Environmental Pollution 157 (2009) 2328-2334

Contents lists available at ScienceDirect

ENVIRONMENTAL
POLLUTION

Environmental Pollution

journal homepage: www.elsevier.com/locate/envpol

Structural and functional responses of benthic invertebrates to imidacloprid
in outdoor stream mesocosms

J.LT. Pestana®* A.C. Alexander®, ].M. Culp®, D.J. Baird ", AJ. Cessna€, A.M.V.M. Soares?

2CESAM & Departamento de Biologia, Universidade de Aveiro, Campus Universitario de Santiago, 3810-193 Aveiro, Portugal
b Environment Canada at Canadian Rivers Institute, Department of Biology, University of New Brunswick, 10 Bailey Drive, Fredericton, NB, Canada
¢ Environment Canada, National Hydrology Research Centre, 11 Innovation Boulevard, Saskatoon, SK, Canada

Combining organism-level responses with community-level processes for the evaluation and prediction of pesticide effects on stream ecosystems.

ARTICLE INFO ABSTRACT

Article history:

Received 12 November 2008
Received in revised form

16 March 2009

Accepted 20 March 2009

Structural and functional responses of a benthic macroinvertebrate assemblage to pulses of the insec-
ticide imidacloprid were assessed in outdoor stream mesocosms. Imidacloprid pulses reduced inverte-
brate abundance and community diversity in imidacloprid-dosed streams compared to control streams.
These results correlated well with effects of imidacloprid on leaf litter decomposition and feeding rates of
Pteronarcys comstocki, a stonefly, in artificial streams. Reductions in oxygen consumption of stoneflies
exposed to imidacloprid were also observed in laboratory experiments. Our findings suggest that leaf
litter degradation and single species responses can be sensitive ecotoxicological endpoints that can be
used as early warning indicators and biomonitoring tools for pesticide contamination. The data gener-
ated illustrates the value of mesocosm experiments in environmental assessment and how the consid-
eration of functional and structural endpoints of natural communities together with in situ single species
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bioassays can improve the evaluation and prediction of pesticide effects on stream ecosystems.
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1. Introduction

The use of imidacloprid, a neonicotinoid is currently increasing
faster than other insecticides such as carbamates, organophos-
phates and pyrethroids, mainly due to their excellent plant
systemic activity coupled with the reduced effectiveness of other
neuroactive insecticides (Matsuda et al.,, 2001; Tomizawa and
Casida, 2005). Imidacloprid acts on the target species through
ingestion or direct contact, blocking the nicotinergic neuronal
pathway (Matsuda et al., 2001; Tomizawa and Casida, 2005). Nic-
otinergic receptors are more abundant in insects than in warm-
blooded animals and, thus, neonicotinoids exhibit selective toxicity
towards insects (Tomizawa and Casida, 2005). Imidacloprid is used
worldwide as an agricultural insecticide to control sucking and
mining pests, as a flea control agent for domestic pets, and is also
used in urban areas for the control of turf pests in golf courses,
parks and household lawns (CCME, 2007; Fossen, 2006). Due to its
persistence in soil (half-life of 48-190 days), high solubility
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(514 mg/L at 20 °C) and low octanol water partition coefficient (Log
Kow = 0.57) make it a potential contaminant of surface and ground
waters through drift, dissolved runoff or leaching (CCME, 2007;
Fossen, 2006; Gupta et al., 2002). Imidacloprid is increasingly being
found in aquatic systems especially during rainfall events with
levels in runoff from Canadian agricultural areas reaching concen-
trations of up to 11.9 pg/L (CCME, 2007).

