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resumo 
 
 

 

Atualmente, existe uma população global em crescimento que vive em áreas 
centrais e metropolitanas das cidades, juntamente com um aumento nas 
vendas de comércio eletrónico. Isto enfatiza a necessidade de implementar 
soluções que melhorem a eficácia da Logística Urbana na entrega de 
mercadorias nas áreas metropolitanas. Neste contexto, a integração dos fluxos 
de passageiros e mercadorias nas cidades tem recebido ampla atenção nos 
últimos anos devido aos potenciais benefícios para a qualidade de vida dos 
habitantes, como a redução da poluição do ar, do ruído e do congestionamento 
rodoviário. No entanto, é necessária mais investigação para entender melhor 
as expectativas e perceções dos stakeholders das cidades sobre a adoção 
desses tipos de soluções, bem como desenvolver e modelar essas soluções 
integradas de maneira eficaz. 
Esta pesquisa, desenvolvida no âmbito do projeto SOLFI (Sistema de 
Optimização para a Logística Urbana com Fluxos Integrados de mercadorias e 
passageiros), aborda uma solução de logística urbana que combina fluxos de 
mercadorias e passageiros. Esta solução integrada tem como objetivo 
aproveitar a rede de autocarros da cidade do Porto para transportar pacotes de 
mercadorias para o centro da cidade, fazendo uso das viagens de passageiros 
que já ocorrem na cidade. As contribuições desta investigação são divididas 
em três partes principais. 
Primeiro, foi realizada uma avaliação sistemática e abrangente dos modelos e 
métodos de investigação operacional atuais que investigam a logística urbana, 
integrando fluxos de mercadorias e passageiros. Isto permitiu entender como 
outros investigadores abordaram o assunto, destacar lacunas existentes na 
literatura e delinear as direções de investigação deste trabalho. Em segundo 
lugar, foi realizado um questionário e três entrevistas semiestruturadas para 
recolher os requisitos e expectativas dos principais stakeholders em relação à 
solução logística integrada. Os resultados da aplicação destes instrumentos 
permitiram desenhar a solução de logística integrada e obter um modelo 
conceptual para a solução, com base na Unified Modeling Language (UML). 
Por fim, foram desenvolvidos modelos de otimização exata e algoritmos 
heurísticos e foram aplicados a dois problemas relevantes, dentro do tópico em 
pesquisa, para apoiar o processo de tomada de decisão: o Problema de 
Alocação de Fluxo de Rede de Mercadorias (FNFAP) para estudar a alocação 
de mercadorias ao longo da rede de distribuição, apoiando o planeamento 
operacional, e o Problema de Planeamento da Rede de autocarros (BNPP) 
para estudar a dimensão da frota de autocarros necessária, apoiando o 
planeamento estratégico. Testes computacionais foram realizados para ambos 
os problemas, utilizando o IBM CPLEX para os modelos de otimização exata e 
o MATLAB para as abordagens heurísticas, com conjuntos de instâncias 
geradas. 
Esta tese faz várias contribuições para a teoria e para a prática, em particular a 
proposta de um novo serviço de logística urbana que procura incorporar a 
sustentabilidade, com a participação dos principais stakeholders. Além disso, 
os modelos e métodos desenvolvidos para dois problemas mostraram que 
soluções competitivas podem ser obtidas em curtos períodos de tempo de 
computação, apoiando eficientemente o processo de tomada de decisão nesta 
solução logística integrada na cidade do Porto. 
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abstract 

 
Nowadays, there is an expanding global population living in central and 
metropolitan areas of cities, as well as an increase in e-commerce sales. This 
emphasizes the need to implement solutions that improve the Urban Logistics 
effectiveness in delivering freight into metropolitan areas. In this context, the 
integration of passenger and freight movements inside cities has received 
extensive attention in recent years given the potential benefits to inhabitants' 
quality of life, such as reduced air pollution, noise, and congestion. However, 
further research is needed to better understand the city stakeholders' 
expectations and perceptions about the adoption of these types of solutions, as 
well as how to develop and model these integrated solutions in an effective 
manner. 
This research, developed within the scope of the SOLFI (Sistema de 
Optimização para a Logística Urbana com Fluxos Integrados de mercadorias e 
passageiros) project, addresses an urban logistics solution combining freight 
and passenger flows. This integrated solution is intended to leverage the city of 
Porto's bus network to transport freight packages into the city center, making 
use of the passenger journeys that already occur in the city. The contributions 
of this research are spelt out in three main parts. 
First, a systematic and comprehensive evaluation of the current operational 
research models and methods investigating urban logistics, integrating freight 
and passenger flows, was done. This allowed to understand how other 
researchers have addressed the subject, as well as highlight existing literature 
gaps and describe the research directions of this work. Second, a 
questionnaire and three semi-structured interviews were conducted to gather 
the key stakeholders’ requirements and expectations for the integrated 
logistical solution. The results from the application of these instruments allowed 
to design the integrated logistical solution and obtain a conceptual model for 
the solution, based on Unified Modeling Language (UML).  Lastly, exact 
optimization models and heuristics algorithms were developed and applied to 
two relevant problems, within the topic under research, to support the decision-
making process: The Freight Network Flow Assignment Problem (FNFAP) to 
study the assignment of freight along the distribution network, supporting the 
operational planning, and the Bus Network Planning Problem (BNPP) to study 
the bus fleet size required, supporting the strategic planning. Computational 
experiments were conducted for both problems, using IBM CPLEX for the exact 
optimization models and MATLAB for the heuristic approaches, using sets of 
generated instances. 
This thesis makes several contributions to theory and practice, in particular the 
proposal for a new urban logistics service that seeks to incorporate 
sustainability, with the voice of the main stakeholders. Furthermore, the models 
and methods developed for two relevant associated problems showed that 
competitive solutions in short computation times can be obtained, efficiently 
supporting the decision-making process in this integrated logistical solution in 
the city of Porto. 
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1. Introduction  
 

 

 

 

1.1. Motivation 

Urban Logistics (UL) promises to encourage a city's sustainable urban development (Schliwa et al., 

2015). This is an issue that affects the entire planet and has gotten worse recently. The most 

frequently mentioned modern justifications for this issue include the increase in urban population 

and the growing usage of e-commerce. In more detail:  

• According to a recent United Nations report, 68% of the world's population will live in cities 

by 2050 (Dablanc et al., 2017; Li et al., 2022). In Europe, the percentage arises to 74% 

(United Nations, 2018).  

• E-commerce has further accelerated growth with the COVID 19 pandemic, and it is expected 

to keep growing (Azcuy et al., 2021; Alves et al., 2023). According to a 2020 global study, 

22% of people shopped online weekly (The last mile race challenging Urban Logistics, 

2021). Moreover, according to reports by eMarketer (May 2019), annual B2C e-commerce 

sales reached 3.5 trillion dollars in 2019, 20% more than the previous year, and it is expected 

to reach 6.5 trillion dollars in 2023.  

E-commerce nowadays represents a great convenience for customers. However, for cities, it instantly 

leads to a rise in the movement of freight. Such movements impact the lives of residents over time, 

also producing unnecessary congestion and greenhouse gas emissions (Savelsbergh & Van Woensel, 

2016).  

An increased transportation of goods to consumers’ homes rather than traditional retail 

establishments is observed, resulting in a considerable rise in logistical transport vehicles (Wehbi et 

al., 2022). As result, the urban traffic and congestion, noise and environmental pollution, as well as 

potential road accidents, and ultimately, the compromising of the mobility of citizens, are some of 

the main drawbacks identified in literature (Fatnassi et al., 2015; Masson et al., 2017; Rezgui et al., 

2019; Li et al., 2021; El Ouadi et al., 2021, Demir et al., 2015). 

At the same time, online retailers are expanding their delivery choices, including same-day delivery, 

diminishing consolidation opportunities and amplifying the negative externalities of urban delivery 

operations (Azcuy et al., 2021). Their purpose is to meet the increasing expectation of customers for 

fast and high-quality delivery services at a low cost (Zhang et al., 2023). As such, a growing number 

of dedicated vehicles primarily driven by private firms has resulted in an increase in traffic loads on 

highways, which is one of the biggest hurdles to the successful delivery of products and services to 

clients. 

Since UL is also a key sector of city economies (Strale, 2019), the challenge stands alone, and that 

motivates the present investigation: establishing an efficient freight transportation within cities while 

maintaining a quality of life that is appropriate for metropolitan areas.  

This section provides an overview of the dissertation. It begins with the research 

motivation. Then, the research objectives, research questions, and research methodology 

used for this investigation project. It concludes with the thesis structure and the academic 

contributions. 
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Generally, the academy introduces UL as the way of finding efficient and effective solutions to 

transport goods in urban areas in order to avoid all of the aforementioned negative impacts while 

also providing better and faster delivery (Lagorio et al., 2016; Savelsbergh & Van Woensel, 2016). 

More recently, Batarlienė & Bazaras (2023) introduce urban logistics as the “planning on high-

quality and fast cargo transportation, with various ecological solutions”. A primary ambition is, 

consequently, to find solutions tailored specifically for the people, cities, and planet, with multiple 

environmental and socio-economic impacts (Strale, 2019).  

Hence, a wide range of  efficient and effective solutions have been proposed, entailing an equilibrium 

between individual and social profitability (Bachofner et al, 2022). In some cases, the main focus of 

urban logistics is on the main carriers operating in the market. However, it is vital to consider a 

solution for urban logistics that is transversal in the supply chain, making it integrated and sustainable 

(Piecyk et al., 2015). The integration of networks and infrastructures is one of the interesting 

alternatives from the standpoint of a logistics system, and it is being addressed in this thesis.  

The first hints about this integrated solution were given by the European Commission in 2007 in the 

European agenda for urban mobility (Mazzarino & Rubini, 2019). Since then, the integration of 

passenger flows and transportation has been on the agenda in both research and practice. From the 

academic perspective, optimizing transportation planning and improving the operational efficiency 

for a sustainable urban freight transportation are becoming more popular (Neghabadi et al., 2019;Zhu 

et al., 2023) 

Combining people and freight flows has the potential to enhance operations by allowing the same 

transportation needs to be fulfilled with fewer cars while also considerably improving environmental, 

economic, and social factors (Chang et al., 2021). Customers benefit from faster service solutions, 

businesses benefit from stock reductions in stores, logistic operators benefit from operational cost 

minimization and efficient scheduled journeys without jeopardizing service quality, and city 

authorities are increasingly willing to collaborate and improve operations to avoid externalities 

(Savelsbergh & Van Woensel, 2016; Melo & Baptista, 2017; Pronello et al., 2017). This integrated 

people and freight flows approach can maximize the total system rather than individual subsystem 

performance, (Lagorio et al., 2016; Mourad et al., 2021; Manchella et al., 2021, 2022) but 

collaboration between customers, enterprises, logistics operators, and local authorities must be 

managed. Furthermore, carefully planning a UL transportation system aids to reduce actual logistical 

costs while also improving the robustness of decision-making in real-world cases (Hu et al., 2019).  

Therefore, this investigation was designed to study an urban freight logistics solution that combines 

passenger and freight flows in the city of Porto. 

 

 

1.2. The SOLFI project 

The SOLFI (Sistema de Otimização para a Logística Urbana com Fluxos Integrados de Mercadorias 

e Passageiros; or in English, Optimization System for Urban Logistics with Integrated Freight and 

Passenger Flows) project, with project number 039870, aims to deliver a novel form of freight 

distribution service based on an intelligent decision support system, using urban passenger 

transportation networks. Its contribution to the city of Porto, Portugal, is built on two complementary 

pillars: assisting in the more effective use of available capacities through the integration of the two 

flows; and improving urban life quality, which is essential to urban logistics and the ultimate 

objective of any solution in this area. To implement this new service, Project SOLFI must achieve 

the following three goals: 

1. Develop a new business model for urban logistics based on the integration of the bus network 

of the city and a last mile service to collect and deliver the freight into the city center. 
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2. Create an Intelligent Decision Support System (IDSS) to manage the freight distribution, in 

real-time, and help the decision-making process. 

3. Incorporate decision support in IDSS to deal with disruptions in the transportation system. 

The SOLFI will culminate with a prototype for the solution, which will include carrying out a pilot 

in the city of Porto involving a number of stakeholders. In this way, the prototype will be tested and 

validated by project stakeholders such as the bus transport operator, a last mile company, a logistic 

private company as one potential client of the new service and Porto municipality as the regulator.  

It should be emphasized that the present investigation contributes to a subset of activities and tasks 

that contribute to the project's overall purpose. They are the following:  

- Development and implementation of customers questionnaire and stakeholders’ interviews, 

that were used to assist the identification of the potential stakeholders' needs and 

requirements. 

- Development of models and algorithms that will be incorporated into the new system that 

addresses logistical operational and strategic decisions. These models and algorithms will 

help bus network operators and municipal authorities to make decisions while adopting the 

combined solution of passenger and freight flows.  

The main phases of the SOLFI projects are presented in Figure 1 and the contributions of this research 

to the project are highlighted in bold.
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Figure 1 - Scope of this thesis research and contribution to the SOLFI project 
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The fundamental contribution of this research is built upon the first two phases of the investigation, 

as seen in  Figure 1. Thus, the contribution is mostly from requirements specification and Operational 

Research (OR) point of view. Karlsson (2016) characterize OR as “a straightforward extension of 

the scientific management approach to solving operational process problems”. Mathematical 

Modeling and Optimization Methods are being the heart of the majority of UL research as recent 

reviews have noticed. The lack of a mathematical model that can simulate the entire system, or a part 

of the system, to deal with various aspects of the problem under specific goals and constraints, and 

in designing exact or heuristic algorithms for computational optimization, is the primary driver of 

this growing interest. OR represents the main instrument for decision optimization in system analysis. 

In the context of the SOLFI project, and addressing the UL’ fundamental philosophy according to 

Neghabadi et al. (2019), the main challenge is to optimally plan, manage and control the freight 

movements within a logistical network while considering integration and coordination among 

involved stakeholders. Among the most important transportations planning problems are the Freight 

Network Flow Assignment Problem (FNFAP) and Bus Network Planning Problem (BNPP), 

representing both concerns in operational and strategic decision-making levels, respectively. These 

are the two problems tackled in this investigation. Additionally, another distinctive aspect of the 

research is how these two problems will be modelled and solved since they are studied in the same 

context, within the SOLFI project.  

Therefore, the main integrated urban logistics process studied in this research considers the 

transportation of freight parcels from the peripheries into the city center. In this situation, a passenger 

bus network is used to transport requests to a bus stop located in the city. From there, a last mile 

operator (LMO) uses a fleet of eco-friendly vehicles to deliver the orders to the final customer. The 

aim is to reduce the traffic of vans and trucks operating in the city, solely dedicated to the freight 

transportation, thus contributing to reduce negative effects of urban logistics activities, namely 

pollution, noise, traffic congestion and accidents. 

 

 

1.3. Research objectives and questions 

This research aims to contribute to the existing literature and practice in UL field through the 

development and application of questionnaires and interviews to the key stakeholders and through 

the formulation of novel mathematical programming models and heuristics algorithms for managing 

an integrated passenger and freight flow urban logistics transportation system, on the operational and 

strategical layer of the decision-making process.  

From a practical perspective, the contributions are twofold. First, this investigation contributes 

significantly to the SOLFI project, particularly in the first two phases of the project: determining 

technical specifications of the integrated solution (phase 1), through the development and application 

of final customers questionnaire and stakeholders’ interviews, which allow to understand and align 

expectations in the designing phase of the solution. Secondly, this thesis assists in the design and 

implementation of a new urban logistics service with passenger and freight integration, using the 

developed models and algorithms (phase 2). In the SOLFI Project, there is a strong need for 

approaches capable of finding suitable solutions to these complex problems in short computational 

times. Furthermore, this thesis provides a strong knowledge that can assist decision-makers 

accelerating planning and examine alternative decision scenarios using models that include many 

real-world features and subjective influences.  

In terms of mathematical models and heuristic algorithms the contributions are tackled from two 

problems: FNFAP and BNPP. In this context, the goal is building operational and strategic decision 

levels, which will have practical significance for real-world project SOLFI. Here, single and 

combined problems, as well as deterministic and stochastic parameters, are addressed to deal with 

the dynamic and complexity of cities. From an academic aspect, this thesis contributes to the current 
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state-of-the-art literature on this context of integrated passenger and freight flows in an urban 

logistics context by identifying directions to model and solve two significant problems in these two 

distinct decision layers. 

This thesis is guided by five main research objectives in order to achieve the prior contributions: 

(1) Understand how gather all the requirements and expectation from the different stakeholders 

of the project and how to align them on the integrated logistical solution.  

(2) Understand which mathematical programming models contributed to integrated passenger 

and freight flows in the urban logistics environment, as well as how uncertainty was analyzed 

and incorporated into such contributions. 

(3) Tackle UL planning problems capable of incorporating real-world features. 

(4) Formulate novel mathematical programming models, both deterministic and under 

uncertainty, capable of framing the decision maker's decisions (strategic and operational) 

regarding the integrated flows. 

(5) Develop suitable solution approaches to solve the models efficiently to real-world 

applications through the SOLFI project.  

This investigation is characterized as qualitative, developing and applying semi structured interviews 

to stakeholders and quantitative, developing a questionnaire and using model-based research 

employing advanced methods and algorithms to capture (part of) the decision-making problems, that 

are faced by managers in real-life operational processes (Karlsson, 2016). The research objective (1) 

and (2) serve as the starting point of the whole investigation by providing the knowledge required to 

understand: i) the requirements from stakeholders and; ii) the formulations and problem-solving 

techniques that have been used in the past. Moreover, research objectives (3), (4) and (5) focus on 

modeling and problem-solving approaches. Each of the specified research objective is associated 

with four research questions (RQs), which will guide the whole investigation. Figure 2 depicts a 

visual representation of the research questions that this thesis answers as well as their relationship.  
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Research Question 1:  

How have researchers addressed the Urban Logistics integration of passenger and freight flows 

problem from an operations research perspective?  

There have been several problems in the context of integrated passenger and freight flows in urban 

logistics, each with its own formulation and solution. As a consequence, a detailed overview of 

previous research on the subject is provided in an effort to get a better understanding of the 

mathematical modeling methodologies and solutions approaches used. Furthermore, it is investigated 

how uncertainty has been included and handled. This review, which serves as the basis for this thesis, 

allows us to reflect on the contributions made to the published data and place this study in reference 

to them, as well as collect strong foundations to define the action lines taken in the following 

chapters. 

 

Research Question 2:  

How can an urban logistics transportation system that integrates passenger and freight flows be 

enriched for real world contexts?  

Given that the SOLFI project's final output will be used in a real-world context, in the city of Porto, 

the development of advanced models and algorithms to assist city decision-makers and stakeholders 

in developing a new integrated urban freight logistics service combining passenger and freight flows 

must account for a wide range of real-world and subjective influences. The engagement and support 

of stakeholders is one of the most essential influencing variables of a successful transportation 

system. The conflict of interests among the numerous stakeholders has been mentioned as a negative 

affecting element in several contributions. The SOLFI Project is critical in finding and assessing 

conveniences and features seen in real-world environments in order to integrate them in models. As 

a result, interviews and a questionnaire were done throughout the conceptualization phase of the 

mathematical model to guarantee that the stakeholders' requirements are integrated into the models.  

Their applications have two main goals. A first one with the aim to understand how the final customer 

accept the adoption of the two conveniences during the last mile deliveries: the first one, the smooth 

integration of neighbor stores as dropping points where final customers could collect their orders; 

and the second, the availability of a delivery service based on an automated pick-up point, for 

example, smart-lockers, and what can affect the acceptation of such conveniences. The second goal 

lies on the identification of the main features and restrictions that stakeholders value in an integrated 

transport system for UL. After collecting and analyzing the needs of the many stakeholders and 

resolving any conflicts of interest, the conceptual solution proposal is established in order to go on 

in the modeling, solving, and implementation phases. 

 

Research Question 3:  

How to address uncertainty and robustness in an urban logistics transportation system that 

integrates passenger and freight flows? 

This research question is motivated by two aspects. The first, which is relevant to the SOLFI project, 

is the requirement to deal with potential disruptions in the system. Since the Intelligent Decision 

Support System aims to help the decision maker to make the best decisions, it is a matter of interest 

to have features which allow the system to deal with potential disruptions that may occur. The feature 

to deal with robustness was incorporated into the operational level of decision-making process (in 

FNFAP), allowing the system to build a distribution plan of freight and passengers, through the 

integrated system, robust enough to deal with the two disruptions most likely to occur. 

The second one is the lack of emphasis devoted to incorporating uncertainty in the context of 

integrated passenger and freight flows transportation problems. Uncertainly is a major factor which 
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should be considered in city logistics problems. As stated before, in this investigation both 

deterministic and stochastic parameters were studied. The outcome of this research question will be 

a well-defined model to represent uncertainty in each problem, through the use of stochastic 

parameters for the FNFAP and a set of scenarios with possible realizations for stochastic parameters 

for the BNPNP and consequently, different solution methods to solve it.  

 

Research Question 4:  

As previously stated, this investigation addresses two major problems connected to two decision-

levels: FNFAP for the operational and BNPP for the strategic decision level. Therefore, the aim is to 

formulate adequate models for specific integrated passenger and freight flow contexts, as well as 

developing appropriate solution methodologies to efficiently solve each model. Because model 

formulation has an impact on solving efficiency and solution quality, the two goals of modeling and 

solving are intimately connected. Thus, a research question is allocated to each decision level, such 

as research question 4.1 for the operational problem FNFAP and research question 4.2 for the 

strategic problem BNPP. The answers to both research questions resulted in extending complex 

knowledge of two transportation problems into mathematical models, with specific goals and 

constraints and also into heuristic algorithms for both problems.  

 

Research Question 4.1: How to model and solve the assignment of parcels to bus services in the 

urban logistic problem of integrated freight and passenger flows? 

From an operational perspective, this investigation aims to study an integrated approach to use spare 

capacity of the bus network to integrate the freight and passenger flows within the city. This FNAP 

is modelled by integer linear programming (ILP), studying five objective functions from different 

perspectives of interest. From the decision-maker point of view, in this case the Bus Transport 

Operator (BTO) perspective, the number of bus services and robustness to bus service suppressions 

are studied; concerning the LMO perspective, average last mile delivery time, number of bus 

offloads, and robustness to last mile failures are addressed. The goal is to provide a distribution plan 

to the decision-maker for all freight requests to manage the following operations: (i) assign each 

request to a bus hub where bus services depart from; (ii) assign the request to a bus service starting 

on the assigned hub; and (iii) assign the request to a bus stop of the assigned bus service, to be 

offloaded by the LMO and delivered at the final customer destination. Five optimization models are 

proposed and tested, covering the entire logistics process from the reception of freight delivery 

requests from clients until the delivery of the freight to the destination address, within city center; 

and solved using exact and heuristic approaches. Lexicographic optimization models were used to 

study selected combinations of the five objectives functions mentioned above. To evaluate the 

proposed models, eighteen instances were generated and solved. 

 

Research Question 4.2: How to model and solve the adapted bus fleet size needed in the urban 

logistic problem of integrated freight and passenger flows? 

From a strategic layer perspective, this investigation addresses the BNPP with the aim to help the 

BTO to estimate the number of buses that must be physically adapted, compared to the buses 

dedicated only to passenger transportation, to transport goods while also transporting passengers. 

