°C (30 min) and using helium as carrier gas at 1.2 ml min−1. 

The injection was made in the splitless mode. The GC-MS system was accurately 

calibrated using about 150 high purity compounds in different concentration levels with 

RRF determined individually for the majority of compounds. The RRF were determined in 

a similar way, as described for VOCs. All samples and authentic standards were injected 

with two internal standards: tetracosane-D50 (Sigma-Aldrich) and 1-chlocohexadecane 

(Merck). Additionally, the EPA 8270 semi-volatile internal standard mix (Supelco), 

containing six deuterated compounds (1,4-dichlorobenzene-d4, naphthalene-d8, 

acenaphthene-d10, phenanthreme-d10, chrysene-d12, and perylene-d12), has been used for 

PAH analysis. A detailed description of the analytical methodology, including recovery 

efficiency tests for several compounds, can be found in Alves and Pio (2005) and Oliveira 

et al. (2007). This methodology was previously tested in our laboratory (Alves, 2001; 

Carvalho et al., 2003). Compound identification was based on comparison of resulting 

spectra with mass spectra libraries (Wiley 275 and NIST MS Search 2.0), co-injection with 

authentic standards and analysis of fragmentation patterns. HP ChemStation (Hewlett 

Packard) and Xcalibur (Thermo Scientific) softwares were used for integration.  
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2. RISK FACTORS AND PREVALENCE OF ASTHMA AND 
RHINITIS AMONG PRIMARY SCHOOL CHILDREN IN LISBON 
 

Published 

Pegas, P.N., Alves, C.A., Scotto, M.G. , Evtyugina, M., Pio, C.A., Freitas, M.C., 2011. 

Risk factors and prevalence of asthma and rhinitis among primary school children in 

Lisbon. Revista Portuguesa de Pneumologia, 17, 109-116.  

 

Abstract 

Aims: A cross-sectional study was carried out with the objective of identifying nutrition 

habits and housing conditions as risk factors for respiratory problems in schoolchildren 

in Lisbon.  

Material and Methods: Between October and December 2008, parents of 900 students 

of the basic schools of Lisbon were invited to answer a questionnaire of the 

International Study of Asthma and Allergies in Childhood Program (ISAAC). The 

response rate was 40%. Logistic regression was used in the analysis of results. 

Results: The prevalence of asthma, allergic rhinitis and wheeze was 5.6%, 43.0% and 

43.3%, respectively. Risk factors independently associated with asthma were wheezing 

attacks, and dry cough at night not related to common cold in the last 12 months. 

Wheezing crises were found to affect children daily activities. Risk factors for wheeze 

were hay fever and the presence of a pet at home. A risk factor for rhinitis was cough at 

night. The frequent consumption of egg was also associated with increased risk of 

rhinitis.  

Conclusion: Contrarily to asthma, the prevalence of allergic rhinitis and wheeze 

increased in comparison with previous ISAAC studies. Wheezing attacks were 

associated with asthma and hay fever was identified as a risk factor of manifesting 

wheezing symptoms. Having pets at home was pointed out as a significant risk factor 

for rhinitis, but not smoking exposure, mould, plush toys, diet (except egg 

consumption), breastfeeding or other conditions.  

Key-words: asthma, rhinitis, wheeze, questionnaire, children.  
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2.1 Introduction 

 

Asthma and allergic diseases are the leading cause of chronic illness in children 

and, for unknown reasons, are progressively increasing (Baena-Cagnani, 2001; Bateman 

and Jithoo, 2007; Beasley et al., 2000; Galassi et al, 2006; Pearce et al., 2007; Plácido, 

2004). Although recent studies have shown that the genetic factors predispose people to 

allergic diseases (Mapp, 2003; Sandford et al., 1996; Steinke et al., 2008), the 

environmental factors have a significant influence on their occurrence and progression. 

Such factors include air pollution and several domestic triggers (Bjorksten, 2004; Dong 

et al., 2008; Salo et al., 2004; Zhang et al., 2004). The lifestyle, including the type of 

diet in early childhood, also plays an utmost role (Kim et al., 2009; Pawlinska-Chmara 

et al., 2008; Vellinga et al., 2002). As a consequence of diverse interactions between 

genetic and environmental risk factors, the prevalence rates show inconsistent results 

around the world (Bazzazi et al., 2007; Barraza-Villarreal et al., 2001; Devenny et al., 

2004; Grize et al., 2006; Hasnain et al., 2009; ISAAC, 1998a, b; Leung et al., 1997; 

Owayed et al., 2008; Romano-Zelekha et al., 2007; Sánchez-Lerma et al., 2009; Vries et 

al., 2009; Waked et al., 2009; Wilson et al., 2006). Written respiratory symptom 

questionnaires intended to determine the prevalence of asthma and allergies in children 

have been extensively used in epidemiological studies (Fernández et al., 2005; Hong et 

al., 2003; Maçãira et al., 2005; Redline et al., 2004; Richardson et al., 2006). The 

International Study of Asthma and Allergies in Childhood (ISAAC) was the first 

investigation carried out worldwide using standardised questionnaires in order to 

generate a consistent global map of childhood allergy (Asher et al., 1995; ISAAC, 1998 

a, b). Portugal joined the ISAAC in 1993 with 5 local study centres (Lisbon, Oporto, 

Coimbra, Portimão and Funchal) questioning 13-14 year old children. In 3 of these 

centres (Lisbon, Portimão and Funchal), 6-7 year old children were also studied (Pinto 

et al., 2006; Trindade et al., 1999). Besides the current trends in the prevalence of 

childhood asthma and asthma-like symptoms, the ISAAC program concluded that 

further population studies are urgently needed to discover more about the underlying 

mechanisms and the burden of these conditions.  
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With the objective of determining prevalence and risk factors of asthma and 

allergic diseases in Lisbon schoolchildren, as well of comparing the results with 

previous data obtained through the same protocol, a questionnaire-based study was 

conducted in elementary schools of the Portuguese capital city. Research on potential 

risk factors of asthma and allergic diseases can enhance our understanding of 

geographic differences and inform decisions on preventive strategies. 

 

 

 

2.2 Material and Methods 

 

Elementary school children were selected as the target population. Twenty two 

schools with a wide geographical coverage representing the Lisbon urban area were 

invited for participation in the study (Khan et al., 2007). Fourteen schools accepted to 

take part in the investigation. After obtaining consent from the school authorities, two 

classrooms from each school were selected for an indoor air quality monitoring program 

(Pegas et al., 2010a, b). A questionnaire, accompanied by an explanatory letter, was 

distributed to 900 children in every selected classroom. The questionnaire used in this 

study is the Portuguese version of the ISAAC program and had to be filled out by the 

parents. The questionnaire was adapted to facilitate the parents’ responses, taking out 

some questions about medicine consumption, which did not constitute the objective of 

this study. The survey took place between October and December 2008 comprising 

children aged 5-12 years. A total of 342 questionnaires were returned. They included 

questions on the frequency of respiratory symptoms and allergy occurrence in the child, 

physical activity, socio-demographic characteristics, housing conditions, and other 

possible sources of indoor air pollution (Table 2.1). Among the factors related to 

lifestyle, particular attention was paid to the child’s exposure to tobacco smoke, the way 

of feeding the child during the first months of its life (breast-feeding, artificial milk 

feeding), and the current type of diet. The manually written answers were transferred to 

a computer, codified, and confirmed by two independent persons. Multivariate logistic 
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regression models controlling for possible confounders were used to evaluate variables 

associated with asthma and allergic symptoms, and adjusted odds ratios (ORs and 95% 

confidence intervals, CI) were calculated. 

 

Table 2.1 - Questions in the questionnaire used in this study  

Wheezing  Has your child ever had wheezing or whistling in the chest at any 
time in the past? 

 Has your children had wheezing or whistling in the chest in the last 
12 months? 

 How many attacks of wheezing has your child had in the last 12 
months? 

 How often, on average, has your child’s sleep been disturbed due to 
wheezing in the last 12 months? 

 Has your child’s chest sounded wheezy during or after exercise in the 
last 12 months? 

Asthma Has your child ever had asthma? 

Nocturnal dry 
cough 

Has your child’s chest sounded wheezy during or after exercise in the 
last 12 months? 

Rhinitis  Has your child ever had sneezing or a runny/blocked nose when 
he/she did not have a cold or flu?  

 Has your child had sneezing or a runny/blocked nose when he/she did 
not have a cold or flu in the last 12 months? 

 Have nasal symptoms interfered with your child’s daily activities in 
the last 12 months? 

Hay fever Has your child ever had hay fever? 

Alimentary 
habits 

What were the eating habits for meat, fish, fruit, vegetables, cereals, 
pasta, bread, rice, butter, margarine, dry fruits, potatoes, milk, eggs 
and fast-food in the last 12 months?  

Breastfeeding Has your child had been breastfeeding? 

Sports Does your child practise some sport activities? 

 How many times for week does your child do exercise until to be 
puffy  

House Fuel type used for cooking; use of indoor clothes airer dryers; 
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characterisation 
and habits 

household coal use for cooking or space heating; intensity of heavy 
vehicle traffic in the street; use of heating devices; signs of flooding, 
water damage or mould growth (any surfaces other than floor); 
contact with household pets or farm animals; presence of plush toys 
(e.g. teddy bears) in the bedroom; type of bedroom flooring and 
finishing. 

Parents’ 
smoking habits 

Smokers in regular contact with the child (mother, for example, 
grandparents or baby-sitters); number of daily smokers of cigarettes 
in the child’s home; paternal or maternal smoking while living in the 
home with their children. 

 

 

2.3 Results  

 

The sample population comprised 342 schoolchildren between 5 and 12 years, 

although 92% of the total was included in the age group of 6-8 years. No dimorphic 

differences were found concerning the frequency of allergies, therefore no division by 

gender was applied in further analysis. The percentage of children with wheezing or 

whistling in the chest was 43.3%. Asthma prevalence was 5.6%. Symptoms of allergic 

rhinitis were reported for 42.9% of children.  

Almost 9.5% of children were born abroad. The proportion of parents with 

elementary education degree was 20%, 56% reported having a secondary degree and 

20% were university graduates. Housing characteristics of respondents were evaluated 

(Table 2.2): about 33% of the families lived near streets with heavy traffic, 23% used 

drying clothes airers and indoor drying racks for the drying of washing and laundry, and 

only 3% of children's bedrooms had carpeting. Gas use as a cooking fuel was asserted 

by 84% of respondents. Almost 23% of the families stated having a furry pet at home, 

whereas 62% reported plush toys in the child's bedroom. The appearance or detection of 

moulds and water damage within the past 12 months occurred in 19% of the homes, and 

23% of children had been exposed to environmental tobacco smoke during the first year 

of life. More than half of all children lived with one or more smokers in their homes. 
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Table 2.2 - Housing characteristics and environmental factor exposure in children living in 
Lisbon. 

Housing 
characteristics 

Definition % 

Cooking equipments cooking fuel type: 

- electricity 

- gas 

- other 

 

 5.6 

83.9 

0.0 

Indoor laundry 
drying 

The use of indoor clothes airer dryers 22.8 

Indoor coal use The use of coal in a household for cooking or space 
heating 

 0.0 

Pollution source near 
the house 

heavy vehicle traffic in the street: 

- all day long 

- frequently 

- rarely 

- never 

 

 9.6 

23.7 

47.9 

17.5 

Use of home heating 
devices 

the use of any of the following heating devices:  

- electricity 

- gas 

- wood 

- other 

 

43.3 

12.6 

 9.4 

 1.7 

Mould in the past 12 
months  

signs of flooding, water damage or mould growth (any 
surfaces other than food) 

19.0 

Pet keeping refers to the feeding in a household dogs, cats or farm 
animals: 

- cats in the past 12 months 

- cats in the first year of life 

 

10.8 

 8.5 
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- dogs in the past 12 months 

- dogs in the first year of life 

- contact during the first year of life with farm 
animals 

22.8 

 9.3 

12.9 

Plush toys  presence of plush toys (e.g. teddy bears) in the 
bedrooms 

62.3 

Bedroom flooring types of bedroom flooring: 

- carpet 

- wooden 

- tiled 

- other 

 

 2.6 

70.5 

14.3 

 8.2 

Bedroom walls types of bedroom finishes: 

- painting 

- wallpaper 

 

95.0 

0.6 

Early-life exposure to 
tobacco smoke in 
the 1st year 

smokers in regular contact with the child (mother, for 
example, grandparents or baby-sitters) 

 

23.0 

Current smokers in 
the household 

number of daily smokers of cigarettes in the child’s 
home: 

- none 

- one 

- two 

- three 

- four or more 

 

43.9 

35.1 

15.8 

 2.6 

 2.0 

Parents smoking paternal or maternal smoking while living in the home 
with their children: 

- mother 

- father 

 

30.4 

36.5 
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The results of the logistic regression analysis reveal that the questions “How 

many wheezing attacks did your child had during the past year?” and “Has your child 

had ever dry cough at night not associated with common cold in the last 12 months?” 

are statistically significant predictors of asthma. Concerning the first question, the 

estimate of  the probability of occurrence of childhood asthma is 10 times superior for 

the answer category “1 to 3” (one to three wheezing attacks in the past year) than for 

those responding “none” (ODs=10.07; CI=2.98, 33.96). Children in the category “4 to 

12” have approximately a 20 times higher chance of developing the disease compared 

with those in the category “none” (ODs=19.88; CI=4.22, 93.54). Occurrence of dry 

cough at night increases by almost 6 times the probability of asthma manifestation 

(ODs=5.77; CI=1.20, 27.70).  

For the variable represented by the question “During the last 12 months, have 

the wheezing problems affected your child’s daily activities?”, the odds ratio between 

the category “did not affect daily activity” and the category “daily activity affected a 

little” is 2.55 (CI=1.28, 5.08). This means that the point estimate of the probability of 

occurrence of wheezing is 2.55 higher for those responding “did not affect” than for 

those answering “affected a little”. The odds ratio between the categories “did not affect 

daily activity” and “daily activity affected moderately” is approximately 27 (CI=6.17, 

126.36). The point estimate of the probability of occurrence of wheezing is 13 times 

higher for positive answers to “Has your child ever had hay fever?” (ODs=13.02; 

CI=1.52, 109.5). (CI=1.27, 10.57). Children who had a pet in their home during the last 

12 months appear to have a higher risk of developing wheezing symptoms (ODs= 3.66; 

CI=1.27, 10.57).  

The occurrence of dry cough at night not associated with common cold in the 

last 12 months was also positively associated with rhinitis (ODs= 2.77; CI=1.19, 6.44). 

The point estimate of the probability for allergic rhinitis is approximately 145 times 

higher among children with sneezing crisis, runny nose or nasal congestion not 

associated with common cold in relation to those without these symptoms (ODs= 

145.47; CI=53.53, 395.28). Among diet variables, the only statistical significant 

relationship found was for egg consumption, with frequent egg eaters having a 90% 

higher risk for allergic rhinitis than those that were not (OR = 0.10, CI =0.01, 0.54).  
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2.4 Discussion 

 

The male to female ratio for the diagnosis of asthma has narrowed considerably 

in the past 35 years, with almost complete disappearance of the previous male 

predominance (Devenny et al., 2004). In comparison with previous studies in Portugal, 

schoolchildren living in Lisbon show a trend to reduction in the current prevalence of 

asthma (Table 2.3). This might be explained by a better control of the disease through 

educational measures and improved preventive treatment to better control of the disease, 

taking into account that more children are now using inhaled corticosteroids. These 

findings are sustained by other studies that used the ISAAC questionnaire (Romano-

Zelekha et al., 2007). The ISAAC found the greatest prevalence of asthma in Australia 

and New Zealand (29.7%), followed by North America (24.4%) and Latin America 

(17.0%) (Baena-Cagnani et al., 2001). In contrast to our study, a trend towards an 

increase in asthma has been observed in other regions: Taiwan (Lee et al., 2007), United 

Kingdom (Devenny et al., 2004), Hong Kong (Leung et al., 1997), US (Eggleston, 

2007), Australia (Wilson et al., 2006), Brasil (Fiore et al., 2001), Austria (Schernhamme 

et al., 2008), and Spain (García-Marcos et al., 2004). However, signs indicative of a halt 

in the rising trend in asthma prevalence have been found in other recent investigations 

(Fleming et al., 2000; Owayed et al., 2008; Romano-Zelekha et al., 2007; Ronchetti et 

al., 2001; Toelle et al., 2004; Zollner et al., 2005). According to Bazzazi et al. (2007) it 

is unresolved why the disparities in the prevalence of asthma and allergic disorders are 

so large. Two overlapping though competing theories have related changes in 

environmental factors to observed trend profiles in asthma and allergy epidemiology. 

The oldest theory, the “hygiene hypothesis”, claims that modifications in the infectious 

environment and in the pattern of microbial exposure of children associated with 

westernisation are decisive factors contributing to the increasing severity and prevalence 

of atopic disorders. According to this theory, environmental exposures that promote a 

generalised suppression of Th2 cytokines and trigger strong Th1 responses are 

becoming progressively less common (Strachan, 1989). The most recent theory, the 

“immunotolerance hypothesis”, claims that early high levels of exposure to allergens 
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reduce risk by potentiating the regulatory capacity of the immune system (Platts-Mills 

et al., 2001). 

 

Table 2.3 - Prevalence of allergy symptoms worldwide (values are given in %). 

 Asthma Allergic 

rhinitis 

Wheeze References 

European 

countries 

    

Lisbon, 

Portugal 

5.6 43.0 43.3 This study 

Oporto, 

Portugal 

11.9 12.9 18.3 Falcão et al. (2008)  

Lisbon, 

Portugal 

9.2 26.9 26.7 Khan et al. (2007) 

Portugal 2002 9.4 29.1 28.1 Plácido (2004), Pinto et al. 

(2006) 

Portugal 

1993/94 

10.8 23.6 27.9 Trindade (1999) 

Aberdeen, 

Scotland 

24  28 Devenny et al. (2004) 

Sanliurfa, 

Turkey 

1.9 2.9  Zeyrek et al. (2006) 

Italy 9.1 6.3 7.8 Galassi et al. (2006) 

Other 

countries 

    

Gorgan, Iran 7 35.3 28.8 Bazzazi et al. (2007) 
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Ciudad 

Juárez, 

México 

6.8 5.0 20 Barraza-Villarreal et al. 

(2001) 

Israel 6.4 10.5 13.8 Romano-Zelekha et al. 

(2007) 

Canary 

Islands 

18.4 40.3 46.8 Sánchez-Lerma et al. (2009) 

Pakistan 15.8 28.58 11.7 Hasnain et al. (2009) 

Oman 20.7 10.5  Al-Riyami et al. (2003) 

India 15 20-30  Singh et al. (2004) 

Saudi Arabia 23 25  Al Frayh et al. (2001) 

Australia 46   Wilson et al. (2006) 

Hong Kong 11 52 20 Leung et al. (1997) 

Tibet 1.1 5.2 1.4 Droma et al. (2007) 

Lebanon 19.5 24.5  Waked and Salameh (2009) 

Taiwan 7.4   Lee et al. (2007) 

Tonga 12.5 16.1 26.6 Foliaki et al. (2007) 

French 

Polynesia 

16 12.3 12.2 Foliaki et al. (2007) 

Kuwait 15.6 41.4 13.4 Owayed et al. (2007) 

Brazil 16.5-31.2 19.3-35.9  Solé et al. (2006) 

 

Children with sneezing crisis, runny nose or nasal congestion not associated with 

common cold were 43.0%. Regarding the last year rhinitis prevalence in this age group, 

it was estimated to be 39.5%. The prevalence of this allergic disease in Lisbon is greater 

than the mean estimated national prevalence. Since Portugal is a country with diverse 



 93 

geographic areas, the divergent prevalence ratios obtained in different cities can be 

explained by the type of weather, the level of air pollution and the diverse levels of 

contact to allergens. Lee et al. (2007) surveyed an increased prevalence of allergic 

rhinitis among children in Hong Kong from 1995 to 2001. The same rising trend was 

observed among Israeli adolescents (Romano-Zelekha et al., 2007). In Brazil, last year 

rhinitis prevalence in schoolchildren and adolescents was found to fall in wide ranges: 

1.5-41.8% and 3.2-66.6%, respectively (Solé et al., 2006). In Italy, the prevalence of 

rhinitis symptoms in the past 12 months increased from 13.8 to 18.9% and from 31.6 to 

35.1% among children (6-7 years old) and adolescents (13-14 years old), respectively, 

between 1994 and 2002 (Galassi et al., 2006). 

The proportion of children with respiratory symptoms reporting wheeze 

experienced a significant increase between 1993/94 and 2008 (Table 2.3). However, the 

prevalence of wheezing symptoms in the last 12 months was only 15%. The worldwide 

prevalence of current wheeze studied in 155 centres ranged from 2.1 to 32.2% (ISAAC, 

1998b). In Australia, a 26% decrease in wheezing in the past 12 months was found in 

younger children between 1993 and 2002 (Robertson et al., 2004). In Spain, the 

prevalence of current wheeze in 13-14 year old children did not change from 1994-1995 

to 2002-2003 (García-Marcos et al., 2004). In Belgium, there was no clear change in 

asthma, but wheeze decreased from 1996 to 2002 (Vellinga et al., 2002). Several other 

studies from Great Britain, Germany, Italy and Denmark conducted in the last decade 

reported dissimilar findings of an increase in the prevalence of asthma and of wheeze in 

the past 12 months (Devenny et al., 2004; Galassi et al., 2006; Maziak et al., 2003; 

Thomsen et al., 2004). 

Frequent consumption of egg was also associated with increased risk of 

respiratory symptoms among schoolchildren in Taipei (Tsai and Tsa, 2007). Allergic 

reactions to food are either immunoglobulin (IgE) mediated or non-IgE-mediated. 

Persons who are hereditarily predisposed to atopy produce specific IgE antibodies to 

certain proteins to which they are exposed.  These antibodies bind to mast cells and 

other cells in body tissues and to basophiles circulating in the blood stream. When a 

food protein is ingested, the IgE recognises it on the surface of these cells; mediators 

(e.g., histamine) are released, and symptoms arise. Besides the skin and gastrointestinal 
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tract, the symptoms of IgE-mediated reactions usually involve the respiratory system 

(Sicherer, 1999). Eggs are among the food most commonly causing these allergic 

reactions in children.  

No associations with any of the other dietary factors were found. A significant 

protective effect of breastfeeding against current respiratory allergies in children was 

not observed in this study. Besides pets, no statistically significant relationship was 

found with other housing conditions.  

Our study had some limitations; namely recalling bias in cross-sectional 

questionnaires and the lack of objective laboratory measures. However, most estimates 

of asthma, wheeze and rhinitis have been based on data from questionnaires with 

questions concerning symptoms or preceding physician diagnosis.  

 

2.5 Conclusions 

 

Contrarily to asthma, a statistically significant increase in the prevalence of 

rhinitis and wheeze was observed among primary schoolchildren in Lisbon. Differences 

in prevalence obtained in several studies may point out exposure to different risk 

factors, as well as variable racial, environmental, and socioeconomic conditions, 

heterogeneous diagnostic criteria, or a true increase in the prevalence of allergic 

diseases. In this study, wheezing attacks were associated with asthma and hay fever was 

identified as a risk factor of manifesting wheezing symptoms. Children with dry cough 

at night should be evaluated for both rhinitis and asthma, and a combined strategy 

should be ideally used to treat the upper and lower airway diseases in terms of efficacy 

and safety. Having pets at home was pointed out as a significant risk factor for rhinitis, 

but not smoking exposure, mould, plush toys, diet (except egg consumption), 

breastfeeding or other conditions. The results support the observation that deep changes 

in the epidemiologic dynamics of asthma and allergic diseases are occurring worldwide, 

demanding ample, continuous, epidemiologic monitoring. Future studies, such as birth 

cohorts, are warranted to evaluate risk and protective factors and to continue surveying 

the features of the prevalence of asthma and allergic diseases in Portugal. Research on 
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potential risk factors of asthma and respiratory allergies can enhance our understanding 

of geographic differences and support decisions on preventive strategies.  
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3. OUTDOOR/INDOOR AIR QUALITY IN PRIMARY SCHOOLS IN  
LISBON: A PRELIMINARY STUDY 
 

Published 

Pegas, P.N., Evtyugina, M.G., Alves, C.A., Nunes, T., Cerqueira, M., Franchi, M., Pio, C., 

Almeida, S.M., Freitas, M.C., 2010. Outdoor/Indoor air quality in primary schools in Lisbon: 

a preliminary study. Química Nova, 33, 1145-1149. 