Single species toxicity tests in the laboratory have already
shown that imidacloprid is toxic to fish at relatively high concen-
trations (LCsg higher than 100 mg/L) and can be extremely toxic at
low concentrations (LCsq of 0.65-65 pg/L) to several species of
aquatic invertebrates, especially insects (CCME, 2007). However,
such laboratory single species assays are insufficient to fully assess
ecological risks, for several reasons (Crane, 1997): (i) the responses
of species tested in standard toxicity tests may not fully encompass
the responses of the diversity of species found in natural systems;
(ii) it is difficult to extrapolate from laboratory results to conditions
occurring in nature, which encompass a wider range of habitat
conditions than those found in the laboratory; (iii) it is difficult to
present the full range of relevant exposure routes in the laboratory
since modern insecticides, tend to break down rapidly and are
applied in low doses (Boxall et al., 2002; Caquet et al., 2007; Crane,
1997). It is thus important to consider higher-tier experiments to
assess the effects of these substances on aquatic ecosystems
(Fairchild et al., 1992; Boxall et al., 2002).
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The use of controlled semi-field exposures, such as mesocosms,
provides an opportunity to perform ecosystem-level research that
can complement laboratory bioassays and, therefore, better predict
effects of ecological relevant exposures of different types of
anthropogenic substances to natural communities (Fairchild et al.,
1992; Culp et al., 2003; Hickey and Golding, 2002; Van den Brink,
2006; Van den Brink et al., 2005). Mesocosms are smaller and less
complex than natural ecosystems, yet they allow the use of relevant
biological conditions (ambient abundance of natural biota), while
maintaining the statistical power through replication of treatments
and precise regulation of pesticide concentrations and other
physico-chemical variables (Baird et al., 2001; Crane, 1997). Since
sub-lethal, population-level responses are of great significance to
natural ecosystems, it is important to consider the application of in
situ bioassays to obtain reliable and sensitive measures of pesticide
effects (Maltby, 1999; Slijkerman et al., 2004). In situ bioassays
deployed within semi-field experiments have the advantage of
testing selected species under realistic field conditions compared to
laboratory tests and provide a mechanistic explanation of effects by
linking organism-level physiological or behavioural responses and
community functional parameters (Caquet et al., 2007; Coors et al.,
2006; Hruska and Dube, 2004; Kreutzweiser et al., 2007). The use of
the mesocosm approach in combination with experimental tests
covering functional and structural endpoints at various levels of
biological organisation can help identify causal mechanisms
responsible for direct and indirect effects of pesticide contamina-
tion on natural communities and ecosystem functions (Baird et al.,
2001; Mills and Semlitsch, 2004; Relyea et al., 2005; Rohr et al.,
2006; Slijkerman et al., 2004).

This paper describes the effects of pulsed exposure to Admire®
(imidacloprid; Bayer CropScience; Calgary, AB, Canada) on struc-
tural and functional measures of benthic invertebrate communities,
as this best reflects the edge-of-field scenario for runoff of this
substance (CCME, 2007). This was achieved using field deployed
artificial stream mesocosms inoculated with natural substratum
and a portion of an extant riverine benthic community. Endpoints
for the assessment included benthic invertebrate abundance and
composition and leaf litter degradation. The sensitivity and rele-
vance of organism-level responses to stress caused by pulses of
imidacloprid were also assessed with the North American stonefly,
Pteronarcys comstocki Smith, through feeding bioassays deployed in
mesocosms systems together with laboratory measures of meta-
bolic rate (as oxygen consumption). Pteronarcid stoneflies can be
easily identified, have a long life cycle (3-4 years) which allows for
the collection of similar size individuals in the field which can be
easily transported and acclimatised to laboratory conditions. Pter-
onarcyids are detritivore shredders, feeding primarily on leaf litter
and have a relatively high sensitivity to pollutants (Cole et al., 2001;
Merrit and Cummins, 1996; Pesacreta, 1997; Ruesink and
Srivastava, 2001). Here we link stonefly feeding responses (in situ
deployment); respiration rates (laboratory) and benthic inverte-
brate responses to low (2 ug/L) and high (20 ug/L) imidacloprid
exposure

2. Material and methods
2.1. In situ feeding bioassay

P. comstocki nymphs of similar size were collected from Nashwaak River, New
Brunswick, Canada and acclimated to laboratory conditions (20 °C in aerated
groundwater and under a 14L/10D light regime). Larvae were fed ad libitum with
alder leaves for one week prior to the experiment. For each treatment, 15 P. comstocki
nymphs (average length 20.00 mm +/— 1.79 SD) were allocated to individual
cylindrical cages (5 cm x 5 cm) that were capped at both ends with 1 mm? mesh.
The cages contained food in the form of 5 alder leaf discs of known dry weight and
a pebble to provide a hard surface substrate for the organisms. The cages were
deployed in the outflow of the corresponding mesocosm treatment in plastic

containers in order to expose the cages to similar environmental conditions
(e.g., temperature, luminosity) as in the artificial streams (Fig. 1C and D).

