A new method to determine the reproductive condition in female tubeworms tested in Seepiophila jonesi (Polychaeta: Siboglinidae: Vestimentifera)

ANA HILARIO¹,², PAUL A. TYLER¹ and DAVID W. POND²

¹School of Ocean and Earth Science, University of Southampton, National Oceanography Centre, European Way, SO14 3ZH, Southampton, UK, ²Biological Sciences Division, British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK, ³Present address: CESAM, Departamento de Biologia, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal

Keywords: Vestimentifera, chemosynthetic ecosystems, reproductive condition, wax esters

INTRODUCTION

Previous studies of the lipid-class composition of species of vestimentiferans have shown differences in the composition of anterior (obturaculum and vestimentum) and posterior (trunk and opisthosome) regions of Ridgeia piscesae. Higher concentrations of wax esters and triacylglycerols were found in the posterior region (Allen, 1998), and wax-rich eggs have been reported in Lamellibrachia luymesi and Riftia pachyptila, suggesting that vestimentiferans store energy as lipids in the gonads (Young et al., 1996; Gardiner et al., 2001; Marsh et al., 2001). However, because gonadal tissue has never been dissected and compared with the other tissues of the trunk it has not been possible to determine whether the gonad comprises the major lipid store in vestimentiferans, or if different lipid classes are stored in different trunk tissues. Here we show that both wax esters and triacylglycerols are found in the trunk of female Seepiophila jonesi, with substantial reserves of wax esters in the gonad, whilst triacylglycerols are concentrated in the body wall and trophosome.

Because of the close juxtaposition of the gonad tissue and trophosome, the only method to determine the reproductive condition in vestimentiferan tubeworms to date has been histological analysis of sections of the trunk from individual animals. We use histological methods to show that the amount of gonad in the first centimetre of the trunk is indicative of the rest of the body, and with lipid content analysis we establish a linear relationship between the amount of gonad (expressed as a percentage of total trunk tissue) and the proportion of wax ester (expressed as percentage of total lipid) in the trunk of female vestimentiferans. This relationship enables the amount of gonad tissue in the trunk to be compared to the amount of somatic tissues, and represents a new, and comparatively easy method for the determination of the reproductive condition in this taxon.

MATERIALS AND METHODS

Specimens of Seepiophila jonesi, first described by Gardiner et al. 2001 were collected in the Gulf of Mexico (Bush Hill site, 27°46.96’N 91°30.46’W, 540 m depth) in March 2002 and February 2003 using the submersible ‘Johnson Sea Link II’. On reaching the surface the worms were removed from their tubes and males were distinguished from females: 12 females were collected in 2002 and 13 in 2003.

The specimens collected in 2002 were preserved in 5% seawater–formalin for 48 hours, and subsequently transferred to 70% ethanol. Subsamples of the reproductive system of each individual were obtained using a stratified random design. The trunk region of each individual was divided into 10 equal sections from which one segment of 1 mm was chosen by means of a random numbers table. The segments were slowly dehydrated by transfer to 90% propan-2-ol overnight followed by a period of 9 hours in 100% propan-2-ol with a change of solution every 3 hours to prevent dilution of the alcohol with tissue based-water. Before being impregnated in paraffin wax at 70°C for 12 to 24 hours, the segments were cleared with 100% xylene for 6 hours. The impregnated tissue was then embedded...
in wax, sectioned at 5 µm, and stained with Mayer’s haematoxylin and eosin. Using an Olympus BH-2 binocular microscope, three sections from each of the ten segments of each individual were digitized with a Nikon 990 camera mounted on the microscope. The number of mature oocytes of each section containing gonad tissue was counted using SigmaScan-Pro software (Jandel Scientific, version 4.01).

To test for a statistically significant difference between the mean number of oocytes in the first section of the trunk and the rest of the gonad we ran an unpaired t-test with a significance level of 5%, assuming homoscedasticity, for each individual.

