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abstract 
 

 

   Antimicrobial photodynamic therapy (aPDT) was described more than 100 years 
ago, but its potential as an alternative to combating microorganisms, was only 
recognized when antibiotic resistance became an important public health issue. aPDT 
refers to the action of 3 non-toxic elements: a photosensitizer,  light and molecular 
oxygen that, when combined, results in the production of singlet oxygen (

1
O2) and/or 

free radicals which are cytotoxic to target cells. 
   The aim of this work was to synthetize, evaluate and compare the photoinactivation 
efficiency of new cationic phthalocyanines (Pcs) derivatives. Three new derivatives, 
tetra and octa-thio-pyridinium Pcs, 17, 18 and 19, were tested against Gram-negative 
bacteria. A recombinant bioluminescent Escherichia coli strain was used to assess, in 
real time, the photoinactivation efficiency of these cationic Pcs, under white and red 
light. After a pre-incubation period with 20 µmol L

-1
 of PS in the dark, the pure 

bacterial suspensions were irradiated with white light (400-800 nm) or red light (620-
750 nm) at a fluence rate of 150 mW cm

-2
, for 30 minutes. Dark and light controls 

were performed in all experiments. The cellular localization, uptake, 
1
O2, 

photophysical and photochemical tests such as photostability, solubility and 
fluorescence quantum yields were also determined, in order to evaluate the potential 
of these new Pcs as antibacterial agents. 
      Pc 18 was the most effective photosensitizer, causing a 5 logs reduction in 
bioluminescence after 30 minutes of irradiation under white or red lights. The 
photoinactivation efficiency of the Pc 19 was similar (5 logs reduction in 
bioluminescence) to that of 18 when irradiated with white light, but the efficiency of 
inactivation was reduced (2.1 logs reduction in bioluminescence) under red light. Pc 
17 was the least effective PS, causing only 2.1 log bioluminescence reduction under 
white light and 1 log decrease under red light. 
    The three new cationic thio-pyridinium phthalocyanines with different physico-
chemical properties have different photoinactivation efficiencies to inactivate a gram 
negative bacterium. Several factors such as aggregation, 

1
O2 generation, number of 

thio-pyridinium groups, cellular uptake/localization and irradiation conditions could 
cause the different efficiency observed. 
   The high photodynamic efficiency of compound 18 under red light is of special 
interest for clinical applications, since red light is the most preferable for treatment of 
microbial infections, because it penetrates deeper into infected human tissues. 
 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

palavras-chave Terapia fotodinâmica antimicrobiana, ftalocianinas catiónicas, E. coli bioluminescente, 
uptake celular 
 

resumo 

 
      A terapia fotodinâmica antimicrobiana (aPDT) foi descrita pela primeira vez há 
mais de 100 anos, mas o seu potencial como alternativa no combate de 
microrganismos apenas foi reconhecido devido à resistência a antibióticos, que se 
revelou um grave problema de saúde pública. aPDT refere-se à acção de três 
componentes não tóxicos: um fotossensibilizador (PS), uma fonte de luz e oxigénio 
molecular que, em conjunto, levam à geração de oxigénio singuleto (

1
O2) e/ou radicais 

livres, que são citotóxicos para as células alvo.  
   O objectivo deste trabalho foi sintetizar, avaliar e comparar a eficiência da 
fotoinativação de novos derivados catiónicos de ftalocianinas (Pcs). Três novos 
derivados, ftalocianinas tetra e octa-tio-piridil, 17, 18 e 19, foram testadas numa 
bactéria Gram-negativa. Foi utilizada uma estirpe de Escherichia coli recombinante 
bioluminescente para determinar, em tempo real, a eficácia da fotoinativação das 
ftalocianinas catiónicas, sob luz branca e luz vermelha. Após um período de pré-
incubação no escuro com 20 µmol L

-1
de PS, as suspensões bacterianas puras foram 

irradiadas com luz branca (400-800 nm) ou luz vermelha (620-750 nm) sob 150 mW 
cm

-2
, durante 30 minutos. Foram realizados em todos os ensaios controlos claro 

(irradiação da suspensão bacteriana sem PS) e escuro (suspensão bacteriana com PS, 
sem irradiação). Foram também determinados a localização subcelular, uptake, 

1
O2, 

testes fotofísicos e fotoquímicos tal como a fotoestabilidade, solubilidade e 
determinação do rendimento quântico de fluorescência para avaliar o potencial das 
novas ftalocianinas como agentes antibacterianos.  
   O derivado 18 foi o PS mais eficiente, causando uma redução de 5 logs na 
bioluminescência após 30 minutos de irradiação com luz branca ou com luz vermelha. 
A fotoinativação provocada pela Pc 19 foi semelhante (5 logs de decréscimo na 
bioluminescência) à da 18, quando irradiada com luz branca, mas a eficiência da 
inactivação reduziu (2.1 logs decréscimo na bioluminescência) sob luz vermelha. A Pc 
17 foi o PS menos eficiente, causando apenas 2.1 logs de decréscimo na 
bioluminescência sob luz branca e diminuição de 1 log sob luz vermelha. 
   As três novas ftalocianinas tio-piridil com diferentes propriedades físico-químicas, 
revelam uma eficiência diferente na fotoinativação de uma bactéria Gram-negativa. 
Vários factores tais como agregação, geração de 

1
O2, número de grupos tio-piridil, 

bem como as condições de irradiação, uptake /localização celular podem estar na 
causa das diferenças verificadas na fotoinativação. 
   A elevada eficiência fotodinâmica do composto 18 na presença da luz vermelha é de 
especial interesse para aplicações clínicas, uma vez que a luz vermelha é a mais 
adequada para o tratamento de infecções microbianas, pois penetra mais 
profundamente em tecidos humanos infectados. 
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Thesis outline 

 

The aims of this thesis are to synthetize new cationic phthalocyanines, from a commercial 

template and from phthalonitriles, and to evaluate their potential as photosensitizers in 

aPDT. A recombinant bioluminescent Escherichia coli strain was used to assess, in real 

time, the photoinactivation efficiency of these cationic phthalocyanines, under white and 

red lights. 

In chapter I, introductory concepts about antimicrobial photodynamic therapy and 

phthalocyanines are presented. 

Chapter II defines the several approaches used to synthetize cationic 

phthalocyanines, as well as the characterization by NMR and mass spectrometry 

techniques of the three new compounds used in Chapter III. 

Chapter III describes the effect of the cationic phthalocyanines presented in 

chapter II, on the viability of a representative strain of Gram-negative bacteria. The 

photodynamic inactivation kinetics were assessed under white and red light irradiation. 

Cellular localization and uptake are also presented. Aggregation, spectroscopic, 

photophysical and photochemical properties studies, performed under the same 

conditions used in aPDT studies, are also described. 

The main conclusions are presented in chapter IV. 
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1.1 PHOTODYNAMIC THERAPY 

 

Already in ancient history light played an important role in therapy. Named 

heliotherapy (after Helios - the sun God) by the Greeks, it began as sun worship rituals 

and used for treatment of psoriasis by the Egyptians, evolving through the centuries and 

claiming its place as an accepted scientific treatment (1). 

The combination of light with chemical compounds starts in ancient India and 

China through the use of psoralens to treat vitiligo (2) but it was only in the late 1800s 

that the first clinic, offering light therapy to treat smallpox and tuberculosis, opened by 

Niels Finsen, who was awarded a Nobel Prize for his work on phototherapy (1). Light 

treatments became world-renowned and several hospitals offered this therapy. 

In the early 1900s, Raab, working for Professor Herman von Tappeiner, used the 

combination of acridine orange and light to destroy living organisms (paramecium), these 

results combined with other works by Prime and Jesionek, stated that light combined 

with sensitizing agents (photosensitizers, PSs) and oxygen, had the ability to destroy cells. 

It was von Tappeiner and Jodlbauer who identified oxygen has an indispensable 

component in photosensitizing reactions and coined the phrase “photodynamic action” or 

“photodynamic effect”, depending on the translation (3). 

Meyer-Betz was the first to study the effect of a first generation photosensitizer, 

hematoporphyrin, in humans, by self-injecting himself with a substantial dose, followed 

by intentional light exposure, creating the first intentional porphyrin based photodynamic 

therapy (PDT) reaction. This caused an edema and hyperpigmentation, which persisted 

for 2 months (Figure 1.1) (4). 

 

 



4 

 

 

Figure 1.1 - Meyer-Betz before (A) and after (B) injecting hematoporphyrin followed by light 
exposure. 

Regardless of all these significant findings and worldwide recognition of light 

therapy, PDT did not succeed to become a self-sustaining clinical entity. 

The interest in PDT for clinical applications, as we know it, began around 1960 

when R. L. Lipson and S. Schwartz used the hematoporphyrin derivate to try to fluoresce 

human tumors for diagnostic purposes and unintentionally caused tumor cells destruction 

(5). 

Since its discovery, photodynamic therapy and all aspects involved, from 

mechanisms of action, photosensitizers to possible applications have been thoroughly 

studied. Briefly, photodynamic therapy occurs when a non-toxic drug or dye is selectively 

activated by an appropriate wavelength of light, resulting in the production of several 

reactive oxygen species (ROS), amongst them singlet oxygen (1O2) as the primary 

photochemical product. So, three components are required for PDT: a photosensitizer 

(PS), oxygen and a light source (2). Nowadays PDT is a worldwide treatment, approved in 

all continents.  

 

1.1.1 Photosensitizers 
 

A PDT photosensitizer is a compound that has the ability of absorbing light of a 

specific wavelength and transforms it into energy to induce reactions in non-absorbing 

molecules, resulting in cell damage (6). 

The ideal Ps should include the following characteristics: 

- be chemically pure, of known and constant composition;  

- have minimal dark toxicity and only be cytotoxic in presence of light; 
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- have selective accumulation in target tissue;  

- rapid excretion from the body, resulting in minimal toxicity;  

- be non-mutagenic in host;  

- be photo and chemically stable;  

- have short time interval between administration and maximal accumulation in 

target tissues;  

- have high photochemical reactivity, with high triplet – state yields, long triplet – 

state lifetime, being able to effectively produce singlet oxygen and other reactive 

oxygen species; 

- have a high extinction coefficient at longer wavelength (600 – 800 nm) where 

penetration into tissue is maximal, while the photons still maintain the ability to 

produce singlet oxygen (7,8). It should be also soluble, with minimal aggregation, 

in biological environments and have a straightforward, clean, and easy of scaling – 

up synthesis (9). 

Mentioning porphyrin based PSs is mandatory, in PDT history. In 1841, Scherer 

obtained a precipitate after blood heating with sulphuric acid, washed it freeing it form 

iron, and treated with alcohol. The precipitate was named hematoporphyrin three 

decades after its discovery. Also, porphyrins were discovered in urine, as uroporphyrins, 

of patients with porphyria. Patients with this disease had sun sensitivity due to 

endogenous photosensitizers production (1). It was the discovery of porphyrins as 

photosensitizing agents. 

Through the 1950s-60s, a synthesis method was optimized to give birth to a more 

refined and highly active form of hematoporphyrin named Hematoporphyrin Derivate 

(HpD). Hematoporphyrin (Hp) and HpD were called first generation photosensitizers. 

Photofrin®, a purified mixture of HpD, was the first Ps to be studied in detail. However, 

being a mixture, it was very difficult to determine its chemical structure and to identify its 

components (10). Adding to the difficult characterization, Photofrin® also had a lack of 

reasonably-sized absorption band superior to 650 nm (for deepen tissue penetration), 

caused severe cutaneous photosensitivity since it was retained by cutaneous tissues up to 

weeks (11). 
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In order to overcome first generation sensitizer disadvantages, second generation 

PSs were developed. These new sensitizers include 1,5-aminolevulinic acid (ALA) and 

porphyrin derivatives, such as chlorins (Chlorin e6 and derivatives), benzoporphyrin 

derivative (BPD), meta (Tetra) hydroxyphenylchlorin (m-THPC), phthalocyanines, 

texaphyrins and bacteriochlorophyll. They also include non–porphyrinic sensitizers, 

quinones, xanthenes, cyanins and some cationic dyes (12). 

Photosensitizers can be originated from several broad families and be categorized 

by direct chemical structure. The three major photosensitizer families under investigation 

or in clinical use are outlined in table 1.1. 

 

Table 1.1 - Major photosensitizer families under investigation or in clinical use. 

 

 

Porphyrin platform HpD, HpD-based 

 BPD 

 ALA 

 Texaphyrins 

Chlorophyll platform Chlorins 

 Bacteriochlorins 

Phthalocyanine platform Photosense 

Pc4 

 CGP 55847 

Design strategies for new photosensitizers are directed toward specificity. The 

new third generation photosensitizers consist in modification of available drugs with 

antibody conjugates, biologic conjugates, built in photobleaching capacity, among others, 

in an attempt to achieve the concept of ideal photosensitizer (13). 

 

1.1.2 Oxygen  
 

In 1978 researcher’s in Moan’s group recognized the importance of 1O2 in several 

chemical and biological processes, such as, phototherapy of cancer, photodynamic 
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inactivation of viruses and cells and dye-sensitized photooxidation of lipids, proteins and 

nucleic acids. Highly reactive 1O2 was found to play a vital role as toxic reagent during the 

process of PDT (10).   