Leaf discs used in feeding experiments were autoclaved, conditioned for 20 days
at 20 °C in aerated stream water with leaf litter collected from the Nashwaak River,
then dried for 4 days at 60 °C and the dry mass of leaf discs determined. To prevent
breakage and to favour softening leaf discs inside cages were soaked for 48 h in
groundwater used in the mesocosm experiment prior to the feeding trials. After the
20-day exposure period, animals and the remaining food were removed, dried at
60 °C for 4 days and reweighed. Feeding rate was calculated as the difference
between the initial and final dry mass (mg) of leaf discs and divided by elapsed time
(20 days). Five control cages per treatment that contained leaf discs, but no animals,
were used to correct for weight change due to factors other than feeding.

2.2. Ledf litter degradation

Green Alder leaves (Alnus sp.) were collected, autoclaved and then conditioned
by keeping them for 20 days at 20 °C in aerated stream water and leaf litter collected
from the Nashwaak River. Leaf bags (10 x 10 cm) were constructed by placing
1 £ 0.01 g of air dried leaves in coarse mesh plastic bags (mesh size 1 cm) for
determination of decomposition of leaf material from invertebrate feeding and
microbial activity and fine mesh plastic bags (size 0.250 mm) to assess microbial
decomposition of leaf material. One coarse and one fine leaf bags were placed in
every stream after inoculation of the substratum (Fig. 1B). After 20 days leaf bags
were collected, returned to the laboratory in plastic bags and stream water. Inver-
tebrates and particulate organic debris were gently removed from the leaf material
by washing with distilled water and gentle agitation with a soft brush. The leaf
material was dried at 60 °C for 96 h and weighed. Five extra leaf bags were used to
determine initial air dry weight to oven dry weight (4 days at 60 °C) conversion
factor. The leaf oven dry mass remaining was used to calculate the exponential decay
coefficient (k; i.e., decomposition rate) (Petersen and Cummins, 1974).

2.3. Laboratory measurements of oxygen consumption

The effect of insecticide exposure on oxygen consumption was assessed using 10
P. comstocki nymphs per treatment (average length 19.98 mm +/— 139 SD).
Organisms were exposed in laboratory tanks to the appropriate pesticide solutions
(0, 2,10 and 20 pg/L) and no food for 20 h before the respiration trials

Oxygen consumption was then determined by simple static respirometry, using
larvae held for 4 h in 50-ml gas-tight syringes (Hamilton, USA). Syringes were filled
with the same test solutions and organisms and the remaining air was expelled from
each syringe before they were placed in a water bath (20 °C) in the dark for 4 h
giving thus a total of 24 h of exposure.

Initial and final oxygen concentrations were measured with an oxygen meter
(model 782, with an oxygen electrode model 1302, Strathkelvin Instruments,
Glasgow). After exposure, larvae were dried at 60 °C for 4 days and their mass was
determined. Oxygen consumption was estimated from the difference between the
oxygen content of water before (Tp) and after (Tgna = 4 h) of the respiration trial
period, with respiration rate expressed as pg oxygen consumed per mg of organism
per hour. Due to the limited number of syringes available, this experiment was
performed in two runs over two consecutive days using half the replicates for every
treatment each day (randomised block design).

2.4. Mesocosms treatments and set-up

The mesocosm experiment was conducted for 20 days in August 2005 and
included a treatment to examine the effects of three pulses (24-h duration) of
imidacloprid (2, and 20 pg/L) every 7 days on the macroinvertebrate community.

The partial flow-through mesocosms (Fig. 1A and B) were deployed at the
Agriculture and Agri-Foods Canada facility adjacent to the Saint John River,
approximately 10 km southeast of Fredericton, New Brunswick, Canada. The artifi-
cial streams were designed to simulate lotic habitats by encompassing a portion of
substratum and of the benthic invertebrate community collected in the Nashwaak
River, New Brunswick, Canada (46°14 294N, 66°36 722’'W) in semi-field conditions
(Culp et al,, 2003; Culp and Baird, 2006). A complete description of the artificial
streams characteristics, inoculation of fine and coarse natural substratum and
pesticide contamination can be found elsewhere (Alexander et al., 2008)