From the specimens collected in 2003 the first centimetre of the trunk was used for lipid composition analysis. The first centimetre of the trunk not underlying the vestimental wings was cut and stored at −80ºC. In the laboratory, while the samples were still frozen, the gonad was carefully separated from the other tissues. After lyophilization for 24 hours samples were weighed and the amount of gonad was calculated as the percentage of gonad in total tissue. Both components were homogenized in chloroform–methanol (2:1, vol/vol) and filtered through a pre-washed (chloroform–methanol (2:1, vol/vol)) Whatman No. 1 paper filter. Total lipid was extracted by the method of Folch et al. (1957) and dried under nitrogen. Total lipid was weighed

Fig. 1. Mean and standard deviation of the number of oocytes per section of the trunk of each individual.
and dissolved in 5 ml of chloroform. Aliquots of 600 µl of the total lipid solutions were dried under nitrogen in a pre-weight vial, reweighed and dissolved in chloroform to a concentration of 10 mg.ml$^{-1}$. These solutions were applied as discrete spots 1 cm from the bottom of silica gel plates that were pre-washed with solvents to remove potential impurities. The plates were developed in hexane-diethyl ether-acetic acid (90:10:1 by vol.) until the solvent front was approximately 1.5 cm from the top, and then dried at room temperature in a vacuum desiccator. When dried, the plates were sprayed with a solution of 3% (w/v) copper acetate in 8% (v/v) orthophosphoric acid and dried in a vacuum desiccator (Olsen & Henderson, 1989). The lipids were made visible as black deposits by heating the plates at 160ºC for 12 minutes. Lipid classes were quantified by scanning photodensitometry with a Shimadzu Dual-Wavelength Thin-Layer Chromato Scanner CS-930.

RESULTS

Histological analysis

The analysis of the histological sections of the specimens collected in 2002 showed that the female reproductive system of this species consists of a paired system of ducts surrounded by taphosome extending posteriorly from the anterior part of the trunk.

An ovisac is situated on the portion of the trunk underlying the vestimentum, and a spermatheca can be found at the far posterior end of the reproductive tract (Hila´rio *et al.*, 2005). A strip of germinal epithelium arises from a continuous sheet of connective tissue that separates the two gonocoels. This strip grows into the gonocoels filling them with developing oocytes.

Figure 1 shows the number of oocytes in each section of trunk with gonad of each examined individual. Because of the anatomy of the reproductive system, the number of oocytes in the most anterior section is not statistically different from the number of oocytes in the rest of the gonad (Sj2: $P = 0.661$; Sj3: $P = 0.632$; Sj4: $P = 0.101$; Sj5: $P = 0.889$; Sj6: $P = 0.327$; Sj7: $P = 0.623$; Sj8: $P = 0.957$; Sj9: $P = 0.092$; Sj10: $P = 0.231$; Sj12: $P = 0.327$).

Chemical analysis

Charred thin layer chromatography plates and corresponding chromatograms show seven different lipid classes. Free fatty acids comprised less than 10% of total lipid in all tissues, suggesting that samples were in a good state of preservation (Jeckel *et al.*, 1989).

The results obtained (Table 1; Figure 2) demonstrate that the gonad has a higher concentration of total lipid (TL) and wax esters (WE), and lower concentration of triacylglycerols (TAG) than somatic tissues. These differences are statistically
significant (TL: T = 301.000; P < 0.001, N = 13, \(\alpha = 0.05 \); WE: T = 301.000; P < 0.001, N = 13, \(\alpha = 0.05 \); TAG: T = 138.000, P = 0.003, N = 13, \(\alpha = 0.05 \)), and both the concentra-
tion (% of total lipids) of wax esters and the concentra-
tion (% of total lipids) of triacylglycerols are linearly related to the
amount of ovary (WE: F = 127.27, P < 0.001, N = 13, \(\alpha = 0.05 \); TAG: F = 30.916, P < 0.001, N = 13, \(\alpha = 0.05 \)). From
the two variables, the percentage of wax esters is the one
that predicts more precisely the amount of gonad (Figure 3).

DISCUSSION

The reproductive system of female vestimentiferans consists
of a paired system of ducts extending posteriorly from the
anterior part of the trunk. A longitudinal strip of germinai
epithelium is present throughout the length of the gonocoels,
which run parallel to the oviducts; some species have an
ovisac situated on the portion of the trunk underlying the ves-
timentum. Although in 17% of the examined individuals the
number of oocytes in the most anterior section of the gonad
was different from the numbers in sections in the rest of the
gonad, our results, together with the anatomical evidence
suggest that, except at the ovisac, the composition of gonad
tissue is constant throughout the gonad length. We propose
that the amount of ovary found in the first centimetre of the
trunk, not underlying the vestimental wings, can be used as
representative of the reproductive condition of the individual.