Studies concerning 1O2 formation in PDT, using Hp, HpD (Photofrin I) and di-

hematoporphyrin ether (DHE, Photofrin II) showed that the state of the photosensitizer 

aggregation influences the photochemical yield of 1O2. Hp tends to aggregate when its 

concentration is increased, HpD and DHE are mixtures of porphyrins in different states of 

aggregation. When comparing the yield of 1O2 formed by those photosensitizers, Moan’s 

group found that photoexcitation of HpD and DHE resulted in lowers yields than 

photoexcitation of Hp. So, the fluorescence quantum yield and the singlet oxygen 

quantum yield produced by an aggregated Ps is remarkably lower than those of the 

monomeric form (14). 

Further work from its team using cancer cells, lead to the conclusion that the 

inactivation efficiency is tightly dependent of the oxygen concentration since 

photoinactivation of cells decreased with decreasing oxygen concentration. In fact, 

hypoxic tumor cells showed resistance to PDT, so they suggested an increase of O2 

administration to the air breathed by patients during PDT, in order to increase tumor 

oxygenation (15). 

Other experiments by Moan and Boye indicated that 1O2 generated outside the 

cell wall cannot penetrate this wall. Through the observation of Escherichia coli and 

human cells, they found that the 1O2 generated outside these cells did not introduce DNA 

strand break as long as the Ps is outside the cells (16,17). The diffused distance of 1O2 was 

estimated to be lower than 0.05 µm during its short lifetime, from the site of origin 

before reacting with several cellular targets (18). Therefore, PDT damage through 1O2 

occurs close to the localization of photosensitizers during light exposure, which means 

that the subcellular localization of photosensitizing molecules is extremely important, 

since it determines the site or primary damage and its impact. 
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1.1.3 Light 
 

 The sun was the original light source in light therapy. Although very powerful 

(1000 W cm-2) and with a wide multi-spectrum, it was not convenient or ideal. The need 

for indoor treatment, selective wavelength and ability to focus the light to the region of 

interest, lead to the development of other lights sources. It started with arc lamps that 

generated much heat and could be dangerous, evolving to slide projectors generally with 

filters to control wavelength. A great development came with the employment of lasers, 

which allowed the use of very precise wavelengths and highly focused beams. Non-laser 

light sources, such as light emitting diodes (LEDS) have a high impact on PDT, since they 

are less expensive, small, lightweight and highly flexible. They allow the use of high levels 

of light and wavelength that activate commercially available sensitizers. Reliable optical 

fibers  are also very important for clinically successful PDT. They are able to fit into 

endoscopes or through biopsy needles, allowing the light sources to be used in a greater 

array of clinical cases (19). 

The wavelength range between 600 and 800 nm was determined as the practical 

“therapeutic window” for clinical PDT (6). Light penetration in tissue at 630 nm is about 1-

3 mm depth, while at 700-850 nm is twice the depth. Therefore, longer wavelength light 

with increased penetration depths encourages the development of photosensitizers 

which absorbs preferentially at those wavelengths, such as phthalocyanines, 

naphthalocyanines and bacteriochlorins (11). In order to obtain a maximal yield of 1O2 at 

maximal depth, the chosen wavelength has to match the absorption spectra of the 

chosen Ps. 

 A process called “photobleaching” can occur as a result of a reaction between the 

excited Ps and the ROS produced upon illumination. This event leads to loss of 

absorbance and photosensitizing ability (20). 

 Light dose delivered influences PDT success. The unit usually used to measure the 

total energy delivered is the joule and is determined by watt (W) multiplied by time. The 

number of photons in a joule depends upon the wavelength of the light. The delivered 

rate of light, fluence rate, influences treatment time so it must be considered in PDT. 
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Fluence rate, in W/area, depends on the light source used. The higher the rate delivered 

by light, the higher is the probability of heating the molecules and its surroundings (6).  

 

1.2 PHOTOCHEMISTRY 

 

 The photodynamic process is initiated when the photosensitizer absorbs photons 

from light and after excitation can suffers simultaneous or sequential decays, resulting in 

intramolecular energy transfer reactions. The ground state PS has two electrons with 

opposite spins (singlet state) in the lowest energy molecular orbital. When the photons 

are absorbed, one of the electrons jumps into a high-energy orbital, keeping its spin (first 

excited singlet state). This specie has a very short lifetime (nanoseconds) and can lose its 

energy, relaxing to the ground state by emitting a fluorescent photon or by internal 

conversion, releasing heat (20). The fluorescence ability can be used to quantify the 

amount of Ps in cell and tissue, allowing measuring the pharmacokinetics and distribution 

of the Ps in living animals and patients, and also as imaging agents in cancer diagnosis (21-

23).  

 The excited singlet state can also undergo through a process known as 

intersystem crossing, leading to as inversion of the excited electron spin, forming a 

relatively long lived (microseconds) excited triplet state that has parallel electron spins 

(20). From the excited triplet state, the Ps can relax back to ground state through 

emission of a phosphorescent photon or by energy transference to another molecule. The 

long lifetime of the PS triplet state is explained by the fact that the loss of energy by 

emission of light (phosphorescence) is a “spin – forbidden” process, as the PS would go 

directly from a triplet to a single state. In the presence of oxygen, the chromophore reacts 

with ground state molecular oxygen, leading to the formation of singlet oxygen (20). The 

photochemical reactions described are represented in the simplified Jablonski diagram 

(Fig.1.2).  
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Figure 1.2 - Simplified Jablonski diagram. S0: singlet ground state photosensitizer ; S1: short-lived 
singlet excited state photosensitizer; T1: long-lived triplet state photosensitizer; T0: ground state 

molecular oxygen (Kejík et al., 2011). 

 

 1.2.1 Type I photooxigenation process 
 

There are two main classes of energy transfer reactions involving oxygen, Type I 

and Type II. Type I photoreactions are characterized by a dependence on the target-

substrate concentration. In anoxic conditions the excited PS can react directly with a 

substrate, such as the cell membrane or a molecule, producing an oxidized substrate and 

a reduced PS, by electron exchange (i). These anionic and cationic radicals may later react 

with oxygen to produce reactive oxygen species. The reduced PS, in hypoxic 

environments and after reacting with ground state molecular oxygen (3O2), may produce 

superoxide anions (O2¯˙) (ii). These anions may also be produced by the reaction of the 

excited PS with superoxide radicals (O2˙) (iii) (24). 

Superoxide is not very reactive in biological systems, but can react with itself 

forming hydrogen peroxide (H2O2) and oxygen, a reaction that can be catalyzed by the 

enzyme superoxide dismutase (SOD), through a reaction called “dismutation” (iv) (24).  

H2O2 is important in biological systems once it can pass effortlessly through cell 

membranes and cannot be excluded form cells, since is necessary for the function of 

several enzymes. Once damage caused by H2O2 is not restricted to one cellular 

compartment, hydrogen peroxide is considerably relevant in producing cellular damage. 
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Superoxide can also form the highly reactive hydroxyl radicals (OH¯˙), by acting as a 

reducing agent through donation of one electron in order to reduce metal ions (such as 

ferric iron or Fe3+), that act as the catalyst to convert H2O2 into their hydroxyl radical 

(OH˙). This processed is called the Fenton reaction (v) and is important in biological 

processes because most cells have iron, copper or other metals, which can catalyze this 

reaction. The reduced metal (ferrous iron or Fe2+) then catalyzes the breaking of oxygen – 

oxygen bond of H2O2 to produce a hydroxyl radical and a hydroxide ion (OH¯) (vi) (24,25). 

Superoxide can react with OH˙ to form singlet oxygen (vii), or with nitric oxide (NO¯, 

also a radical) to produce peroxynitrite (OONO¯)(viii), another highly reactive oxidizing 

molecule (24). OH˙ can also pass effortlessly through membranes and cannot be kept out 

of cells, just like H2O2. OH˙ can add to an organic (carbon containing) substrate, for 

instance a fatty acid which could form a hydroxylated adduct that is itself a radical. It also 

can oxidize the organic substrate by “stealing” or abstracting an electron from it. The 

resulting oxidized substrate is itself a radical that can react with other molecules in a 

chain reaction, which is common in oxidative damage of fatty acids and other lipids 

(20,25)  

 

    

(i) 3Sensitizer* + Substrate   Substrate** + Sensitizer¯ 

(ii) Sensitizer- + 3O2  Sensitizer + O2¯˙ 

(iii) 3Sensitizer* + O2˙  Sensitizer¯ + O2¯˙ 

(iv) O2¯˙ + O2¯˙  H2O2 

(v) O2¯˙ + Fe (III)  O2 + Fe (II)  

(vi) Fe (II) + H2O2  Fe (III) + OH¯˙ + HO¯ 

(vii) O2¯˙ + OH˙  3O2  

(viii) O2¯˙ + NO¯  OONO¯   

  

1.2.2 Type II photooxigenation process 
 

 A Type II reaction is characterized by dependence on the oxygen concentration.  In 

this pathway, the triplet state PS can transfer its energy directly to molecular oxygen to 

+ 

Substrate      

 

 

 

Oxidative damage
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form excited singlet oxygen (1O2) that can participate in lipid and protein membrane 

oxidation or induce DNA damage (20,26). 

 

  3Sensitizer* + 3O2 Sensitizer + 1O2  

  1O2 + Substrate Oxidative damage 

 

Despite the association of this reaction with singlet oxygen production, some 

other compounds, such as nitric oxide and vitamin A, have triplet-ground states and can 

also be involved (27). 

Both Type I and Type II pathways can occur simultaneously, the ratio between 

these two processes depends on the type of PS used, the concentration of oxygen and 

substrate. Type II reactions are reported to be prevalent during PDT, while Type I could be 

dominant under hypoxic conditions and in the presence of high concentrations of 

photosensitizer (27). 

Most photosensitization reactions are attributed to the action of Type I and Type II 

mechanisms, but there are also two types of reactions caused by the PS triplet state, that 

does not involves oxygen but can also cause cellular damage, Type III and Type IV 

reactions. 

 

1.2.3 Type III photodynamic mechanism 
 

In these reactions a covalent photobinding between the PS and one 

macromolecule is formed, leading to the formation of stable photo products independent 

of oxygen that could induce cells damage (25). 

 

3Sensitizer* + substrate Sensitizer – substrate  

 

1.2.4 Type IV photodynamic mechanism 

 

The photosensitizer can also suffer a decomposition, resulting in photoproducts 

that can act either as toxin or as a new photosensitizer (28). 
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  3Sensitizer* Sensitizer˙  

  Photoproduct Photoproduct + substrate 

   hv 

  Photoproduct* Photoproduct* + substrate 

 

The Figure 1.3 resumes all photochemical reactions that can lead to cell damage. 

 

 

Figure 1.3 - Photochemical reactions that can lead to cell damage (Moore, 1998). 

 

1.3 PHOTODYNAMIC THERAPY APPLICATIONS 

 

 Although the first successful PDT experiments were in microorganisms, it was the 

clinical success on a wide diversity of tumors that gained the interest of clinicians, 

allowing its growth, not only in oncology but several other areas. 

 

 1.3.1 Oncology applications 

 

 The visible tumor destruction, sparing the normal tissue, with rapid vascular and 

cytotoxic reactions and mobile, reliable light sources, gave the impetus to study PDT in 

several tumors. Skin is the simplest target for PDT, due to its accessibility. Photofrin® and 
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ALA action proved to be beneficial in several skin diseases such as Kaposi sarcoma, basal 

cell, squamous cell carcinoma (29-31) and metastasis lesions originated from breast, 

gynecological and gastrointestinal tumors (32). Like skin, head and neck tumors offer easy 

access, either by superficial or interstitial illumination.  It includes face, oral cavity 

(tongue, jaw), nasopharynx, larynx and neck tumors. Porphyrin photosensitizer 

derivatives also showed promising results in gastrointestinal track (33), lungs (34), 

genitourinary and prostate (35,36), brain (37), as well as hematological diseases (leukemia 

and lymphoma)(38,39). 

 

 1.3.2 Antimicrobial applications 
 

 The antimicrobial activity of PDT, although well known, only became of interest 

when microorganisms started developing antibiotic resistance. Photomicrobial action is 

now well documented for a wide range of microorganisms in vitro and in vivo. Antibiotic 

PDT includes infectious diseases treatment (40,41), decontamination / pathogen 

inactivation of blood products for transfusion (riboflavin, methylene blue, amotosalen) 

(42-44), acne treatment (ALA) (45), wastewater treatment (porphyrins derivates) (46) and 

insecticides (ALA)(47). 

 

 1.3.3 Other applications 
 

 Other PDT applications grew out from the intensive investigation regarding PDT 

and oncology. Verteporfin is used in ophthalmology to slow lesions caused by age – 

related macular degeneration (48). It can also help in arthritis and autoimmune disorders 

(49). ALA and lutetium texaphyrin are beneficial in atherosclerosis, inhibiting the built-up 

of plaques (50,51). Again, ALA has a good impact in endometriosis cases (52). 

 Photosensitizers, due to their fluorescence ability, can also be used in diagnosis. 

Fluorescent tumor marking is a highly effective tool. Lower concentrations of PS are 

required and, in addition, the method is very sensitive to changes in tissue caused by the 

presence of malignant or dysplastic cells (21-23). 
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 The use of photosensitizers can also facilitate the delivery of other therapeutic 

agents, by causing cell wall disarrangement, or to increase intracellular release rates of 

cytotoxic molecules from molecules taken by endocytosis, by the opening of vesicles or 

otherwise liberation of drugs via the action of singlet oxygen (53).  

