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resumo 
 

 

O aumento da emissão de poluentes nitrogenados, bem como as 
limitações presentes nos atuais métodos de controlo e o aparecimento de 
novas legislações e limites máximos de emissão, requerem o desenvolvimento 
de novos métodos para a redução destes poluentes. 

Os Líquidos Iónicos (LIs), pelas suas características únicas e baixa 
pressão de vapor, têm despertado uma grande atenção durante a última 
década e estão a tornar-se numa nova classe de solventes muito promissores 
para a captura de poluentes e separação de gases, quer como fase 
estacionária num processo de membranas quer como absorvente num 
processo de extração. Não obstante, o desenvolvimento de novos processos 
de controlo, ou melhoria dos já existentes, requerem o conhecimento do 
equilíbrio gás-líquido (EGL) que é, até ao momento, ainda insuficiente.  

Neste trabalho, a solubilidade de gases presentes em processos de 
combustão como o azoto (N2), o metano (CH4), óxido nitroso (N2O) e dióxido 
de carbono (CO2) num líquido iónico muito polar foram estudados através de 
medições do EGL. Os resultados demostram a já reconhecida elevada 
solubilidade de N2O e CO2 em LIs bem como a elevada seletividade em 
relação ao ar devido à baixa solubilidade do N2 nos LIs. Foi ainda observado 
que, contrariamente aos outros gases, para os sistemas N2 + LIs o aumento da 
temperatura provoca uma aumento da solubilidade do gás. 

A descrição dos sistemas anteriores por modelos teóricos é fundamental 
para o projeto de potenciais técnicas de redução de poluentes. Neste sentido, 
a soft-SAFT EoS, que tem demonstrado ser capaz de descrever sistemas com 
LIs com enorme sucesso, foi usada para descrever os diferentes sistemas 
publicados na literatura e medidos aqui em função da temperatura, 
composição e pressão, permitindo deste modo estender a aplicabilidade do 
modelo a novos sistemas. Novos parâmetros moleculares, necessários para a 
descrição de cada componente, são propostos neste trabalho para o N2O e 
para três dos cinco LIs estudados. Os resultados demonstraram uma boa 
descrição dos dados experimentais, tanto no que diz respeito ao 
comportamento inverso observado para o N2 como a baixa dependência do 
CH4 com a temperatura. 

Finalmente, a capacidade de extração dos LIs bem como a sua 
seletividade é comparada com a dos solventes utilizados nos métodos de 
controlo atuais, como monoetanolamina (MEA) e éter monometílico de 
trietilenoglicol (TEGMME). Os resultados demonstram uma capacidade de 
extração dos LIs igual ou superior à dos solventes convencionais, aliada a uma 
elevada seletividade em relação ao N2O e CO2. 

Com base neste trabalho, pode-se afirmar que os LIs, devido às suas 
características únicas e elevada seletividade, apresentam um grande potencial 
para serem utilizados na captura de poluentes. 
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abstract 

 
The increase in nitrogenated pollutants emissions, along with the 

limitations of the existing control methods and future stricter legislation, 
demands the development of new methods to reduce such pollutants. 

Ionic liquids (ILs), due to their unique characteristics and low vapour 
pressure, have attracted a large attention during the last decade and are 
becoming a promising class of solvents to capture pollutants and for gas 
separation, either as a stationary phase in a membrane process or as an 
absorption solvent in an extraction process. Nonetheless, the development 
and/or improvement of new/existing control processes requires the knowledge 
of gas-liquid equilibrium (GLE) data for ILs + gas systems that are, at the 
moment, still scarce.  

The solubilities of some common gases present in combustion processes, 
such as nitrogen (N2), methane (CH4), nitrous oxide (N2O) and carbon dioxide 
(CO2), were studied through the experimental measurement of the GLE. The 
results showed a high solubility of N2O and CO2 compared to N2. Furthermore, 
a surprisingly increase of the solubility of N2 with temperature was observed.  

The description of previous systems by theoretical models stands also as 
a vital task for the development of techniques to reduce pollutants. In this 
sense, the soft-SAFT EoS has proven to be able to describe systems with ILs 
with a huge success and in a predictive manner. Thus, this model was used to 
describe the GLE data available in the literature and measured here, for 
different temperatures and for all concentrations and pressures ranges studied, 
in order to extend the applicability of the soft-SAFT EoS to describe/predict the 
gas + ILs systems. The molecular parameters necessary for the description of 
each compound were determined for the first time in this work for N2O and 
three of the five ILs involved. The results showed a good description of the 
experimental data. In addition to that, soft-SAFT EoS successfully predicts the 
peculiar behaviour observed for N2 as well as the low temperature dependence 
observed for the CH4 systems. 

Finally, the extraction capacity and gases selectivity in the ILs was 
compared with other solvents used in the reduction of pollutants, such as 
monoethanolamine (MEA) and triethylene glycol monomethyl ether (TEGMME). 
The results showed a similar or higher extraction capacity of the ILs compared 
to conventional solvents, combined with a high selectivity towards N2O and 
CO2. 

Based on the results showed on this work, it is suggested that ILs due to 
their unique characteristics and high selectivity are promising agents to capture 
pollutants. 
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1.1-  Scope and Objectives  
 

The increase of pollutants emissions along with the limitations presented by the existing 

control methods and stricter legislation to come, demands the investigation of new methods and 

ways to reduce some pollutant levels. This is particularly important for nitrogenated compounds, 

such as oxides of nitrogen (NOx) and nitrous oxide (N2O), whose emissions increase has an 

important effect on the atmosphere and human health.1  

Ionic liquids (ILs) have attracted an outstanding attention during the last decade and are 

turning to be a promising class of solvents in the capture pollutants and also in gas separations 

due to their unique characteristics and low vapour pressure. Therefore, the possibility of using ILs 

as capturing agents for nitrogenated compounds is here evaluated and discussed by studying the 

gas-liquid equilibrium (GLE) of N2O in several ILs. N2O was here chosen as a representative 

molecule for the nitrogenated compounds due to its low adverse effects on human health when 

compared to NOx.
2 Nitrogen (N2) and carbon dioxide (CO2), the major constituents of post-

combustion streams,3 and methane (CH4), produced in higher concentration, for instance, during 

the incomplete combustion or at low temperatures combustion of natural gas streams,4 are also 

investigated through the study of their GLE in the ionic liquid (IL), aiming at understanding ILs’ 

capturing capacity/capability. 

As previous works showed,5-8 the CO2 and N2O selectivities towards gases like N2 and CH4 

can be enhanced by using highly polar ILs due to the very low solubility that these later gases 

present on ILs. To evaluate this concept, the high pressure GLE of these four gases in a highly 

polar IL, 1-ethyl-3-mthylimidazolium methylphosphonate ([C2mim][CH3OHPO2]), was studied as 

function of temperature and pressure. The GLE data was measured using a high pressure 

equilibrium cell based on the Daridon et al.9-13 design and the synthetic method, which has 

previously shown to be adequate to accurately measure these types of systems. Additionally, gas 

solubilities in other ILs such as 1-butyl-3-methylimidazolium dicyanamide ([C4mim][N(CN)2]), 1-

butyl-3-methylimidazolium thiocyanate ([C4mim][SCN]), 1-butyl-3-methylimidazolium 

tetrafluoroborate ([C4mim][BF4]) and 1-butyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([C4mim][NTf2]) were taken from the literature14-20 and from the 

research group unpublished data, and compared with those measured here.  

Furthermore, the development of reliable thermodynamic models capable of estimating 

the solubility of gases in the ILs stands as a vital key to the pursuit of alternative solvents. The 

soft-SAFT EoS, proposed by Vega and co-workers21 based on the original Statistical Associating 
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Fluid Theory (SAFT), is one of the most successful association EoS applied for the description of IL 

systems.22-25 Therefore, binary GLE systems were modelled with the soft-SAFT EoS and molecular 

parameters for N2O, [C2mim][CH3OHPO2], [C4mim][SCN] and [C4mim][N(CN)2] are here reported 

for the first time, while CO2, N2, CH4, [C4mim][BF4] and [C4mim][NTf2] were modelled using 

molecular parameters data available in the literature.12, 22, 24, 26, 27  

In addition to that, ILs’ capturing efficiency and selectivity were calculated and compared to 

some commons solvents used in the removal of some pollutants. 

1.2-  Air Pollution 
 

According to the World Health Organization (WHO) Air Pollution is the “contamination of 

the indoor or outdoor environment by any chemical, physical or biological agent that modifies the 

Natural characteristics of the atmosphere”, in other words, air pollution exists when one or 

several air pollutants are present in such amounts that they are damaging humans, animals, 

plants or materials. 

Air pollution exists from times long before man discovered fire and started to use it for 

heating and preparing food. In fact, air pollution from wildfires, volcanic activity and natural 

biomass decomposition always existed. However, air quality, or its chemical compositions on 

minor constituents, drastically changed with the Industrial Revolution. The substances that 

promote air pollution can be in the liquid, gaseous or solid state and appear in the atmosphere as 

smoke, fog, dust, etc. according to their size, form and properties.28, 29 

Among the 300+ substances considered as air pollutants, carbon monoxide (CO), sulphur 

dioxide (SO2), volatile organic compounds (VOCs), particulate matter (PM), lead (Pb) and oxides of 

nitrogen (NOx and N2O), also known as “Primary pollutants”, are the most important and with the 

higher ambient impact. Furthermore, these substances, depending on their physical and chemical 

characteristics, can react and transform into new pollutants. These substances, resultant from the 

reaction with primary pollutants, are known as “Secondary pollutants”. Examples of secondary 

pollutant include ozone (O3) and acids.1 

The actual Earth’s atmosphere is composed mainly by nitrogen (N2), oxygen (O2) and argon 

(Ar) and “their abundances are controlled over geologic timescales by the biosphere uptake and 

release from crustal material and degassing of the interior”.1 The next most abundant constituent 

is water vapour (H2O) whose concentration is highly variable and controlled by water evaporation 

and precipitation. In spite of their minor concentrations, the remaining constituent gases, also 

known as trace gases, which include some nitrogenated compounds like NOx and N2O, play a 
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fundamental role in the Earth’s radioactive balance and in the chemical properties of the 

atmosphere. The values of each atmosphere’s constituent are shown in Figure 1.1. 

 

    

Trace Gas Mixing Ratio Trace Gas Mixing Ratio 

CO2 3.4×10
-3 

O3 (0.1-1.0)×10
-7 

CH4 (1.7-3.0)×10
-6 

NOx (0.2-5.0)×10
-10 

N2O 3.1×10
-7 

SO2 3.0×10
-10 

CO (0.4-2.0)×10
-7 

  

    

Figure 1.1- Composition (% v/v) of Earth's Atmosphere, adapted from Jacob et al.
30

 

The trace gases concentrations have changed rapidly and remarkably over the last two 

centuries, mainly due to anthropogenic activity. Observations have shown that the composition of 

the atmosphere is changing on a global scale. In fact, recent measurements, combined with 

analyses of ancient air trapped in bubbles in ice cores, provided the record of a dramatic global 

increase on the concentrations of gases such as CO2, CH4, N2O and various halogen-containing 

compounds.1 These gases, also known as “greenhouse gases”, are able to absorb infrared 

radiation from the Earth’s surface and radiate a portion of it back to the surface, acting as 

atmospheric thermal insulators.  

The overall effect of a gas on the Earth’s temperature is measured by the global warming 

potential (GWP). As can be seen in Table 1.1, N2O is one of the most important and powerful 

greenhouse gases, with a global warming potential 296 times higher that of CO2; this is a result of 

its long residence time and its relatively large energy absorption capacity per molecule. Moreover, 

as it will be discussed later, N2O can perturb in a large scale the atmospheric chemistry. 

Table 1.1- Global Warming Potential (GWP) and lifetime of some pollutants, adapted from Seinfeld 
et al.

1
 

Chemical species Lifetime (year) 100-years GWP 

CH4 8.4 23 

N2O 120 296 

CF4 >50000 5700 

C2F6 10000 11900 

SF2 3200 22200 

HFC-23 260 12000 
CO2 - a) 1 

a)
Its removal from the atmosphere involves several processes with different time scales. 
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As mentioned before, the trace gases contribute to the Earth’s radioactive balance but, also 

have an important effect in human and environmental health. According to the WHO, air 

pollution has caused approximately 800.000 deaths and 4.6 million lost life-years worldwide. 