 

Abstract 

Simultaneous measurements of outdoor and indoor pollution were performed at three schools 

in Lisbon. Volatile organic compounds (VOCs), formaldehyde and NO2 were passively 

monitored over a two-week period. Bacterial and fungal colony-forming units and comfort 

parameters were also monitored at classrooms and playgrounds. The highest indoor levels of 

CO2 (2666 µg m-3), NO2 (40.3 µg m-3), VOCs (10.3 µg m-3), formaldehyde (1.03 µg m-3) and 

bioaerosols (1634 CFU m-3), and some indoor/outdoor ratios greater than unity, suggest that 

indoor sources and building conditions might have negative effects on air indoors. Increasing 

ventilation rates and use of low-emission materials would contribute towards improving 

indoor air quality.  

Keywords: indoor air quality, VOCs, formaldehyde.  
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3.1 Introduction 

 

Outdoor air quality has become of growing concern during the past 50 years, because 

of increasing traffic and industrial emissions. However, evidence has been found that citizen 

spend most of their time in buildings and are far more exposed to pollution indoors than 

outdoors (Blondeau et al., 2005). 

In Lisbon, the number of children with asthma and rhinitis represents, respectively, 

about 15% and 40% of the school-age population (Khan et al., 2007a) and almost nothing is 

known about indoor air quality (IAQ) in schools. Mendell et al. (2002) observed that health 

problems from poor indoor environments may reduce the performance of occupants in 

buildings. According to Mendell and Heath (2005), indoor environments in schools need to be 

studied with the aim of finding connections between IAQ and performance or attendance, due 

to two primary reasons: 

• Schools are seen as particularly likely to have environmental deficiencies because chronic 

shortages of funding contribute to inadequate operation and maintenance of facilities. 

• Children have greater susceptibility to some environmental pollutants than adults, because 

they breathe higher volumes of air relative to their body weights and their tissues and organs 

are actively growing. In addition, a child’s immune system is not fully developed. 

Currently, children also spend more time in school than in any indoor environment other 

than their home.  

Persuasive evidence links higher indoor NO2 concentrations to reduced school 

attendance and low ventilation rates to reduce performance. Concerning indirect associations, 

some studies link indoor dampness and microbiologic pollutants to asthma exacerbations and 
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respiratory infections, which in turn have been related to reduced performance and attendance 

(Kim et al., 2007; Mendell and Heath, 2005). 

The first aim of this preliminary study was to measure comfort parameters, CO2, 

bacterial and fungal contamination and gaseous inorganic and organic pollutants in indoor and 

outdoor air of three schools in winter. The second aim was to study associations between 

these factors and possible sources inside or outside the schools. As far as we know, this is the 

first IAQ monitoring study in schools of Lisbon. 

 

3.2 Experimental 

 

3.2.1 Schools Description 

 

Indoor and outdoor air samples were collected at three schools (183, SJB and SJ) in 

Lisbon (Portugal), in December 2008. These schools were located in the city centre and were 

previously considered representative of all the elementary-level educational institutions (Khan 

et al., 2007a, b). Two classrooms from each of the three schools were selected for this study. 

One of the classrooms of both 183 and SJB schools always had the electric heating connected 

and closed windows. This classroom of the 183 School presented activities of arts with paints 

and glue in one day during the sampling; the other classrooms had windows and doors opened 

frequently. In the SJ School, both classrooms were always shut. All the classrooms depend 

only on the natural ventilation through the doors and windows existent. Details of each 

sampling site are listed in Table 3.1. 
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Table 3.1 - Characteristics of each school 

  183 SJB SJ 

Environment Urban  Urban Urban 

Heating Yes Yes No 

Ventilation Windows/Doors 

Type of board Blackboard and 
chalk 

White board with 
pen 

Blackboard and 
chalk 

Floor Ceramic tile 

Material of desks 
and chairs 

Wood, plywood, plastic and metal 

Plants Outdoor Outdoor Indoor/Outdoor 

Animals No Yes No 

 

3.2.2 Sampling and Analysis 

 

Pollutants and parameters of interest were carbon dioxide (CO2), temperature, relative 

humidity (RH), total VOCs, bacterial and fungal colony-forming units per cubic metre, NO2, 

speciated VOCs and formaldehyde. Continuous measurements of temperature, relative 

humidity (RH), CO2 and total VOCs were performed with an automatic portable Indoor Air 

IQ-610 Quality Probe (GrayWolf® monitor) in one classroom of each school. This IAQ 

monitor includes a Pt100 probe for measuring temperature, a capacitance probe to sense RH 

and a CO2 non-dispersive infrared sensor, all of them with an extremely fast response. The 

monitor also includes a photo-ionisation detector to track total VOCs over time. It displays 

measurements in real time allowing logged data to be downloaded to WolfSense® PC 

software for analysis. The equipment was supplied with a factory calibration certificate, but it 
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is checked prior to next use with appropriate calibration kits. Based on their results, it was 

expected to evaluate the contribution of ventilation, combustion processes, tobacco smoke 

and traffic for the IAQ. Bacterial and fungal colony-forming units per cubic metre of air were 

monitored by liquid impinger sampling in the two classrooms and playgrounds during one 

day in each school selected (May and Harper, 1957). Passive samplers for VOCs, 

formaldehyde and NO2 were used for the simultaneous measurements of indoor (in one 

classroom of each school) and outdoor levels. At each point, samples were collected in 

duplicate. NO2 concentrations were passively monitored for a two-week period. The diffusive 

tubes (with steel grids impregnated with triethanolamine) chemiadsorb NO2, as nitrite, which 

was quantified by visible spectrophotometry (Bhugwant and Hoareau, 2003). Passive 

samplers for VOCs and formaldehyde from Radiello® (www.radiello.com) were used to 

obtain a screening of heavy and light molecular weight compounds over a two-week period. 

Indoor passive samples were collected at a height of about 1.5 m above the floor. They were 

positioned at a distance that should exceed 1 m from a window or a door. Outdoor passive 

samples were collected at heights of about 2 m above the ground. VOCs adsorved in activated 

charcoal cartridges were recovered by 2 ml of carbon disulfide (CS2) with the internal 

standard, during 30 minutes. Analyses were performed by gas chromatography (Chrompack 

CP 9001) coupled to a flame ionisation detection (GC/FID), using nitrogen carrier gas at 

constant pressure of 20 psi.9 A 100% dimethylpolysiloxane column (0.2 mm, 50 m, film 

thickness 0.5 µm) was used under the following temperature program: 50oC for 5 minutes, 

5oC min-1 up to 80oC, 15oC min-1 up to 135oC, 20oC min-1 up to 220oC, final isotherm for 20 

minutes. Injector and detector temperatures were 240oC and 300oC, respectively. The 

equipment was calibrated before and during the analyses of samples by injecting standard 

solutions of all compounds identified in CS2, specifically: pentane, n-hexane, ciclohexane, n-

heptane, n-butyl acetate, styrene, α-pinene, sabinene, β-pinene, n-decane, (+)-3-carene, 
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limonene (all from Fluka), methyl acetate, ethyl acetate, isooctane, m,p-xylene, o-xylene (all 

from Merck), benzene (AnalytiCals), toluene (Lab-Scan), and γ-terpinene (Aldrich). Four 

standard solutions, each one containing five compounds in CS2, have been prepared. The 

analytes in these four standard solutions were present in concentrations of 40 ng µl-1, 20 ng µl-

1, 10 ng µl-1 and 5 ng µl-1. 

Formaldehyde collected in the 2,4-dinitrophenylhydrazine in sampling cartridges 

reacted to give the corresponding 2,4-dinitrophenylhydrazones. The analytes were extracted 

with 2 ml of acetronitrile and analysed by high-performance liquid chromatography (HPLC). 

The analytical system consisted of a Jasco PU- 980 pump, a Rheodyne manual injection valve 

(sample loop of 20 µl), a Supelcosil LC-18 column (250×4.6mm; 5µm; Supelco) and a Jasco 

MD-1510 diode array detector, all connected in series. Isocratic elution at room temperature 

was performed using an acetonitrile/water solution (60/40, v/v) as the mobile phase at a flow 

rate of 1.5 ml min-1. The carbonyl concentrations were quantified with external calibrations 

curves constructed from standard solutions of formaldehyde-DNPH derivative in acetonitrile 

(www.radiello.com; U.S.EPA, 1997). After compilation of data, the different environments 

were compared with the aim of finding a relation between indoor and outdoor pollutants and 

the possible compound sources. 

 

3.2.3 Evaluation of the Chromatographic Analysis 

 

Parameters, such as selectivity, linearity, reproducibility and limit of detection, were 

evaluated by twelve injections of three standard solutions of ten compounds with three 

concentrations each one, between 5 ng µl-1 and 40 ng µl-1. The selectivity of an instrumental 

separation method refers to the ability to discriminate between the analyte and interfering 
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components (Ribani et al., 2004). As condition for the method selectivity, the absence of 

peaks in the region of the retention time for the investigated compounds was observed. 

Linearity is the ability to elicit test results that are directly proportional to the concentration of 

analytes in samples within a given range (Ribani et al., 2004). The repeatability measures are 

the success rate in successive experiments conducted by the same experimenters. It was 

evaluated from the calculation of the standard deviation of the chromatographic peak areas 

corresponding to 10 - 12 injections, each day, in 5 successive days. The limit of quantification 

(LOQ) represents the lesser concentration of the substance in examination that can be 

quantitatively analysed with reasonable reliability. Limit of detection (LOD) represents the 

lesser concentration of the substance in examination that can be detected, but it is not 

necessarily quantified by a method. The LOQ and LOD have been calculated as described in 

Ribani et al. (2004).  

 

3.3 Results and Discussion 

 

3.3.1 Results of the Evaluation of the Chromatographic Analysis  

 

 The chromatographic analyses of samples exhibited good selectivity and separation 

capability of analytes. After multiple injections of different concentration standard solutions, 

it was observed that the plots of peak areas, as a function of analyte mass, produced 

regression lines that had an intercept not significantly different from 0 and Pearson correlation 

coefficients ranging from 0.958 to 0.999 (Table 3.2). Consecutive injections of the same 

sample under variable conditions showed repeatability among measurements. The maximum 
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standard deviation did not exceed 0.04 (Table 3.2). Depending on the analyte, LOQ and LOD 

were in the ranges 1.04-7.64 ng µl-1 and 0.34-2.52 ng µl-1, respectively (Table 3.2). 

 

 

Table 3.2. - Average relative response factor, standard deviation (STDEV), linearity, limit of 
detection and limit of quantification for each compound.    

Compounds Average 
RRF* 

STDEV Pearson correlation 
coefficients 

LOD** 
(ng µl-1) 

LOQ*** 
(ng µl-1) 

Ethyl acetate 0.27 0.01 0.999 2.52 7.64 

Ciclohexane 0.82 0.02 0.999 1.35 4.10 

Isooctane 0.89 0.02 0.996 1.06 3.22 

n-Heptane 0.97 0.02 0.958 1.03 3.11 

Toluene 1.15 0.02 0.999 0.74 2.25 

Internal 
standard 

1.00 0.00 0.999 1.06 3.21 

o-Xylene 1.28 0.04 0.999 0.43 1.31 

β-Pinene 1.23 0.04 0.999 0.38 1.15 

n-Decane 1.20 0.04 0.999 0.34 1.04 

Limonene 1.15 0.04 0.999 0.38 1.14 

* RRF (relative response factor) = (area of compound/mass of compound)*(area of internal standard/mass of internal 
standard); 

**LOD (limit of detection) = 3.3(s/S), where s is the STDEV of areas and S is the slope; 

***LOQ (limit of quantification) = 10(s/S), where s is the STDEV of areas and S is the slope. 

 

3.3.2 Air Quality Monitoring Data 

 

The average room temperature for the three schools was 20ºC±1.4oC, and the relative 

humidity presented values between 52 and 61%. These high indoor relative humidity values 
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are not surprising since, according to the Environment Portuguese Agency, the Lisbon region 

usually records values between 75 and 85%. It should be stated that higher relative humidity 

values contribute to the survival and the dispersion of airborne allergens such as mould spores 

and bacteria, worsening the symptoms of allergy suffers. 

Carbon dioxide concentrations are often used as a surrogate of the rate of outside 

supply air per occupant. Indoor CO2 concentrations above approximately 1000 µg l-1 are 

generally regarded as indicative of ventilation rates that are unacceptable with respect to body 

odours (ASHRAE, 1999). The National System for Energy and Indoor Air Quality 

Certification of Buildings (Regulamento dos Sistemas Energéticos de Climatização de 

Edifícios –RSECE) (RSECE, 2006) establishes an acceptable maximum value (AMV) of CO2 

of 1800 µg l-1 for buildings in Portugal. The indoor concentrations of CO2 showed inadequate 

classroom air exchange rates. Figure 3.1 depicts the variation of indoor CO2 concentrations in 

a typical working day at the three schools. A strong correlation of the CO2 level with 

occupancy has been observed. CO2 spikes were even more pronounced when students started 

physical activities inside the classrooms, as for example, art classes or entrance and exits to 

the playgrounds. Room 12 of the 183 School presented the greatest CO2 concentration (2666 

µg l-1). This room was the only one that had the electric wall heating constantly connected and 

windows and doors always closed. Lower outdoor air ventilation rates at homes have been 

associated with increased prevalence of asthma and allergic symptoms in children (Bornehag 

et al., 2005). 
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Figure 3.1 – Indoor carbon dioxide levels in the three schools. 

 

No standards have been agreed upon for nitrogen oxides in indoor air in Portugal. 

ASHRAE (ASHRAE, 1999) and the U.S. EPA National Ambient Air Quality Standards list 

0.053 ppm as the average 24-hour limit for NO2 in outdoor air. NO2 concentrations were 

higher outdoors than indoors (Table 3.3), probably as a result of vehicular exhaust emissions 

from nearby traffic. The I/O NO2 ratio ranged between 0.63 and 0.84. SJ School, which is 

located near an avenue with intense traffic, presented the smallest level of indoor NO2, 

possibly because the windows and the doors were always closed.  

Table 3.3 - . Indoor and outdoor NO2 concentrations (µg m-3) in the three schools.  

 Indoor Outdoor Indoor/Outdoor 

SJB School 40.3 48.0 0.84 

SJ School 36.4 56.9 0.64 

183 School 37.1 44.4 0.83 
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In the SJ and SJB Schools, the total fungal colony-forming units in both indoor and 

outdoor air (Figure 3.2) were below the acceptable maximum value (AMV) of 500 CFU m-3 

defined by the Portuguese Legislation, Decree-Law 79/2006. In the 183 School, fungal 

colony-forming units higher than this standard were observed in both indoor and outdoor air. 

Fungal species exceeding 500 CFU m-3 may be indicative of building-related sources, poor 

ventilation rates or overcrowding, highlighting the need for remedial action (Godish, 1995).  

 Excepting for the outdoor measurements of SJ School, the total bacteria colony-

forming units presented values above 500 CFU m-3 for all the environments. The main factors 

affecting atmospheric dispersion and survival of microorganisms are the relative humidity, 

temperature, oxygen, wind and air turbulence, air pollutants and water and nutrient 

availability. The high amounts of bacteria in both indoor and outdoor may derive from several 

factors, including high seasonal level of bioaerosols in outdoor air, from the human self-

activities, such as breathing, sweating and movement causing particle resuspension. Cold 

weather favours children’s respiratory infections, which are usually caused by bacteria or 

virus. Thus, respiratory morbidity among children may also contribute to the airborne spread 

of bioaerosols.  
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Figure 3.2 – Average of total bacteria and fungal colony-forming units per cubic metre of air 
and standard deviation. 

 

 

 Two institutions presented indoor/outdoor (I/O) fungal ratios in the range 0.45-0.86, 

while values higher than 1 have been registered for the SJ School. Depending on classroom, 

variable I/O bacterial ratios, ranging from 0.62 and 1.95, have been found. Scheff et al.(2000) 

reported that, in a middle school of Springfield, the indoor fungal and bacterial counts were 

significantly higher than the outdoor concentrations. Conversely, Godwin and Batterman 

(2006) found that the outdoor bioaerosol levels exceeded indoor levels in 64 school 

classrooms in Michigan. 

Total VOC concentrations could give information about the influence of aerosol 

sprays, solvents, cleaning agents, pesticides, paints and repellents. Figure 3.3 shows a daily 

profile for the total VOC concentrations. SJ and SJB Schools exhibit very constant levels and 
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similar daily patterns. In the 183 School, there was a huge increase in the VOC concentrations 

around 13 pm, when pupil’s art class was occurring with the use of glue and paints. This 

makes evident that collage and painting materials increase the VOC levels in indoor air. 

Zhang et al.(2006) also identified a visual art classroom with a relatively high level of VOCs. 

Standards have been agreed upon for total VOCs by Decree 79/2006 of the Portuguese 

Legislation that establishes the thermal regulations for buildings (RSECE, 2006). The results 

obtained in schools were above the proposed target guideline value of 600 µg m-3. 

 

Figure 3.3 – Diurnal variation of total VOCs (non-methane hydrocarbons) in the three schools. 

 

 

Table 3.4 present the results for the VOC concentrations and speciation. In general, 

concentrations of VOCs were higher indoors than outdoors for all schools. Those compounds 

that have only been detected in indoor air have a probable indoor source. Ethyl acetate, 
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methyl acetate, styrene, ethanol and limonene were only found in the indoor air. Pollutants 

identified in both indoor and outdoor samples, but with higher concentrations in the indoor 

environments, may indicate additional indoor sources or inadequate ventilation ratios. I/O 

ratios higher than 1 were observed for n-hexane, n-heptane, n-butyl-acetate and o-xylene at all 

the schools. I/O ratios exceeding the unity were also determined for pentane, toluene α-

pinene, n-decane and terpinene, but not in all institutions. The measured benzene 

concentrations were below the annual ambient EU limit value of 5 µg m-3. Toluene 

concentrations were higher than those reported by Stranger et al. (2008) in primary schools of 

Antwerp, Belgium. The high benzene and toluene concentrations observed in Lisbon are in 

the same range of those measured in schools of Oporto, Portugal (Madureira et al., 2009). In 

this preliminary study, the toluene levels were very similar to those found in schools of 

Curitiba, Brazil (Godoi et al., 2009). 

 

Table 3.4 - VOC concentrations (µg m-3) in the three schools. 

SJB School 183 School SJ School COMPOUNDS 

Indoor Outdoor Indoor Outdoor  Indoor Outdoor 

Pentane 3.61 0.71 0.97 1.08 1.40 1.13 

Methyl acetate 52.0 ni 34.0 ni 83.0 Ni 

Ethyl acetate 2.08 ni 1.30 ni 3.55 Ni 

n-Hexane 2.98 0.53 1.15 0.62 1.06 0.84 

Benzene 2.88 <ld 3.01 3.13 2.54 2.46 

Ciclohexane 0.87 0.22 0.17 0.13 1.60 0.16 

Isooctane 1.19 0.15 0.16 0.19 0.44 0.21 

n-Heptane 3.22 0.37 3.35 0.50 0.95 0.52 

Toluene 10.3 2.00 2.51 2.58 4.59 2.93 

n-Butyl acetate 4.18 0.62 1.41 0.87 6.74 1.42 
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m,p-Xylene 8.8 1.22 1.42 1.26 2.82 1.78 

Styrene ni ni ni ni 0.28 Ni 

o-Xylene 3.09 0.39 1.05 0.46 5.45 0.57 

α-Pinene 0.50 ni 0.15 ni 4.27 0.16 

Sabinene 0.77 ni ni 0.14 12.2 0.17 

β-Pinene ni ni ni ni 29 Ni 

n-Decane 1.00 0.40 0.46 0.30 1.71 0.65 

(+)-3-Carene ni ni ni ni 0.24 Ni 

γ-Terpinene 0.65 ni ni 0.18 0.78 0.23 

Limonene 3.17 ni 0.39 ni 86 Ni 

ld – below limit of detection; ni – not identified. 

 

SJ School, which has the oldest building among all institutions, registered both the 

highest concentrations and diversity of VOC compounds. Perhaps the inadequate ventilation 

observed favours accumulation of pollutants with additional indoor sources. The highest 

levels of limonene, β-pinene, sabinene, n-butyl acetate, methyl acetate and formaldehyde 

(1.03 µg m-3) were achieved in this school. n-Hexane, n-heptane and n-decane could have 

indoor sources in some architectural finishes, floor adhesives, PVC flooring, consumer 

products (e.g. floor waxes and aerosol air fresheners). Limonene could be derived from 

cleaning products, air fresheners and many other consumer products. Benzene, toluene, 

xylenes and styrene could be originated from engine vehicle exhaust, gasoline/fuel, tobacco 

smoke, solvent-based paints, floor adhesives, PVC flooring, carpeting, printed material and 

solvent-based consumer products (Mendell, 2007). The 183 School registered the lowest 

concentrations of VOCs, probably because this institution had better ventilation than the other 

schools, higher classroom volumes and lesser number of pupils. 
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3.4 Conclusions 

 

Indoor and outdoor concentrations of NO2, VOCs, formaldehyde and microbiological 

components were measured for the first time in three elementary schools in Lisbon during 

December 2008. The results suggest that schools with closed windows could have smaller I/O 

ratios of NO2 (0.64), but higher indoor levels of VOCs (10.3 µg m-3) and formaldehyde (1.03 

µg m-3) with an origin in building materials and consumer products. Total VOC 

concentrations increase during art classes, reaching about 2200 µg m-3. Low ventilation ratios 

and the children’s physical activities have also an impact upon the CO2 levels. Fungal and 

bacterial counts exceeding 500 CFU m-3 for one school (765 CFU m-3) and for all of them 

(934-1634 CFU m-3), respectively, may be indicative of building-related sources, poor air 

exchange rates or overcrowding, highlighting the need for remedial action. Most of the 

assessed gaseous pollutants can be credited to the traffic emissions and indoor sources (some 

architectural finishes, floor adhesives, PVC flooring, consumer products and cleaning 

products). More studies are needed (currently underway), to find additional possible sources 

of indoor contamination; to calculate air exchange rates on a seasonal basis, to evaluate if 

there is a causal relationship between pollutant exposure and health symptoms in schools, and 

to assess if school IAQ can adversely affect academic performance or attendance.  
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Almeida, S.M., Canha, N., Freitas, M.C., 2011. Indoor air quality in elementary schools of 

Lisbon in spring. Environmental Geochemistry and Health, 33, 455-468.  

 

Abstract 

Indoor air quality (IAQ) in schools usually presents higher levels of pollutants than outdoor 

environments. The aims of this study were to measure indoor and outdoor concentrations of 

NO2, speciated volatile organic compounds (VOCs) and carbonyls at fourteen primary 

schools in Lisbon (Portugal). The investigation was carried out in May-June 2009. Three of 

the schools were selected to also measure comfort parameters, such as temperature and 

relative humidity, carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and bacterial 

and fungal colony-forming units per cubic metre. The indoor concentrations of CO2 in the 

three main schools indicate inadequate classroom air exchange rates. The indoor/outdoor 

(I/O) NO2 ratio ranged between 0.36 and 0.95. At the three main schools, the total bacterial 

and fungal colony-forming units (CFU) in both indoor and outdoor air were above the 

advised maximum value of 500 CFU m-3 defined by the Portuguese legislation. The 

aromatic compounds benzene, toluene, ethylbenzene and xylenes, followed by ethers, 

alcohols and terpenes, were usually the most abundant classes of VOCs. In general, the 

indoor total VOC concentrations were markedly higher than those observed outdoors. In all 

places, the indoor aldehyde levels were higher than those observed outdoors. This is 

particularly valid for formaldehyde. The inadequate ventilation observed likely favours 

accumulation of pollutants with additional indoor sources. 

Key words: carbon dioxide, carbon monoxide, carbonyls, indoor air quality, nitrogen 

dioxide, schools, volatile organic compounds.  
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4.1 Introduction 

 

Human exposure is the event when a person comes into contact with a pollutant of a 

certain concentration during a certain period of time (Ott et al., 2007). This means that 

exposure requires both the pollutant and the person to be present. People can be exposed to 

contaminants by inhalation, ingestion, and dermal contact. In the past, scientists have paid 

much attention to the study of exposure to outdoor air contaminants because they have 

realised the seriousness of outdoor air pollution problems. However, each indoor micro-

environment is uniquely characterised, which is determined by the local outdoor air, specific 

building characteristics and indoor activities. Consequently, each individual’s personal 

exposure will be determined by the different indoor micro-environments to which the 

person is exposed to, and the permanence time in each (Stranger et al., 2007).   

Many studies are being conducted on indoor air pollution because most people spend 

a lot of their time indoors living, working, and studying (Lee et al., 2001a, 2002a, b; Li et 

al., 2001). Reports about buildings with air related problems have received increasing 

attention since the seventies (Hodgson, 1992; Spangler and Sexton, 1983). Sick building 

syndrome (SBS) is a commonly used term for symptoms resulting from problems with 

indoor air quality (IAQ). Complaints common to SBS include allergic rhinitis, headaches, 

flu-like symptoms, watering of eyes, and difficulty in breathing (Mishra et al., 1992). The 

first official study about SBS that examined more than one structure was published in 1984 

(Finnigan et al., 1984). 