Thus, PDT is an economic, fast, simple and effective method that offers a wide 

range of applications in multidimensional areas regarding health. 

 

1.4 ANTIMICROBIAL PHOTODYNAMIC THERAPY 
 

It was during the XX century, facing the urgent treatment need for infectious 

diseases, that the antibiotics were discovered and improved. At the time they were seen 

as a miraculous drug but, a century later, they helped the emerging of a major healthcare 

issue: bacterial antibiotic resistance. The misuse and abuse of antibiotics in medicine, its 

widespread use in livestock feedstuff, the longer survival of patients with severe illness 

and at risk for infections, lack of use of effective preventive infection control measures, 

among others, lead to bacterial activation of adaptation mechanisms, originating resistant 

and multi-resistant species, on which antibiotics have no effect. Adding to this, global 

traveling allowed in a large scale the frequent transmission of microorganisms (40). 

Bacteria replication is very fast, so a mutation that allows its survival in the presence of a 

killing agent, such as an antibiotic drug, will rapidly become predominant.  

Basically, bacteria resistance to antibiotics has it base at the genetic level. Most 

cases of bacterial resistance are originated by changes in the genetic information, either 

via a mutation or introduction of new genetic information. These changes results in 

alteration of one or more biological mechanisms of the affected bacteria, such as 

destruction of the antibacterial agent before it has an effect, acquisition of efflux pumps 

that expel the antibacterial agent before reaching the target site, alteration of bacterial 

cell wall by eliminating the binding site for antimicrobial agent, or by downregulation of 

porin genes that causes limit access of the agents to the intracellular target site, 

ultimately leading to resistance to therapeutic agents. Thus, there is the need of new 

effective and affordable approaches, not susceptible to resistance and extensively 

applicable (54). 
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Antimicrobial photodynamic therapy (aPDT) was described more than 100 years 

ago by Raab, referring to the lethal effect of acridine and visible light on Paramecium 

caudatum, but the potential of this finding was not fully researched due to the discovery 

of antibiotics and poor response of some pathogens, namely Gram-negative bacteria and 

protozoa in the cystic stage, to some of the most common photosensitizers, such as 

porphyrins used in tumor therapy, xanthenes or acridine dyes (40). But several data show 

that PDT could be a possible alternative to combating microorganisms, presenting several 

advantageous aspects (7,8): 

-prospect to broaden PDT protocols which lead to an extensive reduction in 

pathogen population with very limited damage to the host tissue; 

-wide spectrum of action, since one photosensitizer can act on fungi, yeasts, 

bacteria, parasitic protozoa and virus; 

- apparent inexistence of photoresistant strains after multiple treatments; 

-efficacy independent of the antibiotic resistance type of the given microbial strain; 

- lack of mutagenicity; 

- use of affordable light sources for activation of the photosensitizer; 

-possibility of formulations allowing a ready and specific delivery of the 

photosensitizer to the infected area 

 

aPDT can be used in a wide range of fields, such as dermatology (impetigo, acne 

vulgaris, wound infections) (55), dentistry (oral biofilms, dental and mucosal infections) 

(56), gastroenterology (Helicobacter pylori in stomach) (57), transfusion medicine (blood 

and platelet concentrate decontamination) (58), wastewater treatment and tropical 

microorganisms inactivation (leishmaniasis, malaria) (59,60), among others. 

 

1.5 PHOTOSENSITIZERS IN aPDT 

 

To achieve maximum efficacy, a photosensitizer in aPDT should have several 

specific characteristics (40), such as:  

- a high quantum yield for the generation of both the long-lived triplet state and 

the cytotoxic oxygen species; 
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- preferential affinity to microbial cells; 

- wide range of action to efficiently act on infections with a heterogeneous flora of 

pathogens; 

- a process of cell inactivation minimizing the chance of inducing the selection of 

resistant strains or promoting the development of mutagenic processes; 

- possibility to select a therapeutic window that allows an extensive killing of 

microorganisms that induce disease, with minimal damage to the host tissue in 

the surroundings of the infection, without resistance development to the 

treatment. 

Nowadays a broad range of photosensitizers are being studied to evaluate their 

effectiveness in the inactivation of microorganisms. Some of them include methylene 

blue, a well-known photosensitizer in this field, being used for over a century against 

bacteriophages and viruses, among others (61). Several assays with macrocycle 

photosensitizers (porphyrins and phthalocyanines) also show efficient photodynamic 

inactivation of viruses and bacteria, both Gram-positive and Gram-negative. 

Phthalocyanines (Pcs) usually show high yields of singlet oxygen production, 

greater than that of standard photosensitizers, such as methylene blue (62).  

This wide variety of photosensitizers that can be effectively use for 

microorganisms photoinactivation, allows an enhancement of microorganisms specificity, 

also the difference of susceptibility of human and microorganisms cells, due to 

differences in cell size, making lethal conditions to microorganisms, less toxic to human 

cells, indicates that aPDT is a technique with great potential to be included in clinical 

practices (62). 

 

1.6 PHOTOINACTIVATION OF BACTERIAL CELL 

 

Bacterial cell photoinactivation is achieved by the accumulation of significant 

quantities of a photosensitizer on the citoplasmatic membrane or in the cell causing 

irreversible damages through the generation of cytotoxic species. The efficiency and 

mechanism of this process is influenced by cellular structure and organization differences, 

affecting the interaction of photosensitizers with cell constituents (67).  
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It was Christian Gram that classified bacteria as Gram-positive or Gram-negative when, in 

1880, developed a staining technique, the Gram staining. The difference in staining is due 

to structural differences on bacteria outer cell membrane of the wall (63). Gram-positive 

bacteria cell wall is 15 – 80 nm thickness, it contains up to 100 peptidoglycan layers, with 

no significant quantity of lipids or proteins. Although it has more layers of peptidoglycan, 

much thicker than in gram-negative ones. Gram-positive bacteria wall presents a rather 

high degree of porosity, once several macromolecules in the range of 30 to 57 kDa can 

easily diffuse to the inner plasma membrane. Gram-negative bacteria wall architecture 

has an additional membrane layer, external to the peptidoglycan layer, that presents an 

asymmetric lipid structure composed by strongly negatively charged lipopolysaccharides, 

phospholipids, lipoproteins and proteins with porin function (fig. 1.4) (55). Only relatively 

hydrophilic compounds with a molecular weight lower than 600-700 Da can diffuse 

through the porin channels, making the outer membrane a very effective permeability 

barrier that confers resistance against host cellular and humoral defence factors (40). 

Thus, the susceptibility to aPDT between Gram-negative and Gram-positive is due to their 

outer membrane. 

 

 

Figure 1.4 - Schematic representation of Gram-positive and gram-negative bacteria cell wall 
(Betsy, Keogh, 2005). 
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Due to their permeability, gram-positive bacteria can be readily photoinactivated 

by anionic and neutral photosensitizers that bind and easily diffuse trough the membrane 

of the cell. Gram-negative bacteria showed no susceptibility to these photosensitizers. 

Several studies showed that adding biological or chemical molecules such as peptide 

polymyxin or Tris-EDTA, enhances photosensitization of Gram-negative bacteria, altering 

the original consistence of the outer membrane, causing a higher permeability and 

facilitating the diffusion of the PS to the cytoplasmic membrane (64). Although this 

method allowed a higher susceptibility to PDT by Gram-negative bacteria, it would be 

preferable if a photosensitizer could have such effect without adding a disrupting agent. 

Merchat et al. (65), with cationic porphyrins, and Minnock et al. (66), with cationic 

phthalocyanines, provided the solution. These cationic PSs show to be effective in 

photoinactivating Gram-negative bacteria. Also non-cationic photosensitizers, such as 

chlorins, can promote efficient photoinactivation as long as they are covalently bound to 

a polylysine oligomer positively charged (67). A possible explanation for the cationic PS 

uptake by Gram-negative bacteria is the interaction of the divalent cation binding sites on 

the surface of lipopolysaccharides with the cationic PS, once these molecules have an 

affinity for those sites 2-4 orders of magnitude higher than the divalent cations. The 

bulkiness of the displacing polycations causes a deformity of outer membrane structure, 

leading to a permeabilization of the outer membrane to several molecules. At the same 

time, the uptake of the polycations themselves is enhanced. This mechanism is known as 

“self-promoted uptake pathway” (68). 

After the translocation of the photosensitizer to the inner plasma membrane, the 

photoactivation of the macromolecule promote the generation of cytotoxic species, as 

mentioned before, oxidizing specific targets in the microenvironment surrounding the 

sensitizer, leading to deterioration of cell functions and metabolism, resulting in inhibition 

of cell growth and consequently cell death (69). 

 Two basic mechanisms were proposed to explain the lethal damage caused to 

bacteria by aPDT: DNA damage and damage to the cytoplasmic membrane, causing the 

release of cellular contents or inactivation of membrane transport systems and enzymes. 

Evidence shows that treatment of bacteria with several PS and light leads to DNA 
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damage. Breaks in both single and double-stranded DNA, and the disappearance of the 

plasmid super-coiled fraction have been detected in both Gram-positive and Gram-

negative bacteria after the photodynamic process with a wide range of PS structural 

types. Some findings suggest that photosensitizers that can more easily intercalate into 

double-stranded DNA readily can cause more damage. Guanine residues seem to be more 

easily oxidized. However several authors have concluded that, although DNA damage 

occurs, it may not be the main cause of cell death, as shown by D. radiodurans, bacterium 

known by their very efficient DNA repair mechanism, that is easily killed by aPDT (41). 

Other factors such as alteration of cytoplasmic membrane proteins, shown by Valduga et 

al. (70) and Bertoloni et al. (71), disturbance of cell wall synthesis, the appearance of a 

multilamelar structure near the septum of dividing cells, along with loss of potassium ions 

from the cell, reported by Nitzan et al. (72) can promote bacteria cell death.  

Typical type I reactions, e.g. at the bacterial cytoplasm, involves the abstraction of 

allylic hydrogens from unsaturated molecules such as phospholipids. The radical species 

thus formed may undergo reaction with oxygen to yield the lipid hydroperoxidase. Lipid 

peroxidation is detrimental to membrane integrity, causing loss of fluidity and increased 

ion permeability. Other cell wall / membrane targets include aminolipids and peptides; 

hence inactivation of membrane enzymes and receptors is also possible. In the type II 

mechanism, the short life of singlet oxygen ensures a localized response, causing the 

singlet oxygen formed to react rapidly with its environment – cell wall, nucleic acids, 

peptides, etc. Type II processes are generally accepted as the major pathways in 

photooxidative microbial cell damage. In DNA damage, there is also a difference in 

selectivity between type I and type II processes. Type I is mediated through hydroxyl 

radical attack at the sugar moiety, while type II is an attack of singlet oxygen at the 

guanine base (62). 

The photosensitivity of bacteria is also affected by its physiological state. Cells in 

the logarithmic phase of growth are pronouncedly more susceptible to photodynamic 

inactivation than the corresponding cells in the stationary phase (40).  
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1.7 RAPID METHODS TO MONITOR BACTERIA PHOTOINACTIVATION 

 

Conventional methods to follow the bacterial photoinactivation process 

frequently involve animal sacrifice, removal of the infected tissue, homogenization, serial 

dilution, plating and colony counting. These processes use a large number of animals, are 

time consuming due to overnight incubation as counting of colony - forming units (CFU) 

and often are not statistically reliable (58). Thus, faster methods are in demand to study 

potential PS in vitro, and have been essential to accelerate the development of aPDT. The 

bacterial bioluminescence method could be the response to this issue, once is considered 

to be a rapid, sensitive and cost–effective option. It also allows only living or viable cells 

detection and does not need exogenous administration of substrates to obtain light 

emission (73-75). 

Bioluminescence is the process of visible light emission by living organisms 

through the intervention of an enzyme catalyst. Evidence show that inhibition of cellular 

activity results in a decrease in the respiration rate and consequentially a decrease in the 

bioluminescence rate, so light emission is directly dependent on the metabolic activity of 

the organism (76,77). The bioluminescence phenomena has been observed in several 

different organisms including bacteria, fungi, fish, insects, algae and squid, in marine, 

freshwater and terrestrial environments (78). 

Luciferases are enzymes that catalyze the bacterial luminescent reaction, they 

consist on an oxygenase, where the fatty aldehydes are the substrate that produces the 

correspondent fatty acid. The light emission reaction involves the oxidation of reduced 

riboflavin phosphate (FMNH2) and a long fatty aldehyde chain with the emission of blue – 

green light (fig. 1.5) (79,80). 
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Figure 1.5 - Bacterial luciferase catalyzed reaction. (Lin and Meighen, 2004) 

In both marine and terrestrial bioluminescent bacteria, a five genes operon 

(luxCDABE) encodes the biosynthetic and luciferase enzymes (for the synthesis of the 

aldehyde substrate) fundamental for light production. luxA and luxB genes encode the 

alpha and beta subunits of the luciferase, with luxC, luxD and luxE genes encoding 

proteins for aldehyde production (81). 