Once inoculated with natural substratum and after deploying the leaf bags (see
above), the streams were allowed to equilibrate for 2 days prior to the addition of
benthic invertebrates. Benthic invertebrates were collected upstream of the gravel
collection site on the Nashwaak River with U-nets (area = 0.06-m?) (Scrimgeour
et al.,, 1993). Five U-nets were collected, pooled and subsampled into four equal
portions, this procedure being repeated twice thereby producing 16 replicate
samples. These invertebrate assemblage subsamples were randomly assigned and
inoculated into replicate streams (one per treatment table) resulting in a similar
invertebrate assemblage in the replicate streams. Initial densities in experimental
streams were approximately 10% higher than ambient field density of aquatic
invertebrates in order to offset mortality resulting from handling and transport from
the river to the mesocosm test site. Once inoculated with invertebrates, the streams
were permitted to equilibrate for 1 day before beginning the insecticide exposures.
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Fig. 1. Detailed view of (A) artificial streams with emergence netting, (B) leaf bags in stream, (C) outflow containers with multiple in situ bioassay vessels and (D) a testing arena

used in the stonefly feeding bioassay.

Imidacloprid solution was mixed in a stock tank by diluting an aliquot of Admire®
(240 g imidacloprid/L).

At the end of the 20 days the contents of replicate streams were sieved and
water samples, periphyton samples and invertebrates were collected from each
replicate stream. Organisms found in the leaf bags were collected and combined
with benthic samples from the respective stream replicates.

Imidacloprid concentration in each treatment was determined by chemical
analyses conducted at an Environment Canada laboratory in Saskatoon, SK, Canada
using a Micromass Quattro Ultima liquid chromatography mass spectrometer
(LC-MS) equipped with a stainless steel column (100 x 2.2 mm; MS Xterra C-8;
100 x 2.2 mm; Waters, Milford, MA, U.S.A.). Samples for imidacloprid analyses were
taken from each mesocosm table at the onset, during and at the end of the imida-
cloprid pulse. These samples were collected in 1 L, amber vials (EPA vials; Fisher
scientific; Fair Lawn, NJ, U.S.A.) and stored at 4 °C until shipment to the laboratory.
This methodology allowed quantification of imidacloprid to a level of precision of
0.01 pg/L.

2.5. Macroinvertebrate community responses

At the end of the experimental period, i.e. after 20 days, benthic invertebrates
were collected by washing the entire contents of each stream through a 250-mm
sieve, and preserving the collected organic material and invertebrates in 10%
formalin. Macroinvertebrates were counted and identified to Family level (Ephem-
eroptera, Plecoptera, Trichoptera, Diptera and Coleoptera) or Order (Oligochaeta,
Nematoda and Collembola) in the laboratory. Adult insects were removed from the
emergent traps with the aid of an aspirator every second day of the experiment and
preserved for identification.

The family biotic index, including tolerance values for non-insect macro-
invertebrates (Barbour et al., 1989; Mandaville, 2002) was calculated to assess its
discriminatory sensitivity towards pesticide contamination.

FBI was calculated as:

FBI = YNl

where “x;” is the number of individuals in the “ith” taxon, “t;” is the tolerance value
of the “ith” taxon, and “n” is the total number of organisms in the sample.
Simpson'’s diversity index,

S 2

Dl =1-3"(p')",

i=1

where p; is the proportion of individuals of family i, N is the total number of indi-
viduals and s the total number of families, was also calculated as a measure of
heterogeneity and gives the probability of two individuals chosen at random and
independently from the population belonging from different families.

The Community Loss Index (CLI) measures the loss of benthic taxa in a study site
with respect to a reference site. Values increase from 0 as the degree of dissimilarity
between the sites increases (Mandaville, 2002). CLI was calculated as:

C]_[:d;a
e

where “a” is the number of taxa common to both replicate streams, “d” is the total
number of taxa present in the reference stream, and “e” is the total number of taxa
present in the pesticide treated stream. In this study, CLI was determined by
comparing the total number of taxa present in each stream replicate of each imi-
dacloprid concentration (“e”) to the number of taxa present in each of the respective
stream replicate of the control treatment (“d”). The average value for the different
streams in the control was calculated comparing all four streams of the control with
each other in all possible combinations. This was done to account for the variation of
the subsampling strategy utilized. We have not considered the insect pupae or the
unidentified early instars of organisms for the calculation of biotic indexes or rich-
ness measures.