Considering that this adaptation of the buses to perform freight transportation is expensive, it is a 

matter of interest to the BTO to optimize the fleet size of these adapted vehicle. The problem is 

modelled by an integer linear programming (ILP) model and solved using exact and two heuristic 

approaches, targeting to obtain optimal solutions and assess the efficiency of the heuristics proposed. 

This study, in addition to contributing to a new approach within BNPP, proposes some new points 

that represent the study's uniqueness, namely including uncertainty through the development of 
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scenario optimization-based optimization algorithms to support the BTO to deal with it. To evaluate 

the proposed models, 144 instances were generated and solved. 

 

 

1.4. Thesis structure and synopsis  

This thesis consists in seven chapters. The current chapter introduces the thesis by providing an 

overview of the investigation, as well as an explanation of the motivation and its goals. Furthermore, 

it provides an overview of the chapters that compose the thesis.  

 

Chapter 2 provides the fundamental background of UL theory. An initial work was developed with 

the aim to introduce the concept of urban logistics. This resulted in a book chapter (Machado et al., 

2023) that presents the concepts and challenges in UL context: 

• Machado, B., Pimentel, C., Sousa, A., Ramos, A.L., Ferreira, J.V., Teixeira, L.. 2023. A 

Literature Review of Technological Trends in Urban Logistics: Concepts and Challenges. 

In: Duffy, V.G., Landry, S.J., Lee, J.D., Stanton, N. (eds) Human-Automation Interaction. 

Automation, Collaboration, & E-Services, vol 11. Springer, Cham. 

https://doi.org/10.1007/978-3-031-10784-9_26 

Then, an additional section with a Systematic Literature Review (SLR) is presented with the purpose 

to answer the research question 1 (RQ1) and ultimately, feeding the decision support models. The 

aim is to provide a concise overview of how academics at UL have approached the integration of 

passenger and freight flows from an operations research standpoint. Several literature gaps and 

research opportunities in existing literature that motivate further research on this topic are highlighted 

and thereby the contributions in this context. The chapter concludes with a critical view over the 

literature in this field. 

 

Chapter 3 introduces the research methodology used in this thesis. To address the research question 

2 (RQ2), qualitative and quantitative techniques, with the abovementioned interviews and 

questionnaire, are developed and applied. To address the research questions (RQ3) and (RQ4) 

Modelling and Simulation is used as methodology. This chapter describes the Modelling and 

Simulation as research methodology and the research process commonly used in the literature when 

applying this methodology. The conceptualization, modeling, problem-solving and implementations 

phases are then described, which supports the study presented in the following chapters.  

 

Chapter 4 studies the stakeholders’ expectations and perceptions, tackling the research question 2 

(RQ2). This chapter ensures that stakeholders' expectations and needs are met by incorporating this 

information into the optimization models developed for the SOLFI project's integrated transportation 

system. A questionnaire was distributed to potential clients of the SOLFI system, to gather their 

requirements and needs, resulting in 308 respondents. Furthermore, three semi-structured interviews 

were conducted with three key stakeholders of the SOLFI project, with the aim to gather their 

requirements for the integrated transportation solution within the scope of SOLFI project. Gathering 

their requirements allowed us to design and build an integrated solution of passenger and freight 

flows, incorporating all requirements from all stakeholders of the solution. This incorporation of 

requirements not only strengthens the link to the real world, but it also helps to close the gap between 

client expectations and operational performance. The work presented throughout this chapter has 

resulted in the following conference presentation and article (Machado et al., 2021): 
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• Machado, Bruno, Leonor Teixeira, Ana Luísa Ramos, and Carina Pimentel. 2021. 

“Conceptual Design of an Integrated Solution for Urban Logistics Using Industry 4.0 

Principles.” Pp. 807–15 in Procedia Computer Science. Vol. 180. Elsevier B.V. 

 

Chapter 5 addresses the FNFAP and tackles the research question 3 and research question 4.1. In 

this chapter the FNFAP problem is modelled on the operational layer of the decision-making process, 

through integer linear programming and heuristic algorithms. The formulation of the problem uses 

three stochastic parameters, the demand, requests destination, and delivery time window at final 

customer, tackling the first part of the research question 3 (RQ3). Five objective functions from 

different perspectives, using different models with specific constraints are studied. Furthermore, 

several combinations of interest of these five objective functions are studied, using lexicographic 

optimization for each pair of objective functions. The results allow to conclude the tradeoffs between 

pairs of objective functions, depending on which objective is prioritized first in the lexicographic 

optimization. Additionally, the approach to the operational problem FNFAP differs from the current 

approaches in the literature, since robustness is incorporated into the optimization models, through 

two different objective functions and constraints: robustness to deal with bus suppressions and 

robustness to deal with bus offloading failures on the last mile leg of transportation. According to 

the research analysis of the literature, this study is the first in the literature that explores the problem 

of incorporating robustness to the operational planning, in the field of integrated flows in UL, in this 

way. Considering the heuristics approach, two main algorithms for the integrated problem were 

developed: the request receipt algorithm to accept a new transportation request within short time; 

and an optimizer algorithm to optimize the distributed plan of all accepted requests for the day.  The 

work presented across this chapter has resulted in the following scientific articles (Machado et al. 

2023; Machado et al. 2023) and conference presentations: 

• Bruno Machado, Amaro de Sousa & Carina Pimentel. 2023. “Operational planning of 

integrated urban freight logistics combining passenger and freight flows through 

mathematical programming” Journal of Intelligent Transportation Systems, DOI: 

10.1080/15472450.2023.2270409  

• Machado B., Pimentel C., de Sousa A. 2022. “Optimization of last mile logistics process 

combining passenger and freight flows”. Proceedings of International Conference on 

Quality Innovation and Sustainability 2022, DOI: 10.1007/978-3-031-12914-8_27 

• Machado B., Pimentel C., de Sousa A., 2022. "Operational planning of integrated urban 

freight logistics combining passenger and freight flows: A heuristic approach", presentation 

at Transport Research Arena conference, Lisbon, November 15, 2022 (presentation) 

• Machado B., Pimentel C., de Sousa A., 2021. "Operational planning of integrated urban 

freight logistics combining passenger and freight flows through mathematical 

programming", presentation at the 24th euro working group on transportation meeting, 

virtually, September 8-10, 2021 (presentation) 

 

Chapter 6 addresses the BNPP and tackles the research question number 3 and research question 

4.2. This chapter models the BNPP at the strategic layer of the decision-making process, through 

integer linear programming models and heuristic algorithms. The aim of studying this problem is to 

build decision models to help the BTO to determine, in a strategic planning phase, the minimum 

number of buses needed to be adapted for the integration of passenger and freight flows. Assuming 

that the required physical adaptation on the buses is expensive, the minimization of such investment 

beforehand is a matter of interest for the BTO of the city. To formulate this problem, scenarios of 

possible realizations of stochastic parameters are used. For each scenario, a possible value is assumed 

for the stochastic parameters: request demand, requests destination and delivery time window at the 

final customer. The aim of the optimization models is to find the minimum number of buses needed 
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to cover the transportation needs of 100 scenarios, improving the robustness of the solution, 

considering the reasonable assumption that if a solution if feasible for a set of 100 possible scenarios, 

it is a solution with low probability of not being feasible in a future implementation. Moreover, a 

solution procedure, based on a scenario-based heuristic optimization, that incorporates various 

transportation scenarios of demand realizations is proposed to solve the problem and get solutions as 

reliable as possible. To the best of the authors' knowledge, no research is available to this specific 

strategic problem and characteristics, using realizations of demand to achieve solutions that are closer 

to reality, in a planning stage of the network design. Concerning the heuristic approach to the 

problem, Greedy Randomized Adaptative Search Procedure (GRASP) metaheuristic is studied and 

applied to the BNPP. Two complementary Greedy Randomized (GR) procedures (heuristic H1 and 

heuristic H2) were researched, with the aim to evaluate the best approach for the problem, in terms 

of computational runtimes and quality of solutions. The results allow us to conclude what is the best 

optimization method, ILP formulations, Heuristic 1 or Heuristic 2, to be used for each instances’ 

characteristics of the problem. The work presented throughout this chapter has resulted in the 

following journal article (Machado, et al. 2023):  

• Machado, Bruno, Carina Pimentel, and Amaro de Sousa. 2023. “Integration Planning of 

Freight Deliveries into Passenger Bus Networks: Exact and Heuristic Algorithms.” 

Transportation Research Part A: Policy and Practice 171:103645., DOI: 

10.1016/j.tra.2023.103645 

 

Finally, Chapter 7 concludes with a summary of the main findings and contributions within this 

thesis and present some limitations to the research. Some future investigation directions are presented 

as well. 
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2. Theoretical Background 
 

 

 

 

2.1. Introducing urban logistics  

UL is a broad concept that has been employed to seek for new solutions of transporting goods in 

urban areas, while taking into account the negative effects on congestion, safety, and environment 

(Savelsbergh & Van Woensel, 2016).  Terms like city logistics and urban transportation are often 

used interchangeably in the literature (Lagorio et al., 2016). For some authors, that clearly 

distinguishes both concepts, UL can be defined as: 

 

“that part of supply chain management that plans, implements, and 

controls the efficient, effective forward and reverse flow and storage of goods, 

services, and related information between the point of origin and point of 

consumption in order to meet customers’ requirements, as influenced by 

complex interactions among densely populated social systems and associated 

infrastructure” (Rose et al., 2017). 

 

Following the distinction between concepts, according to Na et al. (2022), city logistics represents: 

“a critical field in urban areas and mainly focuses on stakeholders’ 

interrelationships from the perspective of macro-level logistics.” 

 

Whether it's city logistics or urban logistics, both are essential for improving cities’ well-being (Melo 

& Baptista, 2017). Similarly, the new solutions must be created to accommodate both environmental 

and demographic challenges, as well as the specific urban logistical challenges that cities confront.  

The concept of UL, however, is not new – it dates back to the 1990s (Lagorio et al., 2016). Since 

then, the world, cities, and science have all evolved. In addition, technological improvements, new 

business models, and new transportation patterns have evolved, bringing with them a rising 

development of innovative, integrated urban logistics solutions. The concept's principal scope is 

inherent in this evolution: UL includes all freight activities in the city, including the assessment, 

planning, maintenance, and enhancement of logistics activities (Büyüközkan & Ilıcak, 2022). 

Much research has been carried out that stems specially in reducing  aforementioned challenges, 

while offering better and faster deliveries (Savelsbergh & Van Woensel, 2016). Further, the increased 

This chapter sets itself as an overview of the essential theoretical background that 

underlies the contributions presented throughout this thesis. It begins with an introduction 

to the UL concept. Following that, three reviews were conducted. The first concerns the 

main concepts and trends associated with the UL field. The second concerns the 

operations research models and methods for integrating passenger and freight flows 

within UL. Specially, this review aims to highlight the existing gaps in the literature, 

which this research aims to address, using them as a foundation for defining the courses 

of action taken in the following chapters. A third, as ending the present section, concerns 

on the most recently published articles, to show how new the research still is. 
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interest and popularity of UL is reflected in a growth in practitioner publications, conferences, books, 

PhD thesis, and university courses in the topic (Hu et al., 2019; Neghabadi et al., 2019). In addition, 

it is also reflected by the different SLRs that have been published in recent years, as well as the 

increasing number of publications dealing with novel transportation options in the field of urban 

logistics. 

SLRs help to provide a rich picture of the current body of research with methodologically well-

defined and rigorous criteria (Thomé et al., 2016). The top 10 most cited literature reviews published 

in quartile 1 journals is summarized in Table 1. The top 10 was achieved considering a search in 

Scopus database with the string: “urban logistics" OR "city logistics" OR "urban delivery" OR "last 

mile delivery" OR "urban freight", considering only review articles published in journals Q1 of the 

field. The review developed by Pelletier et al., (2014) stands out from the rest due to the number of 

citations displayed in Table 1. Moreover, as seen in Table 1, UL is a topic of interest to a large 

number of academics and journals worldwide. Specially, journals concerning production and 

logistic/distribution fields appears as crucial to potentially mitigate the mismatch between supply 

and demand from an operations research contribution. It is also important to notice the publishing 

year, which shows the topic's novelty.  

 

Table 1- The 10 most cited reviews in the urban logistics field 

R “Article Name” and (Reference) Journal TC 

1 
“Goods distribution with electric vehicles: Review and 

research perspectives” (Pelletier et al., 2014) 

Transportation Science 206 

2 

“Consumer-driven e-commerce: A literature review, 

design framework, and research agenda on last-mile 

logistics models” (Lim et al., 2018)  

International Journal of 

Physical Distribution and 

Logistics Management  

172 

3 

“Research in urban logistics: a systematic literature 

review” (Lagorio et al., 2016) 
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The interest and popularity of UL is also reflected by the numerous solutions dealing with novel 

transportation options in order to mitigate city logistics complex issues. From a logistics system 

perspective, the integration of networks and infrastructures is one of the appealing solutions 

highlighted in the literature. It aims to satisfy adequately current and future urban transportation 

needs, and this is the goal of the current study. The emergence of sharing transportation practices, in 

which passengers and freights are part of a joint transportation movement or mixed within the same 

travel, has been studied based on collaboration between businesses, customers, and the public sector.  

According to Bruzzone et al. (2021) an integrated system is defined by passengers and goods sharing 

vehicles, infrastructures, urban space or more than one of these at the same time, which is addressed 

in the current study. According to Cavallaro & Nocera (2022), the combination of passenger–freight 

transport appears to be a research field still in its early phase but with some interesting potentialities. 

There are different possibilities for collaboration between businesses, customers, and the public 

sector. Interested readers are referred to Li et al. (2021), in which the researchers expose three 

patterns of collaborative urban freight transportation systems, to Romano et al. (2021) who present 

a simulation-based evaluation for cargo-hitching service using Mobility-on-demand vehicles, and to 

Van Duin et al. (2019) that study the integration of transportation systems for long-hail 

transportations. Bus, trains, and taxis are some of the studied collaborative delivery modes.  

In recent years, the literature has featured articles exploring the most recent innovations, such as the 

use of drones by Moadab et al. (2022), the use of Twitter data by Mehlawat et al. (2021), but also the 

development of new business models (Mazzarino & Rubini, 2019) and user-oriented service concepts 

(Le Pira et al., 2021). For Muñuzuri et al. (2005) combining solutions is a strategic policy for city 

logistics. Its strategic advantage stems from new developments in both the literature and practice, 

with the goal of optimizing the overall system rather than the performance of individual subsystems 

(Lagorio et al., 2016; Mourad et al., 2021; Manchella et al., 2022), which provide efficiency gains 

for all transport stakeholders (Ghilas et al., 2016).  

Many factors can influence the success of a collaborative freight transportation system, including 

storage-space sizing (Behiri et al., 2018), logistics information platforms, and the overall structure 

of the network (Nieto-Isaza et al., 2022), for instance. Among these factors, the Network Design 

Problem is one of the most difficult transportation problems to deal with (Neghabadi et al., 2019). 

One reason for UL complexity is the presence of multiple service providers, each of which operating 

its own independent activity planning, resulting in multiple separate logistics networks within a city 

(Le Pira et al., 2021; Molenbruch et al., 2021; Moadab et al., 2022). Furthermore, this complexity 

arises not only from the number of innovative configurations (Li et al., 2022) and the large number 

of decisions that must also be made in order to reduce the complexity of the City Logistics network, 

but also from the difficulty in obtaining optimal solutions that are close to reality. The incorporation 

of uncertainty contributes significantly to this proximity to reality, but it is still also underexplored 

in this context.  

In addition, the management of a new urban logistics system is viewed as complex, with many 

diverse entities involved: entities having varying goals and purposes that frequently compete with 

one another. The complexity extends to local and central government, urban planners and residents, 

all of whom are concerned with city sustainability and quality of life. It also includes customers, 

suppliers and distribution companies whose focus is to save costs and increase efficiency. Decision-

making in city logistics is becoming increasingly difficult in this complicated yet interconnected 

context (Firdausiyah et al., 2019). 
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2.2. Technological trends in urban logistics: Concepts and challenges 

Accordingly to Lagorio et al. (2016), UL subject is still evolving because of the continuous changes 

in citizens habits and the unceasing technological evolution enabling new delivery scenarios. Indeed, 

there exist many challenges specific to the urban logistics that makes difficult the implementation of 

solutions. One of the challenges for the urban logistics is the creation, implementation and operations 

management of networks to provide a good service at a low cost with better coordination of the flows 

of goods, higher consolidation of the freight volumes, and multi-organization cooperation 

(Savelsbergh & Van Woensel, 2016). On the other hand, focusing on freight transport, increasingly 

fragmented demand due to the spread of e-commerce and the synchronization and harmonization of 

the different flows of goods are pointed by Lagorio et al. (2016).  

This subsection presents a literature review about the concepts and challenges of UL. 

The Literature Review (LR) is selected as the research method for this study due to the nature of the 

research questions, aiming to understand the trending concepts and technologies supporting urban 

logistics and how they influence it. 

LR was performed in December of 2020, based on the approach presented in Timmins & McCabe 

(2005) in which the main stages are: (1) identify a topic of interest and spend time identifying 

keywords, (2) using keywords to conduct a search of relevant literature, (3) review all references 

sourced and retrieve a copy of relevant references, (4) read all relevant sourced literature and identify 

new references through citations and, lastly, (5) organize all material in preparation for analysis and 

integration in the review. 

Although the main searching procedure presented above is a 5-step process easy to understand, the 

steps 1, 2 and 3 have to be further detailed. 

 

Step 1: Identify a topic of interest and spend time identifying keywords 

The topic of interest for investigation was urban logistics. The keywords selected for the query were 

based on the article Lagorio et al. (2016) and they are: “urban logistics”, “city logistics”, “urban 

delivery”, “last mile delivery” and “urban freight”. Since the research objective was to identify the 

technologies and concepts that support urban logistics and its automation, the terms “concept” and 

the truncation “technolog*” were added as keywords. 

Step 2: Using keywords to conduct a search of relevant literature 

After selecting the keywords for the study, some criteria had to be considered to conduct the search 

of relevant literature.  The database Scopus was used to perform the search. As the first filter, only 

journal articles were considered to do the search. Secondly only Social Sciences, Engineering, 

Business, Managing, Accounting, Environmental Science, Decision Sciences, Energy, Mathematics, 

Economics, Econometrics and Finance areas were considered, excluding areas like Medicine, 

Neuroscience and others. In addition to these two filters, only studies after 2016 were considered. 

This decision was based on the existence of two LR (Savelsbergh & Van Woensel, 2016) (Lagorio 

et al., 2016) published on that year and due to the high number of studies on this topic that have been 

trending, with a rapidly increasement in 2016. 

Finally, only studies written in English were considered for this study. As a result of this search, a 

total of 154 articles were found. 
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Step 3: Review all references sourced and retrieve a copy of relevant references 

To identify a sample of relevant articles, the title, abstract and the article itself was read to ensure 

that it was related to the objective of this research. At the first stage, each title was read and the article 

would not be considered only if the title mismatches the research objective. After that, each abstract 

was also read and the same logic of title criteria was applied. If the title and abstract analysis were 

not sufficient to reach a conclusion, the article was considered and the full paper was analyzed. 

During this process, the main mindset for this articles’ selection was based on the research questions, 

always looking for articles that could provide trending concepts and technologies supporting the 

urban logistics. 

As a result of the LR twenty-five articles, with technological trends, were selected and analyzed in 

detail, and a summary of the main contributions of this set of articles to this research is explored and 

analyzed in this section. Thus, in the subsection 2.2.1 the technological trends that are supporting 

urban logistics, answering to the research question 1 “What are the main topics and technological 

trends supporting urban logistics”, will be identified and examined. Next, in the subsection 2.2.2, a 

framework with the relationship between the technologies and the topic urban logistics will be 

presented, allowing to answer the research question 2, i.e. “What are the relationships between these 

technological trends and concepts and urban logistics’ dimensions, namely, regulation & policies, 

sustainability, operational excellence, collaboration and digitalization”. 

 

2.2.1. Technological trends in urban logistics 

This subsection details the technologies and trends that are supporting urban logistics that were found 

on the LR performed. An overview, with the main technologies/concepts, their definition, the 

respective papers and their goals, is summarized on Table 2, and then discussed in more detail. 

 

Table 2 - Technological trends found on literature that are supporting urban logistics 

Technology or 

Concept 
Description Goal Articles 

Unmanned 

aerial vehicles 

(Drones) 

Adoption of drones’ 

technology to perform 

last mile delivery 

- Minimize the operational cost and urban 

traffic 

Agatz et al. (2018); Ha et 

al. (2018); 

Kitjacharoenchai et al. 

(2019); Boysen et al. 

(2018) 

- Study the market and economic viability 

of these solutions in Europe 
Aurambout et al. (2019) 

Sharing 

economy 

Different stakeholders 

share their resources to 

perform last mile 

deliveries 

- Determine the sustainability potential of 

crowd logistics 

Rai et al. (2017), Behrend 

& Meisel (2018);  Giret et 

al. (2018) 

- Provide insights about crowd logistic 

business models 
Frehe et al. (2017) 

- Determine potentials of sharing parking 

spaces 
Melo et al. (2019) 

- Determine potentials of integration of 

freight and passenger flows 
Ozturk & Patrick (2018) 

Cargo Bikes 

Utilization of cargo-

bikes to perform last 

mile delivery 

- Provide recommendations from an 

extensive empirical survey with experts 

Rudolph & Gruber (2017) 

- Study the costs and sustainability impact   Anderluh et al. (2017) 

Pick-up points Secured location where 

customer can pick-up 

- Provide customer insights about pick-up 

parcel lockers 

Vakulenko et al. (2018); 

Yuen et al. (2019) 
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their orders instead of 

being delivered at home 
- Minimize the external and operational 

costs 

Arnold et al. (2018); 

Orenstein et al. (2019) 

- Optimizes the changing locations to 

minimize the number of pick-ups 

Schwerdfeger & Boysen 

(2020) 

Autonomous 

delivery robots 

(ADR) 

Autonomous robots that 

perform the last mile 

delivery from trucks to 

city centers 

- Presents the factors that influences the 

acceptance of autonomous robots 

Kapser & Abdelrahman 

(2020) 

- Study the efficiency impact of this 

concept 
Boysen et al. (2018) 

Platooning van 

Platoons of connected 

vans performing last mile 

delivery where the first 

one is driven and the 

others are driverless, 

following the first van 

instructions 

- Models and simulates this platoon 

solution to decrease the number of 

vehicles operating 

Lupi et al. (2020) 

New energy 

logistics 

vehicles 

(NELV) 

Usage of battery electric 

vehicles (BEV) to 

perform last mile 

delivery 

- Study the adequacy and performance of 

BEV in urban logistics 

Duarte et al. (2016); Jiang 

& Guo (2020) 

Connected 

cities 

Utilization of an open 

system engaging and 

interconnecting the 

actors to perform the 

last-mile delivery 

- Enhance the ecological and societal 

potential of interconnectivity solution 
Mohamed et al. (2017) 

Cloud-based 

order 

fulfillment 

Utilization of a new 

cloud-based process to 

plan orders fulfillment 
- Improve efficiency of orders planning Leung et al. (2018) 

 

 

Unmanned Aerial Vehicles (also known as drones). Using drones for last mile delivery is gaining 

popularity, since many large companies such Amazon, FedEx, DHL and UPS are currently 

investigating the effective use of drones for last mile delivery (Boysen et al., 2018). This popularity 

is due to the potential to decrease delivery costs and elimination of congestions costs leading to less 

miss-deliveries, since the delay from the dispatch to the delivery is very short when compared to 

truck based deliveries (Aurambout et al., 2019). The research reported by Aurambout et al. (2019) 

focuses on the European market and the economic viability of implementing drone solution for last 

mile delivery. The main goal of their paper is to provide a reality check of this drone delivery concept 

and investigate the potential optimal location of the distribution centers to accommodate the landing 

and take-off of the drones. The conclusion of the study points to the viability of the drone delivery 

based on distribution centers to perform last mile delivery in many European urban areas, confirming 

the drone delivery as a trending technology for the next years. 