The emission of light by most luminescent bacteria is highly dependent on the 

extent of cellular growth. Through the initial stages of growth at low cell density, the lux 

genes are not expressed and luminescence in a cell culture will actually decrease with 

growth, mainly due to a limitation in the substrates for the luminescent reaction.  During 

mid to late logarithmic growth, depending on the species and the nutrient composition of 

growth medium, light emission will increase dramatically. The increase in luminescence is 

originated by activation of expression of the genes in the lux operon including the 

luxCDABE genes. Only these genes are essential for the biosynthetic production of light, 

although a number of additional lux genes in bioluminescent bacteria have been 

identified (80). In marine bioluminescent bacteria, light emission occurs preferentially at 

temperature below 30 °C (82). 

Light output is noncumulative, reflecting with highly sensibility actual metabolic 

rate, it can be measured directly, continuously and non–destructively in high–throughput 

screening of continuous–culture models, making it useful for monitoring real time effects 

of antimicrobials on bacteria metabolism (75,83,84). A strong correlation between 

bioluminescence and viable count can be observed (75,85). 
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The development of recombinant DNA technology allowed the selection of the 

phenomenon of bacteria bioluminescence and its application within any bacterial species 

from several rather different perspectives. It offers a real-time, non-invasive reporter for 

measuring gene expression, a sensitive marker for bacteria detection and a measure of 

intracellular biochemical functions, such as a holistic determinant of cellular viability (86).  

 

1.8 PHTHALOCYANINES 

 

Phthalocyanines were accidentally discovered in 1907 by Braun and Tcherniac 

after examining the results of a chemistry study on o–cyanobenzamide, that when 

heated, a trace amount of a blue substance was obtained. This compound was 

undoubtedly metal–free phthalocyanine (Pc). However, the importance of this 

observation was not fully recognized. In 1927 de Diesbach and co–workers found that a 

blue product was obtained in moderate yields when 1,2–dibromobenzene was treated 

with copper (I) cyanidein boiling quinolone for eight hours. This was probably the first 

synthesis of copper Pc, but they were unable to propose a structure. A year later, in the 

manufacture of a phthalimide from the reaction of phthalic anhydride with ammonia in a 

glass–lined reactor by Dandridge, Drescher and Thomas of Scottish Dyes, a blue impurity 

was observed. This impurity proved to be iron Pc, being the source or iron the reactor 

wall that became exposed due to a flaw in glass lining (87,88).  

After this discovery, the color manufacturing industry quickly recognized the 

unique properties of the compounds and started to explore their commercial potential. In 

1929, Dandridge, Drescher and Thomas patented the compounds that now are known as 

phthalocyanines. The name derivate from the Greek terms for naphtha (rock oil) and for 

cyanine (dark blue) and was given by Linstead, whom extensive work confirmed the 

structure and contained the experimental details to the preparation of Pcs from 

phthalonitrile (89). 

Phthalocyanines are planar aromatic macrocycles consisting of four isoindole units 

connected by four nitrogen atoms, forming altogether an internal 16-membered ring, 

presenting an 18–electron aromatic cloud delocalized over an arrangement of alternated 

carbon and nitrogen atoms (Fig. 1.6).  
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Figure 1.6 - Structures of metal and metal-free phthalocyanines 

 

 The numerous properties given by the electronic delocalization allows the use of 

these compounds in several fields of science and technology, due to the acquired 

versatility and thermal and chemical stability (90).  

Pcs can have a metal-free core, metal-free phthalocyanine, or a metal replacing 

the hydrogen atoms of the central cavity, metallophthalocyanine (Fig. 1.6). Almost every 

metal and some metalloids can replace the hydrogen atoms, in a total of more than 70 

elements (91). A diversity of substituents can be incorporated at the periphery of the 

macrocycle and at the axial positions, allowing fine-tuning of the physical properties  

Also, several modifications can be made over the phthalocyanine ring originating 

the so-called Pc analogues. The most common structural changes that leads to Pc related 

compounds are the extension of the π-system, the formal substitution of some of the 

isoindole moieties by another (hetero) aromatic ring and the variation in the number of 

isoindole units (91).  

 Figure 1.7 represents the nomenclature usually used by IUPAC. All atoms, with the 

exception of the ones merging the pyrrole and benzene rings, are numbered (92). 
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Figure 1.7 - Phthalocyanine numbered atoms, used by IUPAC 

 

1.8.1 Phthalocyanines Spectra 
 

 The extensively conjugated aromatic chromophoric system of phthalocyanines 

generates intense bands in their absorption spectra. The strongest absorption band in 

most phthalocyanines usually lies in in the visible region at wavelengths between 650–

670 nm, the Q–band, while the weaker band is near 340 nm, the Soret or B band (Fig. 

1.8). This preferential absorption in the red light region confers the characteristically blue 

color of the Pcs (93). An introduction of a metal ion inside the cavity will originate a slight 

blue shit in the Q – Band, due to a reduction of the electron density, being a bigger blue 

shift directly related to the higher metal ion electromagnetic field. 

Besides the central metal, the positions of the absorption bands in Pcs (specially 

the Q–bands) are affected by axial substitutions, solvents, peripheral and non-peripheral 

substitution, aggregation and extension of the conjugation. Metallation increases the 

symmetry to D4h, maintaining the planarity of the molecule.  Metal–free Pcs presents 

D2h symmetry. Lowering the symmetry leads to a splitting of the Q–band, that is the 

reason why a clear split of the Q–band is observer in metal–free phthalocyanines (94). 
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Figure 1.8 - Absorption spectra of a metal free (dashed line) and a metallophthalocyanine (solid 

line). (Carvalho E., Master thesis, University of Aveiro, 2009) 

 

1.8.2 Phthalocyanines Aggregation 
 

 Phthalocyanines have great potential due to their unique electronic spectra, high 

degree of aromaticity, singular chemical structure and versatility, but it has a great 

disadvantage, the extreme insolubility of their unsubstituted derivatives. This 

characteristic is a result of the extreme hydrophobicity of the aromatic core and planarity 

of the macrocycle, that leads to a tendency to stack (π-π stacking) upon themselves 

progressing from monomer to dimer and higher order complexes and is driven by 

enhanced van der Waals’ attractive forces between phthalocyanine rings. 

 In the aggregated state, the electronic structure of the phthalocyanine rings is 

discomposed, leading to an alteration of the ground and excited state properties. 

Aggregation in phthalocyanines is characterized by a broadening of the Q-band with a 

corresponding blue- (H-aggregate) or red-shift (J-aggregate) in their wavelength values or 

by splitting of the Q-band. This issue can be overcome by bulky or long chain peripheral 

beta–substitution, by alpha–peripheral substitution, by axial substitution and metal ion 

effects (blocking the coplanar association of the rings) (95).    
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 The peripheral group substitution, besides enhancing the solubility of the 

macrocycle in water and organic solvents, also allows tuning the properties and be used 

as anchoring or bridging groups for formation of controlled supramolecular assemblies 

and similar applications (95).  

 

1.8.3 Phthalocyanines Synthesis 
 

 Although the Pc macrocycle can be modified by changing the central atom and/or 

its axial coordination, or by changing the meso–atoms, the most advantageous is its 

peripheral modification. The term “periphery” refers to all substituents on the benzene 

rings. The α–substituents are the ones located at positions 1, 4, 8, 11, 15, 18, 22 and 25 of 

the macrocycle. The β–substituents are those located at positions 2, 3, 9, 10, 16, 17, 23 

and 24 (Fig. 1.7) (96).  

 Two basic methods are used to introduce peripheral substituents into the Pc ring: 

the direct substitution on an already existing phthalocyanine or condensation of 

substituted precursors. The alteration of a preexisting Pc employs rough reaction 

conditions and leads to complex isomeric mixtures and several degrees of substitution, 

due to the sixteen available positions for substitution. The characterization, purification 

and isolation of these mixtures are very difficult. 

 A much more clean and easier to control reaction is obtained with the 

condensation of substituted precursors. Despite the fact that the unsymmetrically 

precursors can result in constitutional isomers, the number of substituents and their 

relative position is known. This is the favored method to the macrocycle functionalization.  

 Phthalocyanine precursors are aromatic ortho–carboxylic acid derivatives, such as 

phthalic acids, phthalic anhydrides, phthalimides, diiminoisoindolines, o–

cyanobenzamides and phthalonitriles. For the purpose of this dissertation, the focus will 

be on these last compounds and synthesis of metal – phthalocyanines. 

 Phthalonitriles generate Pcs complexes in good yields with most metals (being 

silver and mercury the exception), involving often simple reactions in which the 

phthalonitrile is heated in the presence of a metal ion source as a melt of reagents or in 

an appropriate high boiling solvent, making them the most preferred of the precursors.  
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They can be synthetized or substituents can be introduced in a preexisting phthalonitrile. 

Reactions with phthalonitriles are clearer and give yields typically in the range of 30 – 

50%, in some cases up to 90%, than other precursors (92). 

 Phthalocyanines results from phthalonitriles via a metal template assisted 

cyclotetramerization reaction. The mechanism of this reaction is still uncomprehended, 

conventionally is presumed that four phthalonitrile units mesh with the metal ion, leading 

to the formation of the macrocycle through a template effect. There are other theories 

involving the mechanism of Pcs, where the solvent, an alcohol, plays an important part in 

the reaction, but this is not relevant to the work done in this dissertation (92). 

 Phthalocyanines can be symmetrically or unsymmetrically substituted. We will 

target on symmetrically the tetra- and octa–substituted forms, although they can also be 

hexadeca-substituted (Fig. 1.9).  

 

Figure 1.9 - Structures of tetra-, octa- and hexadeca-substituted phthalocyanines. 

 

Tetra–substituted phthalocyanines, from mono–substituted phthalonitriles, leads 

to a mixture of constitutional isomers. Matching to the substituted positions on the 

precursor, two types of tetra-substituted phthalocyanines can be obtained. beta–tetra-

substituted Pcs are synthetized from 4-substituted phthalonitriles, while alpha–

substituted phthalocyanines results from 3–substituted phthalonitriles. 

The mixture of isomers obtained from the 4–substituted precursors occurs in the 

statistical mixture of 12,5 % C4h, 25 % C2v, 50 % Cs and 12,5 % D2h  isomer (Fig. 1.10). The 

isomers of alpha–substituted phthalocyanines depends on the central metal ion and the 

structure of peripheral substituents (92).  
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Figure 1.10 - The four isomers possible for a tetrasubstituted phthalocyanine. 

 

 Octasubstituted compounds with symmetric nature contains two substituents in 

each of the isoindole units, either at peripheral (2, 3, 9, 10, 16, 17, 23, 24) or 

nonperipheral (1, 4, 8, 11, 15, 18, 22, 25) positions. The former is formed by 

cyclotetramerization of 4,5-disubstituted phthalonitrile derivatives, whereas the latter is 

formed by condensation of the 3,6-disubstituted phthalonitrile derivatives.  

Tetra-substituted phthalocyanines have usually higher solubility than the 

corresponding octa-substituted ones due to the formation of constitutional isomers and 

the high dipole moment that results from the unsymmetrical arrangement of the 

substituents (97). 

 

1.8.4 Applications 
 

Since their serendipity discover in 1928, these synthetic analogues of the 

porphyrins have been the extensively studied in many different fields. The application of 

phthalocyanines in the industry began due to their characteristically dark green–blue 
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color, as dyestuffs for textiles, paints and inks (98). Phthalocyanines have many 

interesting properties, not related to their color, that allows a wide range of applications 

such as catalysts for oxidation (99), lubricating greases (100), molecular electronic devices 

(94), optical recording materials (101), in nuclear reactors (87) and as photosensitizers 

(102), to name a few. 

The interest in phthalocyanines as photosensitizers came from the need of 

compounds that absorb strongly in the red. Red light is most commonly used in PDT to 

obtain the maximum depth of light penetration in mammalian tissue, and some 

sensitizers, such as porphyrins, absorb poorly in that region.  

 

1.8.5 Phthalocyanines in aPDT 
 

The recognition of phthalocyanines as potential photosensitizers for PDT dates 

back to 1985, after Ben-Hur and Rosenthal demonstrated that chloroaluminium 

phthalocyanine can photosensitize mammalian cells (103). More than 400 publications 

describing synthesis of new Pcs tailored for PDT were published in the followed decade. 

Intense absorption bands in the red region, usually at longer wavelengths than 

those of HpD, protoporphyrin IX, among other, combined with a somewhat straight 

forward synthesis, absence of dark toxicity, tumor localizing properties, made the 

phthalocyanines an attractive class in terms of potential photosensitizers for PDT. Not 

surprisingly, they are second only in popularity to the porphyrin class in this respect 

(104,105). 

In figure 1.11 is presented some examples of phthalocyanine applications in PDT (106).  
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Figure 1.4 - Examples of Pc applications in PDT. 

 

There is a considerable literature associated with phthalocyanines in the fields of 

photodynamic inactivation. This was mostly due to the significant investigations 

undertaken by Ben-Hur and co-workers in the 1990s into the use of silicon 

phthalocyanines in blood product decontamination protocols (107,108). Nevertheless, 

much work has also been reported afterwards by Jori and co-workers regarding 

peripherally rather than axially functionalized derivatives, especially those of cationic 

nature (55,109).  

Besides successful inactivation of HIV (107,108) phthalocyanines proved to be 

efficient photosensitizing agents regarding blood-borne pathogens involved in tropical 

diseases, such as Plasmodium falciparum (110) and Trypanosoma cruzi (111), such activity 

is important in blood product decontamination protocols in many non-temperate parts of 

the world. 