IAQ problems in schools may be even more serious than in other categories of 

buildings, due to higher occupant density and insufficient outside air supply, aggravated by 

frequent poor construction and/or maintenance of school buildings. Therefore, odour and 

comfort complains have been related to IAQ problems in schools, as well as increased 

incidence of allergic, asthma and infectious diseases. Poor IAQ can also affect scholarly 

performances and attendance, since children are more vulnerable than adults to health risk 

from exposure to environmental hazards (Daisey et al., 2003; Godoi et al., 2009). The 

significance of IAQ in schools is underscored by the large number of worldwide studies: 

Blondeau et al. (2005), Chew et al. (2005), Godoi et al (2009), Godwin and Batterman 

(2007), Griffiths and Eftekhari (2008), Hodgson et al. (2004), Kim et al. (2007), Klinmalee 
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et al. (2009), Lee and Chang (2000), Meklin et al (2002),  Mukerjee et al. (2009), Shendell 

et al. (2004), Sohn et al. (2007), Stranger et al. (2008),  Zhang et al (2006). However, most 

of these studies concentrate on a specific group of pollutants or on thermal conditions. 

Multidisciplinary indoor field campaigns, measuring a wide range of health relevant 

chemical and physical properties, are still missing. Lisbon, the number of children with 

asthma and rhinitis is about 15% and 40%, respectively (Plácido, 2004), and the school 

work environment has not received much attention. Therefore, IAQ in Portuguese schools is 

almost unknown.  

The main aims of this work were: (a) to measure indoor comfort parameters 

(temperature, relative humidity, CO, CO2 and total VOCs) and bacterial and fungal 

contamination in three representative schools; (b) to evaluate VOCs, carbonyls and NO2 

gaseous pollutants, by passive sampling, in indoor and outdoor air at 14 schools, and (c) to 

identify possible sources, activities or other conditions contributing to the measured levels.  

 

4.2 Materials and Methods 

 

4.2.1 Description of Schools 

 

Indoor and outdoor air samples were collected at fourteen schools with a wide 

geographical coverage representing the Lisbon urban area, in May and June 2009. Two 

classrooms from each of the fourteen schools were selected for this study. All the 

classrooms depend only on the natural ventilation through the doors and windows existent. 

Details of each sampling site are listed in Table 4.1. 
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Table 4.1 – Characteristics of each school. 

 

 

4.2.2 Comfort parameters and airborne microorganisms  

 

For comfort parameters and airborne microorganisms three of the fourteen schools 

were selected: schools A, B and C. These schools were previously considered representative 

of all the elementary-level educational institutions (Khan et al., 2007a, b). Continuous 

measurements of temperature, relative humidity (RH), CO2 and total VOCs were performed 

with an automatic portable Indoor Air IQ-610 Quality Probe (GrayWolf® monitor) in one 

classroom of each school during the 8 hour occupancy periods. This IAQ monitor includes a 

Pt100 probe for measuring temperature, a capacitance probe to sense RH and a CO2 non-

dispersive infrared sensor, all of them with an extremely fast response. The monitor also 

includes a photo-ionisation detector to track total VOCs over time. It displays measurements 

in real time allowing logged data to be downloaded to WolfSense® PC software for analysis. 

The equipment was supplied with a factory calibration certificate, but it is checked prior to 

next use with appropriate calibration kits. Indoor CO2 levels are an indicator of the 

adequacy of outdoor air ventilation relative to indoor occupant density.  
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Bacterial and fungal colony-forming units per cubic metre of air (CFU m-3) were 

monitored by liquid impinger sampling (May and Harper, 1957) in the two classrooms and 

playgrounds during one day in each one of the 3 main schools. The flow rate was set at 2.5 

L min-1. In each sampling place (classrooms and playgrounds), one-hour samples were 

taken. To obtain representative results, five replicates were obtained per site. 

 

4.2.3 Sampling and analysis of VOCs, carbonyls and NO2   

 

VOCs and carbonyls were sampled in parallel using Radiello® (Fondazione 

Salvatore Maugeri, Padova, Italy) diffusive passive tubes (cartridges codes 130 and 165, 

respectively) for 14 consecutive days. In each sampling place, for each one of these two 

groups of compounds, two replicate samples were collected. Indoor samples were collected 

at a height of about 1.5 m above the floor. The diffusive samplers were positioned at a 

distance that should exceed 1 m from a window or a door. Outdoor passive samples were 

collected at heights of about 2 m above the ground. The VOC adsorbing cartridges consist 

of 60 mm length stainless steel net cylinders, with 100 mesh grid opening and 5.8 mm 

diameter, packed with 530±30 mg of activated charcoal with a particle size of 35-50 mesh 

(Cocheo et al., 1996). 

VOCs were extracted from the exposed samplers with 2 ml carbon disulfide (CS2 

from Aldrich) containing 2-fluorotoluene (from Aldrich) as an internal standard. The glass 

vials were shaken for approximately 30 min. The analyses of the extracts were performed by 

gas chromatography (Chrompack CP 9001) coupled to a flame ionisation detector 

(GC/FID), using nitrogen carrier gas at constant pressure of 20 psi. A 100% 

dimethylpolysiloxane column (0.2 mm, 50 m, film thickness 0.5 µm) was used. The 

temperature program was as follows: 50oC for 5 minutes, 5oC min-1 up to 80oC, 15oC min-1 

up to 135oC, 20oC min-1 up to 220oC, final isotherm for 20 minutes. Injector and detector 

temperatures were 240oC and 300oC, respectively. The equipment was calibrated before and 

during the analyses of samples by injecting standard solutions of all compounds identified in 

CS2, specifically: pentane, n-hexane, ciclohexane, n-heptane, n-butyl acetate, styrene, α-

pinene, sabinene, β-pinene, n-decane, (+)-3-carene, limonene (all from Fluka), methyl 

acetate, ethyl acetate, isooctane, m,p-xylene, o-xylene (all from Merck), benzene 
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(AnalytiCals), toluene (Lab-Scan), and γ-terpinene (Aldrich). Four standard solutions, each 

one containing five compounds in CS2, have been prepared. The analytes in these four 

standard solutions were present in concentrations of 40 ng µl-1, 20 ng µl-1, 10 ng µl-1 and 5 

ng µl-1. The limit of detection was calculated for ethyl acetate, ciclohexane, isooctane, n-

heptane, toluene, n-decane and limonene. Depending on the analyte, the limit of detection 

(LOD= 3.3(s/S), where s is the STDEV of areas and S is the slope), ranged from 0.34 to 

2.52 ng µl-1 (Pegas et al., 2010). This corresponds to environmental concentrations between 

0.27 and 2.97 µg m-3. 

Carbonyls collected in cartridges filled with 2,4-dinitrophenylhydrazine reacted to 

give the corresponding 2,4-dinitrophenylhydrazones. These were extracted with 2 ml of 

acetonitrile (from Fisher Scientific). The glass vials were shaken for approximately 30 min 

and the extract filtered through 0.45 µm disc membrane filters (filtration kit RAD 174) and 

injected into the high-performance liquid chromatography (HPLC) system. The analytical 

system consisted of a Jasco PU- 980 pump, a Rheodyne manual injection valve (sample 

loop of 20 µl), a Supelcosil LC-18 column (250×4.6mm; 5µm; Supelco) and a Jasco MD-

1510 diode array detector, all connected in series. Isocratic elution at room temperature was 

performed using an acetonitrile/water solution (60/40, v/v) as the mobile phase at a flow rate 

of 1.5 ml min-1. The carbonyl concentrations were quantified with external calibrations 

curves constructed from standard solutions of TO11/IP6A carbonyl – DNPH Mix (from 

Supelco). The limit of detection (LOD) ranged from 1.29 to 2.09 µg ml-1, depending on the 

analyte. 

NO2 concentrations were also passively monitored for fourteen days. The diffusive 

tubes (with steel grids impregnated with triethanolamine) chemiadsorb NO2, as nitrite, 

which was quantified by visible spectrophotometry (Bhugwant and Hoareau, 2003). 

 

4.3 Results and Discussion 

 

4.3.1 Comfort parameters and airborne microorganisms 
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The daily variation of comfort parameters throughout the two-week monitoring 

period was performed. To illustrate contrasting conditions, two specific days were chosen to 

exemplify the daily profiles. The mean daily temperature and RH values during the 

monitoring period, taken at the three main schools, ranged from 21.9 ± 1.09oC to 25.9 ± 

1.56oC and from 34.6 ± 3.49% to 56.2 ± 3.28%, respectively (Figure 4.1). In general, the 

temperature varied between 18.6oC and 28.2oC, whereas RH was in the 25.1-66.8% interval. 

Thermal comfort requirements differ for each individual due to factors such as clothing, 

activity level, age, and physiology. ANSI/ASHRAE Standard 55-2004 describes the 

temperature and humidity ranges that are comfortable for 80% of people engaged in chiefly 

sedentary activities. These values were conceived for adults in office environments and 

presume “normal indoor clothing". The effects of moderate heat stress on the performance 

of office work in subjects aged 18-29 years were evaluated through questionnaires by 

Witterseh et al. (2004). Raised temperature increased eye, nose and throat irritation (P < 

0.05), headache intensity (P < 0.05), difficulty in thinking clearly (P < 0.01) and 

concentrating (P < 0.01), and decreased self-estimated performance. Usually, the 

recommended indoor temperature ranges for comfort are from 20 to 23ºC in the winter and 

from 23 to 26ºC in the summer. The suggested indoor RH values for comfort are in the 

range 30-60%. Control of RH also helps limit the growth of microorganisms. Maintaining 

RH below 50% inhibits mould growth, dust mite infestations, and bacteria. If RH levels fall 

below 25%, building occupants can experience respiratory irritation and possibly dry, itchy 

eyes and skin. Generally, in every school studied, the temperature and RH values were 

within the recommended ranges.  
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Figure 4.1 - Indoor daily mean temperature (oC) and relative humidity (RH) (%). Bars 
indicate the standard deviations (STDEV).  

 

The National System for Energy and Indoor Air Quality Certification of Buildings 

(Regulamento dos Sistemas Energéticos de Climatização de Edifícios - RSECE) establishes 

an acceptable maximum value (AMV) of CO2 of 1800 mg m-3 for buildings in Portugal 

(RSECE 2006). CO2 levels ranged widely (705 to 6821 mg m-3) and exceeded 1800 mg m-3 

in all the three main schools. Carbon dioxide concentrations are often used as a surrogate of 

the rate of outside supply air per occupant. Indoor CO2 levels above about 1000 ppm are 

normally considered as indicative of ventilation rates that are unacceptable with respect to 

body odours. Concentrations of CO2 below 1000 ppm do not always guarantee that the 

ventilation rate is adequate for removal of air pollutants from indoor sources (Daisey et al., 

2003). The indoor concentrations of CO2 showed inadequate classroom air exchange rates. 

Figure 4.2 depicts the variation of indoor CO2 concentrations in a typical working day in 

the three main schools. A strong correlation of the CO2 levels with occupancy has been 

observed. CO2 spikes were even more pronounced when students started physical activities 

inside the classrooms, such as art classes or entrance and exits to the playgrounds. Seppanen 
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et al. (1999) reviewed available literature for the association between both ventilation rates 

and CO2 concentrations and health. The authors were not able to determine a clear threshold 

value for CO2 below which further reductions in concentration were not associated with 

further decreases in SBS symptoms. However, 7 of the 16 reviewed studies suggested that 

the risk of SBS symptoms continued to decrease with decreasing CO2 concentrations below 

800 ppm. Mostly, CO2 measurements in schools indicate that the most classrooms probably 

do not meet the ASHRAE Standard 62-1999 for minimum ventilation rate of 2.5 l s-1 per 

person. Concentrations of a variety of pollutants emitted by occupants and building 

materials and furnishings will be higher under these conditions than if the ASHRAE 

ventilation standard was met. The potential for increased risks of contracting certain 

communicable respiratory illnesses, such as influenza and common colds, in classrooms 

with low ventilation rates is higher than in adequatly ventilated places (Fisk, 2001). 
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Figure 4.2 - Indoor carbon dioxide and carbon monoxide levels in the three main schools.  
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CO levels ranged from 0.0 to 1.0 mg m-3 (Figure 4.2) and did not exceed 12.5 mg m-

3, the recommended exposure limit (RSECE 2006). To prevent carboxy-hemoglobin levels 

in the blood from exceeding 2.5%, the World Health Organisation (WHO) has set specific 

air quality guidelines for distinct averaging periods: 100 mg m-3 (15 min), 60 mg m-3 (30 

min), 30 mg m-3 (1 h) and 10 mg m-3 (8 h) (Chaloulakou et al., 2003). CO is one of the most 

characteristic traffic pollutants usually observed in urban areas. However, in this study, 

concomitant increases of CO2 and CO concentrations were observed. This suggests a linear 

correlation between both CO and CO2 (r=0.787), and a direct relationship between 

increasing concentrations and classroom occupancies. CO is produced as a by product of 

incomplete combustion of organic materials. In the human body, CO is produced 

endogenously by the class of enzymes known collectively as heme oxygenase (Mines, 

1997). CO is detectable in small quantities in the exhaled air of health people (Zayasu et al., 

1997). Exhaled CO is increased in patients with inflammatory pulmonary diseases such as 

bronchial asthma, bronchiectasis, upper respiratory tract infections, and seasonal allergic 

rhinitis (Zayasu et al., 1997). This is supported by the fact that inhaled corticosteroids 

inhibit the increase in exhaled CO in asthmatic patients (Zayasu et al., 1997). According to 

Jones and Lam (2006), human exposure to microenvironments with high CO levels can 

increase exhaled CO concentrations. Thus, exhaled CO levels can potentially act as a 

functional indicator of air pollutant levels. In the city of Lisbon the most common sources of 

the total CO emissions are vehicle exhausts (Borrego et al., 2000). Taking into account the 

CO levels recorded by the 3 monitoring stations close to the 3 main schools, mean I/O ratios 

close to zero were obtained. The highest CO levels were registered in the school located 

near one of the busiest streets of Lisbon (Avenida da Liberdade). The average daily 

concentrations measured on the air quality monitoring station in this street were in the range 

0.36-0.52 mg m-3. Based on a comprehensive literature review, the INDEX project (Kotzias 

et al., 2005), concluded that current CO sources in EU residences contribute essentially to 

short-term, rather than long-term, exposures.  

Very few measurements of total VOCs in a typical school-day are reported in the 

scientific literature (e.g. Pegas et al., 2009, 2010). Total VOC concentrations could give 

information about the influence of aerosol sprays, solvents, cleaning agents, pesticides, 

paints and repellents. The measurements ranged from L.O.D. (< 0.005 mg m-3) to 2.1 mg m-
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3 and did not surpass the recommended value of 0.6 mg m-3 (RSECE 2006) (Figure 4.3). 

Peak concentrations of VOCs were observed around 10 A.M. at school A, on the first day, 

decreasing progressively thereafter. This may be explained by the fact that, on this particular 

day, classrooms were cleaned with VOC-release products in the morning, before classes 

start. Normally, the cleaning staff tidy up the rooms at the end of the day. An increase in 

concentrations was also observed at School B during a period coincident with an art class 

where glue and paints were in use. This makes evident that collage and painting materials 

can significantly enhance the VOC levels in indoor air. Zhang et al. (2006) also identified a 

visual art classroom with a relatively high level of VOCs.   
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Figure 4.3 - Diurnal variation of total VOCs (non-methane hydrocarbons) in the three main 
schools. 
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Table 4.2 shows indoor and outdoor average levels of total bacterial and total fungal 

CFU m-3. In all schools, the total fungal and total bacterial colony-forming units in both 

indoor and outdoor air were above the AMV of 500 CFU m-3 defined by the Portuguese 

Legislation, Decree-Law 79/2006 (RSECE 2006). The main factors affecting atmospheric 

dispersion and survival of microorganisms are the relative humidity, temperature, oxygen, 

wind and air turbulence, air pollutants and water and nutrient availability. Very high levels 

of microorganisms were obtained in all five replicates performed for every sampling site. 

The repetition of the whole experience one week apart (again with five replicates) was 

carried out to confirm the huge microbial counts. It was necessary to count some quadrants 

of the Micropore filters (0.45 µm) to extrapolate for all quadrants of each filter and estimate 

the minimum CFU number per sample. The high amounts of bacteria in both indoor and 

outdoor environments may derive from several factors, including high seasonal level of 

bioaerosols in outdoor air (spring), and human self-activities, such as breathing, sweating 

and movement causing particle resuspension.  

High bacteria counts were probably due to high occupancy loading, poor hygienic 

condition of occupants, inadequate ventilation rates, movement of textiles, food products, 

etc. (Lee et al., 2002; Mentese et al., 2009). Scheff et al. (2000) reported that, in a middle 

school of Springfield, the indoor fungal and bacterial counts were significantly higher than 

the outdoor concentrations. Similarly, Jo and Seo (2005) reported, for both the total bacteria 

and the total fungi, higher indoor concentrations compared to the outdoor environment at 11 

elementary schools in Korea. Mentese et al. (2009) studied different indoor and outdoor 

environments in terms of bioaerosol contamination. The highest total bacteria counts were 

measured in kindergartens, primary schools, restaurants, high schools, and homes, while the 

highest mould levels were observed in kitchens, bathrooms, and offices. Gonçalves et al. 

(2010) studied indoor and outdoor atmospheric fungal spores in the Sao Paulo metropolitan 

area (Brazil), and obtained levels above 36000 CFU. 
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Table 4.2. Measurement results for microorganisms. 

School A 

  Bacterial (CFU m-3) Fungal (CFU m-3) 

Indoor I ≥ 27051 ≥ 2023 

Outdoor ≥ 25651 ≥ 2697 

Indoor II  ≥ 29009 ≥ 1802 

School B 

  Bacterial (CFU m-3) Fungal (CFU m-3) 

Indoor I ≥ 30423 ≥ 2023 

Outdoor ≥ 14096 ≥ 2930 

Indoor II  ≥ 22123 ≥ 1945 

School C 

  Bacterial (CFU m-3) Fungal (CFU m-3) 

Indoor I ≥ 39838 ≥ 1335 

Outdoor ≥ 39838 ≥ 1698 

Indoor II  ≥ 39838 ≥ 1958 

 

 

 

4.3.2 VOCs, carbonyls and NO2   

 

The aromatic compounds benzene, toluene, ethylbenzene and the xylenes, followed 

by ethers, alcohols and terpenes, were usually the most abundant classes of VOCs. Indoor 

total VOC concentrations were generally markedly higher than those observed outdoors 
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(Figure 4.4 and Table 4.3). The sum of the individual VOC concentrations in indoor air 

varied from 37 to 317 µg m-3. Outdoor concentrations ranged between 6 and 80 µg m-3. In 

general, all the different classes of VOCs presented higher concentrations indoors than 

outdoors. Ethanol, dichloromethane, 1,2-dichloropropane, propyl acetate 

methylcyclohexanol, 2,2-dimethylbutane and 4-methyl-2-pentanone were only found in the 

indoor air. Those compounds that have only been detected in indoor air have a probable 

indoor source. Pollutants identified in both indoor and outdoor samples, but with higher 

concentrations in the indoor environments, may indicate additional indoor sources or 

inadequate ventilation ratios. For example, terpenes are well-known as emitted substances 

from cleaning products and room fresheners (Singer et al., 2006). Additionally, α-pinene is 

an intrinsic component in wood and furniture (Yrieix et al., 2010). Other VOC sources in 

indoor air include cooking fuels, aerosols propellants, refrigerants, paints, varnishes, 

cosmetics, adhesives, biocides, disinfectants, printed paper, etc. (Srivastava et al., 2004). 

The observed indoor levels in school C may be the reflex of inefficient ventilation 

conditions (windows and doors were always closed), and cooking activities in the same 

building of the classrooms. The school E presented both the highest aliphatic hydrocarbon 

and ester levels in comparison with other schools, probably due to the fact that the building 

was recently painted. The highest aromatic hydrocarbon concentrations were observed at 

school K, more likely due to its location in a street canyon with intense traffic. 
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Figure 4.4 - Indoor (2 classrooms) and outdoor VOC concentrations (sum of all compounds 
identified).  
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Table 4.3 – Indoor and outdoor VOC and carbonyl concentration (µg m-3) in all 
schools. 
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Among all monitored VOCs, benzene, toluene, ethylbenzene and xylenes (BTEX) 

are of particular interest due to their known carcinogenic effects (Kotzias et al., 2009). 

Indoor and outdoor BTEX concentrations are summarised in Table 4.4. Benzene 

concentrations were higher for all indoor environments, ranging from 0.2 to a maximum of 

0.9 µg m-3. All measurements were below the EU limit value of 5 µg m-3 for mean annual 

exposure to benzene. However, as it is a carcinogenic compound, the WHO has not yet 

established a guide or safe value (WHO 2000). Toluene is a ubiquitous indoor pollutant 

(Bruno et al., 2008). Its indoor concentrations were higher than the corresponding outdoor 

levels, ranging from 0.9 to 7.3 µg m-3. Concentrations of ethylbenzene comprise values from 

0.3 to 14.2 µg m-3, whereas the xylene isomers, m+p-xylene and o-xylene, were in the 

ranges 0.6 – 40 µg m-3 and 0.2 – 13.5 µg m-3, respectively. Results for BTEX in this study 

correlate well with those of Stranger et al. (2007), except for toluene. The high benzene and 

toluene concentrations observed in Lisbon are in the same range of those measured in 

schools of Oporto, Portugal (Madureira et al., 2009). Toluene levels were very similar to 

those found in schools of Curitiba, Brazil (Godoi et al., 2009). The BTEX levels in schools 

of Lisbon are far below the weekly average concentrations in non-residential indoor 

environments, such as libraries, pharmacies, offices, gymnasiums, newspaper stands, copy 

centres, coffee shops, etc., in Bari, Italy (Bruno et al., 2008). BTEX values were much lower 

than the WHO guidelines from 2000 (260 µg m-3 over one week for toluene and 4.8 mg m-3 

over 24 h for xylenes). However, some studies have correlated exposure to low 

concentrations of benzene and toluene with increased risks of cancer or eye and airway 

irritations (Guieysse et al., 2008).  

The highest indoor VOC concentrations were found in schools E, F, G and K. A 

possible indoor source in schools E and K was the vinyl flooring and floor adhesives, which 

are described as emitter materials, especially of benzene, toluene, xylenes, styrene, and 

ethylbenzene, among others (Mendell, 2007). In addition to these indoor sources, the 

inadequate ventilation (closed windows) likely favours accumulation of pollutants. New 

furniture and/or the fact of being a new building could also explain the high levels in school 

E. The VOC loads in school G are possibly related to the proximity to congested motorways 

surrounding the city. School F is located close to an old cigarette factory, near motorways, 

in an area without green spaces and with urban planning deficit. These housing conditions 

may have contributed to the high concentrations of ethers and alcohols. Better ventilation 
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conditions, lower occupancy density and larger classrooms in school A in relation to other 

institutions, may explain the low indoor levels observed at that school.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 150 

Table 4.4 – Overview of indoor and outdoor BTEX concentration in fourteen 
schools in Lisbon. 

 

Note: - not identified 
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In all places, the indoor concentrations of atmospheric aldehydes (formaldehyde, 

acetaldehyde, propionaldehyde and benzaldehyde) were higher than those outdoors. This is 

particularly valid for formaldehyde (Figure 4.5), classified as a human carcinogenic by the 

International Agency for Cancer Research. Formaldehyde concentrations ranged from 1.48 

to 42.3 µg m-3. Higher levels in classrooms than outdoors suggest that indoor sources are 

more important contributors to the indoor levels than outdoor sources, such as infiltration of 

vehicle exhaust (Ongwandee et al., 2009). Formaldehyde could be originated from 

composite wood and other products with urea-formaldehyde resin, some architectural 

finishes, tobacco smoke and other combustion processes (Mendel, 2007). Concentrations of 

formaldehyde are significantly affected by season and age of the buildings (Dingle and 

Franklin, 2002). It was observed that levels are higher in the presence of furniture bought 

new or restored less than one year before measurements (Lovreglio et al., 2009). In spring 

and summer, outdoor formaldehyde levels increase due to the acceleration of the 

photochemical activity (Lee et al., 2001b), while the opposite trend is observed indoors, 

since the interchange rate between indoor–outdoor air is higher due to open windows or the 

use of air conditioning (Pilidis et al., 2009). The highest level of formaldehyde was 

observed at school G. The high levels may be related to the fact that this institution is 

located in the vicinity of major motorways with very intense traffic. It should be also noted 

that the ceilings were painted during the Shrovetide period and new furniture was purchased 

just one month before the sampling campaign. In addition, the school corridors are wood 

coated. Pressed wood products use adhesive containing urea formaldehyde that can break 

down, releasing formaldehyde into the air. Formaldehyde is also found as a preservative in 

paint. Acute symptoms from formaldehyde exposures have sometimes been found including 

eye, nose and throat irritation, as well as lower airway and pulmonary effects (Kotzias et al., 

2009). Among the identified aldehydes, formaldehyde was the most abundant. However, 

other carbonyl compounds were also present at appreciable amounts: acetaldehyde (0.88-

7.02 µg m-3), propynaldehyde (0.48-2.28 µg m-3), and benzaldehyde (0.03-0.96 µg m-3).  
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Figure 4.5 - Formaldehyde concentration in all schools. 