On the other hand, Boysen et al. (2018)’ study presents an alternative approach to decrease the costs 

of the network of distribution centers to receive and launch the drones. The authors propose a 

prototype of a truck-based drone delivery solution, where trucks serve as both a mobile depot, in 

which the shipments to be delivered are transported, and as a mobile launching platform for one or 

multiple drones based on the top of the truck. The collaboration of these two types of vehicles is truly 

important, since the delivery truck moves between different customer locations, performing 

conventional home deliveries, and the drone simultaneously serves additional near customers, one at 

a time, returning to the truck after each delivery. 

Ha et al. (2018) studied the Travelling Salesman Problem with Drones (TSPD) where a delivery 

could be performed by a truck or a drone, but the drone had to be launched and rejoin later the same 

truck at another location. The objective was minimizing the operational cost of the system, including 
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the transportation cost and the waiting penalties when a vehicle has to wait for the other. Similarly, 

Agatz et al. (2018) report that substantial savings are possible adopting emerging technology (drone) 

when collaborating with conventional trucks. 

Kitjacharoenchai et al. (2019) performed a research on the Multiple Travelling Salesman Problem 

with Drones (MTSPD). On their study, both trucks and drones can perform deliveries. However, 

some details are different from the previous studies, resulting on different approaches which are: 

orders being delivered only by conventional trucks, conventional trucks performing deliveries, 

simultaneously with drones departing from trucks to deliver additional customer returning to an 

available truck (not necessarily the same), drones performing deliveries directly from the depot and 

returning to an available truck or the initial depot. The research goal is to model and seek an optimal 

delivery route in an urban location with the objective to minimize the total cost of deliveries, which 

consists in the cost of truck travels, the cost of drone travels and the cost of simultaneous truck and 

drone travels. Results have shown that using multiple drones and trucks provides shorter delivery 

times than conventional truck deliveries. 

Some benefits of adopting this technology, based on the considered articles are; (i) faster than trucks; 

(ii) reduction of delivery costs; (iii) shortest delivery time; (iv) elimination of congestion time; and 

(v) environmentally friendly solution (reduction of air emissions). 

Regarding the potential issues adopting this solution, can be pointed out: (i) cargo weight restricted 

to the weight that drones can carry; (ii) shorter travel range; (iii) drones can only transport one 

shipment; (iv) drone safety and noise during deliveries; (v) mandatory existence of distribution 

centers close to the customers location; and (vi) local government policies. 

 

Sharing Economy. The growing interest in shared passenger and freight transportation practices 

indicates that an important opportunity could be reached in combining both. Crowd Logistics (CL), 

alternative termed crowdshipping originates from the term crowdsourcing which covers both the 

word “crowd” or a mass of people and “outsourcing” or the shift of processes, functions and duties 

to third parties (Mehmann et al., 2015). CL is a promising concept as it encourages passengers to use 

their spare carrying capacity on cars, bikes, buses and planes to carry packages to other people. CL 

uses the excess capacity on premeditated trips that already taking place to make deliveries, leading 

to maximization of logistics efficiency and reduction of emissions and traffic congestions (Arslan et 

al., 2016). The idea is to encapsulate the physical objects in packets and containers. These containers 

are then routed as efficient as possible, absorbing spare capacity in transport systems and ensuring 

that they get to their destination on time (Rai et al., 2017). 

Additionally, Frehe et al. (2017) research was performed to evaluate the nature and characteristics of 

CL business models and propose a four step process that practitioners need to follow to implement a 

sustainable crowd logistics service.  

• Be innovative and try to provide a new added value service for stakeholders; 

• Expect a negative return on investment in the long term; 

• Be informed about country-specific regulations and restrictions; 

• Build up the network as soon as possible. 

As an example, Giret et al. (2018) proposes a mobile application called CALMeD SURF 

(Crowdsourcing Approach for Last Mile Delivery) as a practical approach to implement crowd-

logistics in an urban area. This application is accessible for two types of users: those who want to 

deliver a parcel, and those who wish to serve as occasional deliverers in an urban area. The users 

register in the system, and CALMeD SURF locates them in the city in real-time. Thus, when there 

is a delivery request, the app uses the geo-localized temporal deliverers, to compute an optimized 

path for delivering the parcel to its final destination. It is important to highlight that, when calculating 
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an optimal path, multiple objectives are used such as sustainable means, economic issues, temporal 

constraints, etc. Also, it is possible that the path may be constructed as a chain of collaborative 

deliverers, passing the parcel to different deliverers along the way. The main objective of this 

approach is to minimize new emissions originated by path that deviate the deliverer from his/her 

daily routes. Their results show that this is a feasible approach and it is a feasible solution for last 

mile delivery. 

The study of Behrend & Meisel (2018) goes further on this topic and presents the integration of CL 

with item sharing. Item sharing is the term for a relationship among a sharing community where 

members can rent items from one another. This concept is particularly useful for items that are needed 

on rare or just temporal occasions and the benefits are that multiple members can sequentially use 

the same item instead of each buying one such item, individually (Bardhi & Eckhardt, 2012).  The 

research Behrend & Meisel (2018) intends to integrate the CL and item sharing into a single platform 

that has access to information on supplies and requests of items and on announced trips of 

crowdshippers for an upcoming planning period. This platform will be based on collecting 

information over a certain period of time rather than on immediately responding to each single 

incoming request, resulting in the advantage of the opportunities for fulfilling more demand. 

Responses in real-time are not needed but a fast, scalable and high-quality decision making is needed 

for operating the platform. The main objective of the research is showing the potentials of this joined 

solution, concluding that this integration of concepts is, generally, profitable but it depends on the 

crowdshippers’ flexibility to deviate from their original route and the compensation paid to them. 

Other type of sharing economy concept is investigated by Melo et al. (2019). Their paper analyses if 

a shared parking solution leads to a better environmental, energy and traffic performance. The 

solution consists of sharing parking spaces previously used exclusively by city logistic vehicles with 

other users, for example, parents dropping their kids to school. Since these two flows are, typically, 

not coincident in time, the same reserved spaces can be used by both. Their results reveal that if the 

municipality would implement the shared usage of the current exclusive places for urban logistics 

operations, private freights and public transports would experience a decrease in delays and 

improvements in their speeds, resulting in improvements on environmental, energy and traffic 

performance.  

Lastly, Ozturk & Patrick (2018) proposes an integration of urban freight transport and urban rail 

flow, using the same infrastructures to perform last mile delivery and passenger transportation. The 

solution was based on gear trains only with goods with the trains of passenger transportation, 

departing on the same trip. The research goal is to develop a decision support framework for the 

optimal transportation of freight by urban rail at an operational level.  

Some advantages of sharing economy referred in the analyzed articles are: (i) reduction of delivery 

cost; (ii) environmentally friendly solution (reduction of air emissions); and (iii) reduction of traffic 

congestion. 

Regarding the potential issues adopting this solution, can be pointed out: (i) hard to monitor the 

quality and service level; (ii) hard to predict the adherence from the crowd (in case of crowd logistics) 

to plan delivery services; and (iii) hard to guarantee cargo safety. 

 

Cargo-bikes. Cargo-bikes are recently being used to perform last mile deliveries. Typically, a two-

wheeled vehicle, can be as fast or even faster than the conventional vans and trucks performing 

deliveries within a city. This is because they are less affected by traffic congestion, and because they 

can often take faster routes where trucks and vans cannot go, such as pedestrian streets or bicycle 

paths (Decker, 2012). 

The study from Rudolph & Gruber (2017) provides some recommendations supporting cargo-bikes 

use at local level, highlighting that the regulations and policies of municipalities play an important 

role for the use of cargo-bikes. 
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A practical example of cargo-bikes utilization is presented on the study of Anderluh et al. (2017) 

where they suggest the utilization of cargo-bikes to perform last mile deliveries. They study the 

synchronization of cargo-bikes with vans to perform last mile delivery within an urban area. The 

study concludes that emissions can be reduced through the substitution of vans by cargo bikes. 

Some advantages of utilization of cargo-bikes are: (i) environmentally friendly solution (reduction 

of air emissions); (ii) faster than vans performing last mile deliveries; (iii) elimination of congestion 

time; and (iv) low cost of use. 

Some disadvantages are related to (i) hard to guarantee cargo safety; (ii) need of decent cycle 

infrastructure; and (iii) limited load capacity. 

 

Pick-up Points. To deal with the growing volumes of delivered and returned parcels, increasing 

customer expectations and toughening market competition, retailers and logistics service providers 

are exploring and implementing innovative tools such as self-service technologies. In last mile 

deliveries context this technologies are parcel lockers (also named as locker boxes, automated 

lockers, self-service delivery lockers or intelligent lockers) used as a self-service collection and 

return of goods purchased online (Vakulenko et al., 2018). The interest by parcel locker networks is 

increasing and they already represent a significant share of last mile deliveries where the customer 

plays an active role during the distribution process (Morganti et al., 2014).  

The paper of Vakulenko et al. (2018) has studied the customer value and perspective of the adoption 

of parcel lockers to pick up their products purchased online.  They performed a focus group interview 

with 26 participants that have been purchasing on-line. To ensure that all participants had the same 

level of experience dealing with parcel lockers, all have collected and returned a parcel using a parcel 

locker. With insights from the interview they were able to understand how customer look at parcel 

lockers on last mile delivery. Yuen et al. (2019) perform a similar study identifying that convenience, 

privacy, security and reliability are important factors to enhance the perceived value of smart lockers 

by the customers. 

A practical example of this solution for last mile delivery is presented by Schwerdfeger & Boysen 

(2020) through the study of the potential of mobile parcel lockers compared to stationary parcel 

lockers. According to the authors, mobile parcel lockers have the advantage of flexibility, changing 

their locations during the day to where the customer concentration is higher, either autonomously or 

moved by a human driver. Results have shown that mobile parcel lockers can achieve the same 

service level of stationary lockers with only ¼ of the lockers number. 

Orenstein et al. (2019) study the utilization of flexible parcel lockers to identify the potentials of this 

solution. It is called “flexible” because, on their experiments, each customer can be supplied from 

different parcel lockers with the same effort rate. The goal is to formulate a problem with flexible 

parcel lockers and determine the number of vehicles, their routes and assigning parcels to vehicles. 

Results strengthen the conclusion that exploiting the flexibility of parcels lockers makes the delivery 

process more efficient. 

Arnold et al. (2018) study two different scenarios and compare them with the current situation. The 

first scenario is the utilization of pick-up points where customer collect their parcels and the second 

scenario is the utilization of cargo-bikes (a concept mentioned above) to perform the last mile 

delivery to customer houses. Conclusions are that the adoption of pick-up points reduce the 

operational costs of companies while the implementation of cargo-bike distribution system decrease 

the congestion and emissions. 

Some advantages of this solution are: (i) flexible pick-up time; (ii) no missed deliveries; and (iii) 

shorter delivery routes by logistics service providers. 
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Regarding the disadvantages it is possible to list: (i) increasing number of private cars trips to collect 

the parcels; and (ii) customer dependency to collect the parcels; and (iii) software/hardware potential 

errors or flaws. 

Autonomous Delivery Robots (ADV). As a response to the current challenges of city logistics, 

autonomous deliveries are gaining popularity to perform the last mile delivery. Autonomous delivery 

vehicles are compact robots applied to parcel deliveries moving along the sidewalks till their 

customer destination (Boysen et al., 2018). 

Kapser & Abdelrahman (2020) have studied the factors that determine the acceptance of ADV as a 

delivery alternative to the conventional ways of last mile delivery. To do that, a survey methodology 

was employed by using validated scales. The results of their survey show that the price sensitivity 

was the most impactful factor on the acceptance of ADV from the side of the customers. 

Even though autonomous vehicles for last mile deliveries is a recent concept, the study of Boysen et 

al. (2018) presents a model of truck-based robot solution to schedule the truck route and minimize 

the truck fleet. On their model, vans and robots are full with parcels to be delivered. Each van leaves 

the initial depot with robots and follows a route delivering parcels directly to customer locations. 

During the route there are drop-off points where the robots can leave the van to perform parcels 

deliveries to customers that are outside of the route, and then returning to the original van. Their 

results show that the truck fleet can considerably be reduced if autonomous robots support the 

delivery process. 

Some advantages of this solution are: (i) easy integrated with an app to track; (ii) environment 

friendly solution (reduction of air emissions); (ii) need of a person at home to receive the parcel. 

Some disadvantages are: (i) limited to pedestrian speed; (ii) technological interface with customer; 

(iii) limited load capacity; and (iv) autonomous vehicles can only transport one shipment at a time. 

 

Platooning Van. A solution recently emerging for last mile delivery is the platooning van. Only one 

paper was found proposing this solution. Lupi et al. (2020) propose a transport system using 

automatic van platooning to perform deliveries to a city center. According to the authors, van 

platooning occurs when a series of vans follow automatically behind a leading van. This leading van 

has a driver and does not transport cargo and the other vans are driverless and contain cargo to be 

delivered. On their study, they propose a transport system where the van platoon moves from an 

urban distribution center to a dedicated location close to the city center, so-called “split-up-location”, 

where the platoon is broken and each van of the platoon (apart from the first-one), independently 

from the others, carries out the last part of its delivery route moving without any driver. After 

completing the deliveries, all vans return to the same split up location and gather again in a platoon. 

Here a driven van is added to the platoon and new platoon return to the urban distribution center. 

They created a model to optimize the deliveries from urban distribution centers to “split-up location” 

and minimize the number of last mile deliveries. The results show that the total travel time of delivery 

trips and the total km travelled are much lower in the proposed transport system, than in the 

conventional transport systems.  

Advantages of this solution are: (i) reduction on staff costs; (ii) higher speed than conventional 

autonomous vans; and (iii) energy saving, since the aerodynamic resistance is lower. 

Regarding the disadvantages, can be pointed out: (i) air emissions are the same of conventional 

systems; and (ii) high investments needed.  
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New Energy Logistic Vehicles (NELVs). Vehicles that are moved by other energies that are 

alternatives to the fossil fuels have been gaining attention recently (Jiang & Guo, 2020). The paper 

of Jiang & Guo (2020) highlights the factors that influence the market penetration of these new 

energy logistics vehicles. The factors are: 

• Policy promotion: Recent incentive polices have promoted the growth of NELVs; 

• Improve of the technology level: For example, domestic pure electric technology is gradually 

approaching the international advanced level; 

• Public awareness of environmental protection: With the increasing awareness of 

environmental protection, the public has increasingly realized the importance of the adoption 

of “green technologies”;  

• Market awareness: In terms of market recognition, the right-of-way, cost and social 

responsibility promote companies to choose NELVs. 

An example of NELV application is the study of Duarte et al. (2016) that intends to know how 

Battery Electrical Vehicles (BEV) contribute to sustainable urban logistics. The research work 

evaluated the adequacy of BEV in urban logistics in Lisbon, based on a real-world application. Their 

results show that the adoption of BEV on urban logistics context allows maintaining the same 

operation patterns, regarding the number of kilometers travelled per day. When comparing the energy 

consumption, the adoption of BEV allows a reduction of 76% of the consumed energy. 

Advantages of this concept are: (i) significant reduction of the air emissions; and (ii) reduction of 

noise within the cities. 

Some disadvantages are related to: (i) high investments needed to changeover the fleet to BEV (or 

other types of green energy); and (ii) highly dependent of the technological advances. 

 

Connected Cities. This concept was found on just one paper during the review. The study of 

Mohamed et al. (2017) proposes the last mile delivery process based on the key concept of 

interconnectivity, which is an open system where a multiple actors can utilize the interconnected 

urban logistics facilities and usable spaces of the physical internet. These facilities are hubs, 

warehouses, distribution centers, etc. Also, another key pillar for this interconnected system is the 

encapsulation of goods in standard modular, smart and reusable containers to be used across the 

system. The paper model and simulates this concept considering as objective the minimization of the 

delivery costs, the ecological footprint and the increasing of societal efficiency. Their results have 

shown that this interconnectivity concept can positively impact these performance indicators for 

urban logistics. 

Some advantages of this concept are: (i) sharing available capacities on the city; (ii) reduction of 

cartoon packaging; (iii) flexibility on deliveries; and (iv) shorter routes and delivery times. 

As disadvantages: (i) investments on the development of containers; and (ii) air emissions are the 

same of conventional systems. 

 

Cloud-based Order Fulfillment. Leung et al. (2018) developed a cloud-based order fulfillment of 

the orders to the logistics providers and retailers on the field of urban logistics. According to the 

authors, this proposed cloud-based order fulfillment process helps retailers and logistics providers 

when they receive orders from their customers, since they are able to effectively plan for the 

upcoming internal processing operations of received orders. The proposed cloud-based process 

consists on consolidating the pending e-orders, using a cloud-database, and then it creates an optimal 
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internal order processing plan, instead of processing the orders one-by-one right after they are 

received. According to the study, this intelligent process allows warehouse postponement strategy to 

be adopted, increasing retailers and logistic providers’ flexibility and capacity to satisfy their 

customers. Reduction of processing times is also an important advantage of this concept. 

Some advantages of this concept are: (i) lower processing times of the orders; and (ii) higher 

flexibility and capacity to satisfy the customer expectations. 

Some disadvantages are related to: (i) process re-engineering by logistics services providers is 

needed; and (ii) investments on the cloud database. 

 

 

2.2.2. Contributions of technologies and innovative concepts on urban 

logistics 

Grounded on the LR performed and considering the results summarized in Table 2, a framework, 

which allows to understand the contribution of each technology or concept in urban logistics and in 

which dimensions it has an impact, is proposed in Figure 3. 

 

 

Figure 3 - Framework of contributions of each technology or concept in UL 

 

From the nine technologies and concepts discussed on this study, it is possible to identify 

contributions on five urban logistics’ dimensions. These dimensions are Regulation and Policies, 

Sustainability, Operational Excellence, Collaboration and Digitalization.  
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Impacts on Regulation and Policies were found on paper from Rudolph & Gruber (2017) studying 

the contributions made in the law and policies adopted by the local authorities and municipalities 

that intend to adopt cargo-bikes technology.  

Sustainability is one of the most impacted dimensions by eight of the nine technologies studied. This 

dimension is related to quality of life and ecological footprint, and can be found impacts on the 

following analyzed papers: Agatz et al. (2018), Anderluh et al. (2017), Behrend & Meisel (2018), 

Mohamed et al. (2017), Boysen et al. (2018), Boysen, Schwerdfeger, et al., 2018, Rai et al. (2017), 

Duarte et al. (2016), Giret et al. (2018), Ha et al. (2018), Kitjacharoenchai et al. (2019); Lupi et al. 

(2020), Melo et al. (2019) and Schwerdfeger & Boysen (2020).  

Operational Excellence dimension is also very contributed from the technologies and concepts 

presented, since the papers Anderluh et al. (2017), Arnold et al. (2018), Boysen, Schwerdfeger, et al. 

(2018), Frehe et al. (2017), Ha et al. (2018), Jiang & Guo (2020), Kitjacharoenchai et al. (2019),  

Lupi et al. (2020), Orenstein et al. (2019), Ozturk & Patrick (2018) and Leung et al. (2018) refer the 

impact on performance of the urban logistics process, measuring indicators such as operational cost, 

delivery times, service level etc.  

Collaboration is the key relationship of stakeholders of urban logistics that can give advantages in 

some manner, as mentioned by the studies from Frehe et al. (2017), Vakulenko et al. (2018), and 

Yuen et al. (2019).  

Lastly, and in accordance with the findings described in Leung et al. (2018), Digitalization is 

represented by process improvements that transform the bureaucratic or manual work in some digital, 

easier and smarted digital way.  

Thus, this framework allows to understand the main contributions of the technological trends for 

urban logistics and relationships between those technological trends and the urban logistics 

dimensions that may need further research. Undoubtedly, the main dimensions impacted are 

Sustainability and Operational excellence, since eight of nine of the technologies and concepts found 

in the literature have directly mentioned the impact on each one of them. Also, some dashed arrows 

are represented on the framework that connect technological trends to dimensions of urban logistics. 

These arrows represent relationships that, even if there were no papers found on the LR studying 

these impacts, the adoption of respective technological trend has a very high potential to impact the 

pointed dimension.  

 

 

2.3. Integration of freight and passenger flows in the field of urban 

logistics 

Aside from recent trends, the majority of integrated flows UL literature contends that considerable 

gains can only be achieved through a streamlining of distribution activities resulting in less freight 

vehicles traveling within the city and a better utilization of these vehicles (Manchella et al., 2021, 

2022). This streamlining can be obtained through consolidation of loads of different shippers and 

carriers, and through coordination of operations within the city (Masson et al., 2017). According to 

Fatnassi et al. (2015) current research on integration of passenger and freight flows is divided into 

two categories: those researched that develop and improve the service quality of existing 

transportation modes, and those that develop innovative transportation systems that provide an 

ecological option to stakeholders in urban areas. The integration allows optimize the overall system 

rather than the performance of individual subsystems (Lagorio et al., 2016; Mourad et al., 2021;  

Manchella et al., 2021, 2022), which provides efficiency gains for all transportation stakeholders 

(Ghilas et al, 2016) in addition to the potential cost reductions and efficiency improvements. Further, 

passenger’s transportation modes have been considered to be one of the huge contributors to 
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greenhouse gas emissions (Fatnassi et al., 2015) and here the environmental issues will apparently 

be improved. 

Some difficulties are addressed to the urban delivery systems planning and management. Among 

these are the synchronization of diverse flows of goods with different consumer's buying patterns, as 

well as the rising fragmentation of demand (Lagorio et al. 2016) are issues commonly referenced in 

the literature. In addition, as business models evolve and consumer expectations for faster service 

delivery increase (Azcuy et al., 2021) the challenge of designing and managing urban delivery 

networks increases. Factors such as storage-space sizing (Behiri et al., 2018), logistics information 

platforms, and the overall structure of the network (Nieto-Isaza et al., 2022) for instance can influence 

the success of a collaborative freight transportation system. These challenges call for sustainable and 

efficient solutions to which OR contributes. 