2.6. Data analysis

One-way analysis of variance, with individual stream mesocosms as replicates,
was used for analysis of all variables. One-way analysis of variance was also used to
compare feeding and respiration of P. comstocki among the different imidacloprid
concentrations. For respiration rates, day of measurement was blocked as a random
factor. Whenever significant differences were observed, Dunnett post hoc tests were
used for multiple comparisons to determine which treatments were significantly
different from the control. Invertebrate density data was log(x + 1) transformed to
stabilise variances across treatments (Zar, 1996), although untransformed data were
used for the calculation of biotic indices. Analysis of variance was performed with
the MINITAB 13.0 statistical package (Minitab, 2000).

3. Results
Imidacloprid average peak concentrations (&1 SE) measured

during the 24 h pulses were 1.63 pg/L (£0.15) for the low concen-
tration and 17.60 ng/L (+1.82) for the high concentration. Average
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temperatures (+1 SE) were 14.7 °C (4-0.23) for control table, 14.5 °C
(+0.24) for the treatment with low imidacloprid concentration and
14.9 °C (£0.24) for the treatment with high imidacloprid concen-
tration. Feeding bioassay results for the control treatment were
obtained using cages deployed in the outflow of a different table
(a second control treatment) with slightly higher mean daily
temperature: 15.5 °C (+0.41) due to problems with a peristaltic
pump. The replicates from this mesocosm treatment were not
included in the analysis of macroinvertebrate community or leaf
decomposition.

3.1. Effects of imidacloprid on macroinvertebrate community

By day 20, the macroinvertebrate community was dominated by
insects in all treatments (more than 92% in all streams). From these,
Heptageniidae (Ephemeroptera), Lepidostomatidae, Hydro-
psychidae and Helicopsychidae (Trichoptera), chironomids,
dipteran pupae and elmidae beetles were all present at high
densities in untreated control streams. The non-insect taxa were of
only minor importance except for oligochaetes which made up less
than 3% of the total numbers of organisms in the control treatment.

Imidacloprid pulses reduced benthic invertebrate abundance
and community diversity in imidacloprid-dosed streams compared
to control streams (Table 1). The community loss index, but not
Simpson’s index, total or EPT (Ephemeroptera, Plecoptera and Tri-
coptera) richness, showed a significant increase which reflects
a significant reduction in diversity caused by imidacloprid expo-
sure. The family biotic index observed for imidacloprid treatments
was not significantly different from the control treatment (Table 1).

Imidacloprid had an adverse effect on benthic communities
with ca. of 5 and 42% reductions in the abundance of invertebrates
exposed to pulses of low and high pg/l imidacloprid concentrations
(Table 1, Fig. 2). In the high concentration treatment there was
a clear reduction of total benthic insects (ANOVA F,11 = 6.40,
p = 0.019). Fifty-five and 67.7% average reductions in abundance
were observed for Plecoptera (ANOVA F,11 = 6.52, p = 0.018,) and
Ephemeroptera (ANOVA F, 11 = 6.86, p = 0.016) in streams exposed
to high concentrations of imidacloprid, giving an overall average
reduction in abundance of EPT taxa of 69% (ANOVA F,1; = 6.40,
p = 0.019). A 70% average abundance reduction in response to high
imidacloprid concentration treatments was also observed for
Trichoptera but this reduction was not statistically significant
(ANOVA F,11 = 2.52, p = 0.135) (Fig. 2).

Coleoptera were less affected (28.6% reduction in high imida-
cloprid concentration treatments) (ANOVA F,11 = 0.63, p = 0.554)
and no significant effects of imidacloprid were observed for
dipterans collected from the streams after 20 days (ANOVA
F,11 = 1.62, p = 0.251) (Fig. 2). Oligochaetes also showed high

Table 1
Comparison of benthic invertebrate community endpoints (mean + SE) in response
to different imidacloprid concentrations.

Imidacloprid nominal concentrations

0 163 pg/L  17.60 pg/L

Df F P

Density (no./stream) 310 +45 296 + 94 177 +19¢ 211 826 0.009
Total richness 21 +1 19+2 16 +1 211 324 0.087
EPT richness 12+1 12+1 9+1 211 331 0.084

EPT/chironomids
Simpson’s DI?