 

Animal and human experimental studies indicate that NO2 at short-term 

concentrations exceeding 200 µg m-3 is a pollutant with significant health effects (Kraft et 

al., 2005). Exposure to NO2 at hourly peak levels of the order of ≥ 80 ppb, compared with 

background levels of 20 ppb, was associated with a significant increase of sore throat, colds 

and absences from school (Pilotto et al., 1997). The average NO2 concentrations were 

higher outdoors than indoors (Table 4.5), probably as a result of vehicular exhaust 

emissions from nearby traffic. The I/O NO2 ratios ranged between 0.36 and 0.95. Indoor 

NO2 levels were within the interval 15 – 37 µg m-3, not exceeding the current WHO 

guideline value of 40 µg m-3 (annual mean) to protect the public health. School E, which 

presented an outdoor concentration of 42 µg m-3, registered the lowest level of indoor NO2 

(15 µg m-3), possibly because the windows and the doors were always closed. An average 

NO2 concentration of 39 µg m-3 was registered in classrooms in Taiyuann, China (Zhao et 

al., 2008). Levels varying from 9.5 to 23 µg m-3 and from 11 to 19 µg m-3 were obtained, 

respectively, in the indoor air and outside of elementary schools in Curitiba, Brazil (Godoi 
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et al., 2009).  Lee and Chang (2000) found indoor and outdoor NO2 levels ranging from 12 

to 176 µg m-3 and 19 to 244 µg m-3, respectively, for five classrooms at different schools in 

Hong Kong.  

Table 4.5 – Indoor and outdoor NO2 concentrations in fourteen schools in 
Lisbon. 

 

 

4.4 Conclusions 

 

Indoor and outdoor concentrations of NO2, VOCs, carbonyls, microbiological 

components and comfort parameters (temperature, relative humidity, carbon dioxide (CO2), 

carbon monoxide (CO) and total VOCs) were measured in fourteen basic schools in Lisbon. 

The concentration of CO2 and bioaerosols greatly exceeded the AMV of 1800 mg m-3 and 

500 CFU m-3, respectively, perhaps due to overcrowded classrooms and inefficient 

ventilation. Schools located near traffic busy streets presented the highest outdoor (45.7 µg 

m-3) and the lowest indoor (29.6 µg m-3) NO2 levels, possibly because the windows and the 

doors were always closed. Generally, the assessed VOCs occurred at I/O ratios above unity, 
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showing the important influence of indoor sources and building conditions in IAQ. Most of 

the gaseous pollutants can be credited to the traffic emissions and indoor sources (some 

architectural finishes, floor adhesives, PVC flooring, consumer products and cleaning 

products). Better ventilation should be provided for these public buildings and air cleaners 

should be used in order to improve children’s health, and their performance. More studies 

are needed (currently underway) to find additional possible sources of indoor 

contamination, to calculate air exchange rates on a seasonal basis, to evaluate if there is a 

causal relationship between pollutant exposure and health symptoms in schools, and to 

assess if school IAQ can adversely affect academic performance or attendance. 
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5. SEASONAL EVALUATION OF OUTDOOR/INDOOR AIR 
QUALITY IN PRIMARY SCHOOLS IN LISBON  
 

Published 

Pegas, P., Alves, C.A., Evtyugina, M., Nunes, T., Cerqueira, M., Franchi, M., Pio, C., 

Almeida, S.M., Cabo Verde, S., Freitas, M.C., 2011. Seasonal evaluation of outdoor/indoor 

air quality in primary schools in Lisbon. Journal of Environmental Monitoring, 13, 657-

667.  

 

Abstract 

The aim of this study was to evaluate the indoor (I) and outdoor (O) levels of NO2, 

speciated volatile organic compounds (VOCs) and carbonyls at fourteen primary schools in 

Lisbon (Portugal) during spring, autumn and winter. Three of these schools were also 

selected to be measured for comfort parameters, such as temperature and relative humidity, 

carbon dioxide (CO2), carbon monoxide (CO), total VOCs, and both bacterial and fungal 

colony-forming units per cubic metre. The concentration of CO2 and bioaerosols greatly 

exceeded the acceptable maximum values of 1800 mg m-3 and 500 CFU m-3, respectively, 

in all seasons. Most of the assessed VOCs and carbonyls occurred at I/O ratios above unity 

in all seasons, thus showing the importance of indoor sources and building conditions in 

indoor air quality. However, it has been observed that higher indoor VOC concentrations 

occurred more often in the colder months, while carbonyl concentrations were higher in the 

warm months. In general, the I/O NO2 ratios ranged between 0.35 and 1, never exceeding 

the unity. Some actions are suggested to improve indoor air quality in Lisbon primary 

schools. 

Key words: carbon dioxide, carbon monoxide, carbonyls, indoor air quality, nitrogen 

dioxide, schools, volatile organic compounds.  
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5.1 Introduction 

 

Indoor air quality (IAQ) is often much worse than that of outdoor air (Pegas et al., 

2010; Kotzias et al., 2009). The Environmental Protection Agency (EPA) in USA 

estimates that indoor air pollutant levels could be two to five times higher than pollution 

levels outdoors. Evidence shows that citizens spend most of their time inside buildings, so 

it is easy to understand that they are, by far, more exposed to pollution indoors than 

outdoors (Blondeau et al., 2005; Sundell, 2004). Most chemical compounds to which 

people are exposed everyday constitute an additional risk factor in the development of 

several pathologies (Sundell, 2004). In particular, exposure to indoor air pollution can 

potentially be a greater threat than exposure to outdoor air. Changes in construction 

designs and the increasing application of synthetic products could enhance the number of 

complaints about IAQ at several environments (home, workplaces, schools, transportation 

and others) (Yang et al., 2004). 

Daisey et al. (2003) performed a survey and a critical review of the existing 

published reports on IAQ, ventilation, and building-related health symptoms in schools. 

The type of health problems observed in schools was very similar to those defined as the 

sick building syndrome (SBS). Therefore, the IAQ and ventilation in school buildings may 

affect the children’s health and indirectly influence learning performance and attendance.  

There are several reasons to consider IAQ at school a public concern. One is that 

children breathe higher volumes of air, relatively to their body weights. Children's 

physiological vulnerability to air pollution arises from their narrower airways and the fact 

that their lungs are still developing. Also, many children breathe through their mouths, 

bypassing the nasal passages’ natural defences. Thus, children are more likely to suffer the 

consequences of indoor pollution. Another reason for environmental deficiencies in 

schools is due to chronic shortages of funding, which contribute to inadequate operation 

and maintenance of facilities (Mendell and Heath, 2005). 

In Lisbon, the number of children with asthma and rhinitis represents, respectively, 

about 15% and 40% of the school-age population (Khan et al., 2007a). However, almost 
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nothing is known about IAQ in Portuguese schools. The main objectives of this work were: 

(a) to evaluate the contribution of ventilation, combustion processes, tobacco smoke and 

traffic, to the bacterial and fungal levels and to the IAQ; (b) to assess their air quality by 

determining the concentrations of different indoor and outdoor pollutants (c) to compare 

the measured concentrations with relevant standards (d) and to analyse the seasonal 

variation of indoor and outdoor pollutant concentrations.  

 

5.2 Material and Methods  

 

5.2.1 Description of schools 

 

Indoor and outdoor air samples were collected at fourteen schools with a wide 

geographical coverage representing the Lisbon urban area (Khan et al., 2007 a, b) (Figure 

5.1), in May and June 2009 (spring period), in November 2009 (autumn period), and in 

February 2010 (winter period). Two classrooms from each of the fourteen schools were 

selected for this study. All classrooms depended only on the natural ventilation through the 

existing doors and windows. Details of each sampling site are listed in Table 5.1. 
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Figure 5.1 - Distribution of the fourteen target schools in Lisbon.   
 

Table 5.1 – Characteristics of classrooms in each school. 

School 
Urban 

environment 
Electric 
Heating 

Blackboard 
and chalk or 
whiteboard 

with pen 

Number 
of 

students 
per room Floor 

Animals 
inside 

Plants 
inside 

Area 
(m2) 

Height 
(m) 

A suburban X blackboard 23 
ceramic 

tile   64.51 3.70 

B city centre  whiteboard 24 
ceramic 

tile X X 46.82 3.50 

C city centre X blackboard 22 
ceramic 

tile   50.14 3.50 

D suburban  whiteboard 21 
ceramic 

tile   51.20 3.20 

E suburban X blackboard 20 vinyl  X 46.95 3.15 

F suburban X blackboard 19 
ceramic 

tile   62.68 3.40 

G suburban X blackboard 22 
ceramic 

tile X  63.70 3.00 

H city centre X blackboard 21 wood X X 50.08 3.2 

I suburban X blackboard 23 
ceramic 

tile X  36.50 2.23 

J suburban X blackboard 22 wood   50.34 3.20 

K city centre X blackboard 21 vinyl   48.36 3.80 

L city centre X blackboard 21 vinyl   51.20 3.20 

M city centre X blackboard 21 wood   49.77 3.70 

N city centre X blackboard  21 
ceramic 

tile   X 46.68 2.64 
Note: All classrooms were natural ventilated (windows and doors). 
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5.2.2 Comfort parameters and airborne microorganisms 

 

Three schools were previously considered representative of all the elementary-level 

educational institutions: the A, B and C schools (Khan et al., 2007a, b). At these three main 

schools, continuous measurements of temperature, relative humidity (RH), CO2, CO and 

total VOCs were performed with an automatic portable Indoor Air IQ-610 Quality Probe 

(Gray Wolf® monitor) in one classroom of each school, throughout a whole occupancy 

day, during the spring period. During the autumn and winter campaigns, these parameters 

were monitored in parallel with sampling of microorganisms, in classrooms and 

playgrounds. This IAQ monitor includes a Pt100 probe for measuring temperature, a 

capacitance probe to sense RH, a CO2 non-dispersive infrared sensor and a CO 

electrochemical sensor, all of them with an extremely fast response. The monitor also 

includes a photo-ionisation detector to track total VOCs over time. It displays 

measurements in real time allowing logged data to be downloaded to Wolf Sense® PC 

software for analysis. The equipment was supplied with a factory calibration certificate, 

but it was further checked prior to its use, with appropriate calibration kits.  

Taking into account that the National System for Energy and Indoor Air Quality 

Certification of Buildings (Regulamento dos Sistemas Energéticos de Climatização de 

Edifícios – RSECE) (RSECE, 2006) restricts the bioaerosol measurements to bacterial and 

fungal colony-forming units per cubic metre of air (CFU m-3), only viable and culturable 

fungi and bacteria were quantified. Viable microorganism levels were monitored by liquid 

impinger sampling (May and Harper, 1957) in the two classrooms and playgrounds, during 

one day, in each one of the 3 main schools. The flow rate was set at 2.5 l min-1. Sampling 

took one hour at each sampling place. Five replicates of 150 l of air from each classroom 

and playground were collected and analysed to confirm the validity of results. The Petri 

dishes were incubated for 5 and 7 days for bacterial and fungal, respectively, in dark boxes 

with constant ambient temperature (25oC). 

 

5.2.3 Sampling and analysis of VOCs, carbonyls and NO2  
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VOCs and carbonyls were sampled in parallel using Radiello® (Fondazione 

Salvatore Maugeri, Padova, Italy) diffusive passive tubes (cartridges codes 130 and 165, 

respectively) for 14 consecutive days in two replicates. Indoor samples were collected at a 

height of about 1.5 m above the floor. The diffusive samplers were positioned at a distance 

that exceeded 1 m from a window or a door. Outdoor passive samples were collected at 

heights of about 2 m above the ground. The VOC adsorbing cartridges consisted of 60 mm 

length stainless steel net cylinders, with 100 mesh grid opening and 5.8 mm diametre, 

packed with 530±30 mg of activated charcoal with a particle size of 35-50 mesh (Cocheo 

et al., 1996). 

VOCs were extracted from the exposed samplers with 2 ml carbon disulfide (CS2 

from Aldrich) containing 2-fluorotoluene (from Aldrich) as an internal standard. The glass 

vials were shaken for approximately 30 min. The analyses of the extracts were performed 

by gas chromatography (Thermo Scientific Trace GC Ultra) coupled to a flame ionisation 

detector (GC/FID), using nitrogen carrier gas at a constant pressure of 20 psi. A 100% 

dimethylpolysiloxane column (0.2 mm, 50 m, film thickness 0.5 µm) was used. The 

temperature program was as follows: 50oC for 5 minutes, 5oC min-1 up to 80oC, 15oC min-1 

up to 135oC, 20oC min-1 up to 220oC, final isotherm for 20 minutes. Injector and detector 

temperatures were 240oC and 300oC, respectively. The equipment was calibrated before 

and during the sample analyses by injecting four standard solutions of all compounds 

identified in CS2 (Pegas et al., 2010). The analytes in these four standard solutions were 

present in concentrations of 40 ng µl-1, 20 ng µl-1, 10 ng µl-1 and 5 ng µl-1. Depending on 

the analyte, the limit of detection (LOD= 3.3(s/S) where s is the STDEV of areas and S is 

the slope) ranged from 0.34 to 2.52 ng µl-1 (Pegas et al., 2010). 

Carbonyls collected in cartridges filled with 2,4-dinitrophenylhydrazine reacted to 

result in the corresponding 2,4-dinitrophenylhydrazones. These were extracted with 2 ml 

of acetonitrile (from Fisher Scientific). The glass vials were shaken for approximately 30 

minutes and the extract filtered through 0.45 µm disc membrane filters (filtration kit RAD 

174) and injected into the high-performance liquid chromatography (HPLC) system. The 

analytical system consisted of a Jasco PU- 980 pump, a Rheodyne manual injection valve 

(sample loop of 20 µL), a Supelcosil LC-18 column (250×4.6mm; 5µm; Supelco) and a 

Jasco MD-1510 diode array detector, all connected in series. Isocratic elution at room 



 172 

temperature was performed using an acetonitrile/water solution (60/40, v/v) as the mobile 

phase at a flow rate of 1.5 ml min-1. The carbonyl concentrations were quantified with 

external calibrations curves constructed from standard solutions of TO11/IP6A carbonyl – 

DNPH Mix (from Supelco) (U.S. EPA, 1999). The limit of detection (LOD) ranged from 

1.29 to 2.09 µg ml-1. 

NO2 concentrations were also passively monitored for fourteen days. The diffusive 

samplers (70 mm length and 12 mm diameter polycarbonate tube) with steel grids 

impregnated with triethanolamine chemiadsorb NO2, as nitrite, which was quantified by 

visible spectrophotometry (Bhugwant and Hoareau, 2003). 

Although ozone is an important pollutant with health effects, its monitoring was not 

done, because preliminary studies in several Portuguese indoor environments, including 

schools, showed that its levels were always below or close to the detection limit (Borrego 

et al., 2007), except near photocopiers (Nunes et al., 2007). All the schools involved in this 

study, do not have photocopiers inside or near the classrooms. 

 

 

5.3 Results and Discussion 

 

The mean daily indoor temperature and RH values during the spring monitoring 

period, taken at the three main schools, ranged from 23.3 ± 0.85oC to 25.9 ± 1.56oC and 

from 34.6 ± 3.5% to 44.3 ± 6.5%, respectively (Table 5.2). During the autumn period, the 

mean daily indoor temperature and RH values ranged from 19.0 ± 0.7oC to 23.4 ± 0.7oC 

and from 48.9 ± 1.8% to 69.1 ± 4.5%, respectively. Finally, during the winter period, the 

mean daily indoor temperature and RH values ranged from 14.4 ± 0.75oC to 21.3 ± 0.39oC 

and from 56.0 ± 1.77% to 84.0 ± 5.18%, respectively.  
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Table 5.2 - Average microorganism counts (CFU m-3), and daily (spring)* and hourly (autumn/winter) ** averages for comfort 
parameters in a seasonal basis. 

Spring 

    Bacterial 
(CFU m-3) 

STDEV Fungal 
(CFU m-3) 

STDEV TVOCs 
(mg m-3) 

STDEV CO2  
(mg m-3) 

STDEV CO  
(mg m-3) 

STDEV Temperature (oC) STDEV Humidity 
(%) 

STDEV 

Indoor I ≥ 27,051 - ≥ 2,023 - 0.10 0.03 2,085 601.8 <L.D. 0.01 25.9 1.56 34.6 3.5 

Indoor II ≥ 29,009 - ≥ 1,802 - - - - - - - - - - - School A 

Outdoor ≥ 25,651 - ≥ 2,697 - - - - - - - - - - - 

Indoor I ≥ 30,423 - ≥ 2,023 - 0.30 0.33 1,826 636.9 0.04 0.08 23.3 0.85 44.3 6.5 

Indoor II ≥ 22,123 - ≥ 1,945 - - - - - - - - - - - School B 

Outdoor ≥ 14,096 - ≥ 2,930 - - - - - - - - - - - 

Indoor I ≥ 39,838 - ≥ 1,335 - 0.10 0.10 2,102 996.7 <L.D. 0.09 24.2 0.97 43.4 5.9 

Indoor II ≥ 39,838 - ≥ 1,958 - - - - - - - - - - - School C 

Outdoor ≥ 39,838 - ≥ 1,698 - - - - - - - - - - - 

Autumn 

    Bacterial 
(CFU m-3) 

STDEV Fungal 
(CFU m-3) 

STDEV TVOCs 
(mg m-3) 

STDEV CO2  
(mg m-3) 

STDEV CO  
(mg m-3) 

STDEV Temperature (oC) STDEV Humidity 
(%) 

STDEV 

Indoor I 1,320 367 1,440 305 1.00 0.20 1,673 304.3 <L.D. 0.00 21.9 0.30 56.9 1.4 

Indoor II 10,303 1,250 1,400 224 0.70 0.90 1,094 174.3 0.10 0.10 19.0 0.70 66.4 4.1 School A 

Outdoor 660 222 560 230 3.20 0.30 610.0 23.80 <L.D. 0.00 15.9 0.10 83.1 1.9 

Indoor I 8,380 353 10,499 332 0.90 0.20 1,407 238.3 0.20 0.20 20.8 0.60 50.6 3.9 

Indoor II 2,320 410 1,560 391 0.90 0.10 1,930 411.9 0.10 0.10 22.0 0.30 48.9 1.8 School B 

Outdoor 1,160 450 1,460 422 0.70 0.00 689.0 36.10 <L.D. 0.10 17.3 0.20 54.5 1.8 

Indoor I 2,480 446 1,840 261 1.50 0.10 2,039 351.7 <L.D. 0.00 23.4 0.70 60.2 3.2 

Indoor II 2,001 618 800 409 0.50 0.30 1,099 229.2 0.80 0.50 20.6 0.80 69.1 4.5 School C 

Outdoor 500 220 700 240 0.80 0.20 643.0 38.60 0.30 0.40 18.5 0.40 81.9 3.9 

Winter 

    Bacterial 
(CFU m-3) 

STDEV Fungal 
(CFU m-3) 

STDEV TVOCs 
(mg m-3) 

STDEV CO2  
(mg m-3) 

STDEV CO  
(mg m-3) 

STDEV Temperature (oC) STDEV Humidity 
(%) 

STDEV 

Indoor I 710 370 468 199 - - 1,572 96.90 0.05 0.08 21.3 0.39 56.0 1.8 

Indoor II 2,218 380 1,750 392 - - 1,453 171.1 0.08 0.19 18.8 0.57 66.6 3.0 School A 

Outdoor 1,854 388 711 269 - - 782.0 49.20 <L.D. 0.01 15.7 0.60 70.3 5.7 

Indoor I 3,396 894 225 145 - - 3,850 196.1 0.68 0.15 18.6 0.35 81.0 2.3 

Indoor II 1,456 651 329 125 - - 2,511 93.10 0.37 0.13 14.4 0.75 83.9 5.2 School B 

Outdoor 849 465 225 98 - - 694.0 21.90 0.52 0.19 10.4 0.47 103 0.1 

Indoor I 1,196 262 295 133 - - 2,829 191.4 0.49 0.11 18.7 0.92 74.9 5.5 

Indoor II - - - - - - - - - - - - - - School C 

Outdoor 589 72 399 131 - - 741.0 43.00 0.01 0.04 14.6 0.54 80.5 4.1 
Notes: - not identified; <L.D. bellow the detection limit; * monitoring during a full day of occupancy; ** monitoring concomitant one hour period of microorganisms sampling.
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Comfort standards specify exact physical criteria for producing acceptable thermal 

environments, which include temperature, and humidity limits (Kwok et al., 2003). The 

ANSI/ASHRAE Standard 55-2004 (ASHRAE, 2004) recommends indoor temperature 

ranges from 20 to 23ºC in the autumn/winter seasons and from 23 to 26ºC in the 

spring/summer seasons. The suggested indoor RH values are in the 30-60% range. Thermal 

comfort is affected by heat, convection, human occupancy, radiation and evaporative heat 

loss. It is maintained when the heat generated by human metabolism is allowed to 

dissipate, thus maintaining thermal equilibrium with the surroundings. Any heat gain or 

loss beyond this generates a sensation of discomfort (Hussein and Rahman, 2009). School 

children are susceptible to heat stress. At high temperatures, children are less able to 

concentrate and can exhibit irritable or aggressive behaviours. Adults can be similarly 

affected. A decrease in temperature may also make people restless and less attentive. 

During the spring monitoring campaigns of this study, the thermal conditions in 

classrooms were within the recommended ranges. However, during the winter period, 

classrooms did not have conditions within the comfort zone. Thus, heating systems should 

be implemented in these schools, namely by convection through panel heating or a 

combination of radiation and convection. The recommended systems in schools are the 

Hybrid Radiant Heating Systems or the Thermo Active Building Systems (Mumma, 2001). 

High relative humidity above 65% can lead to mould, mildew, and other biological growth. 

Mould growth is linked to allergic reactions, asthma attacks, and hypersensitivity 

pneumonitis (inflamed airways). The primary cause of high relative humidity levels is 

moisture-laden outdoor air entering the buildings, especially during rainy winters, such as 

the one registered in Lisbon. Desiccant based dedicated outdoor air systems are suggested 

as an effective way to operate school facilities in accordance with the ASHRAE Standards 

(Mumma, 2001). Considering that school-day peaks in humidity could still be problematic 

and provide sufficient moisture to condense on surfaces and provide wetting of surfaces, 

which could ultimately still support microbial growth, possible solutions could range from 

controlling the humidity with an energy efficient noiseless dehumidifier to overcoming 

building pathologies (wall cracks, infiltrations, etc.). 

During the spring period, CO2 levels ranged widely (705 to 6821 mg m-3) (Figure 

5.2). The National System for Energy and Indoor Air Quality Certification of Buildings 

(Regulamento dos Sistemas Energéticos de Climatização de Edifícios - RSECE) establishes 
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an acceptable maximum value (AMV) of 1800 mg m-3 for buildings in Portugal (RSECE, 

2006). Therefore, the CO2 average levels surpassed the acceptable threshold in the B and C 

schools for almost all the monitoring surveys, whereas the exceedances in the A school 

only occurred in spring (Table 5.2). It is not easy to adequately characterise indoor CO2 

concentrations because they are a function of occupancy and ventilation rate, both varying 

as a function of time. Short-term measurements could be inadequate to provide information 

on the long-term ventilation conditions in schools, but it may be very important to have 

measurements of different sampling places and to understand the influence of outdoor in 

indoor environment. High indoor CO2 levels are normally considered as indicative of 

ventilation rates that are unacceptable with respect to body odours. Low concentrations of 

CO2 do not always guarantee that the ventilation rate is adequate for the removal of air 

pollutants from indoor sources (Daisey et al., 2003). Normally, CO2 measurements in 

schools suggest that a significant number of classrooms do not meet the ANSI/ASHRAE 

Standard 62-2010 (ASHRAE, 2010) for minimum ventilation rates of 5 l s-1 per person. 

Figure 5.2 shows a strong correlation of the CO2 levels with occupancy: CO2 spikes were 

even more pronounced when students started physical activities inside the classrooms. CO2 

concentrations varied seasonally. In accordance with another study of British school 

classrooms (Coley and Beisteiner, 2002), in Lisbon schools, higher CO2
 
levels in winter 

than in spring were observed (Table 5.2). This indicates that during the spring period the 

windows were more open, which explains the drop in CO2 levels. A broad literature review 

for indoor environments generally suggests a consistent relationship between ventilations 

rates, high CO2 concentrations and health symptoms (Seppänen et al., 1999). 
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Figure 5.2 - Indoor carbon dioxide and carbon monoxide levels in the three main schools 
during the spring season.  