Nonetheless, these numbers are expected to be worse than these estimations since they were 

estimated mainly based on the United States (US) data and extrapolated worldwide, and it is well 

known that this problem is not equally distributed globally, being one of the world highest levels 

of air pollution found in Asian megacities.31 

As history shows, a serious consequence of exposure to air pollution occurred in the mid-

20th century when cities of Europe and US suffered air pollution episodes, like the infamous 1952 

London smog, that resulted in many deaths and hospital admissions32, 33 and the recurrent smog 

occurrences in Los Angeles. Although the biological mechanisms are not fully comprehended, 

many epidemiological studies suggest34-38 a close link between air pollution and various health 

outcomes (respiratory symptoms, mortality, cancer and congenital heart disease). Air Pollution 

may also lead to environmental degradation such as: Direct plant damage, caused by gases and 

acids in direct contact with leaves and needles; Soil acidification, mostly produced by acid rain but 

also by the harvesting of biomass by the forestry industry; Excess nitrogen, caused by nitrogen 

deposition leading to the fast growth of trees crowns, faster than their root systems, and Warmer 

climate, originating sea level rise and a probable increase in the frequency of some extreme 

weather events.39 

These pollution levels seem to be linked to social and economic development mainly due to 

the increase use of fossil fuels for transport, power generation and products fabrications. 

Consequently, clean air legislation needed to be carried out in order to reduce the emission of 

pollutants and the infamous 1952 London smog was an important turning event in air quality 

control and legislation.33 In 1956, the Clean Air Act (CAA) authorized air pollution research and left 

the responsibility for air pollution control to state and local governments. It was only with the 

1970 CAA amendments that this responsibility was spread to other entities like the Environmental 

Protection Agency (EPA) created in the US.40, 41 EPA established national ambient air quality 

standards to protect health and welfare and required that these standards should be achieved 

and maintained across the country. Other important events concerning air quality occurred during 

the following 30 years where the European Union (UE) and other international organisations 

exerted strong influence.33 
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Table 1.2- Estimate of Global Tropospheric 
NOx emission in the year 2000, adapted from 
Seinfeld et al.

1
 (1 Tg nitrogen=10

12
 g nitrogen). 

Sources 
Emissions  

(Tg nitrogen/year) 

Fossil fuel combustion 33.0 

Aircraft 0.7 

Biomass burning 7.1 

Soils 5.6 

Lightning 5.0 

 

Even though all the changes and improvements seen in the past 50 years, air pollution is 

still a major concern mainly due to some recurring episodes of summer smog in major cities, the 

well-known ozone hole over the Antarctic or even a controversial issue, climate change. 

1.3-  Nitrogenated Compounds 
 

As stated before, nitrogenated compounds are considered one of the most important air 

pollutants. Nonetheless, N2, the most abundant compound (78%) on Earth’s atmosphere, is 

practically inert and, due to its chemical stability, is not involved in the atmosphere’s chemistry; 

hence it is not an air pollutant. However, it becomes very useful to most organisms when it is 

fixed or converted to a form that can be used by the organisms. N2 fixation can either occur by 

natural, industrial or combustions methods. The most important result in the form of N2O, nitric 

oxide (NO), nitrogen dioxide (NO2), nitric acid (HNO3) and ammonia (NH3).
1 Usually NO, NO2, N2O 

and other less common combination of nitrogen and oxygen (N2O4 and N2O5) are known as NOx 

(oxides of nitrogen). The EPA defines NOx as “all oxides of nitrogen except N2O”.42 For 

simplification, this nomenclature will be adopted in this work. 

NOx are among the most important molecules in atmospheric chemistry as they play a 

central role in the nitrogen cycle (see Figure 8.1 in the appendix A) and, due its high reactivity, 

they are the main reason for ground level ozone, acid rain and smog.1 The two primary NOx are 

NO and NO2.  

NO is a colourless, poisonous gas that presents several adverse health effects, such as eyes 

and throat irritation, nausea, headache and gradual strength loss. In addition, prolonged exposure 

can cause violent coughing, difficulty in breathing and cyanosis.2 In extreme cases it could even be 

fatal. NO2 is a reddish brown and highly reactive gas and strong oxidant agent that has a 

suffocating odour. It is also highly toxic, 

hazardous and able to cause delayed chemical 

pneumonitis and pulmonary edema.2 

Combustions are by far the largest source of 

NOx, as shown in Table 1.2. Coal-fired electric 

power plants and industrial combustion are the 

highest sources of NOx. Furthermore, motor 

vehicles and other forms of transportation, 

including ships, airplanes and trains have also a 
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large contribution.40, 43 Nevertheless, NOx emissions have decreased in the last 20 years in Europe, 

as depicted in Figure 1.2, mainly due to the emergence of strict legislation and directives, like 

EURO 5 for transports and The Large Combustion Plant and the Integrated Pollution Prevention 

and Control for industry.44 

 
Figure 1.2- Evolution of NOx emissions by source sector in the EU adapted from the 2011 Air 

Quality report
44

 (1 Gg=1000 tonnes/year). 

N2O is a colourless gas, 

commonly referred as the “laughing 

gas” and it is widely employed as an 

anaesthetic. Also, N2O is inert in the 

troposphere but in the stratosphere, it 

turns into the major input of NO, 

becoming an important natural 

regulator of stratospheric O3 and, 

therefore, N2O is the main responsible for the O3 depleting.45 Nonetheless, about 90% of N2O is 

destroyed in the stratosphere by photolysis (see Figure 8.1 in the appendix A). N2O is emitted 

predominantly by biological sources in soils and water,1 while agriculture and chemical industry 

are the main anthropogenic sources, as depicted in Figure 1.3. 

Nowadays, there is no official governmental legislation for the emission of this pollutant 

therefore, its increase is expected to take a rate of 0,26% per year due to anthropogenic 

emissions.46 As a matter of fact, ice core records of N2O showed a preindustrial mixing ratio of 

about 276 ppb, while in 2000 it was 315 ppb and in 2005 it was 319 ppb (Figure 1.4). In addition, it 

is expected to reach levels of 360-460 ppb by the year 2100, 11-45% higher than the actual 

concentration, mainly due to the larger contribution of chemical industry. One of the main 
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Figure 1.3- Total annual anthropogenic N2O emission in the 
UE (average 1990-1998), adapted from Pérez-Ramírez et al.

46 
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contribution comes from the HNO3 production where N2O is formed, resulting in emissions of 

400kT per year.46 

 
Figure 1.4- Evolution of the atmospheric N2O concentration, adapted from Pérez-Ramirez et al.

46 

1.4-  Control Methods for Nitrogenated Compounds 
 

The technologies used for reducing NOx are divided in: i) primary control technologies or 

combustion control and ii) secondary control technology or flue gas treatment. Primary control 

technologies are used to minimize the amount of NOx initially produced in the combustion zone 

and involves a pre-treatment process and/or a process and combustion modifications, i.e., NOx is 

reduced by taking advantage of the thermodynamics and kinetics of the process by, for example, 

reducing flame peak temperature, reducing oxygen concentration in the primary flame zone or 

even, using thermodynamic and kinetic balances to promote the reconversion of NOx back to N2 

and O2. In the other hand, secondary control technologies are used to reduce the NOx present in 

the exhaust gas from the combustion zone, i.e., from the post-combustion stream. They focus 

mainly on converting NOx into N2 and O2 using a reducing agent with or without a catalyst, or 

through the absorption of the species of interest.40  

Both technologies are often used in a wide variety of combinations to achieve desired NOx 

emission levels at optimal cost but, it is important to take into account that the performance of 

the individual technologies is not additive and varies for each combustion process.40 

The most common techniques used for primary control are: Low-Excess Air Firing, Over Fire 

Air (OFA), Flue Gas Recirculation, Reducing Air Preheated, Reducing Firing Rate, Water/Steam 

Injection, Burners Out of Service (BOOS), Reburning, Low-NOx Burner (LNB), Ultra Low-NOx 

Burner, Injection Timing Retard, Air/fuel Ratio Changes, Low Emission Combustion, Low-NOx 
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Burners with Indirect Firing, Low-NOx Precalciners, Mid-kiln Firing. For secondary control there 

are: Selective Non-catalytic Reduction (SNCR), Selective Catalytic Reduction (SCR), Reburning, 

Low-Temperature Oxidation using Ozone, Sconox
TM, Low-Temperature Oxidation with Absorption 

(LTOA) and Biosolids Injection (BSI).40, 43 In Table 1.3 is listed a summary of some NOx control 

techniques and respective removal efficiency. 

Table 1.3- Summary of NOx removal efficiency reported in the literature for diverse techniques. 

Techniques Reported NOx removal efficiency 

Low-Excess Air Firing 15-55%a) 

Low NOx Burner 
40-65%a) 

14-50%b) 

Over Fire Air Additional 10 to 25% beyond LNBb) 

Selective Non Catalytic Reduction 
30-50%a) 

10-90%b) 

Selective Catalytic Reduction 
70-90%a) 

80-95%b) 

Reburning 
58-77%a) 

39-67%b) 

Low Temperature Oxidation with Absorption 99%a) 

Burners Out Of Service 15-30%a) 

Water/Steam Injection 20-30%a) 

Biosolids Injection 50%b) 

Injection Timing Retard 15-30%b) 

Air/fuel ratio Changes 50+%b) 

Low Emission Combustion 80+%b) 

a)
 Data from Schnelle. et al.

40
; 

b)
 Data from Srivastava et al.

43
 

 

As shown in Table 1.3, some techniques achieve high NOx reduction but require proper care 

to be taken in operating and maintaining the combustion process in order to attain the desired 

range of emissions. SNCR and SCR, besides LTOA, provide high NOx reduction so they are the most 

popular control techniques along with LNB and OFA.43 

On the other hand, HNO3 production is one of the main contributors for increasing N2O 

emissions, as it is formed during its synthesis, being then released from reactor vents into the 

atmosphere. Production of weak HNO3 is based on the Ostwald process and consists on some 

basic chemical operations: Catalytic oxidation of NH3 with air into NO; Oxidation of NO into NO2 

and Absorption of NO2 in water to produce HNO3. The N2O formation depends totally on the NH3
 

oxidation process and it can result in other products depending on the process temperature, as 

follows: 



1- General Introduction 

11 
 

        

       
→     {

  

   
  

  Eq. 1.1 

For the three previous paths, at low temperatures (423-473 K) N2 is the principal product 

formed, while at higher temperatures N2O formation is initiated, reaching its maximum at 675 K. 

The desired product, NO, starts at 573 K and its yields continuously increase with temperature. 

Catalyst selectivity is important as well as composition and state (age), for achieving NO yields of 

95-97%, typical values under industrial conditions. There is still others undesired reactions, 

involving by-products and unreacted NH3, that can lead to an increase of N2O emissions.46 Thus, a 

great effort has been made to develop N2O abatement systems capable of achieving high 

efficiency (>90% N2O conversion) and selectivity (0.2% NO loss).  

Nowadays, apart from process optimization, that will not be addressed here, only a few 

techniques, such as Thermal Decomposition, SCR, SNCR and Catalytic Direct Decomposition, are 

used for N2O abatement from industrial sources.46 Thermal Decomposition of N2O is based on 

raising the temperature of the exhaust gases to the required 1023-1273 K, at this point it 

decomposes in N2 and O2.
47 However, this technique seems to be prohibitive because it requires a 

high-temperature heat exchanger which can represent a huge investment and operational costs. 

Thus, other techniques like SNCR and SCR are preferred. They were already referred as control 

techniques for NOx and both are based in the use of a reducing agent in the presence or not of a 

catalyst (normally metal-zeolites). Propane, propene, natural gas or NH3
 are normally used as 

reducing agents for SCR, while hydrogen (H2), natural gas or naphtha are used for SNCR. SNCR has 

conversion efficiencies of about 70% while SCR has highest (up to 100%), but requires an optimal 

temperature control (650-793 K) and a periodically replacement of the catalyst due to its high 

sensitivity to impurities present in the treated effluent.46 Finally, Catalytic Direct Decomposition is 

based in the N2O decomposition without a reducing agent, so they could be more attractive and 

economical than the previous options. However, none of the studied catalyst showed a good 

activity and stability under realistic industrial conditions. Some of the catalysts already studied 

include transition (Cu, Co and Ni) and noble metal-based catalysts (Rh, Ru and Pd) on different 

supports (ZnO, CeO2, Al2O3, TiO2, ZrO2, calcined hydrotalcites and perovkites).46  



1- General Introduction 

12 
 

1.5-  Control Methods Insufficiency 
 

The available techniques, already implemented in industry and capable of reducing 

nitrogenated compounds to values permitted by the actual legislation, do not guarantee the total 

pollutants removal and all present several problems and limitations. In addition, it is expected 

that the dependency on fossil fuels will be maintained as recently showed by the 2012 Annual 

Energy Outlook report48 (Figure 1.5). These projections are only for the US, however this scenario 

would not be very different from the rest of the world. 