In this complex issue of design, planning, managing and operating a new or existing integrated flows 

transportation system, OR appear as the discipline that provides methodologies to support the 

logistical operations of cities and assist in process optimization. At the same time, many of the 

complex problems presented by the UL context also foster the development of new mathematical 

modeling techniques and algorithms. Modeling and Simulation as a research methodology has been 

used intensely in the general concept of Urban Logistics. For instance, Lagorio et al. (2016), 

categorize the articles according to a "Quantitative Modeling" and "Simulation" approach, 

concluding that "Quantitative Modeling" is the most commonly used research method, while 

"Simulation" is the least commonly used, accounting for 45% and 1% of the analyzed contributions, 

respectively. Despite distinguishing between "Mathematical Programming" and "Simulation 

Modeling", Neghabadi et al. (2019) conclude that they are the two most widely used methods in UL 

literature. Hu et al. (2019), on the other hand, use the term "Modeling and Simulation" in the same 

way that this dissertation does, and demonstrate that it is the most widely used approach in the UL 

field, followed by qualitative analysis and conceptual inquiry. However, these studies generally focus 

on the concept of urban logistics as a whole, with no difference made for analytical methods 

developed to help make better decisions specifically in the challenge of integrating passenger and 

freight flows in the context of urban logistics. It should also be noted that, according to Neghabadi 

et al. (2019) (mentioned above), the integration of networks and infrastructures to combine freight 

and passenger transportation remains a big challenge. This thesis arises precisely to mitigate this 

challenge.  

 

 

2.4. Operational research models and methods to the integrated 

passenger and freight transportation problem  

A SLR was conducted in July of 2022 to critically evaluate existing operations research models and 

methods to investigate the integrated passenger and freight transportation problem. 

The essence of the SLR is to help establish solid knowledge bases to define the lines of action adopted 

in subsequent chapters of this thesis. Furthermore, this review allowed to position the contributions 

of this thesis in the literature and hence exposing the contributions in this context. SLR is particularly 

helpful to handle with large amounts of information, as well as to minimize the researcher bias and 

error inherent to the selection of research studies (Thomé et al., 2016). 

 

2.4.1. Methodological approach 

The review methodology herein proposed is based on the four steps presented in the “Preferred 

Reporting Items for Systematic Review and Meta-Analysis” (PRISMA) framework: I. Identification, 
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II. Screening, III. Eligibility, and IV. Included (Moher et al., 2009; Snyder, 2019), presented in Figure 

4. 

Identification: Purposing to collect the most relevant papers to this research, the search process was 

conducted on Scopus scholarly database under the fields “title, abstract, keywords”. The search query 

considers three levels of keywords. The first level is related with the UL concept, and here, “urban 

logistics”, “city logistics”, “urban delivery”, “last mile delivery” and “urban freight” were the 

keywords used. The terms selection is in line with the Lagorio et al. (2016). Lagorio et al. (2016) 

conducted an important SLR that consolidates the knowledge on urban logistics and analyses the 

development of the discipline. Their article counts with 122 citations according to Scopus database. 

A second level related with the particular problem under study: the integration of passenger and 

freight flows in Urban Logistic context. For this level the keywords passenger*, people and "public 

transp*" are intersected with goods, cargo, parcels and freight were considered. And, finally, a last 

level of modeling keywords to characterize OR models and methods, intersecting with the terms 

mathematical, algorithm and optimiz*. The use of the wildcard character in the search string optimiz* 

makes it possible to identify papers with the terms optimizing and optimization. This resulted in a 

total of 313 papers in Scopus. 

Screening: The search is limited space to journal papers written in English and excluded conference 

proceedings, book series, technical reports, and webpages, to help ensure the quality of the pool of 

identified papers, following Lagorio et al. (2016) approach. Furthermore, only papers written in the 

latest 12 years UL literature are considered, analyzing the subject's behavior along the January 2010 

- July 2022 period. UL is clearly an emerging topic where a lot of exciting research is going on, and 

the field is developing rapidly. The growth in publications appear in 2011, and the peak appears in 

2014 (Lagorio et al., 2016) Employing these two exclusion criteria, the sample set reduced to 92 

papers which will serve as the primary data source for the literature analysis.   

Eligibility:  In order to understand if the selected papers match the present SLR’s objective, the 92 

papers were subjected to a primary abstract analysis, and further, a full-text analysis, considering: 

(a) only papers that integrates passenger and freight flows in a single transportation mode, 

within city centers; 

(b) only papers that presents optimizations algorithms were considered.  

(c) only papers that do not consider Vehicle Routing Problems (VRP) as the main problem of 

study, since the problems addressed on this thesis are not in the same scope of VRP problems. 

Included: After these analyses, a final sample of 25 papers was derived. This set of papers formed 

the basis for the analyses presented hereinafter (see Table 3). 
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Figure 4 - PRISMA methodology 

 

2.4.2. Descriptive analysis 

The selected papers were descriptively characterized according to: the number of publications over 

time and international journal; Concerning the evolution of the number of published articles from 

2010 to 2022, it appears to be significantly increasing in the last five years (see Figure 5), which 

means that this research scope is attracting more researchers recently.  

 

 

 

 

 

 

 

 

Figure 5 - Papers distribution by year, between 2010 and September of 2022 

Concerning the main journals that published the highest number of papers contained in the final 
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Methodological and journal Computers and Operational Research list the maximum number of 

published articles over the time window considered (4 articles). 

 

Table 3 – Final sample of articles with journal distribution 

Journal References 

IEEE Transactions on Intelligent Transportation Systems Manchella et al. (2021) and Manchella et al. 

(2022)  

Scientific Reports Moadab et al. (2022) 

Transportation Research Part B: Methodological Li et al. (2014), Ghilas et al., (2016), Di et al. 

(2022) and Nieto-Isaza et al. (2022) 

Journal of Advanced Transportation Ye et al. (2022) 

International Journal of Production Research  Mourad et al. (2021) and Li et al. (2022) 

The International Journal of Transportation Research Guimarães et al. (2022) 

Transportation Research Part E: Logistics and 

Transportation Review 

Behiri et al. (2018), Azcuy et al. (2021) and Li et 

al. (2021) 

Neural Computing and Applications Ren et al. (2021) 

Expert Systems with Applications Peng et al. (2021) 

Quality and Quantity El Ouadi et al. (2021) 

Transportation Science Ghilas et al. (2018) 

European Journal of Operational Research Ozturk & Patrick (2018) 

Computers and Operations Research Fatnassi et al. (2015), Li et al. (2016),  Ghilas et 

al. (2016) and Liu & Dessouky (2017) 

EURO Journal on Transportation and Logistics Masson et al. (2017) 

Transportation Research Part C: Emerging Technologies Li et al. (2016a) 

 

2.4.3. Results 

In this subsection the results of the SLR are discussed. For the final sample of 25 articles, the general 

information about the problem under study was analyzed, such as the decisions of the optimization 

algorithm, the transportation means used for the integrated solution of passenger flows and the 

decision level of the problem. As in other fields, applications in UL are divided into operational, 

tactical and strategic decision-making levels. To distinguish between the various decision levels, in 

addition to their time influence, some authors propose a classification of the same. As an example, 

at the strategic level, Behiri et al. (2018) placed the storage-space-sizing problem in stations; at the 

tactical level, decisions on train frequency were made; and at the operational level, train timetabling, 

goods delivery in the departure station, freight rail transport scheduling or dispatching were 

systematized. Concerning further details about the problem formulation, it was analyzed how the 

authors addressed uncertainty on their models and how was the model formulated. Furthermore, the 

objective functions were also studied to perceive their optimization interests studying their problems. 

Lastly, the solution approach was also highlighted, with the aim to understand if the authors adopted 

exact optimization or heuristics approaches. The results of this detailed review of existing problems, 

their characteristics, and solution approaches are summarized in Table 4. 

https://www.scopus.com/sourceid/24800?origin=resultslist
https://www.scopus.com/sourceid/19372?origin=resultslist
https://www.scopus.com/sourceid/24355?origin=resultslist
https://www.sciencedirect.com/journal/transportation-research-part-c-emerging-technologies
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Table 4 - Summary of the analysis of the final sample of 25 articles 

Authors 
Problem under 

study 

Transpor

tation 

mean 

Decisions 
Problem 

Type* 

Uncertainty 

Model 

Formulation*** 

Objective(s) 

Solution 

approach**** 
Type of 

Uncertainty

** 

Source of 

Uncertainty 

N

º Description 

Li et al. 

(2014) 

Share-a-ride-

problem 
Taxis Routing, Nº of Taxis Op ▪ - MILP 1 

Maxime the total 

profit 
E, H 

Fatnassi et 

al. (2015) 

Personal and freight 

rapid transit 

problem 

Rail Routing Op ▪ - MILP 1 
Minimize the total 

cost 
E 

Li et al. 

(2016) 

Share-a-ride-

problem 
Taxis Routing, Nº of Taxis Op ▪ - MILP 1 

Maxime the total 

profit 
E, H 

Li et al. 

(2016b) 

Share-a-ride-

problem 
Taxis Routing, Nº of Taxis Op S 

Travel 

times, 

delivery 

locations 

Stochastic 

programming 
1 

Maxime the total 

profit 
H 

Ghilas et al. 

(2016a) 

Pickup and Delivery 

Problem 

Bus, 

train, 

metro 

Routing and schedules 

for both requests and 

pick-up and deliveries 

vehicles 

Op ▪ - MILP 1 

Minimize the total 

travel cost of the pick-

up and deliveries 

vehicles 

H 

Ghilas et al. 

(2016b) 

Pickup and Delivery 

Problem 

Bus, train, 

metro 

Routing and 

schedules for both 

requests and pick-up 

and deliveries 

vehicles 

Op Sc: 60 scenarios 
Demand

s 
MILP 1 

Minimize the total 

travel cost of the pick-

up and deliveries 

vehicles 

H 

Liu et al. 

(2017) 

Passenger and 

freight 

rail scheduling 

problem 

Rail Timestamps Op ▪ - MILP 2 

Minimize the total 

travel times; minimize 

the total tardiness for 

the passenger trains 

E, H  

Masson et 

al. (2017) 

Mixed Urban 

Transportation 

Problem 

Bus and 

electric 

vehicles 

Routing of electric 

vehicles 
Op ▪ - MILP 2 

Minimize the number 

of vehicles, minimize 

the sum of arcs 

E, H 
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Authors 
Problem under 

study 

Transportation 

mean 
Decisions 

Problem 

Type* 

Uncertainty 
Model 

Formulation*** 

Objective(s) 
Solution 

approach**** 
Type of 

Uncertainty** 

Source of 

Uncertainty 

N

º Description 

Ghilas et al. 

(2018) 

Pickup and Delivery 

Problem 
Bus, train, metro 

Routing and 

schedules 

for both 

requests and 

pick-up and 

deliveries 

vehicles 

Op S 

Time 

Windows, 

service 

times and 

pick-up and 

deliveries 

vehicles 

capacity 

MILP 1 
Minimize the total 

cost 
E 

Behiri et al. 

(2018) 

Freight-Rail-

Transport-

Scheduling Problem 

Rail 

Assign 

demands to 

trains 

Op S 

Departure 

and arrival 

stations  

MILP 1 

Minimize the total 

waiting time of 

demands 

E, H 

Ozturk et al. 

(2018) 

Freight transport by 

rail transportation 

system 

Rail 
Scheduling 

trains 
Op S 

Travel time 

between 

stations, 

demand, 

loading and 

offloading 

times, 

demand 

release dates 

MILP 2 

Minimize the 

inventory levels at 

departure stations, 

Minimize the total 

tardiness of deliveries 

E, H 

Ren et al. 

(2021) 

Share-a-ride-

problem 
Car Routing Op ▪ - - 1 

Minimize the total 

cost 
H 

Peng et al. 

(2021) 

Online bus-pooling 

problem 
Bus 

Assign 

requests to 

buses 

Op S 

Destination 

of requests 

and demand 

- 2 

Maximize the total 

revenues from 

passenger and parcel 

delivery 

H 

Manchella 

et al. (2021) 

Ride Sharing 

(Flexpool) 
Car 

 

Assign and 

dispatch 

vehicles 

Op S 

Request 

rates; 

Package 

drop-off 

locations  

- 4 

Minimize mismatch, 

time taken, travel time 

and the number of 

vehicles 

ML 
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Authors 
Problem 

under study 

Transportation 

mean 
Decisions 

Problem 

Type* 

Uncertainty 
Model 

Formulation*** 

Objective(s) Solution 

approach**

** 
Type of 

Uncertainty** 

Source of 

Uncertainty Nº Description 

Li et al. 

(2021) 

Train service 

design 

problem for 

collaborative 

passenger and 

freight 

transport 

Train 
Schedule trains and 

assignment of freight 
Op ▪ - MILP 1 Maximize the profit  E, H 

El Ouadi et 

al. (2021) 

Location 

problem of 

Bundling 

Hubs for joint 

transportation 

Buses 

Determine the 

location of Bundling 

hubs 

St MLM Demand - 3 

Minimizes costs, risk and 

maximizes the demand 

coverage of the built 

network 

H 

Mourad et 

al. 2021 

Pickup and 

Delivery 

Problem with 

Time 

Windows 

Train 
Routing of pick-up 

and delivery robots 
Op 

Sc: 50 

scenarios 

Passenger 

demand 
MILP 1 Minimize the total costs  E, H 

Moadab et 

al. (2022) 

Drone routing 

problem 

model for last 

mile delivery 

Drone and Bus 

Assigning requests to 

drones and delivery 

sequence 

Op S Demand MILP 1 

minimize the total energy 

that drones consumed in 

delivery operations 

E 

Di et al. 

(2022) 

Joint 

optimization 

problem of 

train carriage 

arrangement 

Train 
Carriage arrangement 

scheme for each train 
Op ▪ - MILP 1 

minimize the weighted 

sum of the operation cost 

and total delay time 

E 

Nieto-Isaza 

et al. (2022) 

Multi-

commodity 

network 

design 

problem 

Subway Determines the 

number and locations 

of mini-depots, 

and the flows of 

goods across the 

network 

St S Crowd 

capacity and 

demand  

MILP 1 minimizes total cost E 
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Authors 
Problem under 

study 

Transportation 

mean 
Decisions 

Problem 

Type* 

Uncertainty Model 

Formulatio

n*** 

Objective(s) Solution 

approach**

** 
Type of 

Uncertainty** 

Source of 

Uncertainty Nº Description 

Ye et al. 

(2022) 

Train schedules 

and freight 

distribution 

plans for joint 

transportation 

Train 

Determine train 

schedule and freight 

plan 

Op ▪ - MNLP 1 Minimize total cost H 

Li et al. 

(2022) 

Collaborative 

urban public 

transport 

system. 

Train 
Manage freight 

transportation 
Op ▪ - MILP 1 Minimize delivery times E, H 

Guimarães 

et al. (2022) 

Multi-

commodity 

network flow 

problem 

Bus 
Manage freight flow 

in a network 
Op ▪ - MILP 2 

Minimize total costs and 

time 
H 

Azcuy et al. 

(2021) 

Location 

routing problem 
Bus, train 

Determine the 

transfer location to 

last mile delivery 

St 
Sc: 10 

scenarios 
Customer location MILP 1 Minimize travel distance H 

Manchella 

et al. (2022) 

PassGoodPool 

for joint 

transportation 

Car 
Matching and 

routing demands  
Op ▪ - - 2 

Minimize delivery times 

and number of vehicles,  
H 

CHAPTER 

5 OF THIS 

THESIS 

Freight network 

flow assignment 

problem 

(FNFAP) 

Bus 

Assignment of 

freights to buses 

lines 

Op S 

Demand, 

Destination address 

and Deliveries time 

windows 

ILP  5 

Minimize delivery times, 

Minimize the number of bus 

offloads, minimize the 

number of buses uses, 

maximize the robustness to 

bus suppressions and 

maximize robustness to 

offloads mismatches  

E, H 

CHAPTER 

6 OF THIS 

THESIS 

Bus network 

planning 

problem 

(BNPP) 

Bus 

Determine the 

minimum number 

of bus required 

St 
Sc: 100 

scenarios 

Demand, 

Destination address 

and Deliveries time 

windows 

ILP 1 

Minimize the number of bus 

services needed for all 

scenarios 

E, H 

 

Legend: * Operational level (Op), Strategic level (St); **The authors do not consider uncertainty (▪), Stochastic (S) or Scenario-based (Sc) with the number of scenarios, Machine Learning Models 

(MLM); *** Integer Linear Programming (ILP), Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MNLP); ****Exact (E), Heuristic (H) or Machine Learning 

(ML) 
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As shown in Table 4, generally, the majority of the published research of the final sample of 25 

articles has been concerned with operational level of decision-making process. This level of decision-

making entails problems such as routing, scheduling, and assignment issues. From the total sample 

of twenty-five articles, twenty-two articles tackle operational problems of integrated flows in the 

contact of UL. The majority of these articles address problems of scheduling, pick-up delivery, and 

assignment problems. Another finding of the review is that most existing models have ignored some 

aspects of uncertainty. In some cases, researchers acclaim this opportunity but address it as an avenue 

of future research. Others, consider pure deterministic data but present possible sources of 

uncertainty, such as buses capacity, customers demand or possible random events that can occur 

during the route execution (Masson et al., 2017). Nevertheless, underestimating uncertainty leads to 

unrealistic planning decisions (Savelsbergh & Van Woensel, 2016; Yanıkoğlu et al. 2019). Only nine 

articles, of the twenty two that lays on operational level, have addressed uncertainty on their models, 

mainly by incorporating stochastic parameters into their models. Ozturk & Patrick, (2018) is the 

work that incorporates the highest number of stochastic parameters to deal with uncertainty: Travel 

time between stations, demand, loading and offloading times and demand release dates. On the other 

hand, Ghilas et al. (2016) and Mourad et al. (2021) incorporate uncertainty into their models through 

a set of 60 and 50 scenarios, respectively. Despite this, both of them only consider one source of 

uncertainty, i.e. a single stochastic parameter. In Chapter 5 of this thesis, the operational assignment 

problem FNFAP is addressed, incorporating uncertainty through three stochastic parameters into the 

models, namely, demand, delivery locations and delivery time windows. The key factors that 

distinguish the work of studying FNFAP, present in Chapter 5 of this thesis, from the articles 

presented in Table 4 are the objective functions addressed in the optimization models. Robustness is 

incorporated to the operational problem of FNFAP to deal with two different possible disruptions of 

the integrated system of passengers and freight flows: the suppression of a bus that is planned to 

transport freight and passengers and the failure to offload the freight from the bus stop at the right 

time and the right stop. The suppression of a bus may have a huge impact in terms of distribution 

plan because the system can be at the maximum capacity of freight distribution and, therefore, a 

suppression of a bus leads to undelivered orders to several final customers. The robustness to the 

offloading the orders at the right stop, may lead to failures respecting the delivery time windows 

agreed with the final customer. For these reasons, robustness for these two possible disruptions allow 

the system to act proactively to deal with when they occur. Grounded on this literature analysis, this 

work is the first in the literature to incorporate robustness to the operational problem of FNFAP, in 

the context of integration of passenger and freight flows in UL. 

Fewer articles of the final sample tackle problems of the strategic level of the decision making. Only 

three studies - El Ouadi et al. (2021), Azcuy et al. (2021) and Nieto-Isaza et al. (2022) –  have 

specifically investigated strategic issues, and all have addressed network architecture from a location 

problem point of view. El Ouadi et al. (2021) investigated the strategic location problem of bundling 

hubs to serve as part of a network design for passenger and freight transportation. The authors 

propose a Hybrid Robust Machine Learning-Heuristic Algorithm to solve the strategic location 

problem of Bundling Hubs for joint transportation of passenger and requests, considering varied 

logistics demand cases and several criteria, such as implementation costs, distribution costs, 

maximum customer coverage, minimal risk to the population and the urban area. Through a set of 

computational experiments, the authors present insights in terms of cost minimization and transport 

demand coverage maximization over the long-term. As further research recommendations the 

authors suggest that “an interesting issue would be to address the problem of responding to the 

customer demand using minimum fleet size to efficient urban traffic”, which is the focus of Chapter 

6 of this thesis. Nieto-Isaza et al. (2022) investigated the problem of strategic mini-depot (such as 

parcel lockers) location in a last mile system with express deliveries. Their aim is to determine the 

number and location of the mini-depots and the flow of goods across the subway network, with the 

objective to minimize the total cost. The authors present a MILP formulation and solve it through 

benders decomposition algorithm. Their results show that a network of mini-depots is required to 

accomplish the existing flows of people in the crowd and to support cross-docking activities. Also, 
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their experiments support the use of professional courier services as an alternative to satisfy the 

demand with a guarantee of service. The authors present future research recommendation to 

introduce stochasticity and capacity into the system, characteristics of this investigation. Lastly, 

Azcuy et al. (2021) is the most similar to the present study since they addressed a strategic level 

network design problem, through the development and implementation of a scenario-based heuristic 

optimization to solve their location-routing problem, with uncertainty in the customer locations. In 

their study, the decisions are the location of transfer stations, where the goods are transferred from 

the public transit vehicle, e.g. bus or tram, to the last mile vehicle to serve the final customers, with 

the objective of minimizing travelled distance. Their aim is to evaluate the distance impacts resulting 

from using public transportation capacity to move goods to transfer stations, from which they are 

moved to their final customer using small vehicles. In their computational experiments, the authors 

could conclude that a reduction in the total system-wide distance is achieved through the integrated 

urban delivery system. A decrease in the relative distance savings was observed when higher 

customer densities exist or when tight delivery deadlines are considered. Furthermore, an increase in 

savings was observed with the increase in the distance of the depot to the delivery region and when 

customers are clustered around the public transit line. The authors highlight as future research to 

consider multiple transfer stations on multiple transit lines, which are features included in the study 

done in Chapter 6 of this thesis. Furthermore, El Ouadi et al. (2021) aim to reduce costs and risk 

while maximizing demand coverage of the built network; Nieto-Isaza et al. (2022) attempt to reduce 

the total expected cost of mini-depot installation and transportation. The study of the Chapter 6 also 

focuses in a strategic level problem, BNPP, but is distinguished from these studies since the primary 

goal is to reduce the number of buses required to operate in the network, with the integration of 

passenger and freight, thus minimizing the investments required in the physical adaptation of the 

buses. According to List et al. (2003), it is important to incorporate uncertainty into the analysis of 

fleet sizing decisions, since by ignoring the uncertainty and solving a deterministic problem with 

expected demands, the decision maker would probably acquire a fleet that is too small, and incur 

significant penalties for frequently being unable to meet demand. When analyzing the sources of 

uncertainty included in the models, stochastic parameters are the main source of uncertainty, with 

demand as the most common parameter with uncertainty, as shown in Table 4. 

In the studies addressing problems at a strategic level, mentioned before, Nieto-Isaza et al. (2022) 

assumed a stochastic problem. The authors present a two-stage stochastic network design problem 

for multi-commodity flows with both stochastic demand and arc capacities. Azcuy et al. (2021) 

addressed uncertainty in the parameter of customer location. Lastly, El Ouadi et al. (2021) address 

uncertainty concerning to the requests. Finally, considering the problem-solving approach, most of 

the studies relied on the application of heuristics (Li et al. 2021) but it is also possible to find exact 

models and methods (Ghilas et al. 2018) to solve the problems. As illustrated in Table 4, only six 

studies propose exact solution approaches (such as MILP formulations) for problems with 

uncertainty, which are Ghilas et al. (2018), Behiri et al. (2018), Ozturk & Patrick (2018), Mourad et 

al. (2021), Moadab et al. (2022) and Nieto-Isaza et al. (2022). Concerning to the heuristics, Li et al. 