 

In spring, CO ranged from non-detectable levels to 1.0 mg m-3 (Figure 5.2) and did 

not reach 12.5 mg m-3, the recommended exposure limit (RSECE, 2006). During the 

autumn and the winter, the hourly average of CO was also below the exposure limit (Table 

5.2). CO is odourless and colourless, and it interferes with the distribution of oxygen in the 
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body (Chaloulakou et al., 2003). CO is one of the most characteristic traffic pollutants 

usually observed in urban areas. However, in this study, the average outdoor 

concentrations of CO were lower than those indoors, for all seasons. Concomitant 

increases of CO2 and CO concentrations, especially at the C school, were observed during 

spring daily measurements (Figure 5.2). CO is emitted when wood, coal and fossil fuels 

are burned incompletely. It is also emitted naturally when plants decay. In human breath, 

CO is detectable in small quantities in the exhaled air of healthy people (Zayasu et al., 

1997).  

Total VOC concentrations measured by the automatic monitor could provide 

information about the influence of indoor sources, such as aerosol sprays, solvents, 

cleaning agents, pesticides, paints, furniture and repellents. In a typical school-day in 

spring, the indoor average values ranged from 0.1 ± 0.034 mg m-3 to 0.3 ± 0.33 mg m-3 

(Table 5.2) and did not exceed the recommended value of 0.6 mg m-3. (RSECE, 2006) 

However, in autumn, the indoor average hourly values ranged from 0.5 ± 0.3 mg m-3 to 1.5 

± 0.1 mg m-3. At the A school, part of the indoor VOCs may come from the outdoor 

environment, which presented 3.2 mg m-3. In the case of the B and C schools, additional 

indoor sources or inadequate ventilation ratios may have contributed to higher indoor 

levels compared to outdoors. Examples of additional indoor sources could be glues and 

paints used by children in art classes. Pegas et al. (2010) and Zhang et al. (2006) also 

identified an art classroom with a relatively high level of VOCs. Casey et al. (1995) 

reported total VOC measurements made in two elementary schools at Las Vegas, Nevada, 

during the autumn/winter seasons. Before the installation and operation of heat recovery 

ventilators (HRVs) in Las Vegas schools, the only means of ventilation was infiltration, 

and the total VOC levels ranged from 0.8 to 2.0 mg m-3. After the HRVs were operational, 

concentrations of total VOC were reduced to 0.75 and 0.45 mg m-3 in the two classrooms. 

Thus, a possible solution to decrease the total VOC concentrations in classrooms is the use 

of HRVs or other ventilation systems.  

In most schools, the total fungal and total bacterial colony-forming units in both 

indoor and outdoor air (Table 5.2) were above the AMV of 500 CFU m-3 defined by the 

Portuguese Legislation, Decree-Law 79/2006 (RSECE, 2006). Generally, the indoor 

culturable bacterial levels were higher than outdoor levels at all schools in any season. 
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Most bioaerosols detected indoors have an outdoor source. They are introduced into the 

indoor environment through natural (open windows and doors) and mechanical ventilation 

systems. They also are brought indoors on an individual’s shoes and clothing (Gots et al., 

2003). High indoor bacteria counts were probably due to several factors, including high 

seasonal level of bioaerosols in outdoor air, indoor micro-climate with high temperatures, 

human activities, such as breathing, sweating and movement causing particle resuspension, 

high occupancy loading, poor hygienic condition of occupants, inadequate ventilation 

rates, movement of textiles, food products, etc (Lee et al., 2002; Mentese et al., 2009). 

Mentese et al. (2009) evaluated bacteria and fungi levels in various indoor and outdoor 

environments in Ankara. The highest total bacteria counts were found in kindergartens, 

primary schools, restaurants, high schools, and homes, while the highest mould levels were 

observed in kitchens, bathrooms, and offices. In elementary schools of Lisbon, the lowest 

bacteria and fungi counts were generally found in winter. This seasonal variation in the 

colony counts with maximum concentration in spring and a winter minimum were also 

observed in previous studies (Medrela-Kuder, 2003). In winter, the low temperature and 

small amounts of fungal spores or bacteria in infiltrating outdoor air result in lower 

bioaerosol counts. The relationship between fungi and SBS symptoms in children has been 

reported (Cooley et al., 1998; Handal et al., 2004; Garret et al., 1998). The most effective 

way to manage bioaerosols in a building is to eliminate or limit the conditions that foster 

their establishment and growth. One of the methods is to prevent moisture due to 

condensation by increasing surface temperature and/or reducing the moisture level in air 

(humidity). Also, efficient cleaning protocols could be implemented as a preventive action 

to control airborne microorganisms. 

Generally, indoor total VOC concentrations were markedly higher than those 

observed outdoors (Figure 5.3 and 5.4), except at the A school, in spring. This school had 

the most spacious and well-ventilated classrooms and the lowest occupancy ratio. With the 

drop in temperature in autumn and winter, the rooms remained longer with closed windows 

to maintain thermal comfort; this may have contributed to a gradual accumulation of 

pollutants. Ventilation is defined by ANSI/ASHRAE Standard 62-1999 (ASHRAE, 1999) 

in four steps: (1) entry of outside air, (2) conditioning, (3) mixture of air in the indoor 

environment, and (4) exhaustion of a portion of indoor air. If any of the four steps fails, 

ventilation will be inadequate and a consequent accumulation of pollutants will occur. The 
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high winter levels in the N school are probably related to the existence of toilets in front of 

the classrooms, which were used by the cleaning staff to wash mops, buckets, etc, and as 

storage room of cleaning products. During the spring/summer and autumn periods, the 

cleaning staff used outdoor installations for these activities. The indoor VOC accumulation 

is suspected to be one of the SBS causes (Daisey et al., 2003). 
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Figure 5.3 - Indoor (2 classrooms) and outdoor VOC concentrations (sum of all 
compounds identified) during spring, autumn and winter.  
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Figure 5.4 - Average concentrations (µg m-3) of all individual VOCs and carbonyls in all 
schools. 
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The groups of VOC and carbonyl compounds identified were as follows: aliphatic 

hydrocarbons (pentane, 2,2-dimethylbutane, 2-methylpentane, n-hexane, isooctane, n-

heptane, octane, nonane, and n-decane); aldehydes and ketones (formaldehyde, acetone, 4-

methyl-2-pentanone, acetaldehyde, propynaldehyde, and benzaldehyde); ethers and 

alcohols (methanol, ethanol, isopropanol, butanol, 2-ethoxyethanol, methylcyclohexanol, 

and 1-propanol); aromatic hydrocarbons (benzene, ethylbenzene, m+p-xylene, styrene, o-

xylene, and naphthalene); terpenes (α-pinene, (+)-sabinene, β-pinene, (+)-3-carene, γ-

terpinene, isoprene, limonene, and eucalyptol); esters (methyl acetate, ethyl acetate, propyl 

acetate, and n-butyl acetate); halogenated hydrocarbons (dichloromethane, and 1,2-

dichloropropane); and cyclo-aliphatics (cyclohexane, and methylcyclohexane) (Figure 

5.4). VOC compounds showed a substantial seasonal variation (Figure 5.4). The sum of 

the individual VOC concentrations in indoor air varied from 37 to 317 µg m-3 in spring, 

whereas levels in autumn and winter ranged from 11 to 922 µg m-3 and from 84 to 2175 µg 

m-3, respectively. Highest concentrations occurred during the coldest months. This 

seasonal pattern is in accordance with the results of the AIRMEX study, which examined 

the principal air contaminants present in public buildings in 11 European cities, including 

indoor environments frequented by children, like schools and kindergartens (Kotzias et al., 

2009). In our study, the sum of individual VOC concentrations in outdoor air were in the 

ranges 6-80 µg m-3, 5-50 µg m-3 and 7-22 µg m-3 in spring, autumn and winter, 

respectively. Thus, outdoor VOCs did not represent the major contribution to indoor levels. 

All buildings contain a large variety of chemical sources, including synthetic carpet, 

consumer products, paints, adhesives, furnishing, clothing, building materials, cleaning 

products, synthetic insulation, among others (Guo et al., 2004).  

Indoor and outdoor benzene, toluene, ethylbenzene and xylenes (BTEX) 

concentrations are summarised in Table 5.3. BTEX are of particular interest due to their 

known carcinogenic effects (Kotzias et al., 2009). For all BTEX compounds, in any 

season, the indoor concentrations were generally higher than those measured outdoors. The 

mean benzene concentration was low at the majority of schools, ranging from values below 

the detection limit to a maximum in winter of 2.89 µg m-3. For this pollutant, the indoor 

and outdoor levels do not differ appreciably. All measurements were below the limit value 

of 5 µg m-3 (annual mean) set by the European Commission. However, as it is a 

carcinogenic compound, the WHO has not yet established a guideline or safe value (WHO, 
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2000). At most sampling places, toluene, ethylbenzene, m+p-xylene and o-xylene were 

identified in both indoor and outdoor samples, but with higher concentrations in the indoor 

environments. This may indicate additional indoor sources and/or accumulation of such 

pollutants in the classrooms. Ethylbenzene and xylenes have been only detected in indoor 

environments during the coldest seasons at the H, J, L and M schools, suggesting a 

probable indoor source. Toluene, xylenes and ethylbenzene could be originated from 

indoor sources, such as tobacco smoke, solvent-based paints, floor adhesives, PVC 

flooring, carpeting, printed material, and consumer products (Mendell, 2007). Toluene 

levels were very similar to those found in schools of Curitiba, Brazil (Godoi et al., 2009). 

The highest toluene concentrations detected in Lisbon are in the same range of those 

observed in schools of Oporto, Portugal (Madureira et al., 2009). After a smoking ban was 

imposed in public places, in 2007, it was not expected to detect toluene from tobacco 

smoke. However, Mulcahy et al.(2010) found that the levels of tobacco smoke exposure 

have been reduced in workplaces after the ban, but have not been eliminated. The 

infiltration from outdoors and the exhaled breath of smokers can contribute to pollutant 

accumulation indoors. 
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Notes: - not identified; l. lost.  

Table 5.3 - Overview of indoor and outdoor BTEX concentrations for fourteen schools in Lisbon during spring, autumn and winter. 
BTEX (µg m-3) BTEX (µg m-3) BTEX (µg m-3) 

Spring Autumn Winter 

 Benzene Toluene Ethylbenzene 
m+p-

Xylene 
o-

Xylene Benzene Toluene Ethylbenzene 
m+p-

Xylene o-Xylene Benzene Toluene Ethylbenzene 
m+p-

Xylene 
o-

Xylene 
I 0.30 1.98 0.73 0.95 0.99 0.40 1.95 0.00 0.84 0.73 1.26 4.95 0.91 2.01 1.47 Indoor 
II  0.29 2.20 0.84 1.78 1.25 0.38 2.00 0.39 1.20 0.56 0.94 3.14 0.54 0.84 0.40 School A 

Outdoor   0.38 5.31 2.67 6.68 2.53 0.45 3.45 1.02 3.12 0.94 1.04 4.24 0.86 2.11 0.66 
I 0.31 2.12 0.54 1.04 1.89 0.53 2.66 0.52 1.32 1.21 2.08 19.3 1.25 2.38 4.44 Indoor 
II  0.34 6.45 0.73 0.70 0.82 0.57 2.36 0.36 1.04 1.43 1.01 4.13 0.62 1.26 5.24 School B 

Outdoor   0.31 1.56 0.39 0.86 0.24 0.48 1.81 0.41 0.83 0.29 1.13 2.46 0.25 0.31 - 
I 0.34 2.14 1.66 3.54 4.96 0.63 3.80 1.85 3.63 3.47 1.15 4.11 1.07 2.10 5.71 Indoor 
II  0.33 1.96 1.39 3.04 3.45 0.49 2.91 1.82 4.18 5.01 1.05 4.76 1.05 1.72 3.35 School C 

Outdoor   0.37 1.74 0.57 1.4 0.47 0.48 1.94 0.38 1.10 0.41 1.18 2.75 0.51 0.53 0.13 
I 0.36 2.83 1.11 1.86 0.55 0.45 2.85 0.60 1.26 1.04 0.99 7.43 0.92 2.07 1.06 Indoor 
II  0.28 1.99 0.33 0.87 0.34 0.39 3.32 0.44 1.06 0.99 1.26 3.09 0.58 0.73 0.58 School D 

Outdoor   0.29 1.24 0.34 0.77 0.23 0.45 1.53 0.35 0.81 0.28 0.96 1.84 0.26 0.30 - 
I 0.37 5.34 2.58 6.18 2.99 0.48 14.0 3.75 8.52 9.59 0.87 6.20 1.80 3.87 18.1 Indoor 
II  0.29 7.31 4.37 9.38 5.42 0.68 16.4 4.53 11.9 16.6 0.87 4.96 1.29 2.99 26.3 School E 

Outdoor  0.35 1.91 0.62 1.32 0.46 0.61 2.52 0.49 1.33 0.36 1.17 3.50 0.59 1.01 0.06 
I 0.30 1.63 0.59 1.01 0.52 0.74 4.60 0.82 2.83 23.0 0.73 3.19 0.36 0.95 - Indoor 
II  0.22 1.45 0.5 0.92 0.56 0.70 3.70 0.67 2.32 - 0.94 2.36 0.71 0.88 22.2 School F 

Outdoor   0.29 1.41 0.44 0.89 - 0.55 1.87 0.33 0.83 0.24 1.19 2.51 0.23 0.31 - 
I 0.27 4.47 14.2 19.7 7.90 0.41 2.36 1.45 3.91 - 1.00 5.48 1.02 2.16 6.77 Indoor 
II  0.28 2.91 1.58 3.28 6.38 0.46 3.82 1.84 - 8.49 1.00 6.43 1.08 3.26 18.9 School G 

Outdoor   0.36 1.84 0.48 1.16 0.38 0.55 2.15 0.29 0.78 0.18 1.44 3.57 0.52 1.46 0.55 
I 0.26 1.98 0.97 2.20 0.93 0.50 2.14 0.33 0.98 - 0.96 8.69 3.00 5.31 5.20 Indoor 
II  0.23 1.81 0.73 1.70 0.63 0.61 2.44 0.34 1.12 0.64 1.19 5.71 0.87 1.88 1.04 School H 

Outdoor   0.27 1.28 0.33 0.99 0.34 0.38 1.35 0.29 0.40 - 1.28 3.36 - - - 
I 0.41 5.55 2.60 5.35 5.06 0.78 4.35 2.63 7.60 3.80 0.96 5.20 37.7 109 40.3 Indoor 
II  0.41 3.21 1.17 2.39 3.60 0.72 3.98 1.84 5.87 4.04 0.94 5.75 54.4 160 110 School I 

Outdoor   0.26 1.79 0.48 1.14 0.35 0.47 2.22 0.60 1.84 0.59 1.19 3.14 0.77 1.73 0.69 
I 0.29 1.72 0.60 0.94 2.00 0.31 2.17 0.42 0.64 0.40 0.91 2.70 0.54 0.56 - Indoor 
II  0.32 1.59 0.29 0.92 0.56 0.33 3.49 1.06 0.85 - 1.06 3.67 1.61 2.00 0.69 School J 

Outdoor   0.26 0.87 0.90 0.62 0.2 0.34 1.53 0.21 0.25 - 1.20 1.82 - - - 
I 0.32 3.13 1.18 2.65 0.79 0.51 14.09 0.44 1.25 0.55 1.91 10.0 1.46 2.09 4.57 Indoor 
II  0.49 2.61 13.97 40.0 9.71 0.68 23.30 1.78 4.26 3.26 2.89 17.8 2.31 5.11 7.38 School K 

Outdoor  0.45 5.74 0.43 1.17 0.37 l. l. l. l. l. 1.41 3.59 0.42 0.68 - 
I 0.28 1.42 0.58 1.33 7.18 0.38 1.52 0.32 0.51 0.35 1.04 2.54 0.86 1.50 4.71 Indoor 
II  0.31 5.50 0.48 1.15 2.40 0.39 1.54 0.36 0.42 0.55 1.08 4.03 0.46 0.70 1.88 School L 

Outdoor   0.33 1.42 0.64 1.00 0.27 0.41 1.51 - 0.33 - 1.42 2.19 - - - 
I 0.94 4.34 1.00 1.81 0.95 0.35 5.83 0.62 1.22 0.67 0.95 3.61 1.16 - - Indoor 
II  0.28 1.47 0.47 0.96 0.36 0.40 3.29 0.47 0.84 0.27 2.10 5.78 - 1.35 - School M 

Outdoor   0.22 1.35 0.31 0.97 0.27 0.44 1.53 0.25 0.47 0.19 1.26 2.10 - - - 
I 0.31 1.52 0.74 1.60 4.87 0.47 2.04 0.55 0.97 0.93 2.28 8.86 2.61 3.81 11.7 Indoor 
II  0.28 2.01 1.22 2.80 13.5 0.48 2.08 0.63 1.62 - 0.96 3.68 1.50 2.96 14.2 School N 

Outdoor   0.40 1.60 0.44 0.98 0.27 0.50 1.85 0.44 0.75 0.24 1.31 2.87 0.51 0.78 - 
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In winter, the highest indoor VOC concentrations were found in the F, G, I, K, M 

and N schools. A possible indoor source in the K school was vinyl flooring and floor 

adhesives, which are described as emitter materials, especially of benzene, toluene, 

xylenes, styrene, and ethylbenzene, among others (Mendell, 2007). For the other schools, 

some old architectural finishes and consumers products could contribute for the 

accumulation of these VOC contaminations (Mendell, 2007). 

Carbonyl compounds are toxic and present carcinogenic health effects. They are the 

most important chemical contaminants affected by chemical and physical processes in the 

environment (Cerón et al., 2007). Carbonyls are emitted from incomplete combustion of 

biomass and fossil fuel, and formed indirectly by atmospheric photo-oxidation of VOCs 

(Pang and Mu, 2006). In all studied places, the air concentrations for aldehydes inside the 

buildings were higher than outside. Four carbonyls were identified in Lisbon schools: 

formaldehyde, acetaldehyde, propinaldehyde and benzaldehyde. Formaldehyde was by far 

the most abundant carbonyl species. Indoor and outdoor concentrations of formaldehyde in 

spring, autumn and winter are shown in Figure 5.5. Unlike VOCs, in general, both indoor 

and outdoor formaldehyde concentrations in spring were higher than those in colder 

months. Formaldehyde could be evaporated under high temperature from building 

materials and furniture. Moreover, its photochemical production is more active in the 

hottest seasons, even in indoor environment (Pang and Mu, 2006). Indoor formaldehyde 

concentrations ranged widely: 3.4-42.3 µg m-3 (spring), 3.1-26.2 µg m-3 (autumn), and 6.3-

23.8 µg m-3 (winter). Therefore, the indoor concentration of formaldehyde was higher in 

spring than measured in autumn and winter. The same relationship between formaldehyde 

concentrations and season has been reported in studies of residential microenvironments in 

China (Wang et al., 2007). In 185 houses from Perth, Australia, Dingle and Franklin 

(2002) used a validated passive sampling technique and found that within homes there was 

no significant difference in formaldehyde concentrations measured among the rooms. 

However, according to the same study, it seems that formaldehyde concentrations are 

significantly affected by season and age of the buildings. The highest values were obtained 

in newer homes in summer (Dingle and Franklin, 2002). The levels of formaldehyde in 

Korean schools, most of which are housed in buildings from 1960s and 1970s, were 

measured and related to the age of the constructions by Sohn et al. (2007). Schools less 
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than one year old showed a higher average value of formaldehyde (0.16 ppm) than schools 

that were 1-3 years old (0.12 ppm), 3-5 years old (0.07 ppm) and more than ten years old 

(0.07 ppm). In this study, school C possessed the oldest building. High levels of 

formaldehyde in other schools are likely associated with other sources and renovating 

activities of old buildings. The highest level of formaldehyde was observed at school G. 

The high levels may be related to the fact that this institution is located in the vicinity of 

major motorways with very intense traffic. It should be also noted that the ceilings of the 

school G, H and J were painted during the Shrovetide period and new furniture was 

purchased just one month before the sampling campaign. There are many evidences 

indicating that children can be more sensitive to formaldehyde toxicity than adults. It is 

considered to be a chemical of concern at levels exceeding 1 µg m-3, a concentration more 

or less corresponding to background levels in rural areas (Kotzias et al., 2009). 
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Figure 5.5 - Formaldehyde concentration in fourteen schools during spring, autumn and 

winter. 
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Descriptive data on indoor and outdoor concentrations of NO2 are given in Table 

5.4. The NO2 concentrations were always higher outdoors than indoors, probably as a 

result of vehicular exhaust emissions from nearby traffic. Indoor NO2 average levels were 

within the intervals 15-37 µg m-3, 12-46 µg m-3, and 10-34 µg m-3 during the spring, 

autumn and winter, respectively. It should be remembered, however, that these data were 

obtained by passive sampling, representing average concentrations of several days. 

Therefore, they do not show possible peaks, which may contribute to harmful effects 

through exposure over short periods of time. The same recommendation could be assigned 

for carbonyls and VOC compounds. In general, the I/O NO2 ratios ranged between 0.35 

and 1, never exceeding the unity. Because NO2 is reactive, its removal from the indoor 

environment may occur not only by dilution, convection or gaseous diffusion processes, 

but also by gas phase mechanisms and reactions on the inner surfaces of materials (e.g. 

furniture) (Ugucione et al., 2009). 
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Table 5.4 - Indoor and outdoor NO2 concentrations in fourteen schools in 
Lisbon during spring, autumn and winter. 

 NO2 atm concentration (µg m-3) 

 Spring Auntumn Winter 

  Indoor Outdoor I/O  Indoor Outdoor I/O  Indoor Outdoor I/O  

School A 31.0 36.5 0.85 31.1 34.7 0.90 34.4 34.4 1.00 

School B 35.2 37.2 0.95 35.1 38.3 0.92 33.6 40.5 0.83 

School C 32.6 45.9 0.71 34.1 41.2 0.83 29.4 41.3 0.71 

School D 33.3 39.4 0.85 31.5 34.7 0.91 30.3 34.3 0.88 

School E 14.9 41.6 0.36 12.4 35.2 0.35 24.0 35.2 0.68 

School F 33.5 35.7 0.94 45.8 46.6 0.98 23.4 32.7 0.71 

School G 21.7 42.4 0.51 21.4 39.0 0.55 15.9 36.2 0.44 

School H 34.0 37.5 0.91 35.5 36.3 0.98 18.6 38.0 0.49 

School I 37.4 41.5 0.90 35.1 41.9 0.84 17.3 34.1 0.51 

School J 20.2 25.1 0.81 22.9 34.9 0.65 10.2 22.8 0.45 

School K 29.6 45.7 0.65 32.2 50.0 0.64 18.5 30.1 0.61 

School L 32.2 39.1 0.82 39.6 46.2 0.86 18.9 22.9 0.82 

School M 35.5 39.1 0.91 36.6 36.9 0.99 16.3 25.3 0.65 

School N 30.7 35.9 0.85 40.7 50.1 0.81 21.0 27.5 0.76 

 

The International Study of Asthma and Allergies in Childhood (ISAAC) written 

questionnaire was applied to the same school population of this study. Information on 

asthma and rhinitis prevalence, as well the risk factors related to these respiratory diseases, 

can be found in Pegas et al. (2011). A statistically significant increase in the prevalence of 

rhinitis and wheeze was observed among primary schoolchildren in Lisbon (Pegas et al., 

2011). Children spend more time in schools than in any other place, except at home. 

Having pets at home was suggested as a significant risk factor for rhinitis, but not smoking 

exposure, mould, plush toys, diet (except egg consumption), breastfeeding or other house 

conditions (Pegas et al., 2011).  
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5.4 Conclusions 

 

Indoor and outdoor comfort parameters and microbiological counts were monitored 

in three main elementary schools, while indoor and outdoor concentrations of NO2, VOCs 

and carbonyls were measured, for the first time, in fourteen elementary schools in Lisbon, 

during May and June 2009 (spring period), November 2009 (autumn period), and February 

2010 (winter period). The CO2 concentrations and the bioaerosol counts greatly exceeded 

the AMV of 1800 mg m-3 and 500 CFU m-3, respectively, in all three seasons. The daily 

profiles of CO2 suggest that the classrooms are inadequately ventilated. The high amounts 

of bioaerosols in both indoor and outdoor environments may derive from several factors, 

including human activities. Most of the assessed VOCs and carbonyls occurred at I/O 

ratios above unity, in all seasons, showing the important influence of indoor sources and 

building conditions in IAQ. However, it has been observed that higher indoor VOC 

concentrations occur often in the colder months, while carbonyl concentrations were higher 

in warm months. Schools located near traffic busy streets presented the highest outdoor 

and the smallest indoor NO2 levels, possibly because the windows and the doors were 

always closed, or because NO2 indoor concentrations decayed by gas-phase processes or 

by reactions on the inner surfaces of furniture. 