 
Figure 1.5- US primary energy consumption forecast till the year 2035 adapted from the Annual 

Energy Outlook 2012.
48

 

Moreover, stricter legislation will continue to appear and environmental problems will not 

disappear leading to an increasing need for better and more efficient control methods. A possible 

solution could be the development of a new control method that could be combined with the 

existent techniques, for example an absorption or membrane process. These techniques could 

replace or be combined with existent control strategies in industrial sources such as large boilers, 

furnaces and fired heaters, combustion turbines, large internal combustion engines, cement kilns 

and exhaust streams from HNO3 production. The potential uses of these two techniques would 

imply the use of a resistant material and a high boiling temperature solvent like ILs. 
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1.6-  Ionic Liquids 
 

ILs are salts composed of large organic cations and organic or inorganic anions that cannot 

form an ordered crystal and thus remain liquid at or near room temperature (by definition are 

liquid at temperature below 373 K). Although the combination of cations and anions allows one 

the synthesis of more than 106 different ILs, only a small amount (≈1000) of these compounds are 

described and characterized in literature.49 In fact, most of the ILs studied are based on the 

ammonium, phosphonium, pyridium or imidazolium cation, and on the tetrafluoroborate [BF4]
-, 

hexafluorophosphate [PF6]
-, trifluoromethylsulfonate [CF3SO3]

- or 

bis(trifluoromethylsulfonyl)imide [NTf2]
- anion.49 Illustrative examples of some of these cations 

and anions are showed in Figure 1.6. 

        

Figure 1.6- Cations and anions commonly used to form ILs. 

These unique compounds were first reported by Paul Walden50 in 1914 when he studied 

the physical properties of ethylammonium nitrate ([EtNH3][NO3]). His intention was to investigate 

the electric conductivity and the molecular size of some organic ammonium salts.49 Even though 

his clear exposition and discovery of a new class of liquids, only in 1934 were they cited in a 

patent where it was claimed that they could be used for dissolving cellulose.51 Over the years that 

followed, more studies were carried out and, by the mid-1990s, the concept of ILs was well-

known mostly for their electrochemical applications.49  

The attention of a larger community was attracted when the first water and air stable ILs 

were developed and these new solvents were touted as “green” and they emerged as “designer 

solvents”. This designation was first used by Seddon et al.52 when reporting the use of ILs as 

solvents for reaction optimization, achieving control over yield and selectivity. Since a large 

number of cationic and anionic structures combinations are possible, desired physicochemical 

properties of ILs for a particular process can be easily tuned and/or obtained by manipulating the 

ions that compose them.52 For instance, hydrophobicity, viscosity or density can be adjusted by 

changing the alkyl chain of the cation,53-56 or their water miscibility by changing the anion,49 or a 

pyridinium imidazolium tetrafluoroborate bis(trifluoromethylsulfonyl)imide 
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more important property for this work, the gas solubility can be manipulated by the anion/cation 

selection.5, 57 

The ionic nature of these liquids results in several physical and chemical advantages over 

conventional and molecular organic solvent such as negligible flammability and vapour pressure, 

thermal stability and highly solvating capacity either for polar and nonpolar compounds.58-60 These 

unique characteristics raised the attention both from the academia as well as from the industry.  

Due to the ILs unique features, they have been intensively applied in different areas like 

multiphase bioprocess operations,61 chromatographic separations,62 mass spectrometry 

analysis,63 batteries and fuel cells,64 solar cells,65 separation of biomolecules,66 organic synthesis,67 

chemical reactions,68 catalysis,69 liquid-liquid extractions of metal ions70, 71 and organic 

compounds.72, 73 Furthermore, their unique and outstanding characteristics could allow them to 

be used in several control process for pollutant, as absorption solvent in an extraction process or 

as stationary phase in a membrane process, just to mention some. In fact, a large number of 

studies have been performed concerning pollutants solubility on ILs, namely for CO2,
17-19, 74-83 

CH4,
6, 84-88 H2S,83, 89 SO2,

8, 90CO,76, 91-93 and NH3.
8 These studies have shown good results at low 

temperatures, indicating that this class of solvents are feasible to be used to capture and/or 

separate these pollutants. However, no studies have been made for NOx and, up to now, only four 

studies with N2O were reported.5, 14, 16, 18 Of these studies, the most interesting is the study 

conducted by Revelli et al.14 where the solubility of N2O in five imidazolium-based ILs was 

investigated, showing that it was possible to dissolve, at low pressure, up to 105 grams of N2O per 

kilogram of IL. 

The ILs exclusive characteristics and good solubility towards various gases make them 

promising agents for the capture of nitrogenated gases. However, a more complete solubility 

study is needed in order to develop techniques for reducing these compounds. Moreover, 

solubility data are important to develop thermodynamic models and correlations able to describe 

and/or predict such systems and therefore to reduce the need for an exhaustive study. To this 

purpose, several different theoretical approaches, correlations and equations of state (EoS) have 

been already applied to ILs + gases systems. Those with the best results are the soft-SAFT EoS,22-25, 

94, 95  -  approach96 and general correlations.7 
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1.7-  Soft-SAFT EoS 
 

Among the EoS used to describe gas solubilities in ILs, the Statistical Associating Fluid 

Theory (SAFT)97-100 is becoming very popular due it success in predicting not only gas solubilities 

but also other ILs thermodynamic properties.95 This theory has generated a family of SAFT-type 

equations based on Wertheim’s first-order thermodynamic perturbation theory (TPT1) for 

associating fluids.101-104 The soft-SAFT EoS, proposed by Vega and co-workers,21, 26, 105, 106 is one of 

the most successful equations of this type. They were able to successfully predict the phase 

equilibrium behaviour of binary and ternary mixtures involving non-associating compounds like n-

alkanes and 1-alkanes, and associating compounds like 1-alkanols,21 as well as their critical lines 

and partial miscibility.106 Later, the same study was extended with success for some heavy n-

alkanes by Pàmies et al.26 Recent works,22-25 extended the soft-SAFT EoS applicability to more 

complex fluids, like ILs, with great success. Contrarily to classical models, which in most cases are 

based on the use of several temperature and composition dependent parameters, SAFT-type 

equations are able to describe IL + gas systems with a simple model and non-temperature 

dependent parameters.94 Moreover, classical models required the use of ILs’ critical properties 

that, lacking a better expression, are challenging to determine, making its determination possible 

through indirect estimated models that present large uncertainties.94 

As all SAFT-type equations, the soft-SAFT EoS is written in term of the residual Helmholtz 

energy (     , defined as the molar Helmholtz energy of the fluid relative to that of an ideal gas at 

the same temperature and density. This energy can be calculated by the sum of each independent 

microscopic contribution. The general expression of the SAFT equation is: 

                                              Eq. 1.2 

where the superscripts ref, chain, assoc and polar refer to the contribution from the reference 

term, the formation of the chain, the association and the polar interactions, respectively. A 

hypothetical model of an associating molecule modeled by the SAFT approach is depicted in 

Figure 1.7, where the number of segments (m), the segment size (σ), the dispersive energy 

between segments (ε/kB), the energy (εHB/kB) and volume (kHB) of association per site are 

molecular parameters needed to model compounds by soft-SAFT EoS. 
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Figure 1.7- Molecule model within the soft-SAFT approach. 

While the original SAFT uses a reference fluid based on hard-spheres, the soft-SAFT EoS 

uses a Lennard-Jones (LJ) spherical fluid, a “soft” reference fluid, which takes into account the 

repulsive and attractive interactions of the segments forming the chain and is modelled by the 

Lennard Jones EoS.107 This equation was obtained by fitting simulation data in Benedict-Webb-

Rubbin EoS and posterior parameters determination and can be extended to mixtures by applying 

the van der Waals one-fluid theory (vdW-1f).108 The expressions for the size and energy 

parameters are: 

   
∑ ∑   

 
   

 
            

 

∑ ∑   
 
   

 
         

  Eq. 1.3 
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  Eq. 1.4 

where the subscripts   and   refers to the species in the mixture, and the unlike parameters,     

and    , are calculated using the generalized Lorentz-Berthelot combining rule. The corresponding 

expressions are: 

        
       

 
  Eq. 1.5 

           √               Eq. 1.6 

where   and   are the binary adjustable parameters for the species   and  . These parameters are 

used to correct possible deviations in molecular size and energy of the segments forming the two 

compounds in the mixture. Moreover, when both binary adjustable parameters are set to 1, soft-

SAFT EoS is used in a pure predictive manner.  

The reference term usually varies in different SAFT’s versions. On the other hand, the chain 

and association terms are normally identical and are derived from the Wertheim’s theory (TPT1): 

            ∑   (             Eq. 1.7 

            ∑   (∑     
    

  
  

  )   Eq. 1.8 
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where    is the molecular density,    is the Boltzmann’s constant,   is the temperature,    is the 

molar fraction of component  , m is the chain length,     is the radial distribution function of a 

fluid of LJ spheres at density       and evaluated at the bond length  ,    is the number of 

association sites in component  , and   
  is the mole fraction of molecules of component 

  nonbonded at site  , which extends over all   compound in the mixture. 

Finally, main polar interactions can also be taken into account in the model by introducing a 

new parameter, the quadrupole moment, Q. The calculation of this parameter is based on setting 

the fraction of segments in the chain that contains the quadrupole, and it is defined in the model 

as   . Usually, these two parameters are previously calculated and fixed, and are correlated by 

the following equation: 

            Eq. 1.9 

where      is the experimental quadrupole for the molecule of interest and   and    are 

molecular parameters for the model. Moreover, its use is required when modelling some fluids of 

linear symmetrical molecules like carbon dioxide, nitrogen and acetylene, and others like 

benzene, ethylbenzene, n-propybenzene and toluene, where this property is important.12, 22, 23, 27, 

109 Although the quadrupole moment for N2O was already studied,110, 111 it remains unknown its 

effect on the soft-SAFT EoS prediction. 

In order to apply Sof-SAFT EoS for a particular system, a molecular model for each 

compound must be chosen (sites for each molecule and allowed interactions among the sites) as 

well as obtain the molecular parameters. In this sense, molecular parameters of pure compound 

are calculated by fitting experimental data for vapour pressure and saturated liquid density over a 

determinate range of temperature using the functions21: 

   (      ⁄           
    ∑ [  

   
   

    (  
   

   
   

)]
  

   Eq. 1.10 
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   Eq. 1.11 

where   is the number of experimental points,   
   

,  
   

,  
   

 are the vapour pressure, the 

liquid density and the temperature corresponding to the experimental point  , and       
    ,      

    , 

  
     are the chemical potentials of the liquid and vapour phase and the saturated liquid density, 

respectively, predicted by the EoS at the temperature   
   

 and pressure   
   

. These two 

functions are minimized using the Marquart-Levenberg algorithm112 and the process stopped 

when    or    are less than     . For binary mixtures, the same fitting procedure is used along 

with the two binary parameters given in Eq. 1.5 and Eq. 1.6, and the next two functions: 
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   Eq. 1.12 
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   Eq. 1.13 

Generally, ILs are well modelled by using all five molecular parameters (m, σ, ε/kB, kHB
 and 

εHB/kB) and gases by just three or four parameters (m, σ, ε/kB and Q).22, 23 
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2.1-  Introduction 
 

The selection of a reliable coarse-grained model able to represent the basic physical 

features of the compound to be described stands as a key element for the accurate predictions 

from any molecular-based EoS. soft-SAFT EoS relies on the pre-adjustments of molecular 

parameters for each pure compound. The molecules are represented through the molecular 

parameters: m, the chain length; σ, the segment size; ε, the energy parameter of the segments 

making the chain; Q, the quadrupolar moment; xp, the fraction of segments in the chain that 

contains the quadrupole; kHB, the volume of association and εHB/kB, the association energy per 

site. Additionally, the description of the pure compound vapour pressure and liquid density is 

evaluated by the percentage average absolute deviation (%AAD), defined as the difference 

between experimental data and the predictions given by soft-SAFT EoS, and was calculated by: 

        |
 

 
∑

          

    
 
   |       Eq. 2.1 

where N stands for the number of points considered and the subscript exp and calc, are the 

experimental and calculated values by the model, respectively, for the studied property, Z. 