(2016) introduce the source of uncertainty in the travel time and delivery locations. Both variants are 

formulated as a two-stage stochastic programming recursive model. Their solution methodology 

integrates an Adaptative Large Neighborhood Search (ALNS) heuristic. In the Ghilas et al. (2016) 

study, the ALNS solution methodology, for the Pickup and Delivery Problem with Time Windows, 

Scheduled Lines and Stochastic Demands (PDPTW-SLSD), is embedded into a scenario-based 

heuristic optimization to deal with uncertainty in the demand parameter. Behiri et al. (2018) 

investigate the problem of Freight-Rail-Transport-Scheduling-Problem and solve it through the 

implementation of a single-train-based decomposition heuristic. Ozturk & Patrick (2018), present 

exact formulations for their problem of freight transport by rail transportation network and solve it 

using a longest path based heuristic method. Peng et al. (2021), investigate the problem of online 

bus-pooling service for passenger and parcels sharing buses using a Large Neighborhood Search 

(LNS) heuristic, to assign requests to buses. Manchella et al. (2021) studied the problem of ride-

sharing using a distributed model-free deep reinforcement learning algorithm to assign and dispatch 
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vehicles and requests. Mourad et al. (2021) tackled the pickup and delivery problem as a two-stage 

stochastic problem with the objective of minimizing the overall transportation costs. To solve the 

stochastic optimization problem, a scenario-based algorithm along with an ALNS algorithm was 

performed. The authors analyzed the impacts of uncertainty under different settings including 

passengers demand and scheduled line frequency and capacity. Focusing on the strategic level of the 

decision-making process, El Ouadi et al. (2021) propose a Hybrid Robust Machine Learning-

Heuristic Algorithm (HR-MLHA) to solve the strategic location problem of Bundling Hubs for joint 

transportation of passenger and requests, minimizing the total costs, risks and the demand coverage 

of the built network. Nieto-Isaza et al. (2022) investigates the multi-commodity network design 

problem to determine the number and location of the mini-depots and the flow of goods across the 

subway network, with the objective to minimize the total cost. As previous said, the authors present 

a MILP formulation and solve it through benders decomposition algorithm. The work of Azcuy et 

al. (2021) addresses a strategic level network design problem, through the development and 

implementation of a scenario-based heuristic optimization to solve their location-routing problem, 

with uncertainty in the customer locations. In their study, the decisions are the location of transfer 

stations, where the goods are transferred from the public transit vehicle, e.g. bus or tram, to the last 

mile vehicle to serve the final customers, with the objective of minimizing travelled distance. Their 

aim is to understand the impact of such decisions on the operational performance of the system. 

Besides the similarities, our strategic objective is the minimization of the fleet needed in the network. 

Ghilas et al. (2018) highlight as future research the minimization of adapted vehicles needed to jointly 

transport passengers and goods in an efficient network, which is precisely the aim of the work of 

Chapter 6. 

In the urban logistics integrated flows context, new technological and structural solutions are added 

to the design of the transportations systems in order to improve the customer service, while ensure a 

better operational efficiency. This can already be seen in the most cited LRs in the UL subject. In the 

SLR developed in this chapter, these solutions are referred as convenience and their study is essential 

in our investigation to link the literature and practice in order to suggest and evaluate potential 

improvements in the SOLFI project process approach.   

In the sample, when the focus is last mile delivery, some studies focus on operational research using 

alternative delivery locations, such as pickup points as stores or parcel lockers.  Last mile delivery 

represents a huge challenge in the near future and must be a focus of transportation and logistics 

managers according to Fatnassi et al. (2015). Manchella et al. (2021), for instance, suggested by a 

previous contribution, gas stations and convenience stores to offer storage services to the 

transportation system to enable such an infrastructure. Nieto-Isaza et al. (2022) addresses the problem 

of shipping parcels in a last mile system with express deliveries. The authors define a “more flexible 

setting where a network of strategically located mini-depots, such as parcel lockers that act as 

automated service points, allow partial order-crowd matching with cross-docking, which makes the 

(hard) constraint of finding similar origin–destination pairs unnecessary”.  

At the time of this SLR, the time scope was defined as all publications published up to July 2022. 

With the evolution of time and given the increased interest in UL in both practice and academic, an 

additional search was carried out to evaluate the most recent investigations in this field from August 

of 2022 to September 2023. This additional search used the same keywords and selection criteria 

about the language and type of paper, as the previous one, with the goal of understanding: on the one 

hand, the evolution noted in the academic world on the subject under study, and on the other, which 

new models have supported decision-making in the field of flow integration of passenger and freight. 

It is crucial to highlight that the articles in Table 5 did not serve as foundation for the construction of 

the models (described in the next chapters), as the models and algorithms were developed before the 

date of publication of those articles. It does, however, serve to highlight the originality of the research 

done in this thesis, to which the literature has yet to give a response after some time.  
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Between January 2022 and September 2023, 41 papers were published, of which 12 were already 

included in the initial SLR, as it was prolonged until July 2022, as previously stated. Table 5 lists the 

title, reference, and journal of the 29 papers that were published at the period.  

 

Table 5 - List of 29 articles found on the literature (with same search criteria), from July 2022 to September 2023 

Reference Title Year Journal 

Yang et al. (2023) A crowdsourced co-modality 

transportation system integrating 

passenger and freight 

2023 Advanced Engineering 

Informatics 

Behiri et al. (2023) A robust ant colony metaheuristic for 

urban freight transport scheduling 

using passenger rail network 

2023 Expert Systems with 

Applications 

Sacramento et al. 

(2019) 

An adaptive large neighborhood 

search metaheuristic for a passenger 

and parcel share-a-ride problem with 

drones 

2023 Transportation Research Part C 

Bosse et al. (2023) Dynamic priority rules for combining 

on-demand passenger transportation 

and transportation of goods 

2023 European Journal of 

Operational Research 

Bruzzone et al. (2023) Feasibility on the integration of 

passenger and freight transportation 

in rural areas: A service mode and an 

optimization model 

2023 Research in Transportation 

Economics 

W. Li et al. (2023) GSOANR-based multi-objective train 

trajectory optimization 

2023 International Journal of Rail 

Transportation ISSN: 

Fehn et al. (2023) Integrating parcel deliveries into a 

ride-pooling service—An agent-based 

simulation study 

2023 Transportation Research Part 

A: Policy and Practice 

Machado et al 

(2023)* 

 

Integration planning of freight 

deliveries into passenger bus 

networks: Exact and heuristic 

algorithms  

2023 Transportation Research Part 

A: Policy and Practice 

Hatzenbühler et al. 

(2023) 

Modular vehicle routing for combined 

passenger and freight transport 

2023 Transportation Research Part 

A: Policy and Practice 

Sun et al. (2022) Multi-objective optimization model 

for planning metro-based 

underground logistics system 

network: nanjing case study 

2023 Journal of Industrial and 

Management Optimization 

Zeng & Qu (2023) Optimization of Electric Bus 

Scheduling for Mixed Passenger and 

Freight Flow in an Urban-Rural 

Transit System 

2023 IEEE Transactions on 

Intelligent Transportation 

Systems 

Boysen et al. (2023) Optimization of two-echelon last-mile 

delivery via cargo tunnel and a 

delivery person 

2023 Computers & Operations 

Research 

Hörsting & Cleophas 

(2023) 

Scheduling shared passenger and 

freight transport on a fixed 

infrastructure 

2023 European Journal of 

Operational Research 
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Reference Title Year Journal 

Alawad & 

Kaewunruen (2023) 

Unsupervised Machine Learning for 

Managing Safety Accidents in 

Railway Stations 

2023 IEE Acess 

Babaei et al. (2022) A New Model for Evaluation of the 

Passenger and Freight Transportation 

Planning Based on the Sustainability 

and Safety Dimensions: A Case Study 

2022 Process Integration and 

Optimization for Sustainability 

Bhattacharya et al. 

(2022) 

A study on pollution sensitive sponge 

iron based production transportation 

model under fuzzy environment 

2022 Decision Making: Applications 

in Management and 

Engineering 

Sahli et al. (2022) An effective and robust genetic 

algorithm for urban freight transport 

scheduling using passenger rail 

network 

2022 Computers & Industrial 

Engineering 

Wang (2023) An integrated cross entropy 

methodology for planning scheme 

evaluation of highway transportation 

hub with interval-valued intuitionistic 

fuzzy information 

2022 Journal of Intelligent & Fuzzy 

Systems: Applications in 

Engineering and Technology 

Begnini & Morita 

(2023) 

 

Analysis of last-mile operations for 

mobility and logistics in rural areas 

2022 World Review of Intermodal 

Transportation Research 

Muriel et al. (2022) Assessing the impacts of last mile 

delivery strategies on delivery 

vehicles and traffic network 

performance 

2022 Transportation Research Part 

C: Emerging Technologies 

Fatemeh et al. (2022) Development of a Model to Optimize 

the Operations of an Intermodal 

Underground Logistics 

Transportation 

2022 Journal of Pipeline Systems 

Engineering and Practice 

Cerrone & 

Sciomachen (2022) 

VRP in urban areas to optimize costs 

while mitigating environmental 

impact, 

2022 Soft Computing 

Schmidt et al (2023) Using public transport in a 2-echelon 

last-mile delivery network 

2022 European Journal of 

Operational Research 

Granacher et al. 

(2022) 

Enhancing biomass utilization by 

combined pulp and fuel production 

2022 Frontiers in Energy Research 

Chen et al. (2023) Exploring decision-making 

mechanisms for the metro-based 

underground logistics system network 

expansion: An example of Beijing 

2022 Tunnelling and Underground 

Space Technology 

Schwerdfeger & 

Boysen (2022) 

Who moves the locker? A benchmark 

study of alternative mobile parcel 

locker concepts 

2022 Transportation Research Part C 

Huang et al. (2022) Drone Stations-Aided Beyond-

Battery-Lifetime Flight Planning for 

Parcel Delivery 

2022 IEEE Transactions on 

Automation Science and 

Engineering 

Tsai et al. (2023) Trajectory feature extraction and 

multi-criteria k nearest neighbour 

based job-to-crowd matching for the 

crowdshipping last mile delivery 

2022 IET Control Theory & 

Applications 

Grigoroudis et al. 

(2022) 

Transportation Sustainability and 

Relevant Ranking of European 

Countries 

2022 Journal of Intelligent & 

Robotic Systems 

 

Legend: *this is an outcome article of the present research (Chapter 6) 
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Three observations can be drawn. First, one of the 41 articles is an article that resulted from the 

research of this thesis, leading to a publication titled “Integration planning of freight deliveries into 

passenger bus networks: Exact and heuristic algorithms”, which was published in the journal Q1 - 

Transportation Research Part A: Policy and Practice - in 2023. Second, about the evolution noted in 

the academic world. The integration of diverse modes of transportation, as differentiated across 

articles, is still being studied. In 2023, electric buses, passenger rail, trains, and metro are among the 

modes of transportation being researched. Furthermore, there is a need to broaden the scope of 

research to include rural regions as well as new business models such as ride-sharing services. There 

are several options for Urban Logistics systems, and the new papers published between August 2022 

and September 2023 reinforce this. Lastly, seven articles address the integration of passenger and 

freight flows in the field of UL from a OR perspective, aiming to develop models to support the 

decision making on this context. Table 6 presents the summary of the analysis performed on these 

seven articles found.
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Table 6 - Summary of the analysis of the seven articles found in the literature between August of 2022 to September 2023 

Authors 
Problem under 

study 

Transpor

tation 

mean 

Decisions 
Problem 

Type* 

Uncertainty Model 

Formulation

*** 

Objective(s) Solution 

approach

**** 
Type of 

Uncertainty** 

Source of 

Uncertainty Nº Description 

Yang et 

al. (2023) 

Crowdsourced co-

modality 

transportation 

system 

Bus 

Parcels 

assignment to 

crowdsourced 

passengers 

Op ▪ - MNLP 1 
Minimize total costs of 

crowdsourcing 
E 

Behiri et 

al. (2023) 

Freight-Rail-

Transport-

Scheduling Problem 

Rail 
Assign demands 

to trains 
Op S 

Demand, 

Departure 

and arrival 

stations  

MILP 1 
Minimize the total waiting time 

of demands 
E, H 

Bosse et 

al. (2023) 

Dynamic pickup 

and delivery 

problem with 

heterogeneous 

services 

Car 

Acceptance of 

requests and 

routing of the 

vehicle 

Op S 

Request 

location and 

revenue 

BO 1 

Minimize the lost revenue in 

case customer requests cannot 

be satisfied 

E 

Fehn et al. 

(2023) 

Mobility on 

Demand ride 

pooling service 

Bus 
Assignment of 

freight to vehicles 
Op S 

Origin and 

destination 

nodes 

- 1 
Minimize the distance to 

complete the schedule 
H 

Zeng & 

Qu (2023) 

Mixed-flow rural-

urban transit  
Bus Bus routing Op ▪ - MILP 1 

Minimize the total operational 

cost 
E 

Hörsting 

& 

Cleophas 

(2023) 

Schedule rail 

transport vehicles 

and cargo allocation 

Train 

Train schedule 

and cargo 

allocation 

Op S Demand MILP 2 

Minimize waiting passengers 

and Minimize the delay and 

number of rejections 

E 

Schmidt et 

al. (2023) 

Last mile delivery 

problem with 

scheduled lines 

Bus 

Route utilization 

(first echelon), 

and routing 

(second echelon) 

Op S 

Stations 

locations, 

customer 

locations 

MILP 3 

Minimize:  the number of last 

mile operators; the number of 

last mile trips and the routing 

cost 

E, H 

 

Legend: * Operational level (Op); **The authors do not consider uncertainty (▪), Stochastic (S), ***Mixed Integer Non-Linear Programming (MNLP), Bayesian Optimization (BO); 

****Exact (E), Heuristic (H)
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The analysis allows to conclude that OR models and methods to support the decision-making process 

is being strongly researched in the last year, in the field of integrated UL. All the seven articles have 

their decisions on the operational layer and uncertainty is stochastically addressed, in the majority of 

the cases. The work of Schmidt et al. (2023) is the most similar to the present investigation, namely 

the done on Chapter 5, since they address the problem of last mile delivery problem with scheduled 

lines of buses, using a two-echelon system. Their approach is to use the already existent bus trips 

that occur in the city center to deliver the parcels (first echelon) and then use an LMO to deliver the 

parcels from bus stations to the final destination. The main difference to the present investigation is 

that their focus is on the routing of the LMO, while doing the parcels distribution. Moreover, 

concerning the scalability of the problem, they study only considers a total set of 150 requests in their 

instances, while the present investigation considers different sets of instances up to 300 requests. 

Despite the similarities with the research of the present thesis, none of these seven articles have their 

decisions on the strategical layer and neither address robustness to deal with the unpredicted failure 

events. 

Considering the above discussion, the present research still shows novelty, both for the academic and 

for the practical world. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



49 

 

3. Research Methodology  
 

 

 

 

3.1. Selecting the research methodology 

Cities must have higher decision support systems at all decision-making levels in order to manage 

practice-relevant problems with the complexity and ambiguity inherent of real-world operational 

procedures. Every decision level, strategic, tactical, or operational, has its own set of challenges and 

variables. Furthermore, each decision made regarding the new UL transportation system has a 

significant impact on people's daily lives as well as the long-term profitability of the companies 

participating in the process. This concern has led to a considerable body of research in the UL field 

adopting advanced models and algorithms capable of finding satisfying solutions to hard problems 

in short computational runtimes. For this, long-term and cost-effective solutions are required, which 

OR can supply. OR deals with advanced analytical methods for decision making. According to the 

International Federation of Operations Research Societies (IFORS), this scientific field can be 

described as the “development and application of a wide range of applied problem-solving methods 

and techniques in the pursuit of better decision making and efficiency, such as mathematical 

optimization, simulation, queueing theory and other stochastic models”.   

There has been a growth in recent years of the need for quick and precise decision-making, and 

particularly in the field of UL. UL is rich in terms of modelling the various aspects and details that 

are considered relevant for the field. This is where Mathematical Modeling and Optimization 

Methods have been central to the majority of UL's research. They provide to managers and 

researchers a solution for building models in order to understand, change, manage, and control “(part 

of) the behavior of real-life operational processes or that can capture (part of) the decision-making 

problems that are faced by managers in real-life operational processes”.  The above definition was 

provided by Bertrand & Fransoo (2002), one of the most cited articles on the Modeling and 

Simulation (M&S) research methodology. Bertrand & Fransoo (2002) has around 929 citations and 

their article “Operations management research methodologies using quantitative modelling” is 

included in Karlsson's book (2016) "Research Methods for Operations Management" (2016). There 

are, however, few explanatory studies on this research methodology, and as a consequence, Bertrand 

& Fransoo (2002) will be the reference article for a full description of the research methodology of 

this thesis, considering its popularity and importance. 

In the field of OR, it must be emphasized, however, that according to  Bertrand & Fransoo (2002), 

the major contribution of OR is not the modeling of operational processes, but the analysis of the 

mathematical model of the process and the quality of its mathematical solutions as part of the 

quantitative research in Operations Management (OM). M&S as model-based quantitative research, 

provide valuable insights into the nature of optimal decisions under specific modeling assumptions 

(Karlsson, 2016). Furthermore, it has been identified as a powerful problem-solving strategy in the 

OR field, and importantly, for the analysis of complex systems. This is precisely the main motivation 

of the present research. 

This chapter starts with the justification for using a quantitative-based model research 

that also uses qualitative instruments to collect and analyze data (examining stakeholders' 

opinions), that must be included into quantitative models. Following this justification, 

the chapter proceeds on to a discussion of the research process and ends with the 

discussion of data collection and analysis procedures used in this dissertation concerning 

the qualitative instruments. 
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Other designations as Mathematical Programming and Simulation-Optimization can be found in the 

literature of UL. In this thesis, the definition of Modelling and Simulation as final term for the 

research approach is heavily influenced by Karlsson (2016).  

Bertrand & Fransoo (2002) argue that quantitative (model-based) OM research can be divided into 

four contributions research types. The authors differentiate between empirical and axiomatic research 

(classes of quantitative model-driven research), and between descriptive and prescriptive research 

(research types). A distinction between the various types of research is as follows: 

• Classes of quantitative model-driven research: while axiomatic quantitative modelling 

research is primarily driven by the (idealized) model itself, the empirical quantitative 

modelling research is driven by empirical findings and measurements. More specifically, in 

an axiomatic research, the researcher's main concern is "to obtain solutions within the 

defined model and ensure that these solutions provide insights into the structure of the 

problem as defined within the model," whereas in empirical research, the researcher's main 

concern is "to ensure that there is a model fit between observations and actions in reality and 

the model made of that reality”. In regard to this classification, this investigation is axiomatic 

quantitative modeling study. This definition is confirmed by the following sentences from  

Bertrand & Fransoo's (2002) article, which it is the case of this investigation: 

- “Axiomatic quantitative OM research starts with a condensed description of the 

characteristics of the operational process or the operational decision problem that is 

going to be studied”; 

- “Axiomatic research produces knowledge about the behavior of certain variables in the 

model, based on assumptions about the behavior of other variables in the model”; 

- “It may also produce knowledge about how to manipulate certain variables in the model, 

assuming desired behavior of other variables in the model, and assuming knowledge 

about the behavior of still other variables in the model”; 

- “Researchers look at the operational process or the operational decision problem 

through the looking glass of the mathematical models that can be analyzed”. 

 

• Research types: while prescriptive research is concerned with developing "policies, plans, 

and actions" to improve over the results available in the existing literature, to find an optimal 

solution for a newly defined problem or to compare various strategies for addressing a 

specific problem; descriptive research is concerned with creating a model that adequately 

describes the causal relationships that may exist in reality. Several of these research types 

are possible to be combined, as noted by Bertrand & Fransoo (2002). In this way, this 

research is an axiomatic class that blends axiomatic prescriptive research with axiomatic 

descriptive research.  Furthermore, combining these two types of research allows to ensure 

that research objectives 3 (formulate novel mathematical programming models under 

uncertainty capable of framing the decision maker's decisions regarding the integrated flows) 

and 4 (develop suitable solution approaches to solve the models efficiently and proneness to 

real-world applications through the SOLFI project) are met. The reason for this is while “in 

axiomatic descriptive research, the modelling process is central (…) and researcher 

typically does not move into the model-solving phase”, “in axiomatic prescriptive research, 

the model-solving process is the central research process reported”. It is for this reason that 

studying a process can be considered as descriptive, whereas studying a problem may be 

considered prescriptive according to Bertrand & Fransoo (2002). In this regard, both the 

process and the problem were examined during investigation. 

According to Bertrand & Fransoo (2002), M&S is used as a research method when two types of 

contributions are expected: the first is related to the study of a “new variant of the problem, using 
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well-known solution techniques”; and the second is related to the study of a “problem that has been 

studied before, but which provides a new, or in some aspects better, solutions to the problem, either 

by applying new types of solution techniques to the problem, or by achieving better results with 

accepted solution techniques”. This investigation has a combination of these elements: researching 

a new variant of the logistical process of integrating passenger and transportation flows in the context 

of urban logistics, with the goal of providing solutions to the problem through the development of 

new optimization models and heuristics. Moreover, this study is clearly positioned in the scientific 

literature according to the above Chapter 2. 

 

3.2. Research process 

This thesis applies the model for problem solving proposed by Mitroff et al., (1974)  and cited by  

Bertrand & Fransoo (2002). In his model, the operational research approach consists of four distinct 

stages, such as 1) conceptualization, 2) modeling, 3) model solving and 4) implementation, as shown 

in Figure 6. These four phases are divided between the reality or the real-life problem, conceptual 

model, the mathematic (scientific) model, and finally the solution approach. Since this research is a 

combination of axiomatic descriptive and axiomatic prescriptive research, the research cycle includes 

"conceptual – scientific model - solution" (highlighted in bold in Figure 6). The first connection is 

made using axiomatic descriptive research, and the solution is found through axiomatic prescriptive 

research, as previously mentioned. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following is a detailed description of the investigation process, considering each of the three 

defined stages. 

 

Conceptual Model 

Scientific Model 

Solution 

Reality, Problem, 

Situation 

Conceptualization Modeling 

Implementation Model Solving 

Feedback 

Validation 

Figure 6 - Research methodology (adapted from Mitroff et al., (1974)) 
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Phase 1) Conceptualization 

There are two primary stages in the conceptualization phase. The first phase is to acquire information 

about the many stakeholders impacted by the new logistics system. Quantitative and qualitative 

research is used to focus on the major areas of agreement and conflict management between the 

requirements and demands of each stakeholder. Semi-structured interviews and a questionnaire were 

applied to compare the two previously indicated aspects. This application of qualitative and 

quantitative instruments (section 4.2) enables to design a final solution to the proposed logistical 

process that will be the basis for both operational and strategic problems. The role of the phase is to 

construct a "plan" (as axiomatic prescriptive research involves) to better explain the existing 

condition and, as a consequence, to discover an ideal solution for a newly defined problem that seeks 

to be close to reality. After defining the proposed integration solution for UL, which is one of the 

outputs of chapter 4, the next step is to create a conceptual model. Here, a condensed description of 

the characteristics of the operational process or the operational decision problem that is going to be 

studied is addressed. The conceptual model, presented in section 4.3, is modelled using Unified 

Modeling Language (UML). Moreover, all assumptions that underlie the conceptual model are 

described in detail as suggested by Bertrand & Fransoo (2002). 