Some improvements should be made to reduce the risks of exposure, such as the 

development of low-VOC-emission materials and consumer products indoors, the decrease 

of the number of students in each classroom, the usage of air cleaners in indoor 

environments, and humidity control. Increasing the ventilation rate by means of 

mechanical or natural systems can play a key role in improving the indoor air quality. 

Additional studies are needed to determine the extent of IAQ problems in schools. 

It would be important to use active samplers in future studies to obtain both daily and 

monthly profiles aiming at evaluating additional indoor sources and the short-term 

exposure to pollution peaks. More studies are also necessary focusing on the monitoring of 

the relations between symptoms and measured exposures to multiple specific pollutants. 

Furthermore, quantitative information is required on exposure-health response 

relationships for specific pollutants suspected of causing health problems, in order to 
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afford a sound basis for establishing standards for schools and for assuring cost effective 

mitigation actions. 
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6. INDOOR AND OUTDOOR CHARACTERISATION OF ORGANIC 
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Abstract 

Pollutants inside school buildings may affect children’s health and influence learning 

performance and attendance. This study investigated pollutant concentrations inside and 

outside school buildings at different locations (city centre and suburban) in Aveiro, 

Portugal, between April and June 2010. The aim was to evaluate simultaneously comfort 

parameters (temperature, relative humidity, CO2 and CO) and indoor and outdoor 

concentrations of VOCs, NO2, PM10 and bioaerosols. PM10 samples were analysed and 

characterised, for the first time, for the water soluble inorganic ions (WSII), organic carbon 

(OC), elemental carbon (EC), carbonates, and detailed organic speciation. The CO2 and 

bioaerosol levels were higher than the acceptable maximum values to the occupants’ 

comfort. Concentrations of the traffic tracer NO2 were higher outdoors. The daily indoor 

PM10 levels were always higher than those outdoors, except on weekends, suggesting that 

the physical activity of pupils and class works highly contributed to the emission and 

resuspension of particles. Almost all identified VOCs showed I/O ratios higher than one, 

which denotes an important contribution from indoor sources at both schools. The 

suburban school was more exposed to industrial emissions than the institution located in 

the city centre. Especially at the city centre, infiltration of outdoor particulates leads to 

contamination of school indoor environment with vehicle emissions and biomass burning 

smoke likely coming from biofuel use in nearby restaurants and bakeries. 

Key words: indoor air school, particulate matter, inorganic pollutants, organic pollutants. 

 

 



 
202 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
203 

6.1. Introduction 

 

It has been shown that indoor air quality (IAQ) is usually worse than the outdoors air 

(Godoi et al., 2009; Jo and Seo, 2005; Kotzias et al., 2009; Lee and Chang, 2000; Pegas et 

al., 2010; Pegas et al., 2011a,b; Yang et al., 2009). People are exposed to a multitude of 

chemical and biological stressors, some of which cause health problems (allergy, asthma, 

sensory irritation, hypersensitivity pneumonitis, lung cancer, etc.) (Bernstein et al., 2008; 

Jie et al., 2009; Rios et al.; 2009; Samet and Spengler, 2003). On the other hand, some 

indoor air pollutants, such as dust and water vapour, accumulate on equipments, increasing 

the chance of an electrical breakdown (Lohbeck, 2008). Results of many studies 

demonstrate a significant and causal correlation between improving the indoor 

environment and gains in productivity and health (Fisk, 2000; Fisk and Rosenfeld, 1997; 

Kats et al., 2003; Kumar and Fisk., 2002; Mendell and Heath, 2005; Mudarri and Fisk, 

2007; Seppanen et al., 2007). 

Children, as result of the immaturity of immunity system and of growing processes, are 

more fragile and susceptible to indoor pollution effects (Mendell and Heath, 2005). 

Children in scholar age spend an important fraction of their time indoors in schools. In 

Portugal school buildings are frequently old and degraded, potentiating negative health 

effects in their young occupants. 

As result of predictable impact of school IAQ in children health several studies have 

been performed worldwide in this topic (Daisey et al., 2003; Mendell and Heath, 2005). 

The pollutants most commonly measured in elementary school studies are gaseous 

compounds, which comprise total or speciated volatile organic compounds, formaldehyde 

and nitrogen dioxide, as well as biological agents including airborne fungi and bacteria 

(e.g. Blondeau et al., 2004; Godoi et al., 2009; Jo and Seo, 2005; Lee and Chang, 2000; 

Meklin et al., 2002; Pegas et al., 2011a,b; Yang et al., 2009). Comparatively to these 

traditional pollutants, indoor concentrations of particles at schools have been sparsely 

investigated. In spite of the various studies performed worldwide to assess the pupils’ 

exposure to indoor particles, only a few aimed at characterising their chemical 

composition, and this was mainly focused on the elemental content (e.g. Almeida et al., 

2011; Molnár et al., 2007; Oeder, et al., 2012; Stranger et al., 2008). Nevertheless, 
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practically nothing is known about the organic speciation and the respective sources of 

particles in the indoor air of schools. Due to their carcinogenic potential, only polycyclic 

aromatic hydrocarbons (PAHs) in the indoor air of residences, offices or commercial 

spaces have been characterised in a number of studies (Chalbot et al., 2006; Johannesson et 

al., 2009; Jung et al., 2010; Naumova et al., 2002, 2003; Ohura et al., 2004).  

In the present study, in addition to traditional measurements, a detailed chemical 

characterisation of particles occurring in both indoor and outdoor environments of 

elementary schools was performed. As far as we know, the abundances of several classes 

of organic compounds in airborne particles in schools were obtained for the first time. 

Such information is important as it appends to the emergent global-wide dataset of IAQ in 

educational buildings.  

 

6.2. Material and Methods 

 

6.2.1. Study design 

 

 

This study investigated, for the first time, pollutant concentrations inside and outside 

school buildings at different locations in Aveiro, Portugal. Comfort parameters 

(temperature, CO2 and CO), microorganisms, NO2, VOCs and PM10 concentrations in two 

elementary schools (city centre and suburban location) were measured between April and 

June 2010.  

Aveiro is a coastal city with approximately 60,000 inhabitants. It is situated on the 

shores of a coastal lagoon. An industrial complex is located 10 km to the north of the city. 

The city centre school is located at 40º 38’ 16.76’’N; 8º 39’ 09.85’’W. This school started 

its activities in the sixties. It is surrounded by commercial and residential buildings and in 

front of the school there is a car parking and busy road. The main classroom studied has 

wood floor, water based paint covering the walls, blackboard and chalk, white board and 

markers and wood windows. The suburban school is located at 40º 39’ 0.09’’N; 8º 38’ 

25.06’’W. This school started its activities in 2000/2001. The school is located on the 
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outskirts of the city in a rural area with a mixture of cultivated and abandoned farm fields. 

Some automobile paint and repair shops are located about 100 m west of the school. A 

peripheral motorway, at a lower altitude level, is approximately 500 m far. Residential 

neighbourhoods are found to the east. The main classroom studied presents similar 

characteristics to those already described for the other school. The main difference is the 

aluminium windows. Both school buildings are naturally ventilated. 

 

6.2.2. Sample collection and analytical methods 

 

Continuous measurements of temperature, relative humidity (RH), CO2 and CO were 

performed with an automatic portable Indoor Air IQ-610 Quality Probe (Gray Wolf® 

monitor) in one classroom of each school, throughout two weeks. The equipment was 

supplied with a factory calibration certificate, but it was further checked prior to its use, 

with appropriate calibration kits.  

Taking into account that the National System for Energy and Indoor Air Quality 

Certification of Buildings (DL 79/2006, Regulamento dos Sistemas Energéticos de 

Climatização de Edifícios – RSECE) restricts the bioaerosol measurements to bacterial and 

fungal colony-forming units per cubic metre of air (CFU m-3), only viable and culturable 

fungi and bacteria were quantified. Viable microorganism levels were monitored by liquid 

impinger sampling (May and Harper, 1957) in the classrooms and playgrounds, during one 

day in each school. The flow rate was set at 2.5 L min-1. Sampling took one hour at each 

sampling place. Five replicates of 150 L of air from each classroom and playground were 

collected and analysed to confirm the validity of results. The Petri dishes were incubated 

for 5 and 7 days for bacterial and fungal, respectively, in dark boxes with constant ambient 

temperature (25oC). 

NO2 concentrations were passively monitored during one week-period, for two weeks, 

in four classrooms and playgrounds of each school. The diffusive samplers with steel grids 

impregnated with triethanolamine chemiadsorb NO2, as nitrite, which was quantified by 

visible spectrophotometry (Bhugwant and Hoareau, 2003). 
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Radiello® passive samplers were used for VOC monitoring in the classrooms and at 

the playgrounds, during two weeks. VOCs were extracted from the exposed samplers with 

2 mL carbon disulfide (CS2 from Aldrich) containing 2-fluorotoluene (from Aldrich) as an 

internal standard. The glass vials were shaken for approximately 30 min. The analyses of 

the extracts were performed by gas chromatography (Thermo Scientific Trace GC Ultra) 

coupled to a flame ionisation detector. More details of the method can be found in Pegas et 

al. (2010).  

In each school, on working days, daily sampling of PM10 was performed, 

simultaneously in one classroom and outdoors. Both indoors and outdoors, two parallel 

samples were obtained by using 4 low volume samplers. On the weekends, a 48-hour 

sampling time was adopted. The PM samples were collected onto pre-baked (6 h at 500ºC) 

quartz filters 47 mm in diameter. The particulate matter sampling programme was carried 

out over a 2 week-period in both schools. PM10 mass concentrations were quantified 

following the EN 12341 method. After mass weight, the PM10 filters were stored in a 

freezer until chemical analysis. One of the parallel PM10 filters was used for the WSII 

determination, while the respective pair was devoted to the organic speciation, after 

carbonate and OC/EC analysis.  

For the determination of water soluble inorganic ions, small parts of the filters were 

extracted with ultra pure Milli-Q water. Dionex AS14 and CS12 chromatographic columns 

with Dionex AG14 and CG12 guard columns coupled to Dionex AMMS II and Dionex 

CMMS III suppressors, respectively for anions and cations, have been used.  

The carbon fractions, EC and OC, were analysed by a home-made thermo-optical 

transmission system described in detail elsewhere (Alves et al., 2011). Carbonates present 

in PM10 samples were analysed through the release of CO2, and measurement by the same 

non-dispersive infrared analyser coupled to the thermo-optical system, when a punch of 

each filter was acidified with orthophosphoric acid (20%) in a free CO2 gas stream.  

Two to three filters sampled during the same day of the week for the same local were 

combined to meet the limits of detection from speciated organic compounds. Thus, an 

“average” organic composition for each day of the week was obtained. The combined 

filters were extracted together by refluxing 300 mL of dichloromethane (Fisher Scientific) 
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for 24 h to obtain non-polar and semi-polar, and, to a lesser extent, polar compounds. 

Taking into account that the extraction efficiency of dichoromethane for polar compounds 

is around 75% (Gonçalves et al., 2011a), after filtration, the pieces of filter were extracted 

3 times with methanol (Fisher Scientific) (75 mL for 10 min, each extraction) in an 

ultrasonic bath to guarantee a 100% recovery of polar compounds. All the 4 extracts were 

then combined, vacuum concentrated and dried under a gentle nitrogen stream. The total 

organic extracts were subsequently separated into five different organic fractions by flash 

chromatography with silica gel (230–400 mesh, 60 Å Merck Grade 9385) and various 

solvents of increasing polarity. Following each elution, the different fractions were vacuum 

concentrated and evaporated under an ultra pure nitrogen stream. Before injection, the 

fractionated extracts that included more polar compounds were derivatised to trimethylsilyl 

ethers. Finally, the extracts were analysed by gas chromatography-mass spectrometry 

(GC–MS). The GC–MS system was accurately calibrated using about 150 high purity 

individual compounds at four/five different concentration levels. All samples and authentic 

standards were injected with two internal standards: tetracosane-d50 (Sigma-Aldrich) and 

1-chlorohexadecane (Merck). Additionally, the EPA 8270 semi-volatile internal standard 

mix (Supelco), containing six deuterated compounds (1,4-dichlorobenzene-d4, 

naphthalene-d8, acenaphthene-d10, phenanthreme-d10, chrysene-d12, perylene-d12), has 

been used for PAH analysis. The methodology for the extraction, flash chromatography 

and GC–MS analysis was previously described in detail by Alves et al. (2011). 

The normality was checked for all variables by Q-Q plots and by Shapiro-Wilk tests 

(Brown and Hambley, 2002). When deviations from normality were observed, then the 

non-parametric Mann-Whitney U test was preferred rather than the Student’s t-test to 

evaluate the significance of differences between variables (Brown and Hambley, 2002). A 

difference between two means was considered to be statistically significant when the p-

value of the two-tailed Mann-Whitney U test was lower than 0.05. All statistical 

computations were conducted with the R software (http://www.r-project.org/).  

 

 



 
208 

6.3. Results and discussion 

 

6.3.1. Comfort parameters, gaseous pollutants and microorganisms  

 

The indoor average temperatures during the occupation periods were very similar in 

both schools: 23 ± 0.6oC (city centre school) and 23 ± 0.5oC (suburban school). The 

average values obtained for the relative humidity were 57 ± 2% and 46 ± 3%, respectively, 

for the city centre and suburban schools. In addition to meteorological specificities during 

the sampling campaigns in each school, this small difference may be related to the better 

insulation of the more recent building that composes the suburban institution. The 

ANSI/ASHRAE Standard 55-2004 specifies the temperature and humidity ranges that are 

comfortable for 80% of people engaged in chiefly sedentary activities. The operative 

temperature acceptable ranges are 20–23ºC in winter and 23–26ºC in summer. Acceptable 

RH levels should range from 30 to 60%. The “comfort zone” limits the growth of 

microorganisms. 

Carbon dioxide is commonly measured as a screening tool to evaluate if adequate 

volumes of fresh outdoor air are being introduced into indoor air. The National System for 

Energy and Indoor Air Quality Certification of Buildings establishes an acceptable 

maximum value (AMV) of 1800 mg m-3 for buildings in Portugal (RSECE, 2006). Figure 

6.1 depicts the variation of indoor CO2 concentrations in a typical working day at both 

schools. A strong correlation of the CO2 level with occupancy has been observed. During 

the occupation period, in the city centre school, the CO2 levels ranged widely from 899 to 

2540 mg m-3, while in the suburban school, values were between 833 and 1859 mg m-3. 

High indoor CO2 levels are normally considered as indicative of inadequate ventilation. 

Outdoor "fresh" air ventilation is important because it can dilute contaminants that are 

produced in the indoor environment, such as odours released from people and pollutants 

emitted from the buildings, equipments, furnishings, and human activities. Adequate 

ventilation can limit the build up of these pollutants. It is these other contaminants and not 

usually CO2 that may lead to IAQ problems and complaints.  
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Figure 6.1. Classroom CO2 concentration (mg m-3) during a typical occupation period. 

 

The total bacterial colony-forming units in both indoor and outdoor air (Figure 6.2) 

were above the AMV of 500 CFU m-3 defined by the Portuguese Legislation, Decree-Law 

79/2006 (RSECE, 2006). These high CFU values are in agreement with measurements 

carried out in Lisbon elementary schools in spring, where indoor bacterial levels were also 

higher than outdoor levels at all institutions, regardless of season (Pegas et al., 2011a). The 

elevated levels of indoor bacteria have been primarily attributed to the number of 

occupants. Increased human shedding of skin cells, ejection of microorganisms and 

particulates from the respiratory tract, and the transport of bacteria on suspended dust 

particles from floor surfaces probably account for the strong positive correlation between 

occupancy levels and the concentration of bacteria in internal air (Goh et al., 2000; 

Moschandreas et al., 2003). High bacterial levels are also associated with excess moisture 

in indoor environments, especially in damaged buildings (Meklin et al., 2002). 
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Figure 6.2. Indoor and outdoor bioaerosol levels in both city centre and suburban schools.  

 

Comparable NO2 concentrations were obtained in both schools. Levels were below the 

annual and hourly limit values (lower thresholds) of 26 µg m-3 and 100 µg m-3, 

respectively, for the protection of human health, stipulated by the Air Quality Directive 

2008/50/EC. The I/O average NO2 ratio was 0.70 ± 0.06 in the city centre school, and 0.48 

± 0.23 in the suburban school. NO2 concentrations were higher outdoors than indoors 

(Table 6.1), probably as a result of vehicular exhaust emissions from nearby traffic.  
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Table 6.1. NO2 concentration in city centre and suburban schools. 

 

 

In general, concentrations of VOCs were higher indoors than outdoors for both schools 

(Table 6.2). The outdoor sum of identified VOCs was significantly lower (about 10 µg m-

3) for both schools. Higher indoor levels of many VOC species were also registered in 

previous studies involving 14 elementary schools of the Portuguese capital, Lisbon (Pegas 

et al., 2010, 2011a,b). In the present study, the very high dichloromethane concentrations 

in the indoor air of both schools deserve consideration. In a Canadian household study 

carried out by Zhu et al. (2005), very high dichloromethane indoor levels, up to 400 µg m-

3, were also measured. The National Occupational Health and Safety Commission 

(NOHSC) established an eight-hour time weighted average exposure limit in the workplace 

of 174 mg m-³. Household products containing dichloromethane could possibly be the main 

sources of dichloromethane in indoor air. Dichloromethane is found in adhesives, spray 

paints, automotive cleaners, and varnish removers Among the consumer products that may 

contain dichloromethane are aerosol propellants, aerosol air fresheners and deodorants, 

furniture polish and cleaners, hairsprays, household hard surface cleaners (aerosol and 

liquid), household insecticides, household tints and dyes, shoe polish and cleaners, etc.  
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Table 6.2. VOC concentrations (µg m-3). 

 

 

6.3.2. Particles and their carbonaceous and ionic contents 

 

It has been observed that the 24-hour PM10 values frequently exceed the lower 

threshold of 25 µg m-3 stipulated by the European Directive for outdoor air (Table 6.3). 

Yet, concentrations did not exceed the limit value of 150 µg m-3 established by the 

Portuguese legislation for indoor air (RSECE, 2006). However, it should be taken into 

account that, in this study, a 24-hour sampling schedule was followed, while classes are 



 
213 

only held 8 hours a day (9:00 to 18:00). Thus, measurements may have underestimated the 

students’ exposure to PM10, as it can be seen from Table 6.4, where rough estimations of 

PM10 concentrations during school hours are presented. The estimation of the PM10 

concentrations for the occupation period was derived from the following mass balance: 
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Yip et al. (2004), in an investigation conducted in Detroit elementary schools and 

homes, observed a 2-fold increase in indoor PM10 concentrations after changing the 

sampling time from 24 to 8 hours. The daily indoor PM10 levels were always higher than 

those outdoors, except on weekends (Table 6.3 and 6.4), suggesting that the physical 

activity of the pupils leads to resuspension of coarse particles and greatly contributes to 

enhance PM10 in classrooms (Almeida et al., 2011). The estimated PM10 concentrations for 

the occupation periods suggest that the high levels are due to class activities, either by 

resuspension or by the introduction/production of new particulate matter (soil material 

brought in shoes, blackboard dust, skin flakes, cloth and furniture fragments, viable moulds 

and bacteria, and insects, for example) (Table 6.4). Whilst the results indicated an 

important background contribution to indoor PM10 from penetration of outdoor particles, 

these indoor sources contributed substantially to indoor concentrations and were the 

dominant apportioners. In statistical terms, the indoor PM10 concentrations of the city 

centre school were significantly higher than those outdoors (p-values of 0.0007944), while 

no significant difference was observed between the indoor and outdoor levels of the 

suburban school (p-value of 0.1064). On the other hand, it was observed that the outdoor 

PM10 levels of the suburban school were significantly higher than the outdoor values of the 

city centre school (p-value of 0.004205).  
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Table 6.3. Average concentrations of PM10, carbonates, OC, EC and soluble ionic species 
(µg m-3) in both schools. 
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Table 6.4. Indoor and outdoor PM10 concentration during all day long (24h) and estimated 
indoor occupation (8h). 

 

 

 

Our results are in line with findings of previous studies carried out in elementary 

schools in different regions of the world (Almeida et al., 2011; Blondeau et al., 2004; 

Diapouli et al., 2008; Fromme et al., 2008; Halek et al., 2009; Oeder et al.,2012; Stranger 

et al., 2008). It has been shown that fine particulate matter is the size fraction most strongly 

associated with morbidity, but some studies have demonstrated that PM10 may also have 

negative effects on children’s health (Schwartz and Neas, 2000; Smith et al., 2000; 

Weinmayr et al., 2010).  

Taking into account that the main component of chalk used in both schools is calcium 

carbonate (CaCO3) and not calcium sulphate (CaSO4), and thus assuming there is no 

indoor source of sulphate, the indoor-generated PM10 can be calculated by the infiltration 

ratio for sulphate (Fromme et al., 2008), as follows: 
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where Cig is the sum of indoor-generated PM10, Ci is the total indoor PM10 concentration, 

β
PM/βsulph is the ratio between the increase of indoor PM10 per outdoor PM10 (linear 

relationship) and the increase of indoor sulphate per outdoor sulphate (linear relationship), 

Ci
sulph is the indoor sulphate concentration, Co

sulph is the outdoor sulphate concentration, 

and Co is the outdoor PM10 concentration (Fromme et al., 2008).  

Applying the measured values, it has been observed that 74 ± 23% of the total PM10 in 

the city centre school was generated indoors rather than being carried inside from outdoors, 

while highly variable contributions were obtained for the suburban school.  

Generally, the concentration of particulate water soluble inorganic ions (Table 6.3) 

was higher outdoors (30% and 32% of the PM10 mass at the city centre school and at the 

suburban school, respectively) than indoors (13% and 18% of the PM10 mass at the city 

centre and at the suburban school, respectively), suggesting that the main sources of 

inorganic material are external. Indoor sulphate was the dominant water soluble ion, 

representing 22% and 30% of the total concentrations of all analysed ions, in the city 

centre and suburban schools, respectively. The indoor sulphate levels in the suburban 

school were significantly higher than the indoor levels in the city centre school (p-value of 

0.000981). The outdoor sulphate levels at the suburban school were found to be 

significantly higher than those observed at the city centre institution (p-value of 0.02751). 

The chloride levels in the downtown school accounted for 12% and 13% of the total ionic 

concentrations in the indoor and outdoor air, respectively. In the suburban school, the 

chloride levels represented 10% (indoors) and 17% (outdoors) of the total ionic mass 

concentrations. The outdoor chloride levels of the suburban school were significantly 

higher than the indoor levels at the city centre school (p-value of 0.005109). As observed 

in other coastal towns, such as Salina Cruz, Mexico (Baumgardner et al., 2006), the 

amounts of chloride ion likely have a strong contribution from sea spray. The school 

situated on the outskirts of the city is more exposed to this natural input. The calcium 

levels were significantly higher in the indoor environment of the city centre school than 

those observed outdoors (p-value of 0.00129). The higher indoor levels are probably 

related to the use of chalk on the blackboard. This observation is corroborated by the high 

carbonate (CO3
2-) concentrations in the classrooms. The indoor carbonate concentrations 
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were about 16-20 times the amounts found outdoors during the weekdays. Carbonates 

represented approximately 1.2% of the PM10 mass for both schools. Magnesium 

represented one of the less abundant ions in the indoor environment. The outdoor 

magnesium concentrations at the suburban school were significantly higher than those 

measured indoors (p-value of 0.0006122), and the suburban outdoor levels were higher 

than those of the corresponding environment at the city centre school (p-value of 

0.001759).  

Carbonaceous components (EC and OC) presented higher levels inside than outside 

(Table 6.3). Indoor OC sources seem to be mainly related to student room occupancy and 

their activities, like small particles of paper, skin debris and clothing fibres. OC constituted 

the major mass fraction, accounting for almost 30% and 20% of PM10 in the city centre and 

suburban schools, respectively. Elemental carbon contributed, on average, to 3.4% and 

1.6% of the particle mass in these two educational establishments. The indoor OC 

concentrations were found to be significantly higher than those outdoors for the city centre 

and suburban schools (p-value of 3.4e-05 and 4.404e-05, respectively). EC indoor 

concentrations observed in the city centre school were statistically higher than the values 

measured in the classroom of the suburban building (p-value of 0.002417). The outdoor 

levels obtained for the inner-city institution were also significantly higher than those 

measured at the playground of the suburban establishment (p-value of 0.003145).  