165+ 045 0.97 +£0.20 049 +£013 211 3.90 0.060
0.74 +£0.05 0.72 £0.05 055+0.09 211 274 0.118

mFBIP 477 £0.52 544 £0.19 6.23+040 211 343 0.078
CLI¢ 0.22 +0.03 022 +0.04 047 +0.04° 219 10.00 <0.001
¢ Simpson’s DI: Simpson diversity index.
b FBI: modified Hilsenhoff's family biotic index.
€ CLI: Community loss index.
d

Treatments significantly different from control.

sensitivity to these high imidacloprid concentrations with a 75%
reduction in density in the high concentration treatments (ANOVA
F>11 =13.12, p = 0.002). The lowest concentration of imidacloprid
tested caused a reduction of 30% on EPT taxa abundance, similar to
the effect on caddisflies and approximately two times the effect
observed for mayflies. The effects of pulses of low concentrations of
imidacloprid were not significantly different for any of the
parameters tested (Table 1, Fig. 2).

3.2. Effects of imidacloprid on leaf litter

There was no evidence that imidacloprid at either test concen-
tration inhibited microbial decomposition rates. Mass loss in fine
mesh bags at all test concentrations did not differ significantly from
controls (ANOVA F,11 = 0.80, p = 0.478; Fig. 3). In contrast, total
decomposition of leaf material in coarse mesh bags (a combination
of invertebrate feeding and microbial decomposition) was signifi-
cantly reduced in treated streams and significantly lower in the
highest imidacloprid concentrations, compared to control streams
(ANOVA F»11 = 4.95, p = 0.035; Fig. 3).

3.3. Effects of imidacloprid on stonefly in situ and laboratory
bioassays

In the feeding and respiration experiments, observed mortality
was always below 10%. The feeding rate of P. comstocki exposed to
outflow water from the mesocosm systems was reduced in
imidacloprid exposure tables (27 and 71% in low and high imida-
cloprid concentration pulses, respectively). Significantly different
feeding rates were observed for the higher concentration treatment
(ANOVA F 44 = 14.34, p < 0.001; Fig. 4).

P. comstocki showed reductions in oxygen consumption when
exposed in the lab for 24 h to imidacloprid, but this was significant
only at nominal concentrations of 10 pg/L or greater (ANOVA
F339 = 33.66, p = 0.008; Fig. 5). No significant effect was observed
for day of measurement (ANOVA Fj39 = 4.41, p = 0.126) or inter-
action of both factors (ANOVA F339 = 2.14, p = 0.114). Actual
concentrations of imidacloprid although not measured are not
expected to differ considerably from the nominal concentrations
because we used the same stock solution used for mesocosm
experiments and the exposure for these measurement of oxygen
consumption were performed in the dark which substantially
reduces the degradation of imidacloprid.

4. Discussion

The aim of our study was to produce a more robust examination
of ecological risk of exposure to the insecticide, imidacloprid, by
integrating community assemblage effects obtained in field mes-
ocosms with effects determined in functional bioassays conducted
in the laboratory and mesocosms. This integration of structural and
functional approaches to ecological risk assessment is particularly
relevant for the assessment of toxic chemicals with short half lives
that are most likely to be at effect-concentrations during brief
exposure periods (e.g. pulses during runoff events). Evidence
generated by this approach can help to minimise the uncertainty of
extrapolation from laboratory results to natural ecosystems (Van
den Brink, 2006). Specifically, we assessed the effects of multiple
pulses of different concentrations of imidacloprid on benthic
invertebrates. By including data from an in situ ecotoxicological
bioassay to complement information on the structure of the mac-
roinvertebrate community and functional parameters, the meth-
odology presented here can help establish mechanistic links
between effects at various levels of ecological organization, thereby
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Fig. 2. Comparison of mean densities (+SE) of benthic insects after 20 days in stream mesocosms exposed to no (control), low (1.63 pg/L) or high (17.60 ug/L) concentration of
imidacloprid. An asterisk indicates a significant difference between insecticide treatment level and the control (Dunnett test p < 0.05). EPT: Ephemeroptera, Plecoptera and

Trichoptera.

improving our ability to assess direct and indirect effects of
pesticide contamination on ecosystem functioning.