Several groups have synthesized derivatives targeted at conventional bacterial 

(66,112) and fungi (113), intended for clinical uses (114) (i.e. periodontitis). Testing of 

anionic, cationic and neutral zinc phthalocyanines against both Gram-positive and Gram-

negative bacteria once again confirmed that the positively charged phthalocyanine had 

higher efficiency (115,116). 
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Correspondingly to other classes of photosensitizer, the recognition of the 

photosensitizer charge/Gram-class activity pattern has led to a substantial increase in the 

synthesis of (broad-spectrum) cationic derivatives. 
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2.1 GENERAL CONSIDERATIONS 

 

Second-generation photosensitizers like phthalocyanines gained, in recent years, 

an enormous interest mainly due to their singlet oxygen generation capabilities, 

absorption in higher wavelengths (> 670 nm) and well recognized chemistry. However, 

phthalocyanine molecules have the tendency to aggregate, causing insolubility problems 

which dramatically affect their photochemical properties (117), by reducing lifetimes of 

the PS excited states, possibly due to conversion of electronic energy into vibrational 

motion, decreasing drastically molecular interaction with 3O2 and the ability to absorb 

photons to activate the PS (118). The aggregation issues can be overcome through the 

use of adequate substituents in the peripheral positions of the macrocycle core (117,119). 

Derivatization of phthalocyanines can also adjust other properties (120), like their 

interaction with cells and tissues, leading to different photobiological effects (121).  

It was mentioned in chapter I that Gram-positive and Gram-negative bacteria have 

different susceptibility to the photodynamic effect and that this constrains can be 

surpassed with cationic PSs (65,66). In that way, the initial working plan for this 

dissertation was the functionalization of the commercial available 

hexadecafluorophthalocyaninatozinc(II) (ZnPcF16), with thio-pyridyl groups and further 

coupling to polylysine, followed by cationization (Scheme 2.1). Zinc phthalocyanine 

complexes have been studied as efficient drugs in microbial photodynamic inactivation 

(109,116). The introduction of zinc, a diamagnetic metal ion, provides useful properties in 

a photosensitizer, such as long triplet lifetime and a relatively high triplet quantum yield 

(26). Thiol-substituted phthalocyanine complexes are also known to absorb light at higher 

wavelengths (> 700 nm) and show interesting photochemical and spectroscopic 

properties compared to non-substituted analogs (122,123). Several studies have been 

shown that polylysine PS conjugates can be more effective against Gram-negative 

bacteria than the PS individually (124,125).  
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Scheme 2.1 

 

Initially several coupling studies of ZnPcF16 with lysine and glycine methyl ester, 

have been attempted in order to determine the best conditions to be used in these 

coupling reactions. The direct use of poly lysine would be more expensive and difficult to 

follow the reactions, by TLC. The idea was to get optimized the reaction conditions before 

start using polylysine. 

 

2.2 COUPLING CONDITIONS STUDIES 
 

In a first attempt of coupling an amino acid to ZnPcF16, we started with glycine 

methyl ester in 1:1, in DMF using NEt3 as base, under nitrogen atmosphere at room 

temperature, hoping to synthesize 2 (Scheme 2.2). After stirring for two hours, the TLC 

revealed that the starting material didn’t react. The temperature was increased to 50 °C 
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and the reaction mixture remained in these conditions for another 24 hours. However 

again, no evolution was observed and K2CO3 was added to the reaction. After another 24 

hours, the reaction TLC was inconclusive, but we decided to finish the reaction. The 

solvent was evaporated and the product was analyzed through mass spectrometry. The 

mass spectrum result only showed the peak corresponding to ZnPcF16. 
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Following the failed attempt to couple glycine methyl ester to ZnPcF16, we tried 

the coupling reaction with the amino acid lysine (Scheme 2.2). Several approaches were 

made through classic and microwave assisted reactions, altering the several parameters,  

such as lysine equivalents, temperature, time, pressure, potency which could influence 

the reaction coupling and obtain compound 3.The reaction conditions used in these 

classic and microwave synthesis are summarized in tables 2.1 and 2.2, respectively.  
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Table 2.1 - Classic synthesis conditions. 

ZnPcF16 (mg, mol) Lysine eq. Base Solvent T (°C) 

10, 1.15 x 10-5 1 NEt3 (50 µl) DMF 40 

20, 2.31 x 10-6 5 K2CO3 (15 mg) DMF 40 

25, 2.89 x 10-6 1.1 NEt3 (100 µl) DMF 60 

10, 1.15 x 10-5 15 NEt3 (100 µl) NMP 60 

 

Table 2.2 - Microwave synthesis conditions. 

Lysine eq. T (°C) Time (min.) Pressure µλ (W) Repetitions 

4 70 20 200 60 3x 

1.2 150 5 250 150 6x 

4 120 20 200 250 5x 

 

The purification of these reaction mixtures through column chromatography was 

very difficult, and several attempts had to be made. The isolated fractions were analyzed 

through 1H NMR, 19F NMR and mass spectrometry. Once again, the results indicated that 

the predominant fraction corresponded to ZnPcF16, while the minor fractions were 

inconclusive. 

 The final coupling attempt was made using polylysine, in order to obtain the 

desired compound 4. For that, to a DMF solution of polylysine was added NEt3, however a 

complete dissolution of the polylysine did not occur. The mixture suffered ultrasound 

action and hot DMSO was added, but the complete dissolution was not achieved. 

Nevertheless, ZnPcF16 was added and the reaction mixture was kept stirring for 27 hours 

at 40 °C, under nitrogen atmosphere. After this time an insoluble material was obtained. 

In order to attempt their dissolution a methylation reaction was done, but the 

material/product remained insoluble and was discarded. 
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After all the unsuccessful attempts, the coupling reaction of ZnPcF16 to polylysine 

was set aside, and we moved to the preparation of the designed thio-pyridyl cationic 

phthalocyanines type 1a. Thiols are efficient nucleophiles that usually allow nucleophilic 

substitution reactions in high yields. The cationization of the pyridyl groups will allow 

water solubility, affinity for Gram-negative bacteria and consequently we expected an 

efficient photoinactivation. Using the same strategy, ZnPcF16 reacted with different 

equivalents of  4-mercaptopyridine,  knowing, however, that when used in ratios below 8 

eq. a complex mixture, with several substitutions degrees in any of the eight beta-fluors 

of the ZnPcF16 periphery, would be obtained. 

Later, a second approach involving cyclotetramerization of thiopyridyl-

phthalonitriles generate two new pyridyl Pcs derivatives without fluorine atoms. 

 

 

2.3 SYNTHESIS OF THIOPYRIDYL PHTHALOCYANINE DERIVATES – direct substitution 
 

2.3.1 Reaction between ZnPcF16 and mercaptopyridine 
 

In this first synthesis, the commercial template ZnPcF16 reacted with 4 equivalents 

of 4-mercaptopyridine through direct nucleophilic substitution of 4 fluorine atoms. To do 

so, a DMF suspension of, ZnPcF16, 4-mercaptopyridine (4 eq.) and NEt3 were stirred at 

room temperature for 24 hours, under nitrogen atmosphere (Scheme 2.3). After this time 

a change in color to a darker blue was observed and the TLC showed the formation of a 

new product. Following solvent evaporation, the crude was subjected to column 

chromatography.  

The major fraction obtained was characterized by 19F and 1H NMR. While 1H NRM 

spectrum showed the resonance correspondingto the pyridyl groups on the new Pcs, the 

19F NMR confirmed the substitution of some fluorine atoms of the ZnPcF16, proving the 

formation of several degrees of substitution. The presence of a mixture was also 

confirmed by mass spectrometry, but were not fully characterized.  
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Scheme 2.3 

 

2.3.2 Synthesis of Hepta-thiopyridylfluorophthalocyanine 
 

Following the initial working plan, an attempt to synthesize a hepta-substituted 

phthalocyanine from ZnPcF16 was made. A mixture of the template and 4-

mercaptopyridine (7 eq.) in DMF with DEA, remained overnight at room temperature 

under nitrogen atmosphere (Scheme 2.4). The reaction TLC indicated the formation of a 

new product.The crude reaction was submitted to column chromatography using 

H2O/MeOH/Et3N as eluent (5:2:2). 1H and 19F NMR showed that we get the 

octasubstituted compound, instead of the expected heptasubstituted one. 
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Scheme 2.4  

 

2.3.3  Synthesis of Pc 8 

 

Although the synthesis of the former tetra-substituted Pc, by direct substitution of 

a template, led to isomers formation, synthesis of an octa-substituted compound through 

the same methodology would be simpler and clear. The attempt to synthesize an hepta-

substituted Pc also led to the conclusion that there is a preferential formation of a 

symmetric compound, with substitution of all beta fluorine atoms. So, ZnPcF8(SPy)8 (8) 

was obtained by derivatization of ZnPcF16 with 4-mercaptopyridine (8 eq.) in DMF and 

DEA (Scheme 2.5). The simple reaction was conducted at room temperature, under 

nitrogen atmosphere, for 24 hours. Subsequently, the solvent was evaporated under 

vacuum and compound 8 (89% yield) was washed with acetone.1H and 19F NMR spectra 

confirmed the nucleophilic substitution of the 8 beta fluorine atoms. 
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Scheme 2.5 

 

1H NMR spectrum (Fig. 2.1) specifies two singlets corresponding to the resonances 

of the 32 orto- and meta-proton atoms of the peripheral pyridyl groups at δ 7.28 and 8.19 

ppm, respectively. 19F NMR spectrum (Fig. 2.2) displays the fluorine resonances as two 

singlets at δ -126.7 and -127.2 ppm, agreeing with the 8 alpha  fluorine Pc atoms. 
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Figure 2.1 - 1H-NMR spectrum of Pc 8. 

 

Figure 5 – 19F-NMR spectrum of Pc 8. 
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2.4 SYNTHESIS OF THIOPYRIDIL-PHTHALONITRILES 
 

2.4.1 Derivatization of 3,4,5,6-tetrafluorophthalonitrile 
 

Although the derivatization of the commercial ZnPcF16 proved to be relatively easy 

and fast, clear tetra-substituted compounds/mixtures are not easy to obtain. 

Cyclotetramerization of derivatized phthalonitriles, offers a more controlled 

phthalocyanine synthesis, so to pursue this option it was used the commercial 3,4,5,6-

tetrafluorophthalonitrile, prospecting a single substitution of one of the 4 available 

fluorine atoms, with 4-mercaptopyridine (Scheme 2.6). 
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The several efforts to obtain the mono-substitution of 3,4,5,6-

tetrafluorophthalonitrile by mercaptopyridine are resumed in table 2.3.. Different 

procedures were employed to optimize the reaction, however without success. In all 

reaction a preferential di-substitution of the phthalonitrile was verified, possibly due to 

the high reactivity of fluorine atoms. It was also observed that the few mono-substituted 

phthalonitrile obtained, degraded readily. 

 

Table 2.3 - Conditions used for the mono-substitution of 3,4,5,6-tetrafluorophthalonitrile. 

HSPy Eq.  Base Solvent ( 2 ml) T (⁰C) Observations 

2  K2CO3  DMF 60   

0.9  K2CO3  DMF r.t. 
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0.9  K2CO3  Toluene r.t. 

0.9  K2CO3  DEA r.t. 

1  K2CO3  DMF 0 HSPy added in 2 portions 

1  NEt3  DMF 0 HSPy added  dropwise  

1  K2CO3  DMF -80 HSPy added to frozen DMF, 

melting gradually 

 

 

2.4.2 Reaction of 4-nitrophthalonitrile with 4-mercaptopyridine 
 

The mono substitution of 3,4,5,6-tetrafluorophthalonitrile revealed to be fruitless, 

still the objective of obtaining a tetra-substituted phthalocyanine from a phthalonitrile 

remained. Attending this purpose, 4-nitrophthalonitrile is a preferential option as 

precursor of  other phthalonitriles. In this direction, compound 12 was prepared by the 

addition of 4-mercaptopyridine to 4-nitrophthalonitrile (1:1), (Scheme 2.7). After the 

addition of dry K2CO3 the mixture was heated at 50 °C for 5 h. TLC showed formation of a 

new product so an extraction with water and ethyl acetate was made and compound 12 

was purified by recrystallization with dichloromethane in 70% yield. 

 

Scheme 2.7 

1H NMR spectrum (Fig. 2.3) indicates, the pyridyl orto- and meta-protons as two 

double doublets, positioned at δ 7.35 and 8.54 ppm, respectively. This is due to their 

difference of shield influenced by the sulphur atoms. The three remaining protons 

distributed on the two aromatic rings are localized at δ 7.91, 8.15 and 8.28 ppm. 13C NMR 

spectrum (Fig. 2.4) displays the 8 asymmetric carbon atoms of the phthalonitrile ring and 

5 carbon atoms as three signals due to the symmetry of the pyridyl moiety. 
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Figure 2.3 - 1H-NMR spectrum of compound 12. 