 

6.3.3. Organic speciation of particles 
 

The chromatographically resolved organic compounds in the particulate phase 

encompassed aliphatics, PAHs, n-alkanols, sugars, polyols, and several types of acids 

(Figure 6.3). Besides n-alkenes, the aliphatic fraction comprised n-alkanes that exhibited a 

lack of odd-to-even carbon number predominance with Cmax at C26, C28 and C29. Carbon 

preferences indices close to 1 (Table 6.5 and 6.6), together with the presence of petrogenic 

tracers (e.g. hopanes), whether in classrooms or in outdoor air, reflect the contribution of 

vehicular sources (Alves, 2008). The influence of traffic emissions on the indoor air 

quality is corroborated by the values of diagnostic ratios between PAHs (Figure 6.4), 

which fall in the ranges reported for catalyst-equipped vehicles (Alves, 2008; Bi et al., 
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2003; Callén et al., 2011). In some days, however, the PAH ratios reflect the influence of 

industrial emissions on the PM10 collected in the suburban school. The BaP dose 

equivalent (BaPE) for each PAH is calculated by multiplication of the measured 

concentrations by the respective potency equivalent factor (PEF). The PEF values were 

taken from Delgado-Saborit et al. (2011), who presented a compilation of data based on a 

literature review. The BaP dose equivalent is then calculated as a sum to express the 

carcinogenicity of the mixture: 

 

ii xPEFPAHBaPE ∑=                                                                                                    (6.3) 

 

The levels of carcinogenic PAHs (Figure 6.5) were in the typical ranges reported for USA 

and Europe (Callén et al., 2011; Jung et al., 2010; Mantis et al., 2005) and much lower than 

those measured in Asia (e.g. Fang et al., 2002). The PEFs were also used to calculate the 

proportion of total carcinogenic potential represented by each individual PAH: 
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where RC is the ratio of the individual PAHs to the carcinogenic marker BaP. Figure 6.5 

shows the individual carcinogenic activity for both indoor and outdoor environments. The 

compound that contributes most to the total carcinogenic potential of the PAH mixture was 

always BaP, with average values higher than 61%. Its contribution to total carcinogenicity 

was slightly higher indoors than outdoors. The second or third highest contributors were 

benzo[k]flouranthene and chrysene with average shares of 12-14% and 12-16%, 

respectively. While the contribution from chrysene was higher outdoors, that of 
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benzo[k]flouranthene did not show any clear pattern. The carcinogenic risk was calculated 

as follows: 

 

xURxPEFPAHriskicCarcinogen ii=                                                                              (6.5) 

 

  

where UR represents the cancer unit risk, i.e. the excess cancer risk associated with an 

inhalation of 1 µg m-3 of a compound. It is obtained by multiplication of the cancer 

potency factor for BaP [3.9 (mg kg−1 d−1)−1] by the reference child inspiration rate per day 

(12.4 m3) and dividing by the reference child body weight (21 kg) multiplied by a 

conversion factor from mg to ng of 106 (Bari et al., 2011; Elert et al., 2011). The 

carcinogenic risk to occupants from the suburban and city centre schools was found to be 

in the ranges 4.4×10-8-2.4×10-7 and 1.2×10-7-2.3×10-7, respectively. In general, USEPA 

considers excess cancer risks that are below about one chance in a million (1×10-6) to be so 

small as to be negligible.  
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Figure 6.3. Concentrations (ng m-3) of the dominant organic classes detected in PM10. 
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Table 6.5. Average concentrations of some organic tracers (ng m-3) on working days (WD) and 
weekends (WE). 

 

 

 

 

 

 

Table 6.6. Carbon preferences index (CPI) and homologues with the highest 
concentrations. 
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Figure 6.4. PAH ratios (BaA - Benzo[a]anthracene; Chry – Chrysene; BeP – 
Benzo[e]pyrene; BaP – Benzo[a]pyrene; Flu – Fluoranthene; Py – Pyrene) 

 

 

 

 

 

 

Figure 6.5. (a) Benzo[a]pyrene equivalent concentrations and the World Health 
Organization target value (WHO, 2010); (b) individual carcinogenic activity for both 
indoor and outdoor environments. 
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Besides n-alkanes, homologues series of n-alkanols (C10-C30) and n-alkanoic acids 

(C6-C28) were also present in the aerosol samples. The strong even carbon number 

predominance reflects a dual biogenic origin: (i) waxes from terrestrial vegetation, in the 

case of the higher weight homologs, and (ii) microbial lipids, in the case of homologues < 

C20.  

Among acids, unsaturated compounds, such as palmitoleic (C16:1), oleic (C18:1) and 

linoleic (C18:2), were one of the most representative groups. The presence of these acids in 

atmospheric particles has been attributed to cooking emissions (He et al., 2004). Due to 

their reactivity, these fatty acids are often used as an indication of the ageing of the 

aerosols. For most days, the C18:0/C18:1 and C18:0/C18:2 concentration ratios were lower than 

0.6, whether indoors or outdoors, indicating recent genesis of the unsaturated fatty acids 

(Alves et al., 2007). In spite of the presence of constituents from cooking fumes in the 

particulate matter, the contribution of this source to VOCs is not so obvious. It should be 

noted, however, that the dominant VOCs emitted during cooking activities were not 

searched for in the present study. In fact, it has been reported that formaldehyde, 

acetaldehyde, and low molecular weight alkanals, 2-alkenals, 2-alkanones and dicarbonyls 

are major VOCs in emissions from cooking (Fullana et al., 2004; Schauer et al., 2002). 

Alkanedioic acids, ranging from the C3 (propanedioic) to the C9 homologue 

(nonanedioic) were detected in PM10. Dicarboxylic acids < C10 may be originated from 

vehicle emissions, meat cooking, biomass burning or atmospheric oxidative processes 

(Alves et al., 2007). The presence of some diacids in PM10 may be associated with 

vegetation detritus as they are present in the guttation fluids, fruits and tissues of plants. 

Additionally, they may be originated from the ozonolyis of sporopollenin of spores and 

pollen grains (Oliveira et al., 2007; and references therein). Indoor concentrations were 

higher than those measured in the school yards, suggesting accumulation of these 

constituents inside the buildings and/or that part of them can be generated indoors. 

Significant amounts of other oxygenated species, some of which are thought to be photo-

oxidation products of volatile organic compounds, from both biogenic and/or 

anthropogenic origin, were identified in the PM10 samples. These include hydrocarboxylic 

acids, oxocarboxylic acids and terpene diacids. The global outdoor levels in the suburban 

schools were 3-times higher than those measured in the city centre establishment, although 
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the indoor values were comparable. Benzoic acid, a secondary product from photochemical 

degradation of aromatic hydrocarbons such as toluene emitted by automobiles (Ho et al., 

2011), was one of the secondary organic aerosol (SOA) products observed in samples. 

Most of the homologous ketocarboxylic acids (e.g. oxobutanoic and oxopentanoic), also 

detected in this study, are secondarily produced via atmospheric photo-oxidation of organic 

precursors and/or primarily formed by fossil fuel combustion and biomass burning and 

further oxidised into diacids (Wang et al., 2009). Pinic and pinonic acids, which represent 

photo-oxidation products of terpenes emitted from vegetation (Alves, 2008, and references 

therein), were present at higher concentrations outdoors. These pinene derivatives have 

been detected in ventilation ducts, where they can be formed at ambient levels of ozone 

and precursors (Fick et al., 2004). The presence of precursors in indoor air may have two 

sources, either from the outdoor environment or from recirculated indoor air.  

The occurrence of resin acids (isopimaric, abietic and dehydroabietic) in the indoor air 

indicates infiltration from the outdoor environment. These constituents are markers from 

gymnosperm (mainly conifer) fuel combustion (Gonçalves et al., 2011b). Conifer wood 

processing can be pointed out as another possible source of resin acids (Eriksson et al., 

2004). The wood dust released into the air contains these diterpenic acids, which are the 

main constituents of the oleoresin of the coniferous tree species. The presence of carpentry 

workshops and sawmills in the vicinity of the suburban school may explain the higher 

levels observed in comparison with the city centre institution. Resin acids may also be 

originated from a turpentine factory located on the outskirts of the city. Turpentine is 

produced from distilling the resinous gum from pine trees. Frequently, during the late 

afternoon and the first few hours of the night, the prevailing winds transport the plume to 

the city, and usually affect more the suburban school than the city centre school.  

Saccharides in atmospheric particles originate from different source types. 

Microorganisms, plants and animals can release into the atmosphere primary saccharides 

(monosaccharides including glucose, fructose, xylose and disaccharides, such as sucrose 

and trehalose), whereas fungi, lichens and bacteria produce saccharidic polyols, also 

denoted as sugar alcohols, such as arabitol, mannitol and sorbitol (Caseiro et al., 2007). 

Anhydrosaccharides, on the other hand, such as levoglucosan derived from cellulose, and 

galactosan and mannosan, derived from hemicelluloses, are the primary thermal 
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degradation products of structural polysaccharides present in biomass (Gonçalves et al., 

2011). The average I/O obtained in the city centre and suburban schools for the global 

concentrations of sugars and polyols were, respectively, 4.1 and 5.7, reflecting the 

representativeness of bioparticles in the indoor air.  

Levoglucosan is commonly used as a tracer for wood combustion in urban atmosphere 

(e.g. Oliveira et al., 2007). However, taking into account that the sampling campaign was 

carried out in spring, emissions from residential wood combustion for heating purposes are 

thought to represent a minor contribution. Levoglucosan was detected in Chinese cooking 

source profiles (He et al., 2004; Hou et al., 2008). The high temperature during cooking 

processes would lead to the emission of levoglucosan due to thermal degradation of 

vegetable cellulose. Spices such as Cumimum cyminum and Capsicum (powder of dry 

vegetables) used as condiments can also decompose to form levoglucosan (Hou et al., 

2008). Thus, in addition to woodstoves and/or open-hearth cooking in restaurants in the 

school surroundings, food preparation in these commercial spaces may likely contribute to 

levoglucosan emissions. The open field burning of garden and agriculture residues may 

represent an additional source of anhydrosugars and other compounds to the aerosol, 

especially in the suburban school.  

Organophosphate esters and six phthalate esters were detected in PM10 from both 

schools. Both groups of these semi-volatile compounds are widely incorporated as 

additives into plastic materials used in the indoor environment, thus contributing to the 

indoor exposure to industrial chemicals. I/O ratios ranging from 4 to 14 and from 1 to 9 

were obtained in the city centre and suburban schools, respectively. 

Squalene, a constituent of skin flakes (Weschler et al., 2011), was almost exclusively 

found in indoor samples, pointing out skin desquamation as a major source. 

 

6.4. Conclusions 

 

Comparison of weekday and weekend data demonstrated that school activity and indoor 

sources increase loadings of many gas and particle pollutants. Almost all of the identified 
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VOCs showed I/O ratios higher than one, and especially dichloromethane, suggesting the 

presence of important indoor sources in both schools. The daily profiles of CO2 suggest 

that the classrooms are inadequately ventilated, which likely favours accumulation of 

pollutants in indoor air. Vehicle emissions contributed to I/O NO2 ratios lower than 1 and 

to PAH ratios typical of this source. However, the benzo[a]pyrene equivalent 

concentrations were lower than the WHO target value and the carcinogenic risk to 

occupants from the suburban and city centre schools was found to be negligible. Only 26% 

of PM10 were of ambient origin. Indoor sources of organic matter have a strong impact on 

indoor PM10 concentrations (small particles of paper, skin and cloth particles). All the 

carbonaceous fractions showed a significant enrichment in the indoor environment. Chalk 

used in classrooms could explain the higher indoor concentrations of carbonate. Outdoor 

particulate infiltration leads to direct transportation into indoors of vehicle emissions and 

biomass burning smoke likely coming from solid fuel use in restaurants and bakeries. The 

effect of cooking activities in the restaurants on the indoor air particulate level in city 

centre school nearby is important. The cooking activities around this school release 

significant amounts of oily fumes from kitchens to outdoor air, which infiltrate into the 

classrooms. The suburban school was more exposed to industrial emissions than the city 

centre institution. 

This type of study should be extended to other schools in order to be better able to 

sustain IAQ management strategies, and to apply source apportionment methodologies. 

Future investigations should also evaluate the toxicological aspects related to the PM 

exposure in schools in comparison to PM exposure in outdoor air.  
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7. COULD HOUSEPLANTS IMPROVE INDOOR AIR QUALITY IN 
SCHOOLS? 
 

Published 

Pegas, P.N., Alves, C.A., Nunes, T., Bate-Epey, E.F., Evtyugina, M., Pio, C.A., In Press. 

Could houseplants improve indoor air quality in schools? Journal of Toxicology and 

Environmental Health, Part A [ISSN: 1093-7404]. 

 

Abstract 

Previous studies performed by the National Aeronautics Space Administration (NASA) 

indicated that plants and associated soil microorganisms can be used to reduce indoor 

pollutant levels. This study investigated the ability of plants to improve indoor air quality 

in schools. A nine-week intensive monitoring campaign of indoor and outdoor air pollution 

was carried out in 2011 in a primary school of Aveiro, Portugal. Measurements included 

temperature, CO2, CO, concentrations of volatile organic compounds (VOCs), carbonyls 

and particulate matter (PM10) without and with plants in a classroom. PM10 samples were 

analysed for the water soluble inorganic ions, as well for the carbonaceous fractions. After 

hanging 6 potted plants from the ceiling, the mean CO2 concentration decreased from 2004 

to 1121 ppm. The total VOC average concentrations in the indoor air during periods of 

occupancy without and with the presence of potted plants were, respectively, 933 and 249 

µg m-3. The daily PM10 levels in the classroom during the occupancy periods were always 

higher than those outdoors. The presence of potted plants likely favoured a decrease of 

about 30% in PM10 concentrations. Our findings corroborate the results of NASA studies 

suggesting that plants can clean indoor air and make interior breathing spaces healthier. 

Key words: indoor air quality, VOCs, carbonyls, PM10, plants, school. 
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7.1. Introduction 

 

Various studies have demonstrated that plants can be used to remove pollutants 

from indoor air (e.g. Liu et al., 2007; Matsumoto and Yamaguchi, 2007; Wolverton et al., 

1989; Wood et al., 2006). Plants have been pointed out as an attractive and cost effective 

way to improve indoor air quality (IAQ). Indoor potted-plants have been shown to remove 

most types of airborne pollutants arising from either outdoor or indoor sources. The 

benefits of plants on attendance and wellbeing of building occupants has been documented 

(Berg, 2002; Fjeld, 2002).  

This issue arose when the National Aeronautics Space Administration (NASA) 

tried to find ways to reduce pollutants inside future space habitats (NASA, 1974). 

Wolverton et al. (1984, 1985, 1989) placed potted plants inside sealed plexiglass chambers, 

injecting substances commonly found in indoor air. The results showed that leaves, soil, 

and plant-associated microorganisms have an important function in reducing indoor air 

pollutants (cigarette smoke, organic solvents, and bioaerosol).  

In schools, IAQ is often much worse than outdoor air quality (Kotzias et al., 2009; 

Pegas et al., 2010; Pegas et al., 2011a, b). Studies carried out by the USA Environmental 

Protection Agency (EPA) indicate that indoor air pollutant concentrations may be 2-5 

times, and occasionally more than 100 times, higher than outdoor levels. 

There are several reasons to consider IAQ at primary schools a public concern. One 

is that children breathe higher volumes of air, relatively to their body weights. Children's 

physiological vulnerability to air pollution arises from their narrower airways and the fact 

that their lungs are still developing. Also, many children breathe through their mouths, 

bypassing the nasal passages’ natural defences. Thus, children are more likely to suffer the 

consequences of indoor pollution. Another reason for environmental deficiencies in 

schools is due to chronic shortages of funding, which contribute to inadequate operation 

and maintenance of facilities (Mendell and Heath, 2005). 

Previous measurements of particulate matter (PM10), volatile organic compounds 

(VOCs) and carbonyls carried out in elementary schools in Lisbon revealed indoor/outdoor 
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(I/O) ratios above unity, showing the influence of indoor sources, building conditions and 

inappropriate ventilation on IAQ, and indicating the need to take decisive remedial actions 

(Almeida et al., 2011; Pegas et al., 2010; Pegas et al., 2011a, b). The main purpose of the 

present study was to assess the effectiveness of three common species of houseplants in the 

fight against rising levels of air pollution in classrooms.  

 

7.2 Material and Methods 

 

7.2.1 Study design 

 

This study investigated the effectiveness of potted plants suggested by NASA (NASA, 

1974) in reducing the air pollutant concentrations in classrooms. A school located in the 

city centre of Aveiro, Portugal, was selected to carry out this study. The selected school is 

located at 40º 38’ 16.76’’N; 8º 39’ 09.85’’W. This school started its activities in the sixties. 

It is surrounded by commercial and residential buildings and in front of the school there is 

a car parking and a busy road. The main classroom studied has wood floor, water based 

paint covering the walls, black board and chalk, white board and markers and five wood 

windows. The area of the room was 52.5 m2. The number of students in the classroom is 

around 25. 

Comfort parameters (temperature, relative humidity, CO2 and CO), VOCs, carbonyls 

and particulate matter < 10 µm (PM10) concentrations were measured between February  

and May 2011, 3 weeks without plants (February 28th to March 20th 2011) and 6 weeks 

with potted plants indoors (March 21st to May 28th 2011). 

Dracaena deremensis (Striped dracaena or Janet Craig), Dracaena marginata (Red-

edge Dracaena, Madagascar dragon tree or Marginata) and Spathiphyllum (Mauna loa or 

Peace lily) were the selected houseplants, since in test-chamber studies (Orwell et al., 

2004; Tarran et al., 2002; Wolverton et al., 1989; Wood et al., 2002; Wood et al., 2006) 

they have been found to be reliably effective in removing benzene, toluene, ethylbenzene 

and xylenes (BTEX).  
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The potted-plants were all of similar size, weight and age. In classrooms, they were 

placed on metallic holders to ensure there was enough height from the floor and a free 

space under the pot for air circulation (about 30 cm). The number of potted-plants was 

defined according to the area of the classroom. The Associated Landscape Contractors of 

America (ALCA) recommendation is one plant per 9.29 m2. Thus, six potted-plants (300 

mm diameter pots) were placed in the selected classroom.  

 

7.2.2 Sampling and analytical methods 

 

Continuous measurements of temperature, relative humidity (RH), CO2, CO and 

total VOCs were performed with an automatic portable Indoor Air IQ-610 Quality Probe 

(Gray Wolf® monitor) and a TSI monitor, simultaneously in the classroom and at the 

playground, respectively, during 9 weeks. 

Every week, during 9 weeks, passive samplers for VOCs and carbonyls (Radiello®) 

were used to obtain indoor and outdoor average concentrations. Another set of Radiello 

passive samplers were only exposed from 8:30 AM to 17:30-18 PM to obtain VOC and 

carbonyl concentrations for the occupancy periods.  

VOCs adsorbed in activated charcoal cartridges were extracted with 2 mL of carbon 

disulfide (CS2) containing the internal standard, in accordance with the Radiello 

procedure. Analyses were performed by gas chromatography (Thermo Scientific Trace GC 

Ultra) coupled to a flame ionisation detection (GC/FID). The equipment was calibrated 

before and during the analyses of samples by injecting standard solutions of all compounds 

identified in CS2 (Pegas et al., 2010). 

Carbonyls were extracted with 2 ml of acetonitrile during 30 minutes and the 

extract filtered through 0.45 µm membrane disc filters (filtration kit RAD 174) and 

injected into the high-performance liquid chromatography (HPLC) system. The carbonyl 

concentrations were quantified with external calibration curves constructed from standard 

solutions - Aldehyde/ketone-DNPH TO11/IP-6A Mix (USEPA, 1999). 
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Active sampling of carbonyls was performed during two days in the first period 

without plants (March 24th and 25th) and during two days in the second period with plants 

(May 25th and 26th). Carbonyl active collection involved a sampling train consisting of a 

Thomas pump to draw in air at a flow rate of 2 L min-1 for a sampling time of one or two 

hours in agreement with the classroom cycles, through silica gel cartridges, impregnated 

with 2,4-dinitrophenylhydrazine reagent (Sep-Pak® DNPH-Silica Cartridges), a dry gas 

meter to measure the volume of air and ozone scrubbers to minimise ozone interferences. 

The analytes were extracted with 5 mL of acetonitrile by filtration through gravity feed 

elution and the extract collected in 3 mL vials and later analysed by high-performance 

liquid chromatography (HPLC) with UV detection at absorption wavelength at 360 nm 

(ASTM, 1997).  

Two low volume samplers were used to collect simultaneously indoor and outdoor 

PM10 on a daily basis, during the occupancy period, from 8:30 AM to 17:30-18 PM, over a 

period of 9 weeks. The PM10 samples were collected onto pre-baked (6 h at 550ºC) quartz 

filters 47 mm in diameter. Before weighting, the filters were conditioned in a desiccator at 

least for 24 hours in a temperature and humidity-controlled room. Before and after 

sampling, the gravimetric determination was performed with a microbalance Mettler 

Toledo AG245 (readability 0.1mg/0.01mg). Filter weights were obtained from the average 

of ten measurements, with weight variations less than 5%. 

The elemental and organic carbon (EC and OC) content in PM10 was analysed by a 

home-made thermal-optical transmission system, after passive exposure of sampled filters 

to HCl vapours to remove carbonate interferences. This procedure was at first developed 

by Carvalho et al. (2006) and recently adapted by Alves et al. (2011). Carbonates present 

in PM10 samples were analysed through the release of CO2, and measured by the same non-

dispersive infrared analyser coupled to the thermo-optical system, when a punch of each 

filter was acidified with orthophosphoric acid (20%) in a free CO2 gas stream (Alves et al. 

2011). 

For the determination of water soluble inorganic ions (WSII), a filter fraction (2 

discs of 13 mm of diameter) were extracted with ultra pure Milli-Q water. Dionex AS14 

and CS12 chromatographic columns with Dionex AG14 and CG12 guard columns coupled 
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to Dionex AMMS II and Dionex CMMS III suppressors, respectively for anions and 

cations, have been used. 

To evaluate the significance of differences between variables, the non-parametric 

Mann-Whitney U test was preferred rather than the Student’s t-test (Browm and Hambley, 

2002). A difference between two means was considered to be statistically significant when 

the p-value of the two-tailed Mann-Whitney U test was lower than 0.05. All statistical 

computations were conducted with the R software (http://www.r-project.org/).  

 

7.3 Results and discussion 

 

The indoor average temperature ranged from18.7±1.99oC in the first period of the 

study, without plants, to 24.0±2.22oC in the second period, with plants. The RH values did 

not change appreciably throughout the campaign (55.9±8.32% and 51.7±7.98%). The CO 

concentrations in the classroom were always low (0.05±0.04 ppm). However, the CO2 

levels (Figure 7.1) were significantly different between the period without (2004±580 

ppm) and with plants (1121±600 ppm) in the classroom (p-value of 0.001). Many studies 

demonstrated that high levels of CO2 could cause a negative influence on students’ 

learning ability (Coley and Greeves, 2004; Shendell et al., 2004; Smedje et al., 1996). It 

should be noted, that during the entire campaign the windows were kept closed. During the 

hottest days, three exceptions to this condition were registered, when one or two windows 

were partially opened for a few minutes. Taking into account that these extents of time 

with higher natural ventilation represented less than 5% of the occupancy period, the 

possible dilution effect of concentrations was considered negligible. 
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Figure 7.1. Indoor and outdoor average CO2 concentration week by week. 

 

 

The National System for Energy and Indoor Air Quality Certification of Buildings 

establishes an acceptable maximum value (AMV) for the CO2 concentrations of 1000 ppm 

in indoor environments in Portugal (RSECE, 2006). Over the period without plants, as well 

during the week of their acclimatisation, the CO2 concentrations were always much higher 

than the AMV. High indoor CO2 levels are normally considered as indicative of inadequate 

ventilation. Based on indoor and outdoor CO2 concentrations, it is possible to estimate 

ventilation rates under different degrees of window openings or when they are fully closed. 

When unoccupied there is no CO2 emission from the tenants, so the ventilation rate can be 

obtained by: 
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where Ct is the indoor concentration of CO2 at time t (ppm), Cext the concentration of CO2 

in the external air (ppm), C0 the concentration of CO2 in the indoor air at time 0 (ppm), Q 



 
247 

the ventilation rate of air entering the space (m3 s-1), V the volume of the classroom (m3) 

and t is the interval since t=0 (s) (Griffiths and Eftekhari, 2008). 

The estimated ventilation rates ranged from 11 to 23 L s-1. The maximum ventilation 

value, which corresponds to about 0.9 L s-1 per person, represented only 35% of the 

minimum value of 2.5 L s-1 per person recommended by the ANSI/ASHRAE Standard 62-

1999, and only 10% of that recommended by RSECE (8.33 L s-1 per person). The CO2 

levels measured from the 5th week onwards, during the occupancy periods, were not as 

high as those of the first three weeks, in the absence of plants (Figure 7.1). Tarran et al. 