 

Phase 2) Modelling 

The modeling phase started after the collection of all requirements of the stakeholders of the project 

and the conceptualization phase. Two different type of models were developed: ILP models through 

mathematical programming and heuristics models through MATLAB language. The properties and 

characteristics of the real problem are incorporated into these models, through the use of decision 

variables, stochastic parameters to include uncertainty, objectives and constraints. During this phase, 

for the FNFAP problem, in terms of exact formulations, five different models were developed, 

accordingly to the objective function under study for the problem, each one with specific variables 

and constraints. With the aim to conduct lexicographic optimization between different pairs of 

objective functions, additional models were created intersecting the optimization constraints of the 

models. In terms of heuristic, two different approaches were developed accordingly to stakeholders’ 

requirements: request receipt model/algorithm and optimizer algorithm. 

For the BNPP problem, in terms of exact formulations, a single model was developed with a single 

objective of minimizing the fleet needed for transportation. The model is based on a set of scenarios 

of possible realizations of parameters. Concerning the heuristics, they were modelled following the 

greedy randomized adaptive search procedure. 

 

Phase 3) Model Solving 

To solve the models, instances were generated. For the FNFAP problem, there were two types of 

instances generated to use and solve the models. The first set of instances is completely fictional, 

with sets and parameters assuming a fictional value that represent a potential realization of a real 

case application. On the other hand, pilot instances were also generated with part of the bus network 

data provided by the BTO of the city, with the goal to test the models with realistic data. Still, data 

related to the requests forecast (demand, delivery address, delivery time windows) are purely 

fictional and only the bus network assume real data on these instances. For the BNPP, fictional 

instances to solve the models were used, including a scenario-based approach to turn the instances 

as realistic as possible, since the solutions found for a set of 100 scenarios is a potential good solution 

for a future use-case. The models were solved with commercial solver CPEX and MATLAB 

software. 
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4. Integrating Stakeholders’ Expectations Into the 

Transportation System 
 

 

 

 

4.1. The significance of investigating stakeholders' expectations  

Urban Logistics is characterized by uncertain and dynamic conditions where a wide variety of 

stakeholders, information, and materials must be managed in order to provide efficient directions for 

such a complex task. The task gets more challenging due to the highly distributed supply channels 

and end-use locations with multiple supply methods (Na et al., 2022).  Furthermore, in the integration 

of passenger and freight through the usage of public transit logistics within urban areas both network 

structure and operational strategies must be updated (He, 2020). A conflict of interest exists, and it 

is acknowledged in the literature as a factor that must be appropriately anticipated in order to UL be 

effective in practice (Lagorio et al., 2016). Each city logistics stakeholder involved has its own set 

of preferences and expectations (Kiba-Janiak et al., 2021) as well as operating characteristics 

(Lagorio et al., 2016); which must be considered from the early stages of the planning process (Le 

Pira et al., 2017). Residents, shippers, receivers, freight carriers, transport companies, public 

transport operators, and regulators are the fundamental stakeholders to be explicitly considered when 

planning a UL transportation system.  

Carvalho et al. (2019) emphasize in their review that successful UL is dependent on stakeholder 

engagement and interests.  It is also noted that UL stakeholders play an important role in both 

facilitating, but also hindering, the effective implementation and management of an UL 

transportation system. Lack of support and commitment of stakeholders is another factor contributing 

to the complexity of UL (Carvalho et al., 2019). As result, several scholars believe that the long-term 

development of UL will be completely realized if the expectations and collaborative links of the 

many stakeholders involved are established (Demir et al., 2022). Overlooking the stakeholders' 

perspective could have serious consequences for the process design, mathematical model 

development, and, eventually, the realization and interpretation of the findings in a real-world 

application, where the preceding gains could be compromised.  

Several authors, Lagorio et al. (2016), Hu et al. (2019), Carvalho et al. (2019) and Kiba-Janiak et al. 

(2021) recommend that future research should focus on establishing novel decision-making models 

and methods that take into consideration the interests and preferences of several stakeholders. One 

of the most cited reviews in UL, Lagorio et al. (2016) found that "stakeholder involvement" is one 

of the three essential areas that deserve further exploration. The authors found also a lack of 

This thesis lays a significant emphasis on stakeholders' perspectives. It ensures that 

stakeholders' expectations and needs are met by incorporating this information into the 

optimizations models developed within SOLFI project, aimed to propose a new 

integrated transportation system. This integration not only strengthens the link to the real 

world, but it also helps to close the gap between client expectations and operational 

performance. In this way, the chapter is divided into three sections. The first section 

(Section 4.1) provides theoretical context for this topic, Section 4.2 comprises qualitative 

and quantitative research through the application of questionnaires and interviews. 

Section  4.3 introduces conceptual design models of the integrated logistic solution used 

by SOLFI. Section 4.4 explains the integrated solution of passenger and freight flows to 

be used on the SOLFI project, and the base of this research. The chapter finishes with a 

summary of the important findings. 
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interaction between them. Hu et al. (2019) revealed that stakeholders are rarely included in the design 

and implementation phases, and that there is also a lack of interation among them. Carvalho et al. 

(2019) noted a delimitation of specific issues related to UL, namely: project/planning/management 

of transport and facilities in the urban area with effective participation of stakeholders to formulate 

sustainable policies. Kiba-Janiak et al. (2021) advocated the need to verify consumer preferences and 

behaviors in the subjects of sustainable last mile deliveries on e-commerce market. Therefore, there 

is a substantial gap between recognizing stakeholders' influence on UL challenges and applying it 

into mathematical models. This is certainly salient when mixing passenger and transportation 

movements. Following that, this investigation aimed to fill this gap with a qualitative and quantitative 

research concerning the stakeholders' expectations. 

The current challenge in this thesis is to properly grasp the final customer's emotional and practical 

expectations and then design quantatitive models that also meet those needs. The SOLFI project 

involves a range of stakeholders, and as a result, multiple interests must be met. Here, qualitative and 

quantitative research is used through the data collection and analysis of interviews, applied to thee 

stakeholders and a questionnarire to potential final customers, to help with this concern to supplement 

the conceptualization phase of new model development. The main goal is to compare perceptions of 

final customers and logistics operators between the existing and anticipated UL processes, and to 

determine which requirements for the new transportation systems should be included in the system 

concept definition and decision support, because they have huge influence on final customer 

satisfaction and stakeholder engagement. Ultimalty, it will deliver an accurate UL solution with 

integrated passenger and freight flows to the SOLFI Project.  

 

 

4.2. Empirical study about stakeholders' expectations 

Qualitative research is normally contrasted with quantitative research based on which techniques 

have been used for data collection and analysis (Karlsson, 2016). Several techiniques can be utilized 

however, in this investigation, quantitative questionnaires and interviews were chosen as research 

instruments. While questionnaires yield generalizable results from large sample sizes (which is 

important for gathering a deep understanding from the potential users), qualitative interview data 

often yield more in-depth insights on participant attitudes, thoughts, and actions (Harris & Brown, 

2010). This last is especially useful to gather the requirements from the SOLFI project's three key 

stakeholders - the Logistic Operator, the BTO, and the LMO. Hence, using interviews as research 

instrument ensures that conflicts of interest are managed, as well as the participation and support of 

several stakeholders in the logistical operations. As previously stated, these two aspects are two of 

the reasons why an urban logistic system could fail. Stakeholder involvement, particularly in the first 

phase of the SOLFI project, was crucial throughout the development process. 

 

4.2.1. Final customers questionnaire 

The major goals are to define consumers' online shopping preferences and assess the feasibility of 

implementing additional conveniences for the last mile deliveries of their orders. Concerning the 

consumers' online shopping requirements: “what are the preferences that final customers currently 

assume while purchasing online?”. Preferences, in this question, pertain to the factors that provide 

greater final customer satisfaction. Here, the preferred delivery time, the preferred delivery location, 

and the possibility of receiving goods towards the end of the week, as well as the expected delivery 

schedule, are being discussed. After that, determine whether final customers are willing to pay more 

for a more environmentally friendly service, more effort in order collection, or time flexibility in 

order receipt. 
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Concerning with the conveniences: “how customers accept the adoption of new conveniences 

proposed in the questionnaire? what can affect the acceptation of such conveniences?”. New 

conveniences are the LMOs’ strategies that enable and persuade potential final customers to accept 

a new transportation system. A review of the literature in chapter 2 helped to define these 

conveniences. For the questionnaire two main conveniences were studied, mainly considering the 

final customer requirements to cover the last mile. First, the smooth integration of neighbor stores as 

dropping points where final customers could collect their orders; and second, the availability of a 

delivery service based on an automated pick-up point (for example, smart-lockers) where the final 

customer could pick up the order.  

A first version of the questionnaire was designed and pre-tested by a small group of 20 respondents 

and refined according to the feedback from these test respondents. As indicated in Table 7, the final 

questionnaire was divided into three phases, comprising 12 questions. The first phase captures the 

general information about respondents. The second phase is related to the current behavior and 

preferences of respondents when they purchase online, and their orders’ delivery process. Finally, 

the third phase of the questionnaire assesses the acceptance and desire of the respondents about new 

conveniences proposed to the delivering process of their purchased orders. The Table 7 summarizes 

the twelve questions of questionnaires. 

 

Table 7 - Questions of each phase of questionnaire to the final customers 

Phase Number and subject of each question 

Phase 1: General Information 1. Genre identification 

2. Age group identification 

3. Profession identification 

4. Online purchasing frequency selection 

5. Products that are typically purchased online definition 

Phase 2: Requirements 6. Preferential delivery time window 

7. Acceptance of delivery at the weekend and preferable delivery 

time during the weekend 

8. Preferential delivery point 

9. Analyze if final customers value and are willing to pay more for 

delivery speed, less effort to collect goods, or greater flexibility 

in delivery time. 

Phase 3: Conveniences 10. Analyze if the client would benefit from a delivery service based 

on a network of partner stores. And, if so, what is the impact in 

terms of time and cost? 

11. Analyze if the client would benefit from a delivery service based 

on a lockers network. And, if so, what is the impact in terms of 

time and cost? 

12. Analyze the two presented conveniences to determine which is 

preferable for the client (stores or lockers network). 

 

 

The questionnaire was directed to the population of “people, preferably of younger age groups, who 

purchase on-line”. The sample of the study is not aleatory, since the sample collection was based on 

the following criteria: i) subjective criteria, where groups of people with potential interest on on-line 

purchasing process was beforehand known such as universities, schools, and private contacts; and ii) 

convenience criteria, where the potentials groups resultant from the first criteria were selected 
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considering the ease of access, whether due to physical or interpersonal limitations. This second 

criteria proved to be even more important, since the data collection was performed during Covid-19 

pandemic. 

A total of 302 replies to the question was obtained. These responses were recorded in a data base, 

which enabled content analysis and export to the statistical analysis program IBM SPSS. Following 

variable codification and software feeding preparation work, it was feasible to undertake descriptive 

statistics research on the topic to better explain the sample in investigation as the first step. In the 

second stage of the investigation, more complex statistical approaches such as cluster analysis and 

relationship modeling were used, but it is out of the scope of this thesis since the main conclusions 

could be obtained from this first stage. 

 

Phase 1: General Information: An overview of the sample revealed a homogeneously in the gender 

distributions, with 144 females and 158 males. Figure 8 depicts a diagram with sample’s gender 

distribution. In terms of age of the group (Figure 7), the analysis confirms what the sample's selection 

criteria had previously indicated: the majority of the individuals in the sample belong to the younger 

age groups, between 18 and 25 years. According to the their professional situation, Figure 9 shows 

that around 90% of those who were inquired are either students or employed by a company, 

commonly situations at the younger ages. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8 - Sample's gender distribution Figure 7 - Sample distribution for age groups 

Figure 9 - Professional situation of individuals 
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Furthermore, continuing the profiling of the sample, the final customers' current purchasing 

behaviour is examinated. Considering question 4 (online purchasing frequency selection), it was 

determined that just 16 respondents do not purchase online at all, accounting for about 5% of the 

sample. Moreover, evaluating the number of online purchases per year, more than 50% of the 

respondents perform seven or more online purchases per year, as shown in Figure 10. 

 

 

Figure 10 - Online purchasing frequency 

 

 

Concerning question number 5, the results indicates that 65% of respondents order clothing and 

footwear as the main category of products purchased online. 

 

Phase 2: Requirements: The aim of question number 6 and 7 is to study the final customer 

satisfaction with receiving its online orders throughout the weekend and/or in a specific desirable 

delivery time, since usually deliveries are performed during the week, in accordance with the 

logistics private companies working hours . The following scenarios were provided to the 

respondents: receiving orders from 8 a.m. to 13 a.m., 13 a.m. to 18 a.m., and 18 a.m. to 24 a.m. on 

Saturday, as well as receiving orders from 8 a.m. to 13 a.m. on Sunday. The results indicates that the 

majority of the respondents (around 60%) consider receiving orders on Saturday morning and 

afternoon (from 8 a.m. to 18 p.m.) as a plus and a significant advantage to be incorporated into theirs 

on-line purchasing process. On the other hand, receiving orders on Saturday night (from 18 p.m. to 

24 p.m.) and on Sunday is undesirable by the majority of respondentes. Concerning question 8, about 

80% of the respondents chose “Domicile” as current preferred location where the final customer 

prefers to receive his or her online order, and about 15% of the respondents select their job locations 

as prefererred delivery locations for their orders. This finding emphasizes the current importance of 

the LMO in the logistics distribution plan, whose responsibility it is to complete the last mile delivery 

process to the final customer preferred location. 

In order to determine which aspects final customers value the most during the online purchasing 

process, the following features were considered: i) the option for delivery speed, ii) the option for 

reducing their effort and time during orders reception, and iii) the option of increasing the flexibility 

related to receiving time window of their orders. Results show that all this features are considered 

valuable from the respondents perspectives, since all the three features are desirable by more than 
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75% of respondents. Still, the feature iii) related to the flebility to select the receiving time window 

is the most valued feature by more than 91% of respondents. In terms of willing to pay more for these 

features, 50% of respondents that value the option for delivery speed are willing to pay more for it. 

Concerning the others features, only about 30% of respondents who value them are willing to pay 

more to have them on their orders delivery process. 

 

Phase 3: Conveniences: Lastly, two distinct conveniences for on-line orders delievery were 

proposed to the respondents: the final customer collects his/her online order at a partner store, or the 

final customer collects his/her order in a smart-locker placed in a strategic location in the city. The 

goal of researching final customer acceptance of parcel lockers and stores was to determine if a 

potential option to use them as delivery points was reasonable (where final customers could pick up 

their orders), or even as points of delivery if last mile delivery at final customer address fails for 

some reason. This acceptance was measured in two ways: if respondents accept and value these 

conveniences in general and whether they were willing to pay more for it (to cover the increase in 

supply chain costs, motivating them to contribute to the reduction of environmental pollution).  

Results indicate that the majority of respondents value and accept these conveniences for order 

receiving process in the future, with around 93% willing to pick up their order in a store and 90% 

willing to pick up their order in a smart-locker. Additionally, for both conveniences, the 80% of 

respondents who value them are willing to be charged and pay more to have them.  

Finally, through the question 12, which aims to determine the respondents preference between these 

two conveniences during on-line order delivery process (collect the order on a partner store of the 

city vs collect the order on a smart locker), results show that the preference is for order collection at 

a partner store, but only by three percentage points as shown in Figure 11. Consequently, it was 

concluded that the adoption of these these conveniences is valued by 90% of respondents, as a 

potential feature to be incorpored in the order delivery process.  

 

 

 

Figure 11 - Respondents preference between both conveniences 
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4.2.2. Stakeholders’ semi-structured interviews 

In the urban logistics field, stakeholders play a crucial rule for an effective UL transportation system. 

Understanding how the different stakeholders perceive the new UL solution and find what are their 

requirements to be incorporated in the solution were the main goals of the qualitative research. For 

this qualitative research, semi structured interviews were used to provide useful conceptual insights 

to understand the problem under study, and also to know how to mathematically model the problem, 

especially for the context of SOLFI Project. Three different stakeholders, partners of the project, 

were interviewed: a private logistics company which is seen as one of the biggest clients of the SOLFI 

platform, to use the integrated passenger and freight flows transportation SOLFI solution; the BTO 

of the city who manages the network of the city, and the LMO working on the city, to perform the 

last mile delivery to the final customer houses or collection points. For each interview, an interview 

protocol (in Appendix) with the guidelines for the interview was pre-elaborated, even though there 

was flexibility in terms of questions order and scope. The next subsections detail the interviews to 

each stakeholder. 

 

4.2.2.1 Interview to the private logistic operator 

Logistic companies are the main entities that perform deliveries within the cities. These entities are 

potential clients for the SOLFI project. When these logistic companies have small volume deliveries 

to be transported from the outskirt of the city into the city center, they can use SOLFI platform to 

request for the delivery. Firstly, it is crucial to understand what type of market these companies 

operate with and its characteristics. The response is aligned with the SOLFI project characteristics, 

since they often work with business to consumer market delivering small orders to different residents 

within the city. The type of products fits the project limitation of small and light boxes. 

“Currently we are facing a significant increasement of B2C market mainly derived by the e-

commerce boom in recent years. This market is characterized by orders with very small 

volume that we collect from our client, sort and distribute them to the final customer within 

the city. This market would be a perfect fit for the scope of SOLFI project, considering its 

characteristics. The main type of products are Clothing & footwear and Technology.” 

 

The communication between the SOLFI platform with the company is managed by internet platforms 

to do the request releases, where the logistic company releases the transportation order and SOLFI 

receives this order. 

“We have an integrated platform where our clients perform their request release of orders 

to be dispatched. We can integrate this platform with SOLFI platform to automatically 

inform/confirm a new order transportation, considering the SOLFI capacity, during the 

client request release.” 

 

In terms of operations, the logistic company notify and access the capacity of SOLFI platform when 

they have a request release by their client to be transported by SOLFI solution. After this notification 

the SOLFI platform evaluates the current capacity and determines if it possible to accept the request 

to be transported by SOLFI or not. This notification is done on the previous days, until the day before 

the transportation day required by the client. 

“For the scope of the SOFI project, we are able to inform on the days before what are our 

planned orders to be delivered into the city center. For a certain day, we close the acceptance 

window for new orders till 19h of the day before. After this time, we do not accept any other 

requests for the next day.” 
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The clients of SOLFI solution, in this case the logistic company, are responsible for the first mile of 

the delivery, meaning that they need to drop the order volumes at specific locations defined by SOLFI 

platform. During the request release, the logistic company has to select what are the drop points, 

from a list in the SOLFI platform, that they are available to drop their orders.  

“Integrating our operations with this project would result on drop points selected by you, 

where our drivers could drop the orders destined for the city core. Moreover, we are 

responsible for the first leg of the distribution, collecting at our client locations and dropping 

them at your dropping points. Importantly, we must indicate first what drop points we are 

available to drop orders from your list. I think it is feasible to operate like this.” 

 

At this drop points it is necessary to have a human resource to receive the bus driver and collect all 

the order volumes. 

“Additionally, a human resource is needed at these drop points to receive the orders from 

our drivers and then load them into the bus. We cannot do this loading operation.” 

 

In terms of capacity limits, the typical orders from this logistic company are small and light boxes, 

and each order can have more than one box. The SOLFI system does not partitions the different 

boxes from the same order in different flows.   

“One order can have more than one box/volume to be transported, and they cannot be 

separated in terms of transportation flows." 

 

The capacity of the system is determined for all steps of the transportation flow of the SOLFI project 

and it is related to the request demand of the orders. Thus, the demand of each order is characterized 

by the number of small orders that respect the limit of weight and volume. These limits guarantee 

that all boxes can be handled by all transport entities of the SOLFI project. 

“We anticipate that orders demand is determined by the number of boxes of the order.  Also, 

we have a limit in terms of weight and volume for each box to be able to be transported by 

the infrastructures of all SOLFI project’s transport entities. To operate this, we need to know 

these limits, but I believe this would not be an issue, since the e-commerce market is 

characterized by very small and light boxes.” 

 

4.2.2.2 Interview to the BTO of the city 

The BTO of the city is the entity that manages the bus network of the city. This network will be 

responsible for a portion of the distribution plan of the orders distributed by SOLFI project. A 

distribution plan is an official information with the identification each bus hub, bus service route, 

and bus service stop where the request is assigned and respective times for transportation. Firstly, is 

key to understand how the communication should be performed between the SOLFI system and the 

BTO of the city and its drivers. The response indicates that voice communication is the main channel 

of communication between the drivers and the central office of the BTO of the city. Buses are 

equipped with technology to allow the communication between drivers and the central office. The 

communication between the SOLFI system and the BTO has to be done through the central office.  

“We have a centralized communication system between the central office of the company 

and the drives of the buses. We mainly use technology incorporated in buses for the voice 

communication, or even mobile phones for the case of any problem with the main system. 

The communication between our company and the SOLFI platform has to be done through 

our central office.” 
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Aiming for a smooth integration of freight and passenger flows, it is important to perceive if there 

were significant peak hours during a day, in terms of passenger adherence. The response is that during 

the early hours of the morning and at the end of the day, there are more passengers in the buses and 

so these bus lines have to be avoided for this integrated solution of SOLFI project. 

“We recognize that the early hours of the morning and latest hours of the noon are the most 

demanding bus lines in terms of passenger affluence. These lines are harder to be converted 

into a combined passenger and freight flows, so we must avoid these critical lines.” 

 

The interviewed was asked, how would the receiving process of orders’ volumes and their loading 

on the bus services could be performed, to model these operations accordingly. The response 

indicates that the orders must be dropped by the clients of the SOLFI system at the bus hubs where 

bus routes depart from and, ideally, they must be ready at the bus hub at the beginning of the day, so 

the BTO has time to sort, prepare and load the orders into buses. 

“The best approach would be to have the volumes to be transported available at bus hubs 

on the beginning of the day. Thus, we have time to sort and prepare these volumes according 

to bus schedules.” 

 

 These operations are handled by a dedicated human resource to receive the orders into a dedicated 

area for their preparation. For the pilot stage of the project, the dedicated area is large enough to 

cover all the order volumes for a day. 

“It is feasible to have a human resource at the bus hubs responsible to receive, prepare and 

load the order into the buses, accordingly to the distribution plan. These preparation process 

would be done at a dedicated room, large enough to receive the all the orders for a certain 

day, at least at the pilot stage of the project”. 

 

To understand what would be the network points for loading and offloading the buses within the city, 

the BTO provided a network to be used for the SOLFI project, so they can select buses and stops that 

are less used for passenger transportation, avoiding the most critical lines and routes. 

“Our network is large enough to cover all the important points of the city. We have bus hubs, 

where different bus routes depart from, in every corner of the city to use them to connect to 

the city core. We will select these points and share them with you. Also, we can select the 

bus stops that are less used by passengers and use them as offloading points of the cargo, 

aiming for the less impact as possible to the passenger experience.” 

 

Additionally, it is important to understand what are the requirements to transport the order on the 

buses of the city. The answer indicates that the buses need to be adapted to include a sealed and 

secured area, with restricted access, to put the request boxes and transport them on the bus at the 

same time of passengers. As limit capacity, the BTO indicates that it has to be in number of standard 

boxes that a bus can transport in a route. Also, for the offloading process of orders from the buses, 

there must be a limit of number of boxes that can be offloaded at each time that the bus stops at a 

certain bus stop. 

“Currently, some buses have a shelve structure where passengers can put their bags during 

their transport on the bus. For the orders transportation within the buses, some adaptations 

will be needed to guarantee a sealed and secured area dedicated to the orders transportation 

to transport a limit number of boxes. Additionally, this sealed area must only be accessible 

for the entity that collects the orders from the buses, through a code or a key. For the 
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offloading process of orders from the buses, there has to be a limit number of boxes to be 

offloaded at each time a bus stops at a certain stop, to not jeopardize the passenger 

experience.” 