2.2-  ILs Molecular Parameters 
 

Although successfully applied for a wide set of compound families, like associating and non-

associating hydrocarbons,21, 106, 113 polymers27, 109 and perfluoalkanes,12 soft-SAFT EoS has only 

recently been extended to ILs by Vega and co-workers. 22-25 

Imidazolium-based ILs with PF6 and BF4 anions were modelled22, 25 as LJ chain with one 

associating site, “A”, where the “A” site represents the specifics interactions due to the IL 

chargers and asymmetry (Figure 2.1). On the other hand, imidazolium-based ILs with NTf2 anion 

were modelled23-25 with three associating sites, one “A” and two “B” sites, where the “A” would 

mimic the specific interactions due the nitrogen atom with the cation and the “B” sites would 

represent the delocalized charge due the oxygen atoms on the anion (Figure 2.2). Also, only AA or 

AB interactions, between different ILs molecules are allowed.  
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Figure 2.1- Proposed association scheme for [C4mim][BF4] by Andreu et al.
22

 

 

Figure 2.2- Proposed association scheme for [C4mim][NTf2] by Andreu et al.
23

 

Once the ILs association scheme was selected, the molecular parameters, m, σ, ε/kB, kHB
 and 

εHB/kB were determined. Following the Vega and co-workers suggestion, the association 

parameters (εHB/kB =3450 and kHB=2250) were transferred from those of 1-alkanols,114 reducing 

thus, to a minimum, the number of fitted molecular parameters. Afterwards, the remaining 

molecular parameters (m, σ and ε/kB) were obtained by fitting them to experimental density data 

at atmospheric pressure.115, 116 Furthermore, recently, Llovel et al.24 recalculated the molecular 

parameters for the NTf2 family using the previously discussed scheme of association and new 

available experimental density data.117 In addition to that, similarly to what was done for other 

compounds,21, 27, 109 a correlation between the molecular parameters and the molecular weight of 

the ILs was established for the PF6, BF4 and NTf2 families,22, 23 24 improving the predictive ability of 

the soft-SAFT EoS.  

The adjusted molecular parameters for [C4mim][BF4] and [C4mim][NTf2] are listed in Table 

2.1 and allowed a good description of the ILs density, as depicted in Figure 2.3, with an %AAD of 

0.31% and 0.06%, respectively. 

Table 2.1- Molecular parameters for [C4mim][BF4]and [C4mim][NTf2] taken from the literature.
22, 24

 

 m σ 
(Å) 

ε/kB 
(K) 

ε HB/kB 

(K) 
k HB 

(Å3) 

[C4mim][BF4] 4.495 4.029 420.00 3450 2250 

[C4mim][NTf2] 6.175 4.211 399.40 3450 2250 

 

A 

A 

B 

B 
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Figure 2.3- [C4mim][BF4] (a) and [C4mim][NTf2] (b) temperature-density diagrams.
117, 118

 Solid lines 
represent soft-SAFT EoS predictions. 

The set of molecular parameters used allowed a good description of the phase behaviour of 

some compound such as CO2 in [C4mim][BF4]
22 and CO2, Xe, H2, H2O, methanol and ethanol in 

[C4mim][NTf2].
23, 24 Therefore, these set of parameters will be used for modelling binary mixtures 

in this work.  

Molecular parameters for [C4mim][SCN], [C2mim][CH3OHPO2] and [C4mim][N(CN)2] were 

not available in the literature. Therefore, they are here determined for the first time.  

Following the above mentioned approach, the ILs were modelled as a LJ chain with two 

association sites; one “A” and one “B” site, as depicted in Figure 2.4. 

 

             

 

 

      

 

Figure 2.4- Scheme of association adopted in this work for the ILs [C4mim][SCN] (a), 
[C2mim][CH3OHPO2] (b) and [C4mim][N(CN)2] (c). 

(a) (b) 

(a) (b) 

(c) 

A 

A 

B 

A 

B 

B 
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In all the cases, the “A” site mimics the strong interactions due the anion’s sulphur (Figure 

2.4-a), oxygen (Figure 2.4-b) or nitrogen (Figure 2.4-c) atom with the cation. On the other hand, 

the “B” site represents the delocalized charge due to the nitrogen (Figure 2.4-a and Figure 2.4-c) 

or oxygen (Figure 2.4-b) atoms in the anion. Moreover, the association parameters, εHB/kB and kHB, 

for [C4mim][SCN] and [C4mim][N(CN)2] were also transferred from those of 1-alkanols,114 as done 

for other ILs and thus fixed to 3450 K and 2250 Å3, respectively. However, the [C2mim][CH3OHPO2] 

high polarity, according to their experimental solvatochromic parameters119, 120 and an 

unpublished correlation from our research group, lead to higher values for the association 

parameters (εHB/kB=4450 and kHB=3950).  

Once established the association scheme and the association parameters, the remaining 

molecular parameters (m, σ and ε/kB) were determined by fitting them against experimental 

density data.54, 121, 122 Despite density data for temperatures lower than 290 K was available, only 

density higher to that temperature was used for the fitting, in order to maintain the validity of the 

Johnson equation107 used for the reference fluid in soft-SAFT EoS. The adjusted molecular 

parameters are listed in Table 2.2.  

Table 2.2- Adjusted molecular parameters for [C4mim][SCN], [C4mim][N(CN)2] and 
[C2mim][CH3OHPO2]. 

 m σ 
(Å) 

ε/kB 
(K) 

ε HB/kB 

(K) 
k HB 

(Å3) 

[C4mim][SCN] 4.385 4.050 414.35 3450 2250 

[C2mim][CH3OHPO2] 5.405 3.686 414.35 4450 3950 

[C4mim][N(CN)2] 4.508 4.077 412.00 3450 2250 

 

These sets of parameters allowed a good description of the density of [C4mim][SCN], 

[C2mim][CH3OHPO2] and [C4mim][N(CN)2] in a wide range of temperatures, as depicted in Figure 

2.5 to Figure 2.7, with an %AAD of 0.08%, 0.65% and 0.16%, respectively. However, soft-SAFT EoS 

presents strong deviations when the prediction is extended for temperatures lower than 290 K, as 

depicted in Figure 2.6 and Figure 2.7. Nonetheless, this strong deviations do not come as a 

surprise since the applicability of the soft-SAFT’s reference fluid equation is limited to 

T=0.7×ε/kB,107 and therefore, for [C4mim][SCN] and [C2mim][CH3OHPO2] ILs the limit temperature 

is 290.05 K and 288.40 K for the [C4mim][N(CN)2]. 
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Figure 2.5- Temperature-density diagram for [C4mim][SCN].
54

 Solid lines represent soft-SAFT EoS 
predictions with a limit temperature of application of 290.05 K. 

 

Figure 2.6- Temperature-density diagram for [C2mim][CH3OHPO2].
121

 Solid lines represent soft-
SAFT EoS predictions with a limit temperature of application of 290.05 K. 

 

Figure 2.7- Temperature-density diagram for [C4mim][N(CN)2].
122

 Solid lines represent soft-SAFT 
EoS predictions with a limit temperature of application of 288.40 K. 
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2.3-  Gases Molecular Parameters 
 

Soft-SAFT EoS molecular parameters for gases are widely available in the literature. Vega 

and co-workers21 proposed molecular parameters for the n-alkanes series, which included CH4, 

while trying to predict the behaviour of some binary and ternary systems with associating fluids 

like 1-alkanols. On a later work,26 the authors proposed new parameters for the n-alkanes series 

and a new set of molecular parameters for CH4. These molecular parameters are used here to 

model the CH4 for the studied systems (Table 2.3). 

Pedrosa et al.27, 109 proposed molecular parameters for CO2 and N2 when modelling theirs 

phase behaviour in ethylene glycol oligomers. Later, Dias et al.12 proposed similar molecular 

parameters for the CO2 to describe its solubility in perfluoalkanes. Furthermore, in all the above 

mentioned works, the authors modelled the CO2 molecule as a non-associating compound and as 

LJ chain in which explicit quadrupolar interactions were taken into account, with the molecular 

parameter xp fixed to ⅓, representing the molecule as three segments with the quadrupole in one 

of them. 12, 27, 109 Similarly, the N2 molecule was also modelled as a non-associating compound and 

as a LJ chain with quadrupolar interactions but with the molecular parameter xp fixed to ½.27 

Moreover, the quadrupole moment used, Q=4.4 x 10-40 C.m2 for CO2 and Q=1.2 x 10-40 C.m2 for N2, 

are in good agreement with those reported in the literature.123 Once the parameters Q and  xp are 

fixed, the molecular parameters (m, σ and ε/kB) were adjusted (Table 2.3) by fitting them against 

experimental vapour-pressure and saturated liquid densities, reported in the literature.124  

The calculated %AAD (Table 2.3) are higher than the ones reported however, still a good 

description of the pure compounds is obtained as depicted in Figure 2.8. Furthermore, contrary to 

the proposed molecular parameters for CH4 and N2, CO2 molecular parameters were already 

successfully used to describe its phase behaviour in ILs systems.22, 23 Therefore, these set of 

parameters will be used in this work for modelling their phase behaviour in the binary systems 

and their applicability will be verified.  

Table 2.3- Soft-SAFT molecular parameters for CH4, CO2 and N2 taken from the literature.
12, 26, 27

 

 m σ 
(Å) 

ε/kB 
(K) 

%AAD P 
 (%) 

%AAD D 
(%) 

CH4 1.000 3.728 147.20 9.81 3.68 

CO2 1.571 3.184 160.20 0.33 5.90 

N2 1.205 3.384 89.16 0.31 1.91 
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Figure 2.8- CH4 temperature-pressure (a), CH4 temperature-density (b), CO2 temperature-pressure 
(c), CO2 temperature-density (d), N2 temperature-pressure (e) and N2 temperature-density (f) diagrams. 
Experimental data was taken from NIST database.

124
 Solid lines represent the soft-SAFT EoS predictions. 
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Although molecular parameters for N2O have already been reported by Arce et al.125 for PC-

SAFT EoS, to our knowledge it has never been modelled before with soft-SAFT EoS. Thus, the 

molecular parameters for this compound were fitted against its vapour-pressure and saturated-

liquid density data, taken from NIST database.124 

Although presenting a linear structure similar to that of 

CO2, N2O presents a resonance structure, as depicted in Figure 

2.9. Thus, although expecting a non-association scheme similar to that of the CO2 molecule, three 

different approaches were, nonetheless, evaluated for the determination of the xp parameter. 

First the N2O molecule was modeled as a LJ chain with no explicit quadrupolar interactions, 

although a couple of studies report an experimental quadrupole for the N2O molecule within 

11.03 x 10-40 and 12.30 x 10-40  C.m2.110, 111 On the second approach the N2O molecule was 

modeled as a LJ chain in which quadrupolar interactions were taken into account and with a 

molecular parameter xp fixed to ⅓, mimicking the N2O molecule resonance structure as three 

segments with the quadrupole in one of them. And finally, considering the N2O molecule as a LJ 

chain in which quadrupolar interactions are taken into account and with a molecular parameter xp 

fixed to ½.  

The best suitable molecular parameters (m, σ and ε/kB) and quadrupole values used, for 

these approaches, are listed in Table 2.4 and all the set of results are listed in Table 8.1 in the 

appendix B. 

Table 2.4- Set of adjusted molecular parameters for N2O. 

Set m σ 
(Å) 

ε/kB 
(K) 

xp Q 
(10-40 C m2) 

AAD P 
 (%) 

AAD D 
(%) 

1 1.197 3.612 167.42 ½ 5.50 7.65 1.73 

2 1.130 3.699 168.83 ½ 6.00 7.55 1.76 

3 1.751 3.078 159.90 ⅓ 3.67 7.07 1.39 

4 1.656 3.153 159.83 ⅓ 4.10 7.29 1.51 

5 1.490 3.300 159.44 ⅓ 5.00 7.55 1.60 

6 1.415 3.306 190.43 ⅓ 4.10 0.77 2.64 

7 1.655 3.105 192.48 - - 6.73 2.91 

8 2.484 2.646 158.82 - - 4.54 0.98 

 

As listed in Table 2.4, globally, the set 6 and 8 allowed the best description of N2O 

behaviour with a %AAD of 0.77 % and 4.54 % for the vapour pressure, respectively, and 2.64 % 

and 0.98 % for the density, respectively. However, other combinations between the five 

Figure 2.9- N2O molecular structure. 



2- Molecular Models 

29 
 

molecular parameters are also able to predict the N2O behaviour with a relatively low %AAD. 

Therefore, all previously listed molecular parameters can potentially be used to describe the N2O 

phase behaviour in binary systems.   

In order to know which set of parameters would describe best the binary systems, several 

soft-SAFT EoS calculations, in a pure predictive manner (  and   are fixed to 1), were made for the 

systems N2O + [C4mim][BF4] and N2O + [C4mim][NTf2] using the available, and already presented, 

molecular parameters for the ILs and the different sets for N2O. Afterward, the predictions were 

compared with experimental measurements available in the literature.16, 18 The results are 

depicted in Figure 2.10. 