We demonstrated significant effects of imidacloprid pulses on
abundances of invertebrates, EPT taxa and oligochaetes at
concentrations of 17.60 ug/L. Aquatic Coleoptera appear to be more
tolerant to imidacloprid than other insects, which is unexpected
given that imidacloprid is used to control terrestrial coleopteran
pest species. Previous research indicates that imidacloprid can be
toxic to non-insect freshwater taxa: Hyallella azteca 96 h-LCsq of
17-65 pg/L, (Stoughton et al.,, 2008) Lumbriculus variegatus 96
h-ECsp of 6.2 pg/L, (Alexander et al., 2007), as well as to insects (i.e.,
dipterans, caddisflies, mayflies) in the range of 0.65-50 ng/L
(Pestana et al., unpublished-a; Song et al., 1997; Stoughton et al.,
2008). Mayflies are particularly sensitive (Epeorus longimanus 96
h-LCs0 of 0.65 pg/L, Alexander et al., 2007).
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Fig. 3. Comparison of leaf breakdown rates (mean + SE) in coarse (white bars) and fine
(shaded bars) mesh litter bags after 20 days of exposure to no (control), low (1.63 pg/L)
or high (17.60 pg/L) imidacloprid concentration. Asterisks denote imidacloprid treat-
ments that were significantly different from the control treatment (Dunnett test,
p < 0.05).

In terms of toxicity of model species, Daphnia magna is much
more tolerant to Admire® (imidacloprid) with a 48 h-LCsy of
10.44 mg/L (Song et al., 1997) than Chironomus tentans (96 h-LCsg of
5.40 pg/L) (Stoughton et al., 2008). Chironomus riparius have also
shown low tolerance to another commercial insecticide with
imidacloprid as the active ingredient, Confidor® with a 48 h-LCsq of
12.94 pg/L (Pestana et al., unpublished-a).

In addition, Pestana et al. (unpublished-a) observed that imi-
dacloprid exposure delayed maturation for chironomids, lending
support to the use of insect adult biomass or insect emergence as
a functional assessment (Culp et al., 2003; Schulz and Liess, 2001).
In fact, Alexander et al. (2008) showed that exposure to sub-lethal
concentrations of imidacloprid caused mayflies to mature earlier at
a smaller size, leading to impaired reproductive fitness.
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Fig. 4. In situ P. comstocki processing rate (mean + SE) measured over 20 days in
stream mesocosms exposed to no (control), low (1.63 pg/L) or high (17.60 pg/L)
concentration of imidacloprid. Asterisks denote imidacloprid treatments that were
significantly from the control treatment (Dunnett test, p < 0.05).
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Fig. 5. P. comstockii laboratory respiration rates (mean -+ SE) under exposure to four
levels of imidacloprid concentration. Asterisks denote imidacloprid treatments that
were significantly different, from control (Dunnett test, p < 0.05).

Several diversity and biotic indices commonly calculated in
rapid bioassessment protocols failed to discriminate effects of
pesticide contamination on natural benthic communities. This
result is likely related to the fact that these diversity indices place
relatively little weight on rare taxa compared to common taxa
(Mandaville, 2002; Rosenberg and Resh, 1993). In addition, the
family biotic index uses tolerance values intended to assess organic
pollution rather than sensitivity of organisms to pesticides, which
can represent a disadvantage for measuring effects of toxic insec-
ticides in insect-dominated communities (Rosenberg and Resh,
1993). This lack of sensitivity was surprising given that chironomids
made a significant contribution to these indices (abundance and
tolerance values), and laboratory tests that show low tolerance of
chironomids to imidacloprid (Pestana et al., unpublished-a;
Stoughton et al.,, 2008). In contrast, the community loss index,
which considers taxa richness, but not abundance, showed
a significant reduction in the number of taxa present under high
imidacloprid exposure compared to control streams.

Our results demonstrated that pulses of imidacloprid impair
feeding by P. comstocki on leaf material. Feeding inhibition has been
reported in trichopteran species (Pestana et al., unpublished-a),
daphnids (Pestana et al., unpublished-b); ephemeropterans and
oligochaetes (Alexander et al., 2007) as responses to sub-lethal
concentrations of imidacloprid in laboratory and of both pter-
onarcids and tipulids; in mesocosm experiments (Kreutzweiser
et al., 2007). Neurotoxic insecticides such as imidacloprid have
been shown to induce behavioural effects, including reduced
activity and uncontrolled muscular contractions of insects (Mat-
suda et al., 2001; Moffat, 1993), which likely contributed to the
feeding inhibition response. Similarly, laboratory exposures to
imidacloprid induced a reduction in the respiratory rates of
P. comstocki possibly as a consequence of reduced activity leading to
the disruption of ventilatory movements and “push up behaviour”
(Ericksen et al., 1996; Genkai-Kato et al., 2000). Pestana et al.
(unpublished-a) observed similar reductions in oxygen consump-
tion by caddisflies in response to imidacloprid exposure. Thus,
these reductions in activity are hypothesized to reduce both the
rate and efficiency of foraging, and cause reduced intake of energy
by aquatic invertebrate species with consequences for growth,
reproduction and survival. The results from leaf decomposition
further suggest that imidacloprid can affect leaf shredding since
a significant reduction in decomposition rates was observed for
coarse mesh bags deployed in the artificial streams receiving pulses
of high concentration of imidacloprid. In our case it was not
possible to relate feeding rates of P. comstocki deployed in situ with
abundances within the benthic communities inoculated because
several stoneflies were removed from invertebrate samples to
avoid predation within artificial streams. Due to the size of many
pteronarcid nymphs they were wrongly considered as predators