(2007), in a study aiming at evaluating the capacity of indoor plants to remove pollutants, 

reported that CO2 concentrations were reduced by about 10% in air-conditioned offices and 

by about 25% in naturally ventilated rooms.  

Concentrations of VOCs were always higher indoors than outdoors, including 

nighttime periods (Figure 7.2). A concentration decrease during the non-occupancy period 

was observed. Higher indoor levels of many VOC species were also registered in previous 

studies involving 14 elementary schools of the Portuguese capital, Lisbon (Pegas et al., 

2010, 2011a, b). The VOC concentrations during teaching periods ranged from 933 ± 577 

µg m-3 in the absence to 249 ± 74.2 µg m-3 in the presence of plants. The difference 

between VOC levels without and with plants was statistically significant (p-value of 

0.035). The approximately 73% reduction of VOC concentrations observed in this study is 

in line with the results of previous investigations in 60 offices by Wood et al. (2006), who 

tested the effectiveness of potted-plant and root-zone microcosms with and without air-

conditioning. It has been observed by these authors that the root-zone microcosm could 

substantially reduce high concentrations of VOCs within 24 hours. In the current study, the 

decrease of indoor VOC levels was observed whether in samples obtained during school 

hours or in weekly samples continuously exposed. The main difference between the two 

sets of samples is the magnitude of concentrations. VOC levels in weekly samples 

continuously exposed, as obtained in previous works in Portugal (Pegas et al., 2010, 

2011a,b), do not truly reflect the levels of exposure. Outside the room, the VOC levels 

remained almost uniform over the entire sampling period (Figure 7.2). Methylacetate, 

1,1,1-trichloroethane and isopropanol were systematically more abundant in the classroom. 

Acetone, methanol and 1,1,1-trichloroethane were prevalent outdoors. These compounds 
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may derive from both indoor and outdoor sources, including felt pens, personal care 

products, PVC cement and primer, various adhesives, contact cement, model cement, 

degreasers, aerosol penetrating oils, brake cleaner, carburettor cleaner, commercial 

solvents, electronics cleaners, spray lubricants, etc. (Mendell, 2007).  

 

 

Figure 7.2. Indoor and outdoor concentrations of all VOCs identified.  

 

 

Among all monitored VOCs, BTEX are of particular interest due to their known 

carcinogenic effects (Kotzias et al., 2009). Ethylbenzene showed a decrease from levels in 

the 1.48-2.53 µg m-3 range during the period without plants to values below the detection 

limit during the period with potted-plants indoors. The average toluene concentrations 

were 7.62 ± 1.73 µg m-3 and 4.09 ± 0.66 µg m-3, respectively, when plants were absent or 

present, showing a decrease of about 57%. A reduction of 80% between the two periods 

was observed in m+p-xylene and o-xylene concentrations. Benzene is a carcinogenic 

compound to which the WHO has not yet established a guide or safe value (WHO, 2000). 
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The average benzene concentration was 1.09 ± 0.21 µg m-3 in the absence of plants, 

decreasing to 0.84 ± 0.03 µg m-3 during the presence of potted vegetation, which represents 

a decline of almost 15%. Outdoor toluene, ethylbenzene, m+p-xylene and o-xylene levels 

were significantly lower than air concentrations in the classroom, reflecting the 

contribution of indoor sources. Although Wolverton (1989) has found a reduction in 

benzene concentration in controlled chambers of 77.3, 79.5 and 79.0% for the species Janet 

Craig, Marginata and Peace Lily, respectively, in the classroom, this reduction did not 

exceed 15%. However, it is important to note that the chamber experiments refer to static 

testing, where pollutants are injected and then their decay is measured. A classroom is an 

open system and there are many other cross-factors influencing concentration values. The 

benzene levels were always within the same order of magnitude or smaller than the outside 

concentrations, denoting that the major contribution is likely from the outdoor 

environment.  

Carbonyl compounds are the most important chemical contaminants affected by 

chemical and physical processes in the environment (Cerón et al., 2007). Among the five 

carbonyls identified in the indoor environment, butyraldehyde (40.8 ± 2.20 µg m-3) and 

formaldehyde (22.6 ± 3.54 µg m-3) were the most abundant in the classroom in the absence 

of plants. Formaldehyde is a ubiquitous pollutant that could be found in almost all indoor 

and outdoor environments. Formaldehyde indoor sources include pressed wood products 

and furniture, insulation, combustion and tobacco smoke, some textiles and glues. Figure 

7.3 shows that there was a significant decrease in the sum of carbonyl concentrations after 

hanging potted plants from the ceiling in the classroom (p-value of 0.035). During the first 

three weeks without plants, the sum of aldehyde concentrations ranged from 81.3 to 94.3 

µg m-3 at an average temperature of 18.7 ± 1.90 ºC. Between the fifth and ninth weeks, 

with plants in the classroom, the concentrations of total carbonyls ranged from 57.4 to 68.7 

µg m-3 at an average temperature of 24.8 ± 1.35 ºC. Even with increasing temperature, a 

decrease in carbonyl concentrations of up to 40% was registered. Normally, the carbonyl 

concentrations increase with increasing temperatures due to evaporation from building 

materials (Pang and Mu, 2006). In chamber studies with controlled conditions, the 

decrease in formaldehyde concentration due to the effect of plants ranged from 47 to 70% 

(Wolverton et al., 1989). Results from active sampling in office environments suggested 

that achieving an 11% reduction in formaldehyde levels in a real life situation would 
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require the equivalent of one plant to each m3 or 2.4 plants to every m2 (Dingle et al., 

2000). Table 7.1 presents results from active samplings carried out before and after having 

plants in the classroom. An approximately 40% decrease in the indoor concentrations of 

the four carbonyl compounds measured by active sampling, whose determination was also 

done by passive sampling, was observed. The outdoor levels increased with increasing 

temperature. 

 

 

Figure 7.3. Indoor and outdoor concentrations of all carbonyls identified (passive 
sampling).  

 

Table 7.1 Active sampling of carbonyls. 
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Atmospheric particles have been associated with increased respiratory symptoms 

(Delfino, 2002; Simoni et al., 2002; Weisel, 2002). Indoor PM10 may carry toxic pollutants 

and reaction products into the airways, inducing inflammatory responses through the 

generation of oxidative stress (Leem et al., 2005). In this experiment, the daily indoor PM10 

levels were always higher than those outdoors (Figure 7.4), suggesting that the physical 

activity of the pupils leads to emission/resuspension of coarse particles and greatly 

contributes to enhanced PM10 in classrooms (Almeida et al., 2011). Lohr and Pearson-

Mims (1996) reported an approximately 2% reduction in PM10 levels in a computer lab and 

in an office after introducing plants into these building environments. A statistically 

significant decrease in PM10 levels was observed in our study (p-value of 0.001). The 

indoor PM10 mean values ranged from 137 ± 7.70 µg m-3, without plants, to 91.2 ± 13.2 µg 

m-3, with plants (Figure 7.4). The outdoor PM10 mean values ranged from 28.2 ± 5.78 µg 

m-3 in the first period to 38.2 ± 14.4 µg m-3 in the second period of the campaign. Even 

with an increase of about 35% of outdoor PM10 concentration, there was a reduction of 

about 34% in the indoor levels. This could be related to the gravitational settling of 

particles onto foliage and potting soil. Lohr and Pearson-Mims (1996) suggested that the 

plants do not simply block the fall of particles. Plants may also remove particulate matter 

through impaction of particles carried across their foliage by eddy currents. 
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Figure 7.4. Indoor and outdoor PM10 concentrations week by week.  

 

 

 

On average, the organic carbon represented a mass fraction of PM10 of 30.0% indoors. 

A lower mass fraction was obtained outdoors (OC/PM10=21.3%). The total carbon (TC = 

OC + EC) levels were higher indoors than outdoors (Figure 7.5). Clearly, OC is enriched 

in indoor, as compared to outdoor air. An indoor enhancement of OC/EC ratios is likely to 

be due to indoor sources of organic compounds, such as submicron fragments of paper, 

skin debris and clothing fibres, among others. A decrease from 36.9 ± 4.81 µg m-3 to 24.6 

± 6.32 µg m-3 in the OC concentrations have been observed between the periods without 

and with plants, respectively (p-value of 0.001), whereas no significant difference was 

found outdoors. There was no significant difference in EC levels between the two periods 

of the campaign and between the indoor and outdoor air (Figure 7.5).  
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Figure 7.5. Indoor and outdoor carbon mass concentration week by week.  

 

 

 

The water soluble ions contributed, on average, to 20.4% and 14.1% of the particle 

mass in the classroom and playground, respectively (Figure 7.6). Carbonate was the 

dominant ion of indoor-sampled particles, representing, on average, 10.2% of the mass of 

all analysed ions. Carbonate levels in the indoor air ranged from 21.8 ± 1.33 µg m-3, 

without plants, to 6.93 ± 2.31 µg m-3, in the presence of plants (p-value of 0.004). The 

reduction of carbonate levels was followed by a concomitant reduction in calcium levels 

from 4.25 ± 0.66 µg m-3 to 2.78 ± 0.81 µg m-3, without and with plants, respectively (p-

value of 0.004). Compared with other soluble ions, the calcium mass fractions were higher 

in the indoor environment (2.76% of the PM10 mass) than those observed outdoors (0.76% 

of the PM10 mass). The higher indoor levels are probably related to the use of chalk 

crayons on the blackboard. This observation is corroborated by the high carbonate 

concentrations in the classrooms. The indoor carbonate concentrations were about 10 times 
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the amounts found outdoors during the weekdays. Magnesium represented one of the less 

abundant ions in the indoor and outdoor environments. The outdoor sodium and chloride 

levels were about 2 times higher than the indoor levels, probably because these two ions 

likely have a strong contribution from sea spray. A statistically significant reduction in 

levels of nitrate, sulphate and ammonia between periods in the absence and presence of 

plants was observed (p-value of 0.001, 0.001 and 0.001, respectively). Atmospheric PM, 

and especially some of its constituents (e.g. nitrates and ammonium) may affect vegetation 

directly following deposition on foliar surfaces or indirectly by changing soil chemistry. 

Indirect effects through the soil, however, are usually the most significant because they can 

alter nutrient cycling (Grantza et al., 2003; Prajapati, 2012). 
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Figure 7.6. Indoor and outdoor soluble ion concentrations week by week.  
 

 

 

7.4 Conclusions 

 

This study tried to determine if common houseplants are useful in improving 

overall indoor air quality. In spite of some possible confounding factors (e.g. variable 

ventilation rates throughout the monitoring campaign) that could lead to misinterpretation 

of results, it seems that plants do have the ability to remove ordinary pollutants from the 
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air. After the placement of six potted-plants in the classroom, a statistically significant 

reduction in CO2, VOCs, carbonyl, PM10, OC, nitrate, sulphate, ammonia, calcium, and 

carbonate concentrations was observed. The decrease in indoor air pollutant levels 

resulting from the use of plants may represent a low-cost solution to reduce exposure to 

many compounds and lifetime risk, and further improve performance, attendance and 

welfare of students and teachers in classrooms. This simple measure does not invalidate, 

however, the adoption of other abatement or preventive strategies, such as to the use low 

VOC emitting materials and consumer products, lowering the occupancy rates in 

classrooms, use of air cleaner and humidity control systems, and increasing the ventilation 

rates (through natural openings or mechanical devices).  

Taking into account that the rate at which the plants metabolise the air pollutants 

depends on the growing conditions and that the removal performance depends on the plant 

species, further research is needed. This study provides some clues that this is an important 

issue to pursue, especially as it may relate to potential human health effects. 
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8. GENERAL CONCLUSIONS 
 

Indoor and outdoor concentrations of VOCs, carbonyls, NO2, PM10, OC, EC, 

carbonates, water soluble ions, organic compounds in PM10, microbiological components 

and comfort parameters (CO2, CO, temperature and RH) were measured in elementary 

schools in Lisbon and in Aveiro in different periods between December 2008 and May 

2011. The results suggest that IAQ in schools is worse than that of outdoor air, in line with 

what has been reported for many regions worldwide.   

The ANSI/ASHRAE Standard 55-200418 recommends indoor temperature ranges 

from 20 to 23ºC in the autumn/winter seasons and from 23 to 26ºC in the spring/summer 

seasons. The suggested indoor RH values are in the 30–60% range. The winter 

temperatures in classrooms were not satisfactory since average values of 14ºC and 18º 

were, respectively, obtained in Lisbon and Aveiro, during the occupancy periods. In 

Lisbon schools, either in autumn or in winter, uncomfortably high values of relative 

humidity were registered, likely contributing to mould thriving. Thermal comfort is a key 

component of quality of indoor environments. Elements such as lack of heating systems, 

lack of adequate ventilation, high humidity levels, and poorly performing building 

envelopes can contribute to poor thermal comfort. If these elements are not addressed, 

schools leave both teachers and students in an environment in which they must adapt to 

poor comfort levels. This can be distracting to students and teachers, and likely reduce 

their productivity.  

The Portuguese Legislation (Decree-Law 79/2006) defines a maximum value of 

500 CFU m-3 indoors. However, taking into account the conditions found in schools, it is 

very difficult, if not impossible, to control the amounts of airborne microorganisms in 

indoor air. According to the present results, there seems to be a seasonal variability in 

bioaerosol concentrations. There is a trend towards a higher indoor microbial concentration 

in the warmer season with respect to colder periods. In all seasons and in both cities, the 

bacterial and fungal colony forming units surpassed the Portuguese guidelines. 

Microorganisms in indoor air originate not only from the activities of occupants, but also 

from contaminated building materials, furnishings, and from outdoor air. Thus, inadequate 
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ventilations, poor hygienic conditions in schools, overcrowded classrooms and high RH 

values favour microbial growth.  

At concentrations occurring in most indoor environments, CO2 build up can be 

considered as a surrogate for other occupant-generated pollutants, and for ventilation rate 

per occupant, but not as a causal factor in human health responses. Whether ASHRAE or 

the Portuguese legislation recommend that CO2 levels do not exceed 1000 ppm or 1800 mg 

m-3. The average CO2 levels in Lisbon and Aveiro schools were about 2000 mg m-3, with 

peaks of 3000 mg m-3. During the test of houseplants inside a classroom, a statistical 

significant decrease of the CO2 levels was observed, showing the positive effect of 

phytoremediation on IAQ. Improving ventilation rates and the presence of recommended 

plants may contribute to the decrease of CO2 levels and to prevent other contaminants from 

accumulating. Concomitant increases of CO2 and CO concentrations suggest a direct 

relationship between increasing concentrations and classroom occupancies. It should be 

noted, however, that CO levels were always lower than 1 mg m-3 in all schools, i.e. were 

far below the threshold of 12.5 mg m-3 stipulated by the Portuguese legislation and the 

WHO guidelines.  

Generally, the NO2 concentrations were higher outdoors than indoors, probably as a 

result of vehicular emissions from nearby traffic and other combustion processes in the 

urban environment. The indoor NO2 average levels ranged from 10 to 46 µg m-3 showing 

lower values during the winter, possibly because the windows and the doors were always 

closed, isolating the classroom environment of emissions from the outside, or because NO2 

indoor concentrations decayed by gas-phase processes or by reactions on the inner surfaces 

of furniture. Even if the NO2 concentrations were lower in the classrooms; in some 

schools, the average values exceeded the WHO recommendation of 40 µg m-3.  

Most of the assessed VOCs occurred at I/O ratios above unity, in all seasons, 

showing the important influence of indoor sources and building conditions on IAQ. 

However, it has been observed that higher indoor VOC concentrations occur often in the 

colder months in Lisbon schools. The winter VOC concentrations ranged from 84 to 2175 

µg m-3, the autumn concentrations ranged from 11 to 922 µg m-3, and finally, the spring 

VOC concentrations ranged from 37 to 317 µg m-3. Higher levels in wintertime are 

probably related to the fact that classrooms remained longer with closed windows to 
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maintain thermal comfort, contributing to a gradual accumulation of pollutants from indoor 

and outdoor sources. The outdoor pollutants have the capacity of entering buildings and 

they suffer accumulation inside the room, due to low air exchange rates. Higher 

temperatures in the warmer seasons, together with enhanced ventilations due to  opening of 

windows by users, likely favoured both the volatilisation and dilution of VOCs. In Aveiro, 

the indoor VOC concentrations were always higher during the occupancy period. A 

reduction of 73% of indoor VOC levels was observed after placement of plants in one 

classroom.  

In all studied places, the indoor carbonyl concentrations were higher than those 

outside. Generally, formaldehyde was the most abundant carbonyl compound found in 

schools. In Lisbon, the indoor formaldehyde levels were higher in spring (3.4 – 42.3 µg m-

3) than those measured in autumn (3.1 26.2 µg m-3) and winter (6.3 – 23.8 µg m-3). 

Carbonyl concentrations were higher in warmer months, due to increased emissions from 

furniture with increasing sun-light intensity. In Aveiro, even with a substantial increase in 

temperatures (from 18.7 to 24.8ºC), a decrease in carbonyl concentrations of 40% was 

observed following the placing of plants in one classroom (81.3-94.3 µg m-3 to 57.4 - 68.7 

µg m-3).  

The daily indoor PM10 levels (72.8 – 49.2 µg m-3), measured in schools of Aveiro, 

were always higher than those outdoors (43.4 – 23.4 µg m-3), except on weekends, 

suggesting that the physical activity of students and class works highly contributed to the 

emission and re-suspension of particles. Using the measured sulphate content on PM filters 

as an indicator for ambient PM sources, it was estimated that only about one quarter of 

PM10 was of ambient origin. Indoor sources, such as re-suspension by physical activities, 

soil particles brought in shoes, blackboard dust, skin flakes, cloths and furniture fragments, 

bioaerosol and insects, have a strong impact on indoor PM10 concentrations. The presence 

of plants in the room contributed to a reduction of about 34% in the indoor levels (from 

137 to 91 µg m-3), even with an increase of about 35% of outdoor PM10 (from 28 to 38 µg 

m-3). This could be related to the capacity of houseplants attract and retain particles by 

gravitational settling onto foliage and potting soil.  

OC was the particulate component contributing most to the indoor PM10 

concentrations measured in schools in Aveiro. Indoor OC sources seem to be mainly 
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related to student room occupancy and their activities, such as small particles of paper, skin 

debris and clothing fibres. A decrease in the OC average concentration was observed 

between the periods without (36.9 µg m-3) and with plants (24.6 µg m-3), whereas no 

significant difference was found outdoors. The average EC indoor concentrations observed 

in the city centre school of Aveiro (1.7 µg m-3) were higher than those measured in the 

indoor air of the suburban school (0.99 µg m-3), denoting a lower influence of traffic 

emissions on the outskirts. A possible indoor source of EC in primary schools could be 

graphitic pencil largely used by children. There was no difference in EC levels without and 

with plants indoors.  

The PM10 mass fraction of soluble inorganic ions was higher outdoors (30% and 

32%) than indoors (13% and 18%) for the city centre and the suburban school, 

respectively, suggesting that the main sources of inorganic material are from outside. 

Carbonate was the dominant ion of indoor-sampled particles. Chalk used in classrooms 

could explain the higher indoor concentrations of carbonate, calcium and potassium. The 

reduction of carbonate levels from 21.8 µg m-3 to 6.93 µg m-3 was followed by the 

concomitant reduction in calcium levels, from 4.25 µg m-3 to 2.78 µg m-3, without and with 

plants, respectively. Nitrate, sulphate and ammonia concentrations also decreased after the 

placement of recommended potted plants in one classroom of the city centre school of 

Aveiro.  

In Aveiro, the influence of traffic emissions on the IAQ is corroborated by the 

values of diagnostic ratios between PAH, which fall in the ranges reported for catalyst-

equipped vehicles. In some days, however, the PAH ratios reflected the influence of 

industrial emissions on the PM10 collected in the suburban school. Homologous series of n-

alkanes and n-alkanols (C10 – C30) and n-alkanoic acids (C6 – C28) were present in samples. 

It was observed a strong even carbon number predominance, which reflects a dual biogenic 

origin: waxes from terrestrial vegetation and microbial lipids. The average concentrations 

of some organic tracers for biomass burning (levoglucosan, galactosan and mannosan) 

were higher indoors than outdoors for both school locations. The input of biomass burning 

tracers  was more pronounced at the city centre school, showing the contribution of nearby 

restaurants and bakeries for the elevated PM10 levels. Stearin and palmitoleic acid, organic 

tracers for cooking process, showed an important activity around the city centre school due 
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to significant amounts of oily fumes from kitchens to outdoor air, which infiltrate into the 

classroom. At the suburban school, this contribution was smaller.  

A possible mitigation measure to decrease indoor air pollutant levels is the use 

potted plants in a number proportional to the volume of the room. This could be a low-cost 

solution to reduce exposure to many compounds (like CO2, VOCs, carbonyl, PM10, OC, 

nitrate, sulphate, ammonia, calcium, and carbonate) and lifetime risk, and further improve 

performance, attendance and welfare of students and teachers in classrooms. However, this 

simple step can not be isolated and does not invalidate the adoption of other depletion or 

preventive strategies, like the use of low VOC emitting materials and consumer products, 

lowering the number of students per classroom, increasing the air exchange rates, and use 

of air cleaner and humidity control systems. The schools should be built in strategically 

places or “green areas”, where they are not directly affected by heavy traffic or industry or 

any other polluting sources at the neighbourhood. Floor covering and wall paint in 

classrooms should be chosen with particular caution to avoid any adverse effects on the 

respiratory health of children. New comprehensible instructions for good cleaning 

practices in schools should be provided and implemented. It is important to create new 

preventive and legal measures for controlling IAQ, such as imposition of periodic audits. 

Finally, it is indispensable to educate every one on IAQ. Students, teachers and other staff 

should have information about sources, effects of contaminated air, and knowledge about 

operation of the ventilation system (when there is one) or the importance of efficient 

natural ventilation and indoor air renovation.  

Health symptoms, like asthma, rhinitis and wheezing, are not only related to IAQ in 

schools. The prevalence of children with wheezing and allergic rhinitis has increased in 

relation to the ISAAC studies of 2002/2003 and 2006 in the same city. The wheezing 

prevalence ranged from 26.7 to 30.1% between 2002/2003 and 2006, and then to 43.3% in 

the present study carried out in 2008. The allergic rhinitis also increased from 26.9 to 

31.2%, and then to 42.9%, whereas the percentage of asthma cases has decreased slightly, 

from 9.2 to 7.8% and then to 5.6%. A decrease in the percentage of smoking parents was 

observed. A small decrease in the number of breastfed children from 82.2% in 2002/2003, 

to 81.5% in 2006, and to 76.9% in 2008, was also registered. This decrease may be due to 

the increasing number of women employed. Nevertheless, breastfeeding was not found as a 
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significant protective factor for respiratory diseases, in statistical terms. Among variables 

related to eating habits, the only statistically significant correlation with respiratory 

symptoms was found for egg consumption. The risk of manifestation of allergic rhinitis is 

90% higher in children who often eat eggs in comparison with those who never eat this 

food. Differences in prevalence of respiratory symptoms obtained in several studies may 

point out exposure to different risk factors, as well as variable racial, environmental, and 

socioeconomic conditions, and heterogeneous diagnostic criteria.  

Future investigation is needed to determine the extent of IAQ problems in school 

population. Student’s exposure to complex mixtures of air pollutants also reflects a 

complex mixture of microenvironments in which pupils spend their time, such as school, 

home, public transportation, car or other way to commute, etc. Since children move 

around, including during school hours, the pollutants and concentrations to which they are 

exposed to vary according to the period of the day. Thus, the evaluation of an integrated 

daily exposure to air pollutants by personal and area sampling in different 

microenvironments is highly recommended.  

Epidemiological studies relating pollutant levels in schools and health are in the 

early stages. More studies are necessary to establish unequivocal causal relationships in 

order to revise air quality standards and to adopt cost effective mitigation actions. On the 

other hand, pollutants have been observed to work in a synergistic fashion as two or more 

substances may have a combined effect. The multiplicative effects consequently make the 

causation of many cases of environmental illness difficult to identify. Thus, this aspect 

should be addressed in further studies by multidisciplinary teams.  

Source contributions to PM have been modelled for outdoor air pollution. However, 

an understanding of the relative contributions from important pollutant sources to indoor 

exposures is necessary for the design and implementation of effective control strategies for 

IAQ. Detailed emissions profiles have been used in receptor modelling, such as the 

Chemical Mass Balance (CMB), to apportion the contribution of outdoor sources to 

particulate matter. The complete inexistence of indoor source profiles invalidates the 

application of such models to accurately assign the different emission inputs to interior 

spaces. Thus, the detailed chemical characterisation of emissions from indoor 

sources/activities should be target in future investigations. Using source apportionment 
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techniques, epidemiological studies can more clearly examine exposures to indoor sources 

and indoor penetration of source-specific components, reduce exposure misclassification, 

and improve the characterisation of the relationship between pollutants and health effects.  

 
 

  