 

Figure 2.10- px diagrams for N2O in the ILs [C4mim][BF4]
16

 (a) and [C4mim][NTf2]
18

 (b) at 323 K. Solid 
lines represent soft-SAFT EoS predictions at 323 K using the different sets of parameters for N2O listed in 
Table 2.4 and both binary parameters fixed to 1. 
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As illustrated in Figure 2.10, fixing xp to ½ (set 1 and 2) for the N2O molecule, soft-SAFT EoS 

predicts a significant lower solubility of the gas in the ILs. On the contrary, fixing xp to ⅓ (set 3, 4 

and 5) allows a better description of the gas phase behaviour in both ILs, despite the upper 

prediction for the set 3 and 4. In addition to that, a higher quadrupole moment leaded to under 

prediction of N2O solubility in both approaches (xp=½ and xp=⅓) and both ILs. Furthermore, the set 

6 and 8, which allowed the lowest %AAD in the description of the pure gas, gave a poor 

description of the binary systems. 

All things considered, fixing xp to ⅓ conducted to a better description of the binary systems. 

Moreover, by fixing the quadrupole moment to 5 x 10-40 C.m2 (set 5), an excellent prediction of 

N2O solubility in both ILs is achieved. However, using this value for the quadropole moment would 

correspond to an experimental quadrupole of 15 x 1040 C.m2. In this sense, the set 4, in which the 

exact experimental quadrupole value is used (Qexp= 12.3 x ⅓ x 10-40), is preferred.  

Thus, the set 4 will be used for modelling N2O phase behaviour in the binary systems. The 

soft-SAFT prediction for N2O vapour pressure and density using this set is depicted in Figure 2.11. 

 

Figure 2.11- Temperature-pressure (a) and temperature-density (b) diagrams for N2O taken from 
NIST database.

124
 Solid lines represent soft-SAFT EoS prediction using the parameters set 4 for N2O.
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3.1-  Introduction 
 

Gas solubilities measurements in ILs are necessary in order to develop techniques for 

capturing some pollutants like CO2 and N2O from post-combustion streams. Moreover, solubility 

studies of other compounds, like N2 and CH4, in ILs also stand as a vital key in order, not only to 

understand the ILs’ capturing capability but also, to understand the ILs sorption mechanism. 

Therefore, solubility studies of N2O, N2, CH4 and CO2 in [C2mim][CH3OHPO2] were performed 

following the method and methodology described next. 

The development of new or existing models able to describe or predict GLE data stands as a 

fundamental leap in the development of capturing systems and techniques. Thus, experimental 

solubility data measured here as well as unpublished data from our research group for 

[C4mim][N(CN)2], measured with the same method and methodology, and GLE data available in 

the literature14-20 were used to investigate and extend the applicability of the soft-SAFT EoS to 

describe/predict the gas + ILs systems. 

3.2-  Materials and Experimental Equipment 

 

3.2.1-  Materials 

In this study, the ionic liquid (IL) [C2mim][CH3OHPO2] was acquired from Solvionic with mass 

fraction purities higher than 98 %. The IL was further purified by drying under high vacuum (10-3 

Pa) and moderate temperature (323 K) for a period of 48 hours. The purities of the ILs were 

checked by 1H NMR, 13C NMR and 19P NMR after the purification step. The final purity is estimated 

to be better than 99%. The final IL water content was determined with a Metrohm 831 Karl 

Fischer coulometer, indicating a water mass fraction of 143.85×10-6. This purification procedure 

assures that water and volatile compounds are removed and the influence of these impurities is 

minimized. 126-128  

The gases CO2 and CH4, were acquired from Air Liquide with purity higher than 99.998% and 

99.995%, respectively, while N2O and N2 were acquired from Praixair with purity higher than 

99.998%.  
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3.2.2-   Experimental Equipment 

The high pressure equilibrium cell, used in this work, is based on a cell designed by Daridon 

et al.9-13 and consists of a horizontal hollow stainless-steel cylinder, closed at one end by a 

movable piston and at the other end by a sapphire window, from which the operator follows the 

behaviour of the sample with pressure (0 to 100 MPa) and temperature (293 K to 363 K), as 

depicted in Figure 3.1. 

 

 

Figure 3.1- Components of the high pressure cell: 1) Thermostatized bath circulator; 2) High 
pressure cell; 3) Video and data acquisition; 4) Gas storage; 5) Analytical balance; 6) Temperature sensor; 
7) Valves; 8) Magnetic stirrer; 9) Piezoresistive pressure transducer; 10) Gas entrance; 11) Magnetic bar; 
12) Light source from an optical fiber cable; 13) Pressure probe. 
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The change of the phase behaviour, inside the cell, with the pressure and temperature is 

followed by an endoscope plus camera video which is connected to a computer screen. 

Moreover, the magnetic bar placed inside the cell allows the homogenization of the mixture by 

the action of an external magnetic stirrer. In addition, a minimal internal volume of 8 cm3 and a 

maximum of 30 cm3 allied with the magnetic bar, help to minimize the presence of temperature 

gradients within the sample in the cell and a good homogenization of the system. The cell is 

thermostatized by circulating a heat-carrier fluid through three flow lines directly managed into 

the cell and the heat-carrier fluid is thermo-regulated using a thermostat bath circulator (Julabo 

MC F25) with a temperature stability of 0.01 K. The temperature inside the cell is measured by a 

high precision thermometer Model PN 5207, with an accuracy of 0.01 K, connected to a calibrated 

platinum resistance and inserted in the cell, close to the sample. The pressure is measured by a 

Piezoresistive silicon pressure transducer (Kulite HEM 375) fixed inside the cell that was 

previously calibrated and certified by an independent laboratory with IPAC accreditation, 

following the EN 837-1 standard and with accuracy better than 0.2%.  

A fixed amount of IL, which exact mass is determined by weighting using a high weight/high 

precision balance (Sartorius LA200P) with an accuracy of 1 mg, is introduced into the cell. Once 

introduced, the IL is kept under vacuum overnight, while stirring and heating at 353 K, in order to 

remove interferences from atmospheric gases during the manipulation. Having degassed the IL, 

the gas was introduced under pressure, using a flexible pressure capillary, from an ultra light 

composite tank and its mass measured with the precision balance. This final step is conducted by 

a gas line which establishes the connection between the cell and the gas reservoir. Moreover, a 

pressure sensor (SETRA 204) is connected to the line to monitor the pressure and ensures that the 

gas movement toward the cell is done with better control.  

After preparing the mixture with a known composition, the temperature is allowed to 

stabilize and the pressure is slowly increased until the systems become monophasic. The 

minimum pressure at which the last bubble disappears, for that fixed temperature and 

composition, is the equilibrium pressure. This procedure was repeated for all the gases (CO2, N2O, 

CH4 and N2) in the IL [C2mim][CH3OHPO2]. The mass of the IL and gases measured are listed in 

Tables 8.2, 8.3, 8.5 and 8.7 in the appendix C. 

Furthermore, the purity of the IL was verified by 1H NMR, 13C NMR and 31P NMR at the end 

of the study to assure that no degradation took place. 
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3.3-  Experimental Results and Soft-SAFT EoS Modelling. 
 

3.3.1-  CO2 Solubility 

The solubility of CO2 in [C2mim][CH3OHPO2] was measured for mole fractions from 0.05 up 

to 0.51 in the temperature range of (293.23–363.34) K and pressures from 0.1 to 90 MPa, as 

reported in Table 8.2 in appendix C and depicted in Figure 3.2. The temperature increase leads to 

an increase on the equilibrium pressure and by increasing CO2 concentration, the equilibrium 

pressure increases gradually at first, and then rapidly for higher CO2 contents as a liquid-liquid like 

region is reached, as also observed previously for other ILs.20, 129-133 

 

Figure 3.2- px diagram for the system CO2 + [C2mim][CH3OHPO2] at different temperatures. Solid 
lines represent soft-SAFT EoS predictions using one temperature independent binary parameter 
( =1.017). 

As depicted in Figure 3.2, the soft-SAFT EoS, using one temperature independent binary 

parameter ( =1.017), provides a good description of the CO2 + [C2mim][CH3OHPO2] system for gas 

mole fractions up to 0.35. For higher concentration, on the liquid-liquid-like region, the EoS fails 

to describe correctly the behaviour of the systems. In fact, for concentrations around 0.40 the 

model predicts a liquid-liquid region for the 293.23 K, 303.22 K and 313.36 K temperatures, as 

described by the depicted plateau. The temperature independent binary parameter was fitted 

( =1.017) against the CO2 solubility for the intermediate temperature of 323.38 K.  
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3.3.2-  N2O Solubility 

The solubility of N2O in [C2mim][CH3OHPO2] was measured for mole fractions from 0.10 up 

to 0.31 in the temperature range of (293.27–363.31) K and pressures from 0.1 to 57 MPa, as 

reported in Table 8.3 in the appendix C and in Figure 3.3. N2O present similar solubilities to those 

of the CO2 and also the temperature increase leads to an increase on the equilibrium pressures 

and by increasing N2O concentration, the equilibrium pressures increases gradually at first, and 

then rapidly for higher N2O contents as a liquid-liquid like region is reached.  

 

Figure 3.3- px diagram for the system N2O + [C2mim][CH3OHPO2] at different temperatures. Solid 
lines represent soft-SAFT EoS predictions using one temperature independent and non-dependent binary 
parameter ( ).  

Soft-SAFT EoS provides a good description of the N2O + [C2mim][CH3OHPO2] GLE for gas 

concentration up to 0.25 while for gas concentration higher than 0.25, the model under predicts 

the equilibrium pressures once the liquid-liquid region is reached. Similar to what is observed for 

the CO2 + IL systems, the model is able to predict a liquid-liquid region for N2O molar 

concentrations around 0.23 to 0.28 for the three lowest temperatures. 

Moreover, a good description of the GLE data was achieved using a single temperature 

binary parameter for temperatures up to 323 K. For higher temperatures, the soft-SAFT EoS 

requires the use of a linear temperature dependent binary parameter. The binary parameters are 

listed in Table 8.4 in the appendix C and depicted in Figure 3.4. As described above, the 

temperature independent binary parameter ( =0.968), used for the temperature range of 

(293.27–323.28) K, was fitted against the N2O solubility at 313.28 K.  
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Figure 3.4- Binary parameters ( ) used for describing the system N2O + [C2mim][CH3OHPO2]. 

 

3.3.3-  CH4 Solubility 

The solubility of CH4 in [C2mim][CH3OHPO2] was measured for mole fractions from 0.02 up 

to 0.05 in the temperature range of (293.27–363.32) K and pressures from 0.1 to 20 MPa, as 

reported in Table 8.5 in the appendix C and depicted in Figure 3.5 and Figure 3.6.  

 

Figure 3.5- px diagram for the system CH4 + [C2mim][CH3OHPO2] at different temperatures. Solid 
lines represent soft-SAFT EoS predictions using one temperature dependent binary parameters ( ).  
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Figure 3.6- pT diagram for the system CH4 + [C2mim][CH3OHPO2] at different gas composition. Solid 
lines represent soft-SAFT EoS predictions using one temperature dependent binary parameters ( ). 

As depicted in Figure 3.5 and Figure 3.6, the temperature increase leads to an increase on 

the equilibrium pressures and, as reported for protic and NTf2-based ILs,6 the temperature has a 

very small impact on the CH4 solubility. Nonetheless, soft-SAFT EoS provides a good description of 

the experimental data. This description was only achieved by using one temperature dependent 

binary parameter ( ), listed in Table 8.6 in the appendix C and depicted in Figure 3.7, where the 

difference in size between the segments forming the two compound seems to have a strong 

influence in the model’s prediction. Moreover, these parameters seem to follow a second order 

polynomial function with temperature.  

 

Figure 3.7- Binary parameters ( ) used for describing the system CH4 + [C2mim][CH3OHPO2]. 
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Furthermore, CH4 has a very low solubility in [C2mim][CH3OHPO2] when compared with 

other gases such as CO2 and N2O, as approximately 12 MPa is required in order to achieve a CH4 

composition of 0.04 in the IL, at 293 K. 