 

Figure 2.4 - 13C-NMR spectrum of compound 12. 
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2.4.3 Reaction of 4,5-dichlorophthalonitrile with 4-mercaptopyridine 
 

Although an octa-substituted Pc 8 was formerly synthesized, it would be 

interesting to synthesize a different one, however similar. For that, phthalonitrile 14 was 

prepared by reacting 4,5-dichlorophthalonitrile with 4-mercaptopyridine in presence of 

K2CO3 (Scheme 2.8). Two hours later the reaction was complete and distilled water was 

added to precipitate the formed produts. The crude was filtered and submitted to column 

chromatography. The main fraction was recrystallized from CH2Cl2, yielding 14 in 50%. 

 

Scheme 2.8 

1H NMR spectrum (Fig. 2.5) of 14 show two double doublets at δ 7.25 and 8.67 

ppm, referring to the pyridyl orto- and meta-protons, and one singlet at δ 7.57 ppm, 

related to the phthalonitrile protons. Due to the symmetric structure of the molecule, 13C 

spectrum (Fig. 2.6) reveals 7 signals, each one corresponding to 2 carbon atoms, from a 

total of 14 carbon atoms. 
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Figure 6 - 1H-NMR spectrum of compound 14. 

 

Figure 7 - 13C-NMR spectrum of compound 14. 
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2.5 SYNTHESIS OF THIOPYRIDIL PHTHALOCYANINE DERIVATIVES – 

cyclotetramerization of phthalonitrile precursors 

 

2.5.1 Synthesis of 2,9(10),16(17),23(24)-tetrakis(4-

pyridylsulfanyl)phthalocyaninatozinc (II) 
 

Following the synthesis of the precursor, Pc 15 was synthesized by 

cyclotetramerization of four equivalents of phthalonitrile 12 with anhydrous zinc chloride. 

The reaction was conducted in DMAE for 15 hour under reflux (140 °C, Scheme 2.9). 

Following precipitation with MeOH/H2O, the reaction crude was filtered and washed with 

MeOH to remove the remaining ZnCl2. Metallophthalocyanine 15 was obtained in 82% 

yield. 

 

 
Scheme 2.9 

1H NMR spectrum (Fig. 2.7) show two multiplets between δ 8.90-9.45 and 8.29-

8.45 ppm corresponding, respectively, to the 8 symmetrical α-proton atoms and four β-

protons of the macrocycle . The ortho- and meta-protons corresponding to the 

mercaptopyridyl moieties appear also as multiplets at δ 7.79-7.92 and 8.65-8.70 ppm, 

respectively. MALDI-TOF-MS spectrum also confirmed the proposed structure of 15 

showing the molecular ion peak m/z 1013.07 [M+H]+. 
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Figure 2.7 - 1H-NMR spectrum of compound 15. 

 

2.5.2  Synthesis of 2,3,9,10,16,17,23,24-Octakis(4-

pyridylsulfanyl)phthalocyaninatozinc(II) 

 

The synthesis and purification of Pc 16, was similar to the one of Pc 15, except the 

precursor employed, that was the phthalonitrile 14 instead of 12 (Scheme 2.10).  
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Scheme 2.10 

 

From 1H NMR spectrum (Fig. 2.8) it can be perceived the resonance of the 16 orto- 

and 16 meta-proton atoms of the mercaptopyridines, as duplets, respectively at δ 8.03 

and 8.71 ppm. The signal of the 8 α-proton atoms can be perceived as a singlet at δ 10.15 

ppm. Through MALDI-TOF-MS a molecular ion peak at m/z 1448.07 [M+H]+ was obtained 

confirming once again the expected metallophthalocyanine. 
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Figure 2.8 - 1H-NMR spectrum of compound 16. 

 

 

 

2.6 METHYLATION OF METALLOPHTHALOCYANINES 8, 15 and 16 

 

The final step of the photosensitizer synthesis was the cationization of the neutral 

compounds. In this process a stirred DMF solution (or suspension) of 

metallophthalocyanines 8, 15 and 16 with a large excess of methyl iodide (CH3I), reacted 

overnight in a sealed tube at 40 °C (Scheme 2.11). Following reaction completion, the 

crude was precipitated with diethyl ether, filtered and washed several times with diethyl 

ether. After dissolution in acetone/H2O (1:1), the desired compounds were reprecipitated 

with acetone. Compounds 17, 18 and 19 were dried under reduced pressure and 

obtained in quantitative yields. 
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Scheme 2.11 

 

1H NMR spectra of these cationic Pcs were similar to the neutral ones with the 

exception of a new signal generated by resonance of the new three methyl groups, 

characterized as a singlet at δ 4.2 ppm for All three compounds were also confirmed by 

MS MALDI-TOF, showing m/z of 1608.9, 1027.1 and 1463.0 corresponding to [17-7CH3]+, 

[18-3CH3]+and [19-7CH3]+ peaks, respectively. 

 

2.7 EXPERIMENTAL PROCEDURES 

 

Reagents, solvents and equipment: 

 

- 1H, 13C, and 19F NMR spectra were analysed on a Bruker Avance-300 spectrometer at 

300.13, 75.47 and 282.38 MHz, respectively. 

 - CDCl3 and DMSO-d6 were used as solvents and TMS as internal reference; the chemical 

shifts are expressed in δ (ppm) and the coupling constants (J) in Hertz (Hz).  

- Mass spectra were recorded on a MALDI-TOF/TOF 4800 Applied Biosystems.  

- UV–Vis spectra were obtained on a Shimadzu UV-2501PC spectrophotometer. 

 - Column chromatography was carried out using silica gel (Merck, 35-70 mesh).  

- All chemicals were supplied by Sigma–Aldrich. Solvents were purified or dried according 

to the literature procedures (126). 

 

PC 8: DEA (5.0 mL) was added to a DMF (50 mL) solution of ZnPcF16 (200 mg, 0.23 mmol) and 
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4-mercaptopyridine (205 mg, 1.85 mmol) and the reaction mixture was kept under stirring at 

room temperature for 24 h under N2 atmosphere. After this period, the DMF was evaporated 

under vacuum and the resulting product was washed with acetone. The desired derivative 8 

was obtained in 89% (328 mg) yield after crystallization from water/acetone. mp: > 300 °C. 1H 

NMR ( DMSO-d6): δ 7.28 (br s, 16H, Py-o-H), 8.19 (br s, 16H, Py-m-H). 19F NMR (DMSO-d6): δ -

126.7 and -127.2 (2s, 8F, Pc-α-F). UV-vis (DMSO) λmax (log ε): 384 (4.82), 690 (5.04), 720 (5.09) 

nm. HRMS (MALDI-TOF) m/z: calcd for C72H33F8N16S8Zn 1592.9998 ([M+H]+), found 

1592.9927. 

 

4-Thiopyridylphthalonitrile (12): A DMF (5 mL) solution of 4-nitrophthalonitrile (1.00 g, 

5.78 mmol) and 4-mercaptopyridine (1.62 g, 1.44 mmol) was stirred at room temperature 

under a nitrogen atmosphere for 10 min. Dry potassium carbonate (214 mg, 1.5 mmol) 

was added and the mixture was heated at 50 °C for 5 h. The residue was ressuspended in 

water (80 mL) and extracted with ethyl acetate (three portions of 50 mL). The fraction 

containing the 4-thiopyridylphthalonitrile 12 was purified by recrystallization from 

dichloromethane, yielding 0.96 g (70%). mp: 146-148 °C. 1H NMR (CDCl3): δ 7.35 (dd, J = 

1.6 and 4.5, 2H, Py-o-H), 7.91 (dd, J = 1.8 and 8.2, 1H, H-5), 8.15 (d, J = 8.2, 1H, H-6), 8.28 

(d, J = 1.8, 1H, H-3), 8.54 (dd, J = 1.6 and 4.5, 2H, Py-m-H). 13C NMR (CDCl3): δ 113.9, 

115.4, 115.8, 116.1, 124.0, 134.9, 136.1, 136.2, 139.9, 143.8, 150.5.  

4,5-Dithiopyridylphthalonitrile (14): Dry potassium carbonate (0.5 g, 3.6 mmol) was 

added to a solution of 4-mercaptopyridine (0.677 g, 6.09 mmol) and 4,5-

dichlorophthalonitrile (0.5 g, 2.5 mmol) in DMF (3 mL) in an ice bath and under a nitrogen 

atmosphere. The reaction was left at room temperature and more 9 portions of dry 

potassium carbonate (50 mg each portion) were sequentially added every 10 min. After 

the last addition, the reaction was kept under stirring for 2 h more. Distilled water was 

added and the precipitate formed was filtered and purified by chromatography over a 

silica gel column using a mixture of CH2Cl2/MeOH (9:1) as eluent. The resulting product 

was recrystallized from CH2Cl2, yielding 0.60 g of 14 (50%). mp: 238-240 °C. 1H NMR 

(CDCl3): δ 7.25 (dd, J = 1.5 and 4.5, 4H, Py-o-H), 7.57 (s, 2H, H-3,6), 8.67 (dd, J = 1.5 and 

4.5, 4H, Py-m-H). 13C NMR (CDCl3): δ 114.2, 114.8, 125.4, 135.0, 141.7, 142.6, 151.2. MS 
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(ESI-TOF) m/z: 347 [M+H]+. 

 

2,9(10),16(17),23(24)tetrakis(4-pyridylsulfanyl)phthalocyaninatozinc(II) (15): A mixture 

of phthalonitrile 12 (400 mg, 1.69 mmol) and zinc acetate (276 mg, 2.02 mmol) in 

dimethylaminoethanol (DMAE, 1.5 mL) were placed under reflux (140 °C) for 15 h. After 

cooling to room temperature, the reaction mixture was washed with MeOH/H2O (9:1) 

and the residue was filtered and washed with methanol. Metallophthalocyanine 15 was 

obtained in 82% yield (351 mg) after vacuum drying. mp: > 300 °C. 1H NMR (DMSO-d6 + 

TFA): δ 7.79-7.92 (m, 8H, Py-o-H), 8.29-8.45 (m, 4H, Pc-β-H), 8.65-8.70 (m, 8H, Py-m-H), 

8.90-9.45 (m, 8H, Pc-α-H). UV-vis (DMSO) λmax (log ε): 347 (4.98), 617 (4.55), 684 (5.37) 

nm. MS (MALDI-TOF) m/z: 1013.07 [M+H]+. 

 

2,3,9,10,16,17,23,24- Octakis(4-pyridylsulfanyl)phthalocyaninatozinc(II) (16): A mixture 

of phthalonitrile 14 (285 mg, 0.82 mmol) and zinc acetate (138 mg, 1.01 mmol) in DMAE 

(1 mL) were placed under reflux (140 °C) for 15 h. After cooling to room temperature, the 

reaction mixture was washed with MeOH/H2O (9:1) and the residue was filtered and 

washed with methanol. The product 16 was dried under vacuum, yielding 254 mg (85%). 

mp: > 300 °C. 1H NMR (DMSO-d6 + TFA): δ 8.02 (d, J = 6.0, 16H, Py-o-H), 8.70 (d, J = 6.0, 

16H, Py-m-H), 10.15 (s, 8H, Pc-α-H). UV-vis (DMSO-d6) λmax (log ε): 371 (4.59), 632 (4.47), 

663 (4.68), 702 (5.03) nm. HRMS (MALDI-TOF) m/z: calcd for C72H40N16S8Zn ([M]+.) 

1448.0673, found 1448.0643. 

 

Methylation of metallophthalocyanines 8, 15, 16:  A large excess of methyl iodide (4 mL) 

was added to a stirred solution (or suspension) of metallophthalocyanines 8, 15 or 16 

(100 mg) in dry DMF (20 mL). The reaction mixture was heated at 40 °C overnight in a 

sealed tube. After complete reaction, the cationic phthalocyanines were precipitated with 

diethyl ether, filtered and washed several times with diethyl ether. The solid was 

dissolved in acetone/H2O (1:1) and reprecipitated with acetone. The products were dried 

under reduced pressure and obtained in quantitative yields. 
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(17) - mp > 300 °C. 1H NMR (DMSO-d6): δ 4.22 (s, 24H, CH3), 8.25 (d, J = 7.0, 16H, Py-o-H), 

8.77 (d, J = 7.0, 16H, Py-m-H). 19F NMR (DMSO-d6): δ -127.24 (s, 8F, Pc-α-F). UV-vis 

(DMSO) λmax (log ε): 407 (4.46), 647 (4.29), 722 (4.84) nm. MS (MALDI-TOF) m/z: 1608.9 

[M-7CH3]+. 

(18)- mp > 300 °C. 1H NMR (DMSO-d6): δ 4.21 (4s, 12H, CH3), 7.87-7.99 (m, 8H, Py-o-H), 

8.35-8.51 (m, 4H, Pc-β-H), 8.67-8.74 (m, 8H, Py-m-H), 9.30 (br s, 8H, Pc-α-H). UV-vis 

(DMSO): λmax (log ε): 352 (4.60), 616 (4.39), 685 (5.20) nm. MS (MALDI-TOF) m/z: 1027.10 

[M-3CH3]+. 