 

In case of the LMO is not ready on time, at the bus stop, to offload the orders, the orders can be 

offloaded at the next stop of the route, or return to the bus hub where they departed from. 

“If the entity that collects the orders from the buses cannot be at the bus stop on time, for 

some reason, the orders can return to the bus hubs where they departed from. Alternatively, 

they can collect the orders at the next stop of the bus route.” 

 

4.2.2.3 Interview to an LMO of the city  

This subsection presents the key findings of the interview to the LMO in the city of Porto.  

The LMO, which will be part of the distribution process of the SOLFI project, aims to provide a 

logistic service that collects and delivers all the orders from their clients, within the same day. This 

feature fits the main objective of SOLFI project, as the goal is to deliver the requests to the final 

customer during the same day, and not on the day after the collection. Next is a transcription from 

the interview about the aim of the company: 

“Our main goal is to provide a local last mile logistic service to people who need to deliver 

their orders within the same day, not retaining the order for the next day.” 

 

The company provides this service with an environmentally friendly fleet of electric bikes and 

electric motorcycles, contributing for the sustainability and the quality of life of the city, which is the 

main goal of the SOLFI project. The interviewed said: 

“We use electric bikes and motorcycles to perform our deliveries and, for the electric 

vehicles, we have substitutes batteries to change after a battery goes down to ensure we can 

fulfill the orders deliveries.” 

 

To ensure that the last mile drivers of the company have the IT tools to receive the pick-up requests 

by the SOLFI system/platform, understanding about what technologies do they use on their daily 

business is significant. Their response fulfills the SOLFI project goal to maintain the contact with 

the drivers of the last mile drivers through internet technology: 

“Our drivers use mobile devices with access to internet so they can receive updates in real 

time about potential urgent orders to be delivered or how they need to proceed in case of 

any disruption occurs.” 

 

To understand how the last mile company intends to receive the SOLFI order delivery request on 

their system, the interviewed was asked how is their process to build their distribution plan. Their 

response allowed us to conclude that they want to receive the delivery request from SOLFI at the 

beginning of the day, (or even on the day before), so they can include the requests on their “standard 

deliveries” to plan the day according to the delivery constraints of the order: 

“We have standard deliveries during a day that we know beforehand and which are the basis 

for our route planning. However, in case a client asks for an urgent delivery we have 

flexibility to accept and deliver this urgent order, reorganizing our routes based on priority. 

For this project, the best scenario is to know the deliveries beforehand and include them as 

standard deliveries and we manage our routes according to the delivery constraints.” 
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How much time do they need, typically, to deliver their orders within the city was also asked. This 

question aims to understand how much time the driver needs to deliver the order at a destination 

address after collection. The response of the interviewed clarified that it depends on the zones and 

how much zones/localities they have to cross in the city to deliver the orders. It was clear that if the 

order is to be collected and delivered to a final customer within the same zone/locality, it took them 

about 30 minutes to deliver the orders. However, if they have to cross three or more zones/localities 

it takes about one hour. This plays an important role on the decision-making tool to account this time 

as delivery time. They have stated the following: 

“We have defined a maximum delivery time of 1 hour for any order. Still, in case the order 

is collected in the same zone of the destination, we can deliver it in 30 minutes maximum. 

For orders we have to cross 2 zones the delivery time is between 30 and 60 minutes, 

depending in many factors.” 

 

Other important factors were to understand the type of products this company works with and what 

capacity do they have in terms of volume or weight. Their answer was that they typically transport 

very small orders, that can be handled manually, from categories of Sports clothing, Technology and 

Stationery. They also stated that they can collect more than one order at a time and the weight has to 

be less than 10 Kg. These requirements are aligned with the type of products to be transported within 

the scope of SOLFI project: 

“Each bike/motorcycle that we use allows to transport many orders at the same time, with 

the maximum weight of 10 Kg for bikes and 30 KG for motorcycles, for cargo. The typical 

orders are boxes/volumes with small volume to be able to transport manually, without any 

device to handle them”. “Our main categories of products are Sports clothing and footwear, 

technology components and stationery material, as books and paper, which typically respect 

our constraints of capacity.” 

 

As an output from the questionnaire to the potential final customers, previously presented in Section 

4.2.1, domicile delivery is the current preference of final customers to receive their orders. 

Nevertheless, they perceive the use of smart-lockers and stores attractive to the delivery process of 

their orders. This interview allowed to understand how the LMO experience dealing with this stores 

and smart-lockers. The answer allowed us to conclude that they are available to deliver the orders to 

a specific location that is worth trusty to the final customer, since they have done it before 

sporadically.  

“Occasionally, we had cases where if we could not deliver the orders to the client destination 

due to any reason, we could deliver them to a neighbor or a store that is trustworthy for the 

client. It is possible to use it in these terms, from our side.” 

 

Table 8 summarizes the main findings from the interviews to the stakeholders and the questionnaire 

to the final customers.
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Table 8 - Main results and contributions from the interviews and questionnaire 

Contribution  Theme Stakeholder Managerial implication How it was addressed in this research 

Parameters 

incorporated in 

the models 

Request Demand Logistic Operator  It was defined that the request’s demand should represent the number 

of boxes, with limited weight and volumes, of each request and the 

capacity of the system should act accordingly 

Demand parameter in the mathematical models as 

an integer representing the number of volumes 

/boxes for each request 

Last mile delivery 

time window 

Final customers 

(questionnaire) 

It was inferred that final customers value the time window flexibility, 

selecting a day and a delivery time window they want to receive the 

order 

The request is transported on the day of preference 

to the final customer; A parameter is incorporated in 

the models to fulfil the delivery time window 

selected by the final customer;  

Service Time BTO  It was determined that a dedicated area in the bus hubs would exist to 

receive and prepare all the. It was also defined that it would be needed 

a preparation time for each request 

Assuming the availability of a dedicated resource, 

no bus hub capacity to receive requests has been 

incorporated in the models. Additionally, a service 

time parameter was included to prepare the requests 

before transport 

Bus service 

capacity 

BTO Bus capacity: It was determined that a bus service would have a 

dedicated sealed area to transport requests and the capacity of the bus 

would mean the maximum number of boxes each bus service could 

transport during each trip 

Bus service capacity parameter in the models as an 

integer representing the number of volumes /boxes 

each bus service can transport  

Bus stop capacity BTO Offloading limit: It was determined that there is a maximum number of 

boxes to be offloaded from the bus at each bus stop, to not jeopardize 

and significantly impact the passenger experience 

Bus stop capacity parameter in the models as an 

integer representing the maximum number of 

volumes /boxes that can be offloaded from each bus 

at each bus stop 

Maximum 

delivery time 

LMO It was determined a maximum delivery time to deliver any request from 

the bus stop (after offload) to any address within the city 

A parameter the maximum delivery time was 

incorporated into the models. 
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Contribution  Theme Stakeholder Managerial implication How it was addressed in this research 

Assumptions 

in the models 

Last mile delivery Final customers 

(questionnaire) 

It was inferred that, currently, potential final customers prefer to 

receive their orders at their home address. Stores and smart lockers are 

very good options with a high potential to be used on the scope of this 

project as well, since final customers would foresee these conveniences 

as good options for their deliveries 

The final destination of each request is considered 

the location within the city where the LMO delivers 

the requests and ends the distribution process. This 

location can be the final customer home address or a 

preselected store/smart locker by the final customer.  

Requests are 

delivered to the 

starting routes 

points (bus hubs) 

Logistic Operator  It was agreed that the logistic company must be responsible for the first 

mile of the requests, meaning that it has to deliver the requests to the 

location where the bus service routes depart from. The logistic operator 

has to previously inform what are the dropping points it is available to 

drop the orders 

The models assume that the requests are delivered to 

the starting routes points of the bus services 

Requests 

transportation 

Logistic Operator  It was determined that the volumes/boxes of each request must be 

transported by the same bus service (no partitioning is allowed) 

Incorporated in the models indirectly by the requests 

demand, since the demand has to be fully 

transported by the bus service 

Avoid bus 

services in the 

peak hours 

BTO  Possibility to not use the most critical bus services in terms of 

passenger attendance to the integrated passenger and freight solution, 

avoiding the bus services in the peak hours  

The models only use the bus service schedules 

provided by the BTO beforehand. 

Maximum 

delivery time  

LMO  It was determined to split the city in different destinations zones and 

determine a maximum delivery time to each zone and between zones 

The parameter for maximum delivery time depends 

on each zone the request is destined to 

Requests 

offloaded 

LMO It was determined that the volumes/boxes of each requests must be 

completely offloaded from the bus (no partial offloading’s should 

occur) 

Incorporated in the model indirectly by the requests 

demand, since the demand has to be fully offloaded 

Contributions 

to the problem-

solving 

approaches 

Possible 

Disruptions 

BTO  Possible disruptions in the process: main disruptions are (1) the 

suppression of the bus service by an unexpected event during the day 

(e.g. driver absence); and (2) a new bus services schedule of a day that 

is reformulated with requests already accepted for that day. (3) The 

driver cannot wait for the offloading entity to be on time at the bus 

stop. In case the LMO cannot be on time at the bus stop, the orders 

return to the bus hub or can be offloaded ate the next bus stop 

(1) Objective function incorporating robustness to 

the system to deal with bus services suppressions; 

and (2) Algorithm to check if the total set of 

accepted requests can still be accepted for the new 

bus service schedules 

(3) Objective function incorporating robustness to 

the system to deal with bus stops mismatches 

Algorithm for 

orders receipt  

BTO  The time response to the client from the algorithm during a request 

release has to be no more than 10 seconds. After this time, the client 

has to know if its order is accepted or not by the system. 

Development of two different algorithms to build a 

distribution plan: (1) Requests receipt algorithm to 

accept or not a new request in 10 seconds; (2) 

optimizer algorithm of the distributing plan for the 

list of accepted orders. 

Instances BTO  Pilot network information for the Pilot Instances with 220 bus services; 

2 hubs; 7 bus stops; 3 destination zones throughout the city 

Information used to build the Pilot Instances. 

Time Windows LMO  Two standard time windows durations are considered, based on the 

LMO experience: the time windows duration of to 4 hours and the time 

window duration of 2 hours. The final customers can select intervals of 

4 hours or 2 hours to receive their orders. 

All instances are based in time windows of 4 hours 

and 2 hours, according the selection by the final 

customer. 



66 

 

4.3. Conceptual design of an integrated solution for urban logistics 

This co-modality, the combination of passenger traffic and freight transport, is one of the major 

dimensions of City Logistics 4.0, along with others such as integrated platforms based on advanced 

Intelligent Transportation Systems (ITS), Internet of things (IoT) and artificial Intelligence systems, 

and public-private partnerships involving participation of all stakeholders (government, shippers, 

freight carriers, administrators, residents) for balancing economic growth and environmental 

friendliness (Gonzalez-Feliu, 2018; Taniguchi et al., 2020). 

In the recent literature several advanced technologies are being proposed to support urban logistics 

activities and reduce its negative impacts. As an example, Kim et al. (2020) propose a drone-based 

parcel delivery using rooftops of city buildings. Faugère & Montreuil (2020) approach an urban 

logistics system grounded in networks of smart locker banks as pickup and delivery points in the 

inner city. Also, He et al. (2020) introduce the Joint Distribution urban logistics concept, which is an 

intelligent platform to provide efficient, reliable, high-quality, low-cost and personalized logistics 

services for the whole process of delivery, using IoT, Internet, cloud computing and RFID. To 

conclude, Li et al. (2020) use a Cyber Physical System to dispatch urban logistics vehicles. 

This subchapter describes the integrated passenger and freight flow through UML models (Booch, 

2005; Jeffrey L. Whitten, 2016). The UML models provide information about static structure and 

dynamic behavior of the system through diagrams that are windows or views unto UML models. The 

UML diagrams can be divided in two main categories: structural and behavioral. The structural group 

describes the components of the system and their relationships such as package diagrams, component 

diagrams or class diagrams and the behavioral category describes the behavior of the system over 

time, for example, activity diagrams or use case diagrams. The next subsections present the UML 

use case diagram to illustrate the functional requirements of the system and its representation from 

the user’s point of view and also the UML class diagram as a data model to represent the main 

information objects and relationships, to accomplish the functional requirements.  

 

4.3.1. Functional requirements of the solution 

The high-level use case diagram illustrates the main functional requirements of the system, the use 

cases as ellipses and the actors in the system as human figures. Figure 12 shows a use-case diagram 

illustrating the main functionalities and actors of the future SOLFI system. 

This model starts with the client/sender performing a use case which is “request order quotation”. 

Then the system calculates the final quotation and performs planning, using algorithms and 

optimization models, to transport the respective order and returns the information to the client who 

requested the quotation. Note that the use cases that are performed by the system are represented in 

blue, in order to distinguish them from the use cases performed by the other actors. The client is also 

notified by the system of the distribution plan for his/her order. After receiving notifications from 

the system with the final quote and the order distribution plan, the client decides whether to register 

the order or not. In case the client proceeds with the order placement, it is necessary to confirm the 

order, which will authorize the system to create notifications and send them to all actors involved in 

the order distribution process. These notifications include the distribution plan with details for each 

of the actors who will interact with the order such as the estimated time when the order arrives to 

each part in the delivery process. Thus, the client is notified of the location and times that the order 

must be dropped off at the hub and then the order is checked-in on the respective urban transport, 

notifying the LMO this check-in was successful.  

The urban transport driver is responsible for transporting the order along its route and communicating 

any disruptions in transport, such as traffic accidents, breakdowns, etc. When the bus arrives at the 

stop where the order has to be offloaded, an LMO must be present to make the transfer between the 

bus for his/her vehicle. In order to minimize the stopping time for urban passenger transport, the 
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LMO performs the check-out of the order from the bus and automatically the check-in in his/her last 

mile vehicle. When the check-in of the LMO is carried out, a notification is sent to the final customer 

informing the status of the order as well as the estimated delivery time at the destination address. 

When the order is delivered to the destination address, the LMO checks out the order from the last 

mile transport. The final customer also has a use case that confirms receipt of the order. 

This model is a high-level model that illustrates the macro operation of the system as well as its 

requirements, step by step, throughout the order distribution process, in a scenario where everything 

goes well. 

 

 

 

Figure 12 - Use-case diagram representing the main functionalities and actors of the SOLFI system 

 

 

4.3.2. Data model of the solution 

The UML class diagram is a representation of the structure and relationships between classes as well 

as their attributes. This type of diagram allows to represent in a simple and graphical way the 

functioning of the system. A class is represented by a square divided into 2 sections: the upper section 

represents the name of the class, the lower section its attributes. Between classes there are 

relationships that are represented by a line. The Figure 13 illustrates the general class diagram of the 

system. 

This diagram represents the general structure of the SOLFI solution as well as the main relationships 

between the key elements. The diagram starts with a sender who wants to send an order. These two 

classes, with their respective attributes, are related in a way that each sender can have one or more 

orders to send and each order can only be sent by one, and only one, sender. Then the final customer 

class is presented, ensuring that each order has one and only one final customer and that each final 

Client / Sender 

Urban transport 

driver 
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customer can have one or more orders. The order class is related to the urban transport class in which 

the relationship is many to many. This relationship results in the transport, which represents loading 

of the order to urban passenger transportation vehicle and its transportation, characterized by the date 

and start and arrival time. This transport is related to one and only one bus, and it can have one or 

more transports. The bus can have one or more weekly routes, and vice versa. Each route is associated 

with one and only one Hub. Each order is associated with one, and only one, bus stop for offloading. 

This relationship results in transshipment which represents the offloading of the order from the bus 

order to one, and only one, vehicle of the LMO. Each LMO is associated with one or more 

transshipment and one or more bus stops also, each LMO is associated with one and only one vehicle 

type, but each vehicle type can be used by one or more operators. 

 

 

 

Figure 13 - General UML class diagram for SOLFI 

 

 

4.3.3. Intelligent process of check-in and check-out using Industry 4.0 

technologies 

This subsection presents a use-case diagram developed to represent the interface between the order 

and the bus. The aim is to develop an automatic method to perform the check-in and check-out of 

the order volumes form/to the bus automatically, through the usage of specific tools such as sensors, 

authentication cards or other type of technology. This method will require some adjustments on the 

bus structure to perform check-in and check-out automatically and on real time.  This automatic 

approach to update the order status on the system delivers some advantages, once the human interface 

with the system itself is minimized, avoiding potential errors or delays during the process. These 

delays are even more important on the step previously named as “transshipment”, where the bus 

stops to offload the goods to the LMO, and has to be quick to be possible to continue its route and 

accomplish its schedule. Figure 14 represents a use case diagram focused on this automatic method.  

As can be seen from the interactions represented in the Figure 14 it starts when the urban transport 

driver enters his credentials in the system through the scanning of his personal identification card or 
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even his/her fingerprints, assuring a fast and reliable log-in process when compared to a manual 

method for the same goal. The system, then, analyzes the credentials and performs the authentications 

for the respective user. Once again, the use-cases that are performed by the system are represented 

in blue. After this log-in is performed successfully, the urban transporter driver puts the order into 

an available slot of a dedicated shelve present on the bus. This shelve has to be equipped with 

technology that can identify the presence of the order into the respective slot to confirm the check-

in. After this, the system will notify the LMO about the check-in status with information about the 

bus and slot where the order is stored. When the bus arrives to the offloading bus stop, the LMO 

enters on the bus and inserts his/her credentials in the system, through the same method used 

previously by the urban transport driver. The system will then perform the authentication and only 

allows the LMO to access and open the slots that were assigned to him to avoid wrong order pick-

ups from the bus. When the LMO picks the order from the slot, the system will automatically perform 

the check-out of the order and update its status on the system. When the LMO closes the trunk of the 

bus, the system registers the check-in, in the last mile phase of the transportation, and at the same 

time notifies the final customer with information about the state of the order and respective location. 

The system instantly updates the slot status to “empty” so it can receive and store more orders on the 

next iteration.  

 

 

 

Figure 14 - Use-case diagram reporting automatic process of check-in and check-out of the orders 

 

 

These models helped to understand how the integrated solution of passenger and freight flows would 

work together with the different actors (stakeholders) and their requirements.  

 

 

 

Urban transport 

driver 
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4.4. Integrated freight and passenger proposed solution for urban 

logistics 

As a result of gathering the requirements of the stakeholders and of the conceptual design of the 

system, this subsection details the problem description accounting these requirements. The problem 

under study in this thesis considers the transportation of freight parcels from the peripheries into the 

city center using an integrated solution of passenger and freight transportation. For this purpose, a 

passenger bus network is used to transport requests to a bus stop located in the city. From there, the 

requests are delivered to the final customer through a fleet of environmentally friendly vehicles used 

by an LMO. The aim is to reduce the traffic of vans and trucks operating in the city, solely dedicated 

to the freight transportation, thus contributing to reduce negative effects of urban logistics activities, 

namely pollution, noise, traffic congestion and accidents.  

Bearing in mind the output from the project’s stakeholders’ interviews, present in Table 8, the 

problem under study is characterized as follows.  Consider a set of bus hubs, located on the outskirts 

of the city, and a set of bus services, departing from each hub, performing a predetermined route 

known beforehand, through the city center, and stopping at respective bus stops of their route to 

offload either passengers or freight requests. Consider a set of requests of freight to be delivered to 

the city center. Finally, consider an LMO that performs the last mile delivery of the requests from 

the offloading bus stops to the requests’ destination addresses. Thus, the main entities of the 

integrated solution are Clients, Bus hubs, Bus services, Bus stop, LMO and Final customer. Each of 

these entities are described in the next paragraphs. 

 

4.4.1. Clients  

Clients are the entity that triggers a request release to transport freight towards the city center. From 

now on, clients will be used for this entity to distinguish with the final customer who receives the 

order at home. These clients are, typically, individuals or private logistic companies which intend to 

send parcels to their customers (the same individual can act as client and final customer 

simultaneously). To perform a request release, the client has to access the SOLFI platform indicates 

the desired day for transportation and the request demand, which is the number of boxes/volumes of 

his/her request. The client also has to indicate destination address of the request within the city center 

and the time window agreed to deliver the request at his/her address. Moreover, the platform informs 

the client about the list of Bus Hubs, in the city periphery defined to receive parcel requests, i.e. 

which bus hubs are part of the integrated solution for freight and passenger transportations. 

Subsequently, the client must indicate which are the Bus Hubs that he/she is available to drop the 

request. After the SOLFI platform defines the distribution plan, the client has to drop their request at 

the bus hub indicated by the platform. 

 

4.4.2. Bus hubs 

Bus hubs are centers where bus routes start, located in the periphery of the city, and defined to receive 

parcel requests, within this integrated flow system. Thus, requests dropped by the clients are received 

and logistically prepared, by a dedicated operator, to be loaded into bus services. At bus hubs, three 

operations occur: (i) reception of the requests dropped by clients, (ii) sort and package of requests on 

standard packaging containers and (iii) load of standard containers into bus services. It is assumed 

that each hub is characterized by a logistic service time to perform the three operations. Moreover, it 

is assumed that each hub has enough capacity to store early dropped requests until the moment they 

need to be packaged in containers, since it is expected to have a dedicated area for request 

preparation. Finally, transshipments of requests between different bus hubs are not allowed, which 

means that a request cannot be transported from the original hub to another hub to be transported 

again towards its final bus stop. 
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4.4.3. Bus services  

Bus services represent the transportation service performed by the buses. The schedule and route of 

each bus service that can transport both passengers and freight is predetermined in advance by the 

BTO. This predetermination can possibly avoid bus services planned for peak hours in terms of 

passenger flows. The capacity of each bus to transport requests is limited, in number of 

boxes/volumes a bus can transport in each trip, and can vary from one bus to another depending on 

the dimensions of the bus. To guarantee the safety of the requests during transportation, a specific 

and sealed area within the buses will be dedicated to requests. Figure 15 illustrates the potential initial 

dedicated area for the requests, even though there is the need for some physical adaptations to be a 

sealed and secured area for requests transportation. Some technological adaptation would be 

necessary to achieve a smart and automatic check-in and check-out of orders from the buses, as 

describes on previous subsection 4.3.3. 

 

 

Figure 15 - Potential dedicated area for requests transportation 

 

Thus, each bus service can transport more than one request, stop in several bus stops of its route, to 

possibly offload passengers and/or requests. Additionally, transshipments of requests between 

different bus services are not allowed, which means that a request cannot be transported by more 

than one bus service from its hub towards its final bus stop. 

 

4.4.4. Bus stops  

Predetermined bus stops are selected by the BTO to be part of the systems as offloading points, where 

buses can stop to offload requests in addition to the usual passengers’ dropping process. These bus 

stops are part of the bus routes and are located within the city core. In order to guarantee the 

smoothest experience to the passengers, there each bus has to respect the limit of number of 

boxes/volumes that can be offloaded at each bus stop, to not significantly deteriorate the passenger’s 

service and to limit the passengers’ waiting times during offloads, thus impacting as less as possible 

the normal flow of the public transportation. To maintain a fast and smooth freight offloading from 

the bus an automated process is used (Machado et al., 2021). The offload operations are conducted 

by the LMO which involves synchronizing buses and the LMO to be at the right bus stop at the right 

time. 
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4.4.5. Last mile delivery 

The last mile delivery is performed by the LMO. The LMO is notified to be at the bus stop at the 

right time to offload the requests and deliver them to the destination address, within the time window 

defined during the request release. To guarantee that the deliver to the final customer is within the 

time window, the LMO partitions the city center in different zones and defines a maximum delivery 

time to deliver any request from each bus stop to each zone. The LMO routes are managed by itself 

providing flexibility to integrate this operation with its daily operations.  