 

3.3.4-  N2 Solubility 

The solubility of N2 in [C2mim][CH3OHPO2] was measured for mole fraction from 0.01 up to 

0.05 in the temperature range of (293.31–363.33) K and pressures from 14 to 90 MPa, as reported 

in Table 8.7 in the appendix C and in Figure 3.8. Contrary to what is commonly observed for gases, 

the temperature increase leads to a decrease on the equilibrium pressures. This behaviour was 

already reported for H2
134, 135 and CH4

6 systems where in certain conditions the gas shows a 

positive enthalpy of solution however, the reasons behind this phenomenon are not yet fully 

understood. Moreover, Finotello et al.85 reported decreasing N2 Henry’s constant with 

temperature increase while an opposite behaviour was observed by Jacquemim et al.76 

Apart from this, for N2 molar concentration around 0.03 the GLE behaviour changes and 

contrary to what is observed for the CO2, where the equilibrium pressure increases exponentially 

due to the gas complete solvation, for the N2 the equilibrium pressure still increases but on a 

much less pronounced rate. Furthermore, N2 has a very low solubility in [C2mim][CH3OHPO2], 

when compared with other gases such as CO2 and N2O, or even CH4, as approximately 80 MPa is 

required in order to achieve a N2 composition of 0.04 in the IL, at 293 K. 

As depicted in Figure 3.8, soft-SAFT EoS is able to provide a reasonable description of the 

system for N2 concentration up to 0.03 however, is not able to describe the change on the GLE 

behaviour for higher concentrations. Furthermore, for temperatures higher than 323K, the model 

provides a correct description of the effect of temperature in N2 solubility using a single binary 

parameter ( =0.865), while for the lowest temperatures, a temperature dependent binary 

parameter is required to describe the system. The temperature independent binary parameter, 

used for the temperature range of (323.30–363.33) K, was fitted against the N2 solubility at 

323.30 K, while for remaining temperatures, one temperature dependent binary parameters ( ) 

were used. The complete list of binary parameters is listed in Table 8.8 in the appendix C and 

depicted in Figure 3.19. 
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Figure 3.8- px (a) and pT (b) diagrams for the system N2 + [C2mim][CH3OHPO2]. Solid lines represent 
soft-SAFT EoS predictions with one temperature dependent and independent binary parameters ( ). 

 
Figure 3.9- Binary parameters ( ) used for describing the system N2 + [C2mim][CH3OHPO2]. 
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3.4-  Extension of Soft-SAFT Modelling to Other ILs + Gas Systems 
 

3.4.1-  CO2 Solubility in Other ILs 

Experimental data for the CO2 solubility in [C4mim][SCN], [C4mim][BF4], [C4mim][NTf2] and 

[C4mim][N(CN)2] is available in the literature in a wide range of temperatures and compositions. 

Solubility data from Shiflett et al.,17 Lee et al.,19 Revelli et al.15 and Carvalho et al.20 were used here 

in order to extend the applicability of soft-SAFT EoS to other ILs systems. The phase equilibrium 

diagrams are depicted in Figure 3.10 to Figure 3.13. 

 

Figure 3.10- px diagram for the system CO2 + [C4mim][SCN] at different temperatures.
15

 Solid lines 
represent soft-SAFT EoS predictions using one temperature independent binary parameter ( =0.965). 

 

Figure 3.11- px diagram for the system CO2 + [C4mim][BF4] at different temperatures.
17

 Solid lines 
represent soft-SAFT EoS predictions using both binary parameters (  and  ) fixed to 1.  
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Figure 3.12- px diagram for the system CO2 + [C4mim][NTf2] at different temperatures.
19

 Solid lines 
represent soft-SAFT EoS predictions using one temperature independent binary parameter ( =0.98). 

 

Figure 3.13- px diagram for the system CO2 + [C4mim][N(CN)2] at different temperatures.
20

 Solid 
lines represent soft-SAFT EoS predictions using one temperature independent binary parameter ( =0.89). 
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parameter was fitted against the CO2 solubility for the intermediate temperature of 333.37 K and 

used to predict the solubility at other temperatures. 

For the systems involving the ILs [C4mim][BF4] and [C4mim][NTf2], molecular parameters 

available in the literature were used, providing a successful description of the binary systems 

either using it in a predictive manner, as depicted in Figure 3.11, or with one temperature 

independent binary parameter ( =0.98), as depicted in Figure 3.12. The temperature independent 

binary parameter was fitted against the CO2 solubility for the intermediate temperature of 

319.28K.  

Finally, for the system CO2 + [C4mim][N(CN)2] (Figure 3.13) the soft-SAFT EoS, using one 

temperature independent binary parameter ( =0.89), overpredicts the CO2 solubility in the IL for 

gas concentrations up 0.30. Furthermore, for concentrations around 0.50 the soft-SAFT predicts a 

liquid-liquid region for the 293.42 K, 303.27 K and 313.19 K temperatures, as obtained for other 

systems. The temperature independent binary parameter was fitted against the CO2 solubility for 

the intermediate temperature of 323.09 K.  

3.4.2-  N2O Solubility in Other ILs 

The solubility of N2O in [C4mim][N(CN)2], depicted in Figure 3.14, was previously measured 

by the research group for mole fractions from 0.03 up to 0.30 in the temperature range of (303.31 

–363.28) K and pressures from 0.1 to 12 MPa. N2O presents similar solubilities to those of the CO2 

and also the temperature increase leads to an increase on the equilibrium pressures and by 

increasing N2O concentration however, no liquid-liquid like region is observed within the studied 

gas mole fraction range. 

 

Figure 3.14- px diagram for the system N2O + [C4mim][N(CN)2] at different temperatures. Solid 
lines represent soft-SAFT EoS predictions using one temperature independent parameter ( =0.915). 
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As illustrated in Figure 3.14, woft-SAFT EoS provides a good description of the GLE for gas 

concentration up to 0.30 using one temperature independent temperature binary parameter 

( =0.915) fitted against the N2O solubility at 323.23 K.  

Experimental data for the N2O solubility in [C4mim][SCN], [C4mim][BF4] and [C4mim][NTf2] is 

available in the literature in a wide range of temperatures and compositions. Solubility data from 

Shiflett et al.16, 18 and Revelli et al.,14 depicted in Figure 3.15 to Figure 3.17, were used.  

 

Figure 3.15- px diagram for the system N2O + [C4mim][SCN] at different temperatures.
14

 Solid lines 
represent soft-SAFT EoS predictions using one temperature independent binary parameter ( =0.978). 

 

Figure 3.16- px diagram for the system N2O + [C4mim][BF4] at different temperatures.
16

 Solid lines 
represent soft-SAFT EoS predictions using one temperature independent binary parameter ( =0.978). 
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Figure 3.17- px diagram for the system N2O + [C4mim][NTf2] at different temperatures.
18

 Solid lines 
represent soft-SAFT EoS predictions using two temperature independent binary parameters ( =1.01 and 
 =0.98). 
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3.4.3-  N2 Solubility in Other ILs 

The solubility of N2 in [C4mim][N(CN)2], previously measured by the research group, for 

mole fraction from 0.01 up to 0.08 in the temperature range of (293.71–363.24) K and pressures 

from 0.1 to 70 MPa, as depicted in Figure 3.18, was used. Similar to what was observed for the 

[C2mim][CH3OHPO2] + N2 system, studied here, and for some ILs + H2
134, 135 and CH4

6
 systems, the 

temperature increase leads to a decrease on the equilibrium pressures. Moreover, similar to what 

was observed for the [C2mim][CH3OHPO2] + N2 system, the [C4mim][N(CN)2] + N2 system also 

presents a less pronounced equilibrium pressure dependency with the gas composition than that 

observed for CO2 and N2O systems as well as extremely low gas solubility. 

 

Figure 3.18- px (a) and pT (b) diagrams for the system N2 + [C4mim][N(CN)2. Solid lines represent 
soft-SAFT EoS predictions using one temperature dependent and independent binary parameters ( ). 
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As depicted in Figure 3.18, soft-SAFT EoS also provides a good description of the system for 

a N2 concentration up to 0.06, failing nonetheless to describe the change on the GLE behaviour for 

higher concentrations. Furthermore, similarly to the previously presented systems, a correct 

description by the model of the GLE data is achieved by using one temperature independent 

binary parameter ( =0.768) for temperatures higher than 333.27 K. For lower temperatures, one 

temperature dependent binary parameter was necessary for a correct description. Nonetheless, 

these temperature dependent binary parameters seem to be well described by a second order 

polynomial function, as depicted in Figure 3.19. The complete list of binary parameters for this 

system is listed in Table 8.8 in the appendix C.  

 

Figure 3.19- Binary parameters ( ) used for describing the system N2 + [C4mim][N(CN)2]. 
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different authors are common. Thus, GLE data for the [C4mim][SCN], [C4mim][BF4] and 

[C4mim][NTf2] systems is only available through its Henry’s constants.76, 85, 86 These constants will 

be used, further in this work, for comparing Gas/N2 selectivities between different ILs. 
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4.1-  Introduction 
 

Having studied the gases solubilities in different ILs, selectivity and capturing efficiency 

studies also stand as vital steps toward the potential use of this class of solvents as capturing 

agents. Therefore, ideal gas selectivities (    ) are here evaluated for the three main gases of 

interest (CO2, N2O and N2) present in post-combustion streams through the Henry’s constants (  ) 

determination and by the following equations: 

       ⁄  
   

    

 Eq. 4.1 

       ⁄  
   

    
 Eq. 4.2 

        ⁄  
    

    

 Eq. 4.3 

 Moreover, these gas selectivities are compared with the ones obtained from conventional 

solvents like aqueous monoethanolamine (MEA) and triethylene glycol monomethyl ether 

(TEGMME).  

MEA is a well-known solvent used in the chemical absorption of some pollutants like CO2 

and H2S
136-144 however, MEA-based systems present several disadvantages, like large equipment 

sizes due to low amines/water weight relation and high solvent regeneration costs, just to 

mention a few.141, 142 On the other hand, TEGMME is a physical absorbent with low vapour 

pressure, well-known for its strong affinity with CO2 and N2O
145-147 which, contrary to chemical 

absorption where the absorption capacity is limited by the stoichiometry of the reaction, the 

absorption capacity is proportional to the partial pressure of the gas. Moreover, the use of non-

aqueous systems would lead to lower desorption energy consumption, making the glycols, in 

general, a promising alternative for MEA-based processes. 141, 147                      

  

(a) (b) 

Figure 4.1- MEA (a) and TEGMME (b) molecular structures.  

In addition to that, ILs capturing efficiencies are also compared with the above mentioned 

conventional solvents by expressing the gases solubility in terms of molality (mg/s ), moles of gas 

absorbed per kilogram of solvent.  
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4.2-  Henry’s Constants and Selectivities 
 

The Henry's law relates the amount of gas dissolved in a liquid, at a constant temperature 

and pressure, to the fugacity (fL
1) of that gas (1) in the liquid phase (2) and can be described as:  

    (            
  
 

  
  Eq. 4.4 

where H12(T, P) is the Henry’s constant and x1 is the mole fraction of gas dissolved in the liquid 

phase. Eq. 4.4 is only rigorously valid in the diluted region limit.  

CO2 and N2O Henry’s constants in the conventional solvents are available in literature146-148 

and were found to be 75.05 and 102.78 MPa in MEA (40%), respectively, and 6.80 and 7.25 MPa 

in TEGMME, respectively, within the temperature range of (298.15–303.00) K. Although no 

information was found for N2 Henry’s constant in MEA (40%), gas selectivity was taken from Xu et 

al.149 work, where the absorption of CO2 and N2 in MEA (40 %) fixed in 𝛽-zeolite was study and 

      ⁄  determined, founded to be 26.67 at 303 K. This value is here used as representative 

selectivity and as maximum value of       ⁄ , since N2O is expected to have a higher Henry’s 

constant. On the other hand, N2 henry constant in TEGMME was here estimated using Predictive 

Soave-Redlich-Kwong (PSRK) EoS150 and a commercial simulator (ASPEN Plus 2006.5), which was 

previously found to accurately predict the N2O and CO2 + TEGMME systems, as depicted in Figure 

8.2 in the appendix D. The PSRK EoS was fitted to the dilute region and the N2 Henry’s constant 

calculated by the limiting sloped defined in Eq. 4.4 as the solubility approaches zero, as depicted 

in Figure 4.2. The value for the N2 henry’s constant was found to be 52.93 MPa at 303 K. 

 

Figure 4.2- Predicted solubility of N2 in TEGMME at 303 K using PSRK EoS and adjusted polynomial 
function. 

The gases Henry’s constant in [C2mim][CH3OHPO2] was here estimated, for the first time, by 

fitting the soft-SAFT EoS to the low pressure experimental data and calculating the limiting slope 

defined in Eq. 4.4 as the solubility approaches zero. The procedure is described in more detail in 

the appendix E, together with the molecular and binary parameters used. This approach 

Adjusted polynomial 

𝒙𝑵𝟐  
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introduces some uncertainty on the estimated Henry's constants but the values of these 

constants for the studied systems are different enough to allow a discussion of the gases solubility 

and selectivities on the ILs based on these values. For the remaining systems, involving the ILs 

[C4mim][N(CN)2], [C4mim][SCN], [C4mim][BF4] and [C4mim][NTf2], Henry’s constants were taken 

from the literature,18, 76, 85, 86 with the exception of N2 Henry’s constant in [C4mim][N(CN)2], which 

was here calculated for the first time using the above mentioned approach used for the IL 

[C2mim][CH3OHPO2] and unpublished solubility data measured from our group (see appendix E). 