(19) - mp > 300 °C. 1H NMR (DMSO-d6): δ 4.23 (s, 24H, CH3), 8.10 (d, J = 7.1, 16H, Py-o-H), 

8.72 (d, J = 7.1, 16H, Py-m-H), 10.15 (s, 8H, Pc-α-H). 13C NMR (DMSO-d6): δ 46.9, 122.9, 

133.1, 133.5, 141.2, 144.5, 153.4, 160.8. UV-vis (DMSO) λmax (log ε): 383 (4.55), 630 (4.38), 

702 (5.03) nm. MS (MALDI-TOF) m/z: 1463.0 [M-7CH3]+. 
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Chapter III  

Photodynamic Studies
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3.1 GENERAL CONSIDERATIONS 
 

PDT is already considered an important and very promising alternative to control 

microbial infections. As stated in chapter I, Gram-positive bacteria are efficiently 

photoinactivated by a wide range of photosensitizers, however Gram-negative bacteria 

presents resistance to negatively charged or neutral PSs, at least without addition of 

chemical or biological agents to increase artificially membrane permeability (64). On the 

other hand, cationic photosensitizers have proved to photoinduce direct inactivation of 

Gram-negative bacteria, even devoid of the presence of additives (65,66). This is due to 

the tight electrostatic interaction with negatively charged sites at the outer surface of 

bacteria cells, promoted by the positive charge of the photosensitizer (68). Cationic zinc 

phthalocyanines have been studied as efficient drugs in microbial photodynamic 

inactivation (109,116)  

To achieve an efficient sterilizing effect regarding the treatment of microbial 

infections, it should be obtained a reduction in the number of pathogenic cells 

comparable to at least 4-5 logs (127). This process (Figure 3.1) can be summarized in 

three steps (128): 

i) Incubation – In this first step occurs the binding between the positively charge 

moieties of the PS and the negatively charged groups at the surface of microbial cells. The 

period of time required for electrostatic interaction to happen, can vary between 1 

minute to at least 30 minutes, depending on the microorganism. This step is the main 

prerequisite for photoinactivation. The objective is to achieve endocellular 

photosensitizer concentrations which can be photochemically active. In bacteria, the 

uptake of the PS in the cell strongly depends on its physiological state, being higher in the 

exponential growth phase than in the lag phase (128). 

ii) Primary targets of the photosensitized process - The initial and most frequent 

target by phthalocyanine derivatives in microbial cell inactivation appears to be 

represented by the cytoplasmic membrane. This conclusion is supported by several 

findings such as inactivation by irradiation in the presence of positively charged Pcs, of 

enzymes associated with the cytoplasmic membrane of bacterial cells (NADH, succinic 

and lactic dehydrogenase), at a rate faster that observed for the photoinduced cell death. 
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Also, loss of membrane barrier properties of bacterial cells induced by photosensitization 

process, led to collapse of K+ and ionic balance (128).  

iii) Later stages of photosensitization process - Although photosensitizer uptake 

into cells is an important factor, subcellular localization may play a major role in 

photodynamic efficiency (115). Following incubation in the dark, the PS is initially 

positioned in the cytoplasmic membrane, the primary site of attack by the 

photogenerated reactive oxygen species. Following alteration of membrane permeability, 

and as the irradiation progresses, there is a gradual diffusion of the PS to inner cellular 

areas. So, it could be legitimate to suppose that several non-membranous sites, including 

DNA, are involved in photooxidative reactions at later stages of the global photoprocess 

(128).  

Globally, this photoinactivation process is of multi-target nature, making 

development of protection strategies extremely difficult for microbial cells, avoiding 

treatment resistance. This is one major advantageous characteristic of PDT. This process 

is not completely understood, so more in-depth studies are necessary to shed a light on 

this issue (128). 

 

 

 

Figure 3.1 – Photosensitization process in cell: P. photosensitizer; P1, excited state of P after light 

absorption; 102, reactive singlet oxygen. (Luksiene and Zukauskas, 2009) 

 

Besides PS interaction with the cell, it should be taken in consideration that 

efficient PS activation by light also affects the photoinactivation process outcome. The 

wavelength of light necessary for induction of lethal reactions in cells depends on the 

structure an electron absorption spectrum of the PS. The higher overlap of the Q-bands 
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with the emission spectrum of light, more efficient PS excitation. Wavelength also 

determines the penetration depth of light into tissue: 400-500 nm relates to a 

penetration of 300-400 µm (surface treatment), while 600-700 nm penetrates about 50-

200% profounder (deeper treatment) (129). 

E. coli caused numerous diseases outbreaks and deaths associated with 

contaminated food and water (130). In this study, the photoinactivation efficiency of 

three cationic phthalocyanine derivatives was evaluated, in real time, using a 

bioluminescent E. coli strain as a model of Gram-negative pathogenic bacteria. 

 

3.2 EXPERIMENTAL PROCEDURES 

3.2.1 Photosensitizers 
 

All photodynamic related studies were carried out using three cationic 

phthalocyanines, whose syntheses were described in chapter II: Pc 17, 18 and 19 (Fig. 

3.2). A stock solution for each compound was prepared at a concentration of 500 µM in 

DMSO. 
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Figure 3.2 - Structures of the photosensitizers used  on the photodynamic studies. 

 

3.2.2 Bacterial culture 
 

The bioluminescent E. coli strain used in this work was obtained in a previous work 

(131) and stored at - 80 °C in 10% glycerol. Before each photoinactivation assay, E. coli 

was aseptically spread-plated on TSA with antibiotics: ampicillin (100 mg mL-1) and 
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chloramphenicol (25 mg mL-1) and grown for one day at 26 °C. One isolated colony was 

aseptically inoculated on Luria Broth (LB, Merck) with both the antibiotics and grown 

overnight at 26 °C under stirring (130 rpm). An aliquot (240 μL) of this culture was 

subcultured in LB (30 mL) with antibiotics and grown overnight under stirring (130 rpm) at 

26 °C. 

 

3.2.3 Correlation between bioluminescence and colony-forming units 
 

To assess the correlation between the bioluminescent signal (in relative light units, 

RLU) of E. coli and the colony-forming units number, two independent assays were 

carried out in dark conditions. A bioluminescent E. coli overnight culture (≈ 107 CFU mL-1) 

was serially diluted (10-1 to 10-7) in PBS. The non-diluted and diluted aliquots were read 

on a luminometer (Turner Designs – 20/20) and pour plated in TSA medium. After 24 h of 

incubation at 37 °C, the number of colonies was counted in the most convenient dilution 

series.  

 

3.2.4 Photoinactivation procedure  
 

Experimental setup 

Bacterial cultures grown overnight were diluted tenfold in PBS to a final 

concentration of ≈ 106 colony forming units per milliliter (CFU mL-1). This bacterial 

suspension was equally distributed in 100 mL sterilized and acid-washed glass beakers. 

Then, appropriate quantities of the three stock solution of the phthalocyanines 

derivatives 17-19 under study (500 µmol L-1 DMSO) were added to achieve final 

concentrations of 20 µmol L-1 (test sample) in a total volume of 10 mL per beaker. The 

samples were protected from light with aluminium foil and incubated during 10 min 

under 100 rpm stirring, at 25-30 °C, to promote PS binding to E. coli cells. Light and dark 

controls were included in the experiments. The light control was irradiated without 

phthalocyanine. The dark control contained 20 µmol L-1 of phthalocyanine but was 

protected from light with aluminium foil. Two independent assays were conducted for 

each condition. 
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Irradiation conditions 

Following the pre-incubation period, the samples were irradiated with white light 

(400-800 nm) or red light (620-750 nm) delivered by an illumination system (LC-122 

LumaCare, London) equipped with a halogen/quartz 250 W lamp coupled to two different 

interchangeable optic fiber probes (400–800 nm and 620-750 nm). The lights were 

delivered at a fluence rate of 150 mW cm-2, measured with an energy meter Coherent 

FieldMaxII-Top combined with a Coherent PowerSens PS19Q energy sensor. All samples 

were irradiated during 30 min under 100 rpm stirring, on a water bath at 25 °C. 

 

Bioluminescence monitoring  

In all experiments, aliquots of treated and control samples were collected at time 

0 and after 2.5, 5, 10, 15, 20, 25 and 30 min of irradiation for bioluminescence 

measurement in a luminometer (TD-20/20 Luminometer, Turner Designs, Inc., USA). 

 

Statistical Analysis 

Statistical analysis was performed with SPSS package (SPSS 15.0 for Windows, 

SPSS Inc., USA). Normal distributions were assessed by the Kolmogorov-Smirnov test. The 

significance of both irradiation time and type of PS on bacterial inactivation was assessed 

by two-way univariate analysis of variance (ANOVA) model with the Bonferroni post-hoc 

test. A value of p < 0.05 was considered significant. 

 

3.2.5 Phthalocyanine solubility studies 
 

The solubility of cationic phthalocyanines 17-19 in DMSO and PBS was assessed by 

UV-Visible spectroscopy. Concentrations, between 0.625 and 25 µmol L-1, obtained by the 

addition of aliquots of each phthalocyanine stock solution, were analyzed. The intensity 

of the Q band versus phthalocyanine concentration was plotted in a graphic for linear 

regression, in order to determine if these concentrations follow the Beer-Lambert law. 
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3.2.6 Photostability studies 
 

The photobleaching rates of compounds 17-19 were determined by irradiating 2 

mL of a diluted solution of each phthalocyanine in PBS (Abs ≈1) under the same 

conditions used in the biological assays (150 mW cm-2). During the irradiation the 

solutions were magnetically stirred and kept at room temperature. The concentration of 

the phthalocyanine derivative was quantified by visible absorption spectroscopy at 

regular time intervals. UV–visible spectroscopy assessed the intensity of the Q band at 

different intervals of time and the photostability was expressed as It/I0 (%) (It = intensity 

of the band at given time of irradiation, I0 = intensity of the band before irradiation). 

Similar assays were performed in the dark to account for the effect of aggregation as a 

source of light-independent decay. 

 

3.2.7 Singlet oxygen generation 
 

  The ability of the PSs to generate singlet oxygen were qualitatively evaluated 

following the photooxidation of 3-diphenylisobenzofuran (DPBF), a singlet oxygen 

quencher (132). Stock solutions of each cationic phthalocyanine at 0.1 mmol L-1 in DMF 

and a stock solution of DPBF at 10 mmol L-1 in DMF/H2O (9:1) were prepared. The 

reaction mixtures of 50 μmol L-1 of DPBF and 0.5 μmol L-1 of each phthalocyanine 

derivative in DMF/H2O (9:1) were irradiated, in a glass cuvette at room temperature and 

under gentle magnetic stirring, with white light filtered through a cut-off filter for 

wavelengths <550 nm, at a fluence rate of 9.0 mW cm-2. The absorption decay of DPBF at 

415 nm was measured at irradiation intervals of 1 up to 10 min. The percentage of the 

DPBF absorption decay, proportional to the production of 1O2, was assessed by the 

difference between the initial absorbance and the absorbance of DPBF after a given 

period of irradiation. 

 

3.2.8 Fluorescence quantum yield 
 

The fluorescence quantum yields (ΦF) of the phthalocyanine derivatives in DMF 

were measured in 1 cm x 1 cm quartz optical cells under normal air conditions on a 
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spectrofluorimeter Fluoromax 3 (Horiba Jovin Yvon). The ΦF of the phthalocyanine 

derivatives were calculated by comparison of the area below the corrected emission 

spectrum (600-800 nm) with that of phthalocyaninatozinc(II) (ZnPc). ZnPc was used as 

fluorescence standard (λexc = 410 nm) with ΦF = 0.28 in DMF (116). In all cases, the 

absorbance of the sample and reference solutions was kept at 0.02 at 410 nm, the 

excitation wavelength. Fluorescence quantum yield was calculated according equation 1: 
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Equation 1 

Where AUC is the integrated area under the fluorescence curves of each phthalocyanine 

and the standard and Abs is the absorbance of the samples and the standard at the 

excitation wavelength, respectively. 

 

3.2.9 Cellular uptake of the phthalocyanines 
 

  A bacterial suspension (107 to 108 cells mL-1) was incubated for 10 min in the dark 

at room temperature in the presence of the same PS concentration used in the 

inactivation studies (20 μmol L-1). The unbound PS was removed out of the suspension by 

centrifugation at 13,000 g for 10 min (Eppendorf Microcentrifuge 5414). For the 

digestion, the pellets were resuspended in 1 mL of a digestion solution containing 0.5 mL 

of 2% aqueous SDS (Merck) and incubated at room temperature for at least 24 h. The 

concentration of the phthalocyanine derivatives in the digested extracts was analyzed by 

fluorimetry with a Fluoromax 3 (Horiba Jovin Yvon). The samples were excited at 425 nm 

and the fluorescence emission of the PS was monitored in the 440–900 nm range. The 

measured fluorescence intensity allowed the determination of the corresponding 

concentration by interpolation with a calibration plot built with known concentrations of 

each PS using the digestion solution as solvent. Parallel aliquots of the bacteria incubated 

in the presence of the PS were serially diluted and spread plated in TSA for the 

determination of the concentration of viable E. coli (CFU mL-1). The adsorption value (PS 

CFU-1) was calculated according to the literature (133). For each PS three independent 

assays were done. 
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3.2.10 Cellular localization of phthalocyanines 
 

Bacterial cells (≈108 CFU mL-1) were incubated with each PS, as described in 

cellular uptake. After the incubation period, samples were centrifuged (12,000 g, 6 min), 

and bacterial cells were washed twice with 1 mL of PBS, in order to remove unbound PS. 