and systematically removed from invertebrate sub samples being
almost absent in artificial streams.

The results from leaf decomposition further suggest that imi-
dacloprid can affect leaf shredding since a significant reduction in
decomposition rates was observed for coarse mesh bags deployed
in the artificial streams receiving pulses of high concentration of
imidacloprid. This also indicates that the functional role played by P.
comstocki in the studied system correlated well with leaf processing
by the natural community. By identifying invertebrates only to
Family level it is difficult to determine the functional feeding role of
the majority of the invertebrate community present in artificial
streams, however the effects of imidacloprid on leaf decomposition
observed in coarse leaf bags may be related to the high densities of
lepidostomatid tricopterans (shredders) and chironomids. Chiron-
omids, although generally considered collector-gatherers, have
been shown to feed also on coarse particulate organic matter
(Callisto et al., 2007).

Although we did not measure microbial community structure or
activity directly, leaf decomposition in fine leaf bags was not
significantly different among the imidacloprid treatments. Other
studies (Kreutzweiser et al., 2007) examining effects of imidaclo-
prid on microbial activity and decomposition have likewise repor-
ted no detectable effects in artificial systems. Together, these results
show that imidacloprid does not seem to affect the microbial
community directly and for this reason, the feeding inhibition by
leaf-shredding insects was less likely due to a reduced microbial
conditioning of leaves. Thus, although microbial colonization and
conditioning of leaf litter is critical for the diet of shredders (Graga,
2001), low sub-lethal concentrations of imidacloprid most likely
affects leaf litter breakdown, through impairment of the feeding
behaviour of leaf-shredding invertebrates.

5. Conclusions

In this study the effects of pulses of imidacloprid were assessed
under controlled conditions of exposure that simulated field
conditions. Moreover, functional and structural endpoints were
used to better understand the mechanisms of imidacloprid toxicity
at an ecosystem level. The concentrations of imidacloprid tested
here were expected to be within realistic environmental concen-
trations previously shown to occur in agricultural runoffs and our
data suggest that significant adverse effects on aquatic macro-
invertebrate community composition would be expected where
imidacloprid concentrations in water reach or exceed 20 ug/L even
if for short periods. Imidacloprid reaching streams or rivers at these
or even lower concentrations can exert lethal and sub-lethal effects
on aquatic non-target organisms (feeding inhibition, delayed
maturity, size at emergence) with potential impairment of insect
reproductive fitness, thus influencing critical ecosystem properties
and functions.

Plant litter decomposition was tested as an indicator of imida-
cloprid effects in insect-dominated benthic communities, and
coarse and fine mesh bags, have shown to be suitable to the
application in mesocosms studies to distinguish the effects of
pesticides on aquatic fungi and macroinvertebrates, the two main
decomposers. In this way a useful functional endpoint can be used
to complement pesticide risk assessment programs based on
structural parameters providing an indication of the possible
impairment in the functioning of the stream ecosystems. Feeding
assays are used as chronic assays in laboratory and in the field with
a wide range of organisms (Hatch and Burton, 1999; Irving et al.,
2003; Lam, 1996; Maltby et al., 2002; McWilliam and Baird, 2002)
and constitute sensitive biomonitoring tools to assess effects of low
levels of pesticides. In situ single species feeding assays can also be
used with an array of invertebrate species in mesocosms studies
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and in the field as early warning indicators of pesticide contami-
nation. This study highlights the importance of combining fine-
resolution studies of individual species with model ecosystem
studies and the integration of functional and structural endpoints
for a better understanding of the mechanisms that link organism-
level responses to population- and community-level processes and
to improve our prediction of possible sub-lethal as well as indirect
effects of pesticides.
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