The complete list of the above mentioned Henry’s constants in the ILs is listed in Table 4.1. 

Table 4.1- Gases Henry’s constants in the ILs within the temperature range of (298.15–303.38) K. 

 
[C2mim][ CH3OHPO2] [C4mim][N(CN)2] [C4mim][SCN] [C4mim][BF4] [C4mim][NTf2] 

CO2 17.21 4.06 10.28 5.38 1.62 

N2O 18.14 8.69 12.78 7.86 3.21 

N2 907.41 462.03 -a) 178.90 121.60b) 

a)
Henry’s constant was not found in the literature neither solubility data that would allow its calculation. 

b)Average Henry’s constant of N2 calculated from the ones reported in [C2mim][NTf2] (141.90 MPa)
86
 and 

[C6mim][NTf2] (101.30 MPa) at 298.15 K.
85

 

 
Once all the gases Henry’s constants in the different solvents are known, gas selectivities 

can be calculated using the equations Eq. 4.1 to Eq. 4.3, being the results depicted in Figure 4.3 

and Figure 4.4. 
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Figure 4.3- Calculated 𝑺𝑪𝑶𝟐 𝑵𝟐𝑶⁄  in the different solvents within the temperature range of (298.15–

303.38) K.  

Figure 4.4- Calculated 𝑺𝑵𝟐𝑶 𝑵𝟐⁄ (blue) and  𝑺𝑪𝑶𝟐 𝑵𝟐⁄  (red) in the different solvents within the 

temperature range of (298.15–303.38) K.  
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As depicted in Figure 4.3, all the solvents considered have a low CO2/N2O selectivity (1 to 

2.15), with the highest values obtained for the ILs [C4mim][N(CN)2] and [C4mim][NTf2]. These low 

selectivities are a result of CO2 and N2O similar solubility either in the ILs or in the conventional 

solvents. In opposition, CO2/N2 and N2O/N2 selectivity in the ILs are higher than the ones obtained 

in the conventional solvents, in some cases in several orders of magnitude, as depicted in Figure 

4.4, showing the ILs greater affinity towards CO2 and N2O than N2. 

According to these results, ILs and the conventional solvents present similar affinity with 

CO2 and N2O however, the extremely low solubility of N2 in the ILs shows that these can 

potentially be used to remove, simultaneously, both gases from post-combustion streams with 

the minimum N2 absorption. 

4.3-  ILs’ Capturing Efficiency 
 

In order to evaluate the ILs’ capturing efficiency for N2O and CO2 and compare it with the 

conventional solvents MEA (40%) and TEGMME, gas solubilities were expressed in terms of 

molality, as listed in Tables 8.2, 8.3, 8.5 and 8.7 in the appendix C and depicted in Figure 4.5 and 

Figure 4.6, using solubility data measured here and from the literature.16-19, 146-148  

 

Figure 4.5- pmg/s diagram of N2O in different solvents within the temperature range of (298.10– 
303.31) K. Solid lines are only used as guide lines. 
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Figure 4.6- pmg/s diagram of CO2 in different solvents within the temperature range of (298.11– 

303.22) K. Solid lines are only used as guide lines.  

As depicted in Figure 4.5 and Figure 4.6, some ILs have capturing efficiencies similar to the 

ones of TEGMME and MEA (40%), with exception of CO2 in MEA (40%) that is not presented in 

Figure 4.6, since a chemical absorption occurs and higher capturing efficiency is expected at much 

lower pressures. Nonetheless, as listed in Table 4.2, [C4mim][NTf2] is able to solubilize about 1.58 

moles (69.69 grams) of N2O per kilogram of IL, and [C4mim][NTf2], [C4mim][BF4] and 

[C4mim][N(CN)2] are able to solubilize about 1.49, 1.68 and 1.83 moles (65.49, 73.94 and 80.43 

grams) of CO2, respectively, per kilogram of IL, within the temperature range of (298.10–303.31) K 

and pressure of 2 MPa; compared to TEGMME, which is able to solubilize about 1.60 and 2.09 

moles (70.23 and 90.10 grams) of N2O and CO2 respectively, while MEA (40%) is able to solubilize 

0.55 moles (24.27 grams) of N2O. According to these results, ILs present similar absorption 

capacity to TEGMME and MEA (40%) and therefore, they are feasible to be used as high efficient 

capturing agents at relatively low pressures. 

Table 4.2- N2O and CO2 solubility expressed in terms of molar fraction and molality within a 
temperature range of (298.10–303.31) K and a pressure of 2 MPa. 

 
[C4mim] 

[NTf2] 
[C4mim] 
[N(CN)2] 

[C4mim] 
[BF4] 

[C2mim] 
[CH3OHPO2] 

[C4mim] 
[SCN] 

MEA 
(40%) 

TEGMME 

     0.399 0.157 0.203 0.080 0.085 0.019 0.208 

mg/s (           ) 1.58 0.91 1.13 0.42 0.47 0.55 1.60 

    
 0.385 0.273 0.275 0.131 0.173 - 0.255 

mg/s (      
     ) 1.49 1.83 1.68 0.73 1.06 - 2.09 
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In order to overcome existent limitations in actual control processes and reduce the 

imminent increase in some pollutant levels, the study and proposal of alternative new methods 

stand as a crucial task. In this sense, solubility of common gases present in post-combustion 

streams in [C2mim][CH3OHPO2] were measured here for the first time, in a wide range of 

temperatures and pressures, using the synthetic method on a high pressure cell. The results 

showed a similar and high solubility of CO2 and N2O in the IL, compared to N2 and CH4. Moreover, 

a peculiar behaviour for the solubility of N2 was observed with the solubility of the gas increasing 

in the IL with the temperature. In addition to that, gases solubility data in other ILs also confirm 

CO2 and N2O greater affinity to this class of solvents.  

Furthermore, the model used here to describe such systems, the soft-SAFT EoS, proved to 

be able not only to provide a good description of the studied systems in the selected temperature 

and pressure ranges, but to describe both the low temperature dependence of the CH4 + IL 

system and the N2 peculiar behaviour. Therefore, despite the need in some cases of temperature 

dependent parameters, overall, a model as soft-SAFT EoS, without the need of ILs’ critical 

properties, can be used not only to describe such systems but as a prediction tool for pre-

selection of the better ILs to dissolve some gases, reducing the need of exhaustive and expensive 

data measurement. 

The selectivity study performed here, showed ILs high selectivity toward pollutants like CO2 

and N2O, greater than in conventional solvents. In addition to this, ILs showed to be able to 

solubilize up to 69.69 grams of N2O and 80.43 grams of CO2 per kilogram of IL, within the 

temperature range of (298.10–303.31) K and pressure of 2 MPa. 

All things considered, this work proved that ILs can potentially act as capturing agent in 

post-combustion streams not only due their unique characteristics and high solvation capacity, 

but also due to their high selectivity, when compared to conventional solvents. Moreover, the 

decreasing of N2 solubility in the ILs with temperature let us guess the need of reducing the gas 

stream temperature before treatment, in order to minimize this gas absorption. Nevertheless, the 

use of physical solvents, such as the ILs presented here, would allow a much lower consumption 

of energy for solvent regeneration, compared to chemical solvents, and a reduction in equipment 

size, compared to MEA-based systems. 
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Aiming to fully understand the sorption mechanism responsible for the solubility of gases in 

ILs, it would be interesting to extend this type of study to other systems and test, for instance, the 

effect of the ILs’ anion on the gases solubilities. Moreover, aiming at extending the applicability of 

ILs as extracting solvents to further purifications areas, it would also be interesting to study the 

solubilities of other gases, namely O2 and O3, acid gases like HCl and HF and hazardous air 

pollutants like dioxins and furans, using the same procedure followed here.  

It would always be important to use a model to describe and predict the above mentioned 

systems, namely, the soft-SAFT EoS. 
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Appendix A- Atmospheric Nitrogen Cycle 
 

 

Figure 8.1- Diagram of the Atmospheric nitrogen cycle, adapted from Seinfeld et al.
1
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Appendix B- Adjusted Molecular Parameters for N2O 
 

Table 8.1- Full list of adjusted molecular parameters for N2O. 

Set m σ 
 (Å) 

ε/kB 
(K) 

xp Q 
(10-40 C m2) 

Qexp
a) 

(10-40 C m2) 
%AAD P 

 (%) 
%AAD D 

(%) 

1 1.272 3.520 166.18 ½ 5.00 10.00 7.70 1.70 

2b) 1.197 3.612 167.42 ½ 5.50 11.00 7.65 1.73 

3 b) 1.130 3.699 168.83 ½ 6.00 12.00 7.55 1.76 

4 1.111 3.725 169.26 ½ 6.15 12.30 7.51 1.76 

5 b) 1.751 3.078 159.90 ⅓ 3.67 11.01 7.07 1.39 

6 b) 1.656 3.153 159.83 ⅓ 4.10 12.30 7.29 1.51 

7 b) 1.415 3.306 190.43 ⅓ 4.10 12.30 0.77 2.64 

8 1.579 3.219 159.54 ⅓ 4.50 13.50 7.44 1.53 

9 1.333 3.402 185.00 ⅓ 5.00 15.00 1.39 2.16 

10 b) 1.490 3.300 159.44 ⅓ 5.00 15.00 7.55 1.60 

11 1.411 3.378 159.42 ⅓ 5.50 16.50 7.61 1.65 

12 1.341 3.453 159.48 ⅓ 6.00 18.00 7.62 1.69 

13 b) 1.655 3.105 192.48 - - - 6.73 2.91 

14 b) 2.484 2.646 158.82 - - - 4.54 0.98 

15 1.570 3.168 197.69 - - - 7.29 3.21 

a) Qexp is calculated using Eq. 1.9 in section 1.7 

b) Best suitable molecular parameters for N2O 
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Appendix C- IL and Gas Mass, Experimental Bubble Point Data and 
Soft-SAFT EoS Binary Parameters 

 

 

Table 8.2- Bubble point data and IL and gas mass of the system CO2 + [C2mim][CH3OHPO2]. 

     

 

T p      

 

T p      

 

T p 

(K) (Mpa) (K) (Mpa) (K) (Mpa) 

mg/s=0.423 molCO2.KgIL
-1 mg/s =0.795 molCO2.KgIL

-1 mg/s =1.861molCO2.KgIL
-1 

  
  
  

0.080 
  
  
  
  

293.21 1.16   
  
  

0.141 
  
  
  
  

293.29 1.88   
  
  

0.277 
  
  
  
  

293.16 3.42 

303.41 1.46 303.15 2.24 303.41 4.19 

313.45 1.76 313.46 2.45 313.52 5.08 

323.40 1.99 323.43 3.05 323.39 6.08 

333.29 2.31 333.46 3.56 333.32 7.21 

343.28 2.56 343.35 4.17 343.18 8.41 

353.50 2.85 353.31 4.75 353.33 9.80 

363.45 3.12 363.38 5.36 363.38 11.11 

mg/s=2.607 molCO2.KgIL
-1 mg/s=3.353 molCO2.KgIL

-1 mg/s=3.997 molCO2.KgIL
-1 

  
  

  
0.350 

  
  
  

  

293.17 5.21   
  

  
0.409 

  
  
  

  

293.28 6.45   
  

  
0.452 

  
  
  

  

293.32 11.00 

302.90 6.38 303.18 8.45 303.25 17.26 

313.23 7.54 313.18 11.48 313.29 23.51 

323.37 9.32 323.30 15.91 323.49 29.82 

333.23 11.27 333.24 20.47 333.53 34.67 

343.34 13.61 343.31 25.13 343.55 40.64 

353.32 16.20 353.46 29.45 353.46 45.99 

363.28 18.92 363.17 33.68 363.43 51.09 

mg/s=4.932 molCO2.KgIL
-1       

 
mIL 
(g) 

mCO2 
(g)   

  
  
0.504 

  
  
  

  

293.18 31.91       

303.26 40.79       

 
13.153 

0.245 

313.41 49.64       0.460 

323.31 58.70       1.077 

333.35 66.69       1.509 

343.31 73.43       1.941 

353.34 80.89       2.314 

363.32 87.65       2.855 
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Table 8.3- Bubble point data and IL and gas mass of the system N2O + [C2mim][CH3OHPO2]. 