Cells were fixed with 4% paraformaldehyde in PBS for 30 min at room temperature. Cells 

were washed twice with 1 mL of PBS and permeabilized for 10 min in 500 µL of 0.1% 

Triton X-100 (Merck) in PBS, pH 7.4 at 50 ºC. The cells were washed twice with 1 mL of 

PBS, stained with the membrane marker FM1-43 (25 µmol L-1, Molecular Probes, 

Invitrogen) during 15 min at room temperature in the dark, washed twice with 1 mL of 

PBS and then 10 µL of glycerol were added to the pellet. Images of PS and FM1-43 

fluorescence were acquired with a confocal microscope (Zeiss LSM 710). The preparation 

was excited at 488 nm and light emitted above 493 nm was collected for analysis of FM1-

43. For analysis of the PS, each preparation was excited at 633 nm and emitted light was 

collected above 650 nm. 

 

3.3 RESULTS 

3.3.1 Bioluminescence versus CFU of an overnight culture 
 

The bioluminescence results reflect the bacterial abundance of the bioluminescent 

E. coli strain (Figure 3.3). A significant linear correlation (R2 = 0.980) was observed 

between bioluminescence units and colony counts. 
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Figure 3.3 - Linear correlation between the bioluminescence signal and viable counts of overnight 
cultures of recombinant bioluminescent E. coli. Viable counts are expressed in CFU mL-1 and 
bioluminescence in relative light units (RLU). Each value represents average ± standard deviation 
of two independent experiments. 

 

3.3.2 Photoinactivation efficiency 
 

The inactivation kinetics, in real time, of transformed bioluminescent E. coli are 

represented in Figure 3.4.  

Comparing the bioluminescence values obtained in the experiments carried out 

under white light (Figure 3.4a), a clear difference in the photoinactivation patterns of the 

three phthalocyanines was observed. Compounds 18 and 19 were more efficient than 17 

(p < 0.05, ANOVA). The first two caused a 5 log (99.999% of reduction) decrease of 

bioluminescence after 30 min of irradiation, while the last one caused only 2.1 log 

reduction (≈ 99.33% of reduction).  

The experiments carried out under red light also showed different patterns of 

inactivation with the three PSs (Figure 3.4b). The photodynamic inactivation efficiency of 

18 was not very different from that obtained with white light (> 5 log decrease of 

bioluminescence) after 30 min of irradiation. However, the photodynamic inactivation 

with red light in the presence of compound 19 was lower than that observed under white 

light (3.5 log decrease after 30 min of irradiation). In these conditions, compound 17 was 
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even less effective than under white light, causing 1 log decrease in bacterial 

bioluminescence.  

The results of the photoinactivation experiments show that the viability of the 

recombinant bioluminescent E. coli was not affected neither by light alone (light control) 

nor by the direct effect of any of the tested PS (dark controls) (Figure 3.4). Significant 

differences (ANOVA, p> 0.05) between the independent assays conducted for each 

phthalocyanine were not found. 

a)

 

b)

 

Figure 3.4 - Photoinactivation bioluminescent E. coli in the presence of 20 μM of each PS under 
white light (a) or red light (b) at 150 mW cm-2. Each value represents the average ± standard 
deviation of two independent experiments. 

 

3.3.3 Phthalocyanine solubility studies 
 

The phthalocyanines solubility in DMSO and PBS were measured by UV-visible 

spectroscopy in concentrations between 0.625 and 25 µmol L-1 in order to determine if 

the phthalocyanines, at this concentration range, follows the Beer-Lambert law. The 

graphics obtained from the plotting of the Q band intensity versus phthalocyanine 

concentration in DMSO (Figure 3.5) show a non-linear regression for all the cationic 

phthalocyanines under study confirming that aggregation processes are occurring. A 

different situation occurs in PBS for compounds 18 and 19 at concentrations below 25 

µmol L-1 where the Beer-Lambert law is followed for both derivatives (Figure 3.6). 

However, the behavior of phthalocyanine 17 did not improve in PBS maintaining its high 

tendency to aggregate such as in DMSO. 
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Figure 3.5 - UV-Vis spectra of compounds 17, 18 and 19 in DMSO at different concentrations. The 
linear regression graphics plotted the Q-band absorbances at 725 nm (17), 689 nm (18) and 702 
nm (19) and versus the concentrations in DMSO. 

 

   
 

Figure 3.6 - UV-Vis spectra of 17, 18 and 19 at different concentrations in PBS. The linear 
regression graphics plotted the Q-band absorbances at 691 nm (17), 672 nm (18) and 660 nm (19) 
and versus the concentrations in PBS. 

 

 

3.3.4 Photostability, singlet oxygen generation and fluorescence quantum yield  
 

The photostability studies showed that the three cationic compounds 17-19 when 

irradiated with white light or red light in PBS, under the same conditions used in the 

biological assays (30 min at a fluence rate of 150 mW cm-2), do not suffer pronounced 
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changes in the residual absorbance (Table 3.1), indicating that the new derivatives are 

photostable in the used conditions. 

The results of the photooxidation of DPBF in the presence of the cationic 

phthalocyanines show that they are able to generate singlet oxygen, causing the 

photodegradation of DPBF when irradiated with light at a fluence rate of 9 mW cm-2 

(Table 3.1). However, the decay caused by tetra-substituted phthalocyanine 18 was much 

higher (90% of DPBF decay after 5 min of irradiation) than those caused by the octa-

substituted compounds (17, 19), indicating a higher singlet oxygen rate production by this 

PS. 

All new cationic derivatives were able to show fluorescence emission after 

excitation with visible light. In Table 3.1 are summarized the fluorescence quantum yields 

obtained for the derivatives 17-19 in DMF. According to the results obtained, compound 

18 (0.43) showed higher fluorescence quantum yield followed by compounds 19 (0.25) 

and 17 (0.16). 

 

Table 3.1 – Photostability, fluorescence quantum yield and relative photooxidation of DPBF by 
singlet oxygen generated by the cationic phthalocyanine derivatives. 

Compounds 
Photostability (%) 

DPBF Decay††† (%) ᶲF
†††† 

White light† Red light †† 

17 97 99 11 0.16 

18 90 90 90 0.43 

19 99 100 13 0.25 

†upon 30 min of irradiation in PBS with white light (400-800 nm) at a fluence rate of 150 mW cm-2; 
††upon 30 min of irradiation in PBS with red light (620-750 nm) at a fluence rate of 150 mW cm-2; 
††† upon 5 min of irradiation in DMF/H2O (9:1) with white light filtered through a cut-off filter for 
wavelengths < 550 nm, at a fluence rate of 9.0 mW cm-2; ††††reference ZnPc in DMF. 

 

3.3.5 Cellular uptake of phthalocyanines 
 

The uptake values of cationic phthalocyanines by the E. coli, obtained after 10 min 

of incubation in the dark at a concentration of 20 µmol L-1, and after two washings are 

summarized in Figure 3.7. Compound 17 showed the highest amount of phthalocyanine 

retention in E. coli cells, with an average value of 9.99 x 1021 molecules CFU-1. The tetra-



 

71 

 

substituted phthalocyanine 18 and the octa-substituted 19 presented a similar uptake, 

with 5.24 x 1021 and 5.11 x 1021 molecules CFU-1, respectively. The amount of 

phthalocyanine taken up by the bacterial cells decreased after, each washing, and this 

decrease was more evident for 17 (Fig. 3.7). 

 

 

Figure 3.7 - Adsorption of phthalocyanines 17 – 19 to E. coli in the presence of 20 µmol L-1 of each 
PS, after 10 min incubation in the dark. Error bars represent the standard deviation of three 
independent experiments. 

 

3.3.6 Cellular localization of phthalocyanines 
 

The confocal immunofluorescence microscopy with FM1-43 as a membrane cell 

marker showed that all the compounds, even 17 with a much higher uptake than 18 and 

19, have a similar behavior, with a uniform redistribution within the cell (Fig. 3.8).  
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Figure 3.8 - Confocal fluorescence microscopy images of E. coli, double stained with the PS (17, 18 
and 19) and with the cell membrane marker, FM1-43. Right panels show the superimposed 
images from PS (red) and FM1-43 (green). The last row shows representative bacteria amplified 
from the merged images. 

 

3.4 DISCUSSION 
 

The possibility of designing an enormous variety of structurally different 

phthalocyanines with high absorption in the red region of the electromagnetic spectrum, 

places this class of second generation PSs among the most promising for the inactivation 

of pathogenic microorganisms in the clinic area. The results of this study show that: i) the 

three new cationic thio-pyridinium phthalocyanines with different physico-chemical 

properties have different photoinactivation efficiencies to inactivate a gram-negative 

bacterium; ii) two of them, 18 and 19, have high potential to be used as antimicrobial 

photosensitizers under white light (5 log reduction in E. coli bioluminescence) and iii) 
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phthalocyanine 18 is the most promising of the three PSs under red light (5.5 log 

reduction in bioluminescence). 

The better performance of the tetra- and octa-substituted phthalocyanines 18 and 

19 when compared with the octa-substituted one 17 in the photoinactivation of gram-

negative bacteria, can be explained by the tendency of 17 to aggregate accompanied by 

its low 1O2 production. The production of 1O2 by phthalocyanine 18 is approximately 9 

times higher than the octa-substituted 19 and 17, probably due to the lower substitution 

of the Pc core by thiol groups. It is well known that 1O2 can be quenched by thiols (134). 

According to the literature, 1O2 is the main ROS through which the PS exerts their 

photodynamic action (135-138). Although the overall production of 1O2 by 19 is also 

reduced, the photoinactivation results show that it is still enough to photoinactivate 

efficiently the bacteria under white light. The low tendency of 18 to aggregate, perhaps 

due to the simultaneous presence of symmetric and asymmetric isomers that can assign 

them higher solubility, can justify the different profile of the two eight-positive charge PS.  

The presence of one or more positively charged groups plays an essential role in driving 

the PS toward sites which are critical for the stability of cell organization and/or the cell 

functions (65,139,140). In fact, several studies demonstrate a high rate of bacterial 

inactivation with tri- and tetra-cationic porphyrinic PS compared with di- and mono-

cationic molecules (140,141). However, other studies report on contradicting results 

(64,141) and it was even suggested that a high number of positive charges can decrease 

the PS efficiency (Jori, personal communication). In this study, under white light, the 

tetra- (18) and octa-substituted (19) Pcs show similar photoinactivation effect suggesting 

that the high number of positive charges does not affect PS efficiency. 

All cationic compounds show higher photoinactivation efficiency under white light 

(400-800 nm) comparatively to red light (620-750 nm), most probably due to the higher 

overlap of the Q-bands with the emission spectrum of the white light used (fig. 3.9). The 

light wavelength necessary to induce microorganism photoinactivation depends on the 

electronic absorption spectrum of the PS, and the emission spectrum of the light source 

must cover all the PS absorption spectrum or at least some of the absorption bands (142). 

Under red-light irradiation, the most preferable for treatment of microbial infections, 
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because it penetrates deeper into infected human tissues, the photoinactivation 

efficiency of PS 19 was significantly lower (p<0.05) than the one observed for 18. In this 

case, although, the overlap of the 18 Q-band with the red light emission is lower than the 

corresponding 19 Q-band overlap (fig. 3.9), the lower molar extinction coefficients of 19 

Q-band in that region, can be responsible by a much lower production of 1O2 due to less 

photons to be absorbed. 

Compound 17 unexpectedly displayed the highest values of cellular uptake. The 

compounds 18 and 19 showed similar uptake, although lower than 17. However, it has 

been shown that antibacterial photoinactivation is generally not dependent on surface-

bound PS, but on the permeabilization of the cell membrane by reactive species produced 

by unbound PS molecules (143). Localization of the compounds may point out the sites of 

direct photodamage. Confocal microscopy images show that after 10 min incubation all 

compounds have an identical cellular localization. 

 

 
Figure 3.9 - Normalized UV-Vis spectra of 17-19 in PBS and white and red light source emission. 
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Phthalocyanines 18 and 19 were prepared from pyridylphthalonitriles in very good 

yields (82 and 85%). Similar tetra- and octa-substituted compounds bearing 2-thiopyridyl 

groups were already described in previous works in very low yields (12%) (144,145). 

Phthalocyanine 17 was also obtained, in high yield (89%), via nucleophilic 

substitution of the alfa fluor atoms of the hexadecafluorophthalocyaninatozinc(II) by 

mercaptopyridine, followed by cationization. 

The tetra-cationic phthalocyanine 18 generates high amounts of singlet oxygen 

making it an effective PS against E. coli by reaching a 5 log reduction in bioluminescence 

emission after 30 min of irradiation with white light and 5.5 log under red light. 

Phthalocyanines with high amounts of thio-pyridinium groups showed a significant 

reduction in singlet oxygen generation; however Pc 19 under white light showed similar 

photoinactivation efficiency than the tetra-cationic Pc 18. Compound 17 was the least 

efficient photosensitizer, under both red and white lights, with only a slight decrease of 

cell survival rate. These findings demonstrate that several factors such as solubility and Q-

band overlap with wavelength emission also influence significantly the photoinactivation 

process efficacy. 

Confocal immunofluorescence microscopy showed that phthalocyanines are 

uniformly distributed in the cell wall and within the cells. Under the studied conditions, 

compound 17 did not show photoinactivation activity, however, its direct synthesis from 

the commercial perfluorinated ZnPcF16, can still justify the use of this template to prepare 

novel cationic PSs, if a different disposition/number from the combination used here, or if 

other cationic groups, rather than the pyridinium ones, were considered.  
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