To date there have been no studies on the reproductive
condition of vestimentiferans, partly because of sampling con-
straints inherent to hydrothermal vents and cold seep
environments (reviewed in Tyler & Young, 1999) and also
the lack of a simple methodology to quantify gonad develop-
ment. The entire reproductive system is surrounded by tro-
phosome, which makes the separation of the two, and conse-
quently the determination of the proportion of gonad
by mass extremely difficult. In comparison with the image
analysis of histological sections of the trunk, the determina-
tion of the lipid-class composition is much less time con-
suming both in terms of the initial preparation of the
samples on board ship and in the laboratory.

Recent studies have revealed spatial and temporal variation
in the reproductive development of other invertebrate species
at hydrothermal vents (Copley et al., 2003; Perovich et al.,
2003) and cold seeps (Copley & Young, 2006). Characterizing
such aspects of life history biology is a prerequisite for under-
standing the dynamics of these insular populations. The
method outlined in this current work provides a realistic
method to gain insights into the reproductive condition in a
range of vestimentiferan species that inhabit the deep-sea, and
to produce a ‘gonad maturation index’ based on the propor-
tion of gonad as dry weight of trunk. Although the equation
\[G = -22.115 + 1.088 \times \text{WE} \]
where G is the amount of gonad (% of total dry weight) and WE the
concentration of wax esters (% of total lipids) is specific to
Seepiophila jonesi and may not hold for other species, the study of the lipid-class com-
position in general, and the determination of the proportion of
wax esters in particular, can be considered as a new method to
determine the reproductive condition in this taxon. This
approach could be of great use in the study of the spatial and
temporal variation of the reproductive biology of female vestimentiferans.

ACKNOWLEDGEMENTS

This work was supported by the FCT grant SFRH/BD/7084/2001. We thank C.M. Young (the chief scientist of the
cruise) and the captain and crew of RV ‘Seaward Johnson II’
and DSV ‘Johnson-Sea-Link II’ for their support.

REFERENCES

Ocean and Earth Science, University of Southampton.

Copley J.T.P. and Young C.M. (2006) Seasonality and zonation in the
reproductive biology and population structure of the shrimp
Alvinocaris stactophila (Caridea: Alvinocarididae) at a Louisiana

variation in the reproductive biology of *Paralvinella palmiformis*
(Polychaeta: Alvinellidae) from a vent field on Juan de Fuca Ridge.
Marine Ecology Progress Series 255, 171–181.

the isolation and purification of total lipids from animal tissues.
Journal of Biological Chemistry 226, 497–509.

genus and species of vestimentiferan tubeworm (*Annelida: Pogonophora*)
from hydrocarbon seep communities in the Gulf of Mexico. *Proceedings of
the Biological Society of Washington* 114, 694–707.

fertilization and embryonic dispersal in vent and seep tubeworms
Biological Laboratory, Woods Hole* 208, 20–28.

Jeckel W.H., de Moreno J.E.A. and Moreno V.J. (1989) Biochemical com-
oposition, lipid classes and fatty acids in the ovary of the shrimp
Pleoticus muelleri Bate. *Comparative Biochemistry and Physiology B* 92, 271–276.

 Larval dispersal potential of the tubeworm *Riftia pachyptila* at

Olsen R.E. and Henderson B.H. (1989) The rapid analysis of neutral and
polar marine lipids using double-development HPTLC and scanning

and temporal patterns in development of eggs in the vent crab
Bythograea thermydron. *Marine Ecology Progress Series* 251, 211–220.

Tyler P.A. and Young C.M. (1999) Reproduction and dispersal at vents
and cold seeps. *Journal of the Marine Biological Association of the
United Kingdom* 79, 193–208.

and

of vestimentiferan tube worms from deep-sea methane/sulfide seeps.

Correspondence should be addressed to:

Ana Hilário
CESAM, Departamento de Biologia
Universidade de Aveiro
Campus Universitário de Santiago
3810-193 Aveiro, Portugal
email: ahlario@bio.ua.pt