     T p      T p      T p 

 (K) (Mpa)  (K) (Mpa)  (K) (Mpa) 

mg/s=0.569 molN2O.KgIL
-1

 mg/s=0.769 molN2O.KgIL
-1

 mg/s=1.110 molN2O.KgIL
-1 

0.105 

293.35 1.71 

0.137 

293.42 2.30 

0.186 

293.40 3.58 

303.37 2.13 303.30 2.88 303.22 4.39 

313.30 2.67 313.30 3.55 313.20 5.35 

323.32 3.22 323.13 4.23 323.34 6.42 

333.14 3.80 333.23 5.00 333.28 7.81 

343.25 4.45 343.25 5.71 343.23 9.04 

353.27 5.25 353.14 6.47 353.29 10.24 

363.40 5.75 363.39 7.32 363.47 11.47 

mg/s=1.450 molN2O.KgIL
-1 mg/s=1.606 molN2O.KgIL

-1 mg/s=1.716 molN2O.KgIL
-1 

0.230 

293.12 4.73 

0.249 

293.16 5.40 

0.261 

293.27 6.01 

303.26 5.93 303.41 6.88 303.19 9.31 

313.26 7.21 313.28 9.10 313.33 12.98 

323.28 8.76 323.23 11.93 323.14 15.95 

333.42 10.54 333.14 14.56 333.16 18.67 

343.18 12.36 343.10 17.08 343.25 21.30 

353.45 14.36 353.28 19.53 353.28 23.73 

363.37 16.23 363.29 21.74 363.24 25.87 

mg/s=1.819 molN2O.KgIL
-1 mg/s=1.897 molN2O.KgIL

-1 mg/s=1.946 molN2O.KgIL
-1 

0.273 

293.17 11.68 

0.281 

293.30 17.06 

0.286 

293.30 21.52 

303.22 15.15 303.26 19.78 303.11 24.18 

313.27 18.11 313.21 22.56 313.27 26.72 

323.30 20.98 323.16 25.15 323.25 29.25 

333.15 23.50 333.14 27.66 333.15 31.06 

343.22 25.95 343.19 30.05 343.16 33.07 

353.22 28.17 353.15 32.21 353.29 35.12 

363.25 30.19 363.11 34.13 363.14 36.99 

mg/s=2.196 molN2O.KgIL
-1 

    
mIL 
(g) 

mN2O 
(g) 

0.312 

293.25 46.28 
   

 303.31 48.66 
   

 

13.978 
 

0.350 

313.37 51.26 
   

 0.473 

323.49 52.47 
   

 0.683 

333.24 53.85 
   

 0.892 

343.29 54.85 
   

 0.988 

353.18 56.07 
   

 1.056 

363.40 56.75 
   

 1.119 

       1.167 

       1.197 

       1.351 
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Table 8.4- Soft-SAFT Eos temperature dependent binary parameters ( ) used for the system N2O 
+ [C2mim][CH3OHPO2] at average temperatures (Ta). 

Ta    

(K)   

293.27 0.968 

303.27 0.968 

313.28 0.968 

323.26 0.968 

333.21 0.967 

343.21 0.966 

353.26 0.965 

363.31 0.963 

 

Table 8.5- Bubble point data and IL and gas mass of the system CH4 + [C2mim][CH3OHPO2]. 

    
 T p     

 T p     
 T p 

 (K) (Mpa)  (K) (Mpa)  (K) (Mpa) 

mg/s=0.087 molCH4.KgIL
-1

 mg/s=0.142 molCH4.KgIL
-1

 mg/s=0.220 molCH4.KgIL
-1 

0.018 

293.27 2.67 

0.028 

293.27 6.57 

0.043 

293.30 12.54 

303.25 2.93 303.32 6.84 303.38 13.14 

313.25 3.14 313.20 7.22 313.34 13.00 

323.29 3.36 323.22 7.55 323.31 13.12 

333.32 3.51 333.29 7.71 333.18 13.32 

343.25 3.66 343.08 7.94 343.19 13.42 

353.29 3.81 353.30 8.12 353.44 13.59 

363.31 3.86 363.21 8.23 363.43 13.78 

mg/s=0.274 molCH4.KgIL
-1 

    

mIL 
(g) 

mCH4 
(g) 

0.054 

293.24 17.79 
    

303.28 17.81 
    

313.22 17.99 
    

323.21 17.90 
    

333.24 17.79 
    

13.628 

0.019 

343.31 17.80 
    

0.031 

353.36 17.98 
    

0.048 

363.34 18.02 
    

0.060 
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Table 8.6- Soft-SAFT Eos temperature dependent binary parameters ( ) used for the system CH4 + 
[C2mim][CH3OHPO2] at average temperatures (Ta). 

Ta
    

(K)  

293.27 1.0505 

303.31 1.0457 

313.25 1.0435 

323.26 1.0430 

333.26 1.0438 

343.21 1.0455 

353.35 1.0475 

363.32 1.0500 

 

Table 8.7- Bubble point data and IL and gas mass of the system N2 + [C2mim][CH3OHPO2]. 

   
 T p    

 T p    
 T p 

 (K) (Mpa)  (K) (Mpa)  (K) (Mpa) 

mg/s=0.084 molN2.KgIL
-1

 mg/s=0.107 molN2.KgIL
-1

 mg/s=0.132 molN2.KgIL
-1 

 
293.13 18.89 

 
293.34 33.17 

 
293.25 51.32 

 
303.13 16.99 

 
303.50 31.12 

 
303.14 46.93 

 
313.23 16.20 

 
313.26 28.77 

 
313.42 42.77 

0.017 323.48 15.67 0.022 323.16 27.54 0.027 323.34 39.80 

 
333.38 15.29 

 
333.38 26.35 

 
333.26 37.57 

 
343.46 15.14 

 
343.38 25.10 

 
343.22 35.79 

 
353.37 14.79 

 
353.32 24.23 

 
353.18 34.54 

 
363.33 14.33 

 
363.53 23.41 

 
363.19 33.38 

mg/s=0.155 molN2.KgIL
-1 mg/s=0.812 molN2.KgIL

-1 mg/s=0.912 molN2.KgIL
-1 

 
293.36 61.89 

 
293.18 72.34 

 
293.31 80.51 

 
303.37 55.20 

 
303.32 64.21 

 
303.24 72.11 

 
313.26 51.58 

 
313.45 58.11 

 
313.45 65.53 

0.031 323.30 48.12 0.035 323.35 53.55 0.040 323.18 60.50 

 
333.31 45.23 

 
333.32 50.93 

 
333.35 57.12 

 
343.23 42.72 

 
343.21 47.78 

 
343.32 53.37 

 
353.34 40.87 

 
353.31 45.32 

 
353.21 50.51 

 
363.38 38.76 

 
363.35 43.14 

 
363.30 47.96 

mg/s=1.012 molN2.KgIL
-1 

    
mIL 
(g) 

mN2 
(g) 

 
293.31 89.43 

    

 
303.38 79.25 

    

12.691 

0.030 

 
313.30 71.79 

    
0.038 

0.044 323.22 66.09 
    

0.047 

 
333.16 61.41 

    
0.055 

 
343.49 57.98 

    
0.063 

 
353.22 55.26 

    
0.071 

 
363.28 52.18 

    
0.079 
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Table 8.8- Soft-SAFT Eos temperature dependent binary parameters ( ) used for the systems N2 + 
[C2mim][CH3OHPO2] and N2 + [C4mim][N(CN)2] at average temperatures (Ta). 

N2 + [C2mim][CH3OHPO2] N2 + [C4mim][N(CN)2] 

Ta   Ta   

(K) 
 

(K)  

293.27 0.826 293.71 0.7230 

303.30 0.849 303.33 0.7460 

313.34 0.860 313.29 0.7580 

323.29 0.865 323.14 0.7645 

333.31 0.865 333.27 0.7680 

343.33 0.865 343.18 0.7680 

353.28 0.865 353.25 0.7680 

363.34 0.865 363.24 0.7680 
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Appendix D- Solubility of CO2 and N2O in TEGMME 
 

 

 

Figure 8.2- px diagrams for the systems CO2 (a) and N2O (b) in TEGMME at 303 K. Solid lines 
represent PSRK EoS predictions obtained with a commercial simulator (ASPEN Plus 2006.5). N2O solubility 
data was taken from the literature,

146
 while for CO2 experimental points were calculated through the 

Henry’s constant reported in Henni et al. work’s.
147
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Appendix E- Henry’s Constant Calculation 
 

Henry’s constants of CO2, N2O and N2 in [C2mim][CH3OHPO2] and N2 in [C4mim][N(CN)2] 

were determined by adjusting Soft-SAFT EoS to the lowest gas composition experimental data by 

using specific binary parameters and calculating the limiting slope as solubility approaches zero. 

The slope was calculated by fitting a linear regression to the soft-SAFT EoS prediction in the dilute 

region. The results are depicted in Figure 8.3 to Figure 8.6 and the calculated Henry’s constants 

and binary parameters used are listed in Table 8.9 to Table 8.12.  

 

Figure 8.3- px diagram for the system CO2 + [C2mim][CH3OHPO2] at different temperatures. Solid 
lines represent soft-SAFT EoS prediction adjusted for the lowest gas composition using specifics binary 
parameters ( ). 

Table 8.9- Calculated Henry’s constants of CO2 in [C2mim][CH3OHPO2] at different temperatures, 
minimum square error (R

2
) obtained in the linear regression adjusted for a gas composition up to 0.05 

and binary parameters ( ) used in the soft-SAFT EoS predictions. 

T 
(K) 

H 
(Mpa) 

R2   

293.23 13.62 0.9996 0.9735 

303.22 17.21 0.9997 0.9787 

313.36 20.96 0.9998 0.9816 

323.38 23.76 0.9998 0.9855 

333.35 27.60 0.9998 0.9843 

343.33 30.57 0.9998 0.9851 

353.39 34.16 0.9998 0.9837 

363.34 37.28 0.9998 0.9830 
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Figure 8.4- px diagram for the system N2O + [C2mim][CH3OHPO2] at different temperatures. Solid 
lines represent soft-SAFT EoS prediction adjusted for the lowest gas composition using specifics binary 
parameters ( ). 

Table 8.10- Calculated Henry’s constants of N2O in [C2mim][CH3OHPO2] at different temperatures, 
minimum square error (R

2
) obtained in the linear regression adjusted for a gas composition up to 0.05 

and binary parameters ( ) used in the soft-SAFT EoS predictions. 

T  
(K) 

H  
(Mpa) 

R2   

293.29 14.24 0.9995 0.9605 

303.26 18.14 0.9996 0.9658 

313.28 22.80 0.9997 0.9660 

323.27 27.64 0.9997 0.9649 

333.16 32.59 0.9998 0.9625 

343.23 38.08 0.9998 0.9587 

353.28 44.71 0.9997 0.9526 

363.33 48.77 0.9998 0.9513 
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Figure 8.5- px diagram for the system N2 + [C2mim][CH3OHPO2] at different temperatures. Solid 
lines represent soft-SAFT EoS prediction adjusted for the lowest gas composition using specifics binary 
parameters ( ). 

 

Table 8.11- Calculated Henry’s constants of N2 in [C2mim][CH3OHPO2] at different temperatures, 
minimum square error (R

2
) obtained in the linear regression adjusted for a gas composition up to 0.01 

and binary parameters ( ) used in the soft-SAFT EoS predictions. 

T 
(K) 

H 
(Mpa) 

R2   

293.27 988.58 0.9992 0.8476 

303.30 907.41 0.9994 0.8780 

313.34 875.19 0.9995 0.8920 

323.29 855.11 0.9996 0.8975 

333.31 839.58 0.9997 0.8978 

343.33 835.33 0.9997 0.8933 

353.28 819.84 0.9998 0.8887 

363.34 798.73 0.9998 0.8840 
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Figure 8.6- px diagram for the system N2 + [C4mim][N(CN)2] at different temperatures. Solid lines 
represent soft-SAFT EoS prediction adjusted for the lowest gas composition using specifics binary 
parameters ( ). 

 

Table 8.12- Calculated Henry’s constants of N2 in [C4mim][N(CN)2] at different temperatures, 
minimum square error (R

2
) obtained in the linear regression adjusted for a gas composition up to 0.02 

and binary parameters ( ) used in the soft-SAFT EoS predictions. 

T 
(K) 

H  
(Mpa) 

R2   

293.71 472.22 0.9988 0.7400 

303.33 462.03 0.9991 0.7654 

313.29 447.96 0.9993 0.7820 

323.14 432.88 0.9994 0.7920 

333.27 415.76 0.9996 0.7985 

343.18 405.01 0.9996 0.8000 

353.25 396.70 0.9997 0.7987 

363.24 384.20 0.9997 0.7982 
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