 

4.4.6. Final customer 

Represents the entity that receives the request at the destination address, within the agreed time 

window.  

Figure 16 entails all the steps of the integrated distribution system. 

 

 

 

Figure 16 - Steps of SOLFI integrated distribution system 
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5.  Operational approach for the Freight 

Network Flow Assignment Problem 

(FNFAP) 
 

 

 

 

5.1. Motivation 

The problem under study falls in the operational layer of the decision-making process, where the 

goal is to determine the distribution plan for freight requests to be delivered into a city center, using 

part of a bus network installed and running in the city, adopting an integrated solution of passenger 

and freight flows. Finally, to deliver the freight orders from the bus stops to their destination a fleet 

of green vehicles are considered, such as electrical scooters or bikes, conducting the last mile of the 

distribution. 

For the scope of this integrated solution, a set of bus hubs, located on the outskirts of the city, and a 

set of bus services, departing from each hub, performing a predetermined route through the city 

center, and stopping at bus stops of their route have to be selected to offload passengers and/or freight 

requests. These sets of bus hubs, bus services and bus stops are part of a larger and more complex 

bus network running in the city. Moreover, it is assumed that these sets are strategically selected 

beforehand, to be part of an integrated solution to deliver freight into the city center. The reasons for 

selecting each bus hub, bus service, or bus stop among all existing alternatives may be related with 

their location, covered area, less busy time of day for passengers or logistical considerations. As a 

result, a densely populated metropolitan area would have a limited number of hubs, buses and stops, 

strategically selected and distributed throughout the city, that will be used by this integrated logistics 

service. 

In terms of demand characterization, only small orders with the city center as their destination can 

be distributed using this integrated solution. Thus, this integrated solution's goal is not to replace the 

current day-to-day flows of goods within cities, but rather to give logistics operators an alternative 

option when they need to deliver smaller goods to cities, that typically have their destination within 

the city center. This alternative option is even more appealing when the logistics provider has to 

deliver the orders during peak hours and deal with traffic jams, or when they are unable to handle 

isolated requests for small orders to be delivered to different destinations within the city center within 

the same time span. For these cases, the integrated solution is a very competitive alternative for 

transportation, since it allows them to transport different orders at the same time, using different 

buses in different routes. 

This chapter addresses the operational problem FNFAP to study the integration of 

passenger and freight flows within the city, proposing a new UL concept for distribution. 

Although other authors have studied the integration of freight and passenger flows on 

an operational level, the research presented on this chapter is a novel contribution, 

through the application of robustness to deal with unexpected disruptions. The 

robustness issue is addressed by the use of objective functions to maximize the back-up 

plan of distribution, in case of disruption occurrences. Exact formulations and heuristic 

algorithms are proposed to tackle this problem. The chapter provides computational 

experiments and conclusions for both types of models. 
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The integration of flows addressed in this solution provides several benefits for the citizens who live 

in cities, including the ability to reduce the number of vans/trucks that are brought into the city, solely 

for the transportation of goods. Instead, this solution uses the pre-selected sets of bus services that 

already take place in the city, to transport goods. The advantages of this vehicle reduction include 

minimization of the air pollution, traffic jams, and noise pollution that would be caused by the 

standard transportation means. Considering these benefits, the adoption of these alternative and 

greener logistic solutions within the cities may end up being mandated by the cities’ local 

governments due to the significant environmental and quality-of-life benefits for the citizens, even 

if it is more financially advantageous, for the logistical operators, to distribute goods directly to the 

consumer.  

Even if the integrated solution is more expensive in the perspective of the client that needs to deliver 

goods to city center destinations, it does not explicitly quantify the environmental and quality of life 

benefits to the cities that are equally important for an urban logistics solution, leaving a path for 

future research. However, analyzing previous contributions from different authors, it is possible to 

deduce some findings. A first one, based on Crainic et al. (2009), the authors emphasize that the 

reduction of freight traffic also contributes to the reduction of the belief that "cities are not safe". 

Here, the environmental factor is covered. Moreover, an integrated solution also implies global 

benefits across the value chain, rather than isolated benefits (Molenbruch et al., 2021), since, 

typically, each city logistics stakeholder has its own preferences and expectations (Kiba-Janiak et al., 

2021). According to Bachofner et al. (2022), logistics practices that increase profitability for shippers 

or receivers are generally those that generate the worst impacts on society and on the environment. 

Finally, a reduction in the number of vehicles in the city allows to offer a freight transport service 

that can be used as a UL solution to also reduce CO2 emission and noise (Azcuy et al., 2021), in 

addition to the known mobility and congestion reduction benefits. Note that cities governments play 

a crucial role in promoting public private understanding, collaboration, and innovative partnerships 

towards a more sustainable, and integrated transportation system in cities (Crainic et al., 2009; Kiba-

Janiak et al., 2021; Lauenstein & Schank, 2022).  

According to Crainic et al. (2009), ITS are a promising research direction in the UL field, as they 

generally refer to the planning, operation, and control methods to be used for the transportation of 

people and freight, aiming for a better use of the transportation system, infrastructure, and services. 

Furthermore, the adoption of intelligent freight-transportation systems into UL problems, especially 

in the field of OR, has recently gained considerable attention in the literature (Manchella et al., 

2021b). OR methods have the potential to assist decision makers, and particularly in the field of UL, 

to allow for more coordinated, safer, and successful freight management (Lagorio et al., 2016), and 

ITS is acknowledged as a fundamental component and an enabling factor to achieve it (Crainic et al., 

2009). So, the optimization planning of the logistics activities of the integrated UL system proposed 

in this chapter aims to leverage the implementation of ITS, when integrated in an information and 

decision support platform. 

The optimization models proposed to tackle this problem have to manage the following operations: 

(i) Assign each request to a bus hub where bus services depart from; (ii) Assign the request to a bus 

service starting on the assigned hub; and (iii) Assign the request to a bus stop of the assigned bus 

service, to be offloaded by the LMO and delivered at final customer destination. Moreover, different 

constraints must be met: (a) the freight requests assigned to a given bus service must be upper 

bounded by its capacity for freight transportation, (b) the freight requests offloaded on a given stop 

must be upper bounded to a given value so that the expected stopping time of the bus at the stop is 

not jeopardized, and (c) the arrival time at the bus stop must guarantee that the LMO can deliver the 

offloaded freight requests at their destination addresses within their delivery time windows. Thus, an 

operational solution is to indicate, for each accepted request, what is the bus hub, bus service and bus 

stop assigned to him in the distribution plan. 

This operational problem is addressed from different perspectives, since 5 different objective 

functions of interest are studied: the minimization of the number of bus services and the 
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maximization of the robustness to bus service suppressions, from the BTO perspective; and the 

minimization of the last mile delivery time, the minimization of the number of bus offloads, and the 

maximization of the robustness to last mile failures, from the LMO perspective. 

Considering the output from the BTO and LMO interviews, a critical point of the system is its 

robustness to deal with unpredictable events. The two main events with most severe impact on the 

system performance were identified in the interviews. The first one is bus driver’s nonappearance 

resulting in bus service suppressions, since all requests assigned to such bus services would not be 

transported as initially planned. The second one is the LMO desynchronization at the bus stop to be 

ready to offload the requests from the bus, and therefore the requests cannot be delivered in time to 

the final customer. As seen in the SLR section, this feature of robustness applied to the field of 

integration of passenger and freight flow in UL is inexistent. Thus, one of the main research 

contributions is the incorporation of robustness to the operational layer of this problem under study.  

This chapter is organized as follows: the current Section 5.1 details the motivation to study this 

problem and its novelty; Section 5.2 describes the problem formulation using the exact methods, 

presenting the different ILP models for optimization; Section 5.3 details the datasets used to solve 

the models suggested and the rationale used for the dataset generation; Section 5.4 presents and 

discusses the results of the computational experiments with the exact methods; Section 5.5 explains 

the problem formulation with heuristic methods; Section 5.6 presents and discusses the results of the 

computational experiments with heuristic methods. Lastly, Section 5.7 summarizes the chapter with 

the main conclusions of the experiments performed. 

 

 

5.2. Problem formulation using exact methods 

The optimization models proposed in this section are aimed to support the operational planning 

decision making of the UL service under study, through the development of a distribution plan. They 

are the core of an intelligent decision support system that allows the management of freight 

transportation operations in a coordinated manner, in time and space. This coordination plays a major 

role in the loading/offloading/transfer of freight. In addition, this system also ensures the preplanning 

of transport operations, to respond to some failure events (described below). 

The optimization models presented in this section are aimed to support the operational decision-

making process of FNFAP, through the use of ILP models.  

Consider a bus network with a set of hubs 𝑇 (where requests can be dropped by clients), a set of bus 

stops 𝑆 (where the requests can be offloaded by the LMO) and a set of bus services 𝑃 (where requests 

can be transported from bus hubs to bus stops). Each hub 𝑡 ∈ 𝑇 is characterized by a logistic service 

time 𝐹𝑡 (the maximum time interval required to prepare the freight to be loaded into the bus service) 

and has an associated set of bus services 𝑃(𝑡) ⊂ 𝑃. Each bus service 𝑝 ∈ 𝑃(𝑡) has an associated load 

capacity 𝑈𝑡𝑝 (i.e., the maximum number of boxes that can be transported), a departing time 𝐻𝑡𝑝 from 

hub 𝑡 and a set of bus stops 𝑆(𝑝) ⊂ 𝑆. Finally, each bus stop 𝑠 ∈ 𝑆(𝑝) of bus service 𝑝 ∈ 𝑃(𝑡) has 

an associated arrival time 𝐻𝑡𝑝𝑠 (according to the route of the bus service) and an offload capacity 

𝑈𝑡𝑝𝑠 (i.e., the maximum number of boxes that can be offloaded).  

Consider a set of requests K. Each request k ∈ K has an associated demand Dk (number of boxes), a 

destination address within the city Bk and a delivery time window [Ek, Lk] defining the earliest Ek 

and the latest Lk delivery time instants of the request at its destination address. Moreover, the hubs 

at which the client of request k ∈ K can drop it are modelled by the binary parameters Akt that are 

equal to 1 if request k ∈ K can be dropped by the client in hub t ∈ T or equal to 0, otherwise. Consider 

an LMO whose service is characterized by the maximum time Tks to deliver request k ∈ K from bus 
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stop s ∈ S to the request destination address Bk. All sets and parameters are summarized in Table 9 

and Table 10. 

 

Table 9 - Sets of the models 

Set Description 

K Set of requests k 

T Set of bus hubs t 

S Set of bus stops s 

P Set of all bus services p 

P(t)  P Set of bus services departing from hub 𝑡 ∈
𝑇 

S(p)  S Set of bus stops s of bus service 𝑝 ∈ 𝑃 

 

 

Table 10 - Parameters of the models 

Parameter Description 

𝐹𝑡 Maximum time on hub t to prepare any incoming request to load into any bus service 

𝐻𝑡𝑝 Departing time of bus service 𝑝 ∈ 𝑃(𝑡) 

𝐻𝑡𝑝𝑠 Arrival time of bus service 𝑝 ∈ 𝑃(𝑡) to bus stop 𝑠 ∈ 𝑆(𝑝) 

𝑈𝑡𝑝 Capacity of bus service 𝑝 ∈ 𝑃(𝑡) 

𝑈𝑡𝑝𝑠 Capacity of bus service 𝑝 ∈ 𝑃(𝑡) to offload requests in bus stop 𝑠 ∈ 𝑆(𝑝) 

𝐷𝑘 Demand of request k 

𝐵𝑘 Destination address of request k 

𝐸𝑘 Earliest delivery time of request k at its destination address 

𝐿𝑘 Latest delivery time of request k at its destination address 

𝐴𝑘𝑡 Binary parameter indicating if request k can be dropped in hub t 

𝑇𝑘𝑠 Maximum delivery time of request k from bus stop s to the destination address of k  

 

 

All optimization models described next consider the following additional binary parameters, ℎ𝑘𝑡𝑝𝑠, 

that are computed beforehand. The binary parameter ℎ𝑘𝑡𝑝𝑠 is set to 1 if, for request 𝑘 ∈ 𝐾, hub 𝑡 ∈ 𝑇 

is one of the possible hubs for the request (i.e., 𝐴𝑘𝑡 is equal to 1) and it is possible to meet the delivery 

time window [𝐸𝑘 , 𝐿𝑘] of the request when it is dropped at hub 𝑡 ∈ 𝑇 in time to be logistically 

prepared, loaded in bus service 𝑝 ∈ 𝑃(𝑡) and offloaded in bus stop 𝑠 ∈ 𝑆(𝑝). This can be 

mathematically formulated as follows: 

 

 

ℎ𝑘𝑡𝑝𝑠 = {
1 , 𝐴𝑘𝑡 = 1  ⋀  𝐸𝑘 ≤ 𝐻𝑡𝑝𝑠 + 𝑇𝑘𝑠 ≤ 𝐿𝑘

0 , otherwise
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All optimization models described next consider the basic binary decision variables, 𝑧𝑘𝑡𝑝𝑠. A given 

solution such that variable 𝑧𝑘𝑡𝑝𝑠 is equal to 1 defines that request 𝑘 ∈ 𝐾 must be dropped in hub 𝑡 ∈

𝑇 no later than time instant 𝐻𝑡𝑝 − 𝐹𝑡 to be loaded in bus service 𝑝 ∈ 𝑃(𝑡) whose departing time is 

𝐻𝑡𝑝 and offloaded (by the LMO) in bus stop 𝑠 ∈ 𝑆(𝑝) at time instant 𝐻𝑡𝑝𝑠. This decision variable 

can be defined as:  

 

𝑧𝑘𝑡𝑝𝑠 – binary variable that is equal to 1 if request 𝑘 ∈ 𝐾 is dropped in hub 𝑡 ∈ 𝑇, loaded in bus 

service 𝑝 ∈ 𝑃(𝑡) and offloaded in bus stop 𝑠 ∈ 𝑆(𝑝); and is equal to 0, otherwise. 

 

A feasible solution is modelled by the following set of ILP constraints: 

 

∑ ∑ ∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 1                              , ∀ 𝑘 ∈ 𝐾                                                                 (1) 

∑ ∑ ∑ (1 − ℎ𝑘𝑡𝑝𝑠)𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0                   , ∀ 𝑘 ∈ 𝐾                                                                 (2) 

∑ ∑ 𝐷𝑘𝑧𝑘𝑡𝑝𝑠 
𝑠∈𝑆(𝑝)𝑘∈𝐾

≤  𝑈𝑡𝑝                           , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                            (3) 

∑ 𝐷𝑘𝑧𝑡𝑘𝑝𝑠
𝑘∈𝐾

≤  𝑈𝑡𝑝𝑠                                            , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                      (4) 

𝑧𝑘𝑡𝑝𝑠 ∈ {0,1}                                                              , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)      (5) 

 

 

Constraints (1) guarantee that the assigned bus service and bus stop to each request 𝑘 ∈ 𝐾 starts in 

one of the possible hubs for each request, is ready on time to be loaded into the bus (considering the 

Logistic service time of that hub) and meets with its delivery time window (i.e., the associated 

parameter ℎ𝑘𝑡𝑝𝑠 is equal to one). These constraints guarantee this because the variable 𝑧𝑘𝑡𝑝𝑠 is 

multiplied by parameter ℎ𝑘𝑡𝑝𝑠 (that is equal to 1 if all previous conditions are met). Constraints (2) 

guarantee that each request 𝑘 ∈ 𝐾 cannot be assigned with one bus service 𝑝 ∈ 𝑃(𝑡) in one hub 𝑡 ∈
𝑇 to be offload in one bus stop 𝑠 ∈ 𝑆(𝑝) such that the associated parameter ℎ𝑘𝑡𝑝𝑠 is zero. Constraints 

(2) are not necessary to obtain feasible solutions, since constraints (1) alone guarantee that variable 

𝑧𝑘𝑡𝑝𝑠 contains a feasible solution. However, constraints (2) are valuable because, although they 

increase the number of constraints of the model, they allow the solution to eliminate the variables 

𝑧𝑘𝑡𝑝𝑠 for all the combination of requests, bus hubs, bus services and bus stops that are not possible 

to be selected. So, for all the combinations where the ℎ𝑘𝑡𝑝𝑠 is equal to zero, the corresponding 

variable 𝑧𝑘𝑡𝑝𝑠 is set to 0. Some experiments were done with and without constraints (2) showing that, 

in general, the solver could achieve the solutions faster with these constraints, improving the 

performance. Constraints (3) guarantee that the requests loaded on each bus service 𝑝 ∈ 𝑃(𝑡) of each 

hub 𝑡 ∈ 𝑇 are within the bus service capacity 𝑈𝑡𝑝. This is guaranteed because constraints sum the 

demands of all requests assigned to a bus service and ensure that this sum has to be equal or lower 

than the capacity of the bus service itself.  Constraints (4) guarantee that the requests offloaded on 

each bus stop 𝑠 ∈ 𝑆(𝑝) of each bus service 𝑝 ∈ 𝑃(𝑡) of each hub 𝑡 ∈ 𝑇 are within the bus stop 

capacity 𝑈𝑡𝑝𝑠. This is guaranteed because these constraints sum the demand of all requests offloaded 
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in a bus stop and ensure that this sum has to be equal or lower than the capacity of the bus stop itself. 

Finally, constraints (5) are the domain constraints of the basic variables. 

In order to address the different perspectives of the major stakeholders in an integrated logistic 

system, it is crucial to include their needs and concerns during the operations of a logistical service 

as well as to analyse possible trade-offs among their needs. Thus, the operational problem under 

study is addressed with 5 different optimization aims. From the BTO point of view, two optimization 

objectives are addressed: the minimization of the number of bus services needed to transport freight 

requests, and the robustness optimization of the solutions to bus service suppressions. From the LMO 

perspective, three optimization objectives are addressed: the minimization of the last mile delivery 

average time, the minimization of the number of bus offloads, and the robustness optimization of the 

solutions to last mile failures.  

To study the influence of the simultaneous consideration of the BTO and the LMO needs, five 

optimization problems through lexicographic optimization are also investigated. Each optimization 

problem considers the combination of a pair of objective functions, such that the first objective 

function is considered to be more important/crucial than the second one.  

In the next subsections, it is presented the different optimizations problems of interest under study, 

explaining the motivation to study them and how they are modelled. 

 

5.2.1. Minimizing the last mile delivery time (LMDT)  

In this optimization problem, the focus is on optimizing the last mile delivery process to ease the 

integration of requests collection by the LMO into their daily operations and routes. This can be 

achieved by selecting the bus stops (where requests are offloaded by the LMO) closer to the requests’ 

destination addresses. Recall that the last mile service is characterized by a maximum delivery time 

𝑇𝑘𝑠 (from bus stop 𝑠 to the destination address 𝐵𝑘 of request 𝑘). Assuming that the maximum delivery 

times are correlated with the distance between stops and destinations addresses, if the maximum 

delivery time 𝑇𝑘𝑠 is higher the LMO needs to cover higher distances to deliver the requests from the 

stop s to the destination 𝐵𝑘. From the LMO’s perspective, it may be interesting to minimize this last 

mile delivery time, so they can travel less distance and deliver the requests faster to their destination, 

and after that continue their daily operations as usual. To accomplish this aim, the objective function 

of interest is the minimization of the average of the maximum delivery times among all requests.  

The LMDT model is defined by the following ILP formulation: 

 

Minimize    
1

|𝐾|
∑ ∑ ∑ ∑ 𝑇𝑘𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                      (6) 

Subject to: 

(1) – (5) 

 

 

The objective function (6) is the minimization of the average delivery time of all requests. In this 

objective function, the maximum last mile delivery time (𝐵𝑘) for all requests are summed and divided 

by the total number of requests. Constraints (1) to (5) are the same constraints presented before to 

model a feasible solution. 
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5.2.2. Minimizing the number of bus offloads (NBO)  

In this optimization problem, the focus is again on the last mile delivery of the requests aiming at 

minimizing the number of bus offloads of requests. As previously indicated, the LMO must arrive at 

the offloading bus stop at the same time as the bus (or just a few minutes before). For this reason, the 

LMO may be interested in minimizing the total number of times that he needs to go to bus stops to 

pick up freight requests. By minimizing the number of bus offloads, the LMO needs to go to bus 

stops a fewer number of times and collect a higher number of requests each time he picks up the 

freight requests at bus stops, to facilitate integration of requests collection by the LMO into their 

daily operations and routes. 

To define this optimization problem, the following additional binary variables are considered to 

count the number of bus offloads/number of times that the LMO needs to pick up freight from bus 

stations (one or more requests for pick up): 

 

𝑦𝑡𝑝𝑠 – binary variable that is equal to 1 if at least one request is dropped in hub 𝑡 ∈ 𝑇, loaded in bus 

service 𝑝 ∈ 𝑃(𝑝) and offloaded in bus stop 𝑠 ∈ 𝑆(𝑝); and is equal to 0, otherwise. 

 

With these additional variables, the NBO model is defined by the following ILP formulation: 

 

Minimize    ∑ ∑ ∑ 𝑦𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

                                                                                                            (7) 

Subject to: 

(1) – (5) 

𝑧𝑘𝑡𝑝𝑠 ≤  𝑦𝑡𝑝𝑠                                                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)           (8) 

𝑦𝑡𝑝𝑠 ∈ {0,1}                                                           , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                           (9) 

 

The objective function (7) is the minimization of the number of bus offloads and, subsequently, the 

number of times the LMO needs to offload requests at bus stops. Constraints (1) to (5) are the same 

constraints presented before to model a feasible solution. Constraints (8) guarantee that an offload is 

accounted when at least one request is delivered in hub 𝑡 ∈ 𝑇, loaded in bus service 𝑝 ∈ 𝑃(𝑡) and 

offloaded in bus stop 𝑠 ∈ 𝑆(𝑝). This is guaranteed because when assigning a request to a new 

combination of bus hubs, bus services and stops (𝑧𝑘𝑡𝑝𝑠 = 1), the variable 𝑦𝑡𝑝𝑠 is set to 1 as well for 

that same combination of bus hub, service and stop, to fulfil constraints (8). Note that if all variables 

𝑧𝑘𝑡𝑝𝑠 associated to a given bus stop of a bus service are set to 0, the corresponding variable 𝑦𝑡𝑝𝑠 is 

also set to 0 (although it can be assigned with 1 by constraints (8)) due to the minimization of the 

objective function (7) where variables 𝑦𝑡𝑝𝑠 have associated positive parameters. Constraints (9) are 

the variable domain constraints of the additional variables.  

 

5.2.3. Minimizing the number of bus services (NBS)  

In this optimization problem, the focus is on the management of the bus network impact, assuming 

that the bus vehicles available for freight transportation are limited, and the adaptations of such buses 

are expensive. For this reason, the BTO may be interested in minimizing the total number of such 

bus vehicles that need to be physically adapted. From the BTO’s perspective, it can lead to a smaller 

investment on the adaptation of the bus fleet and also with less impact on the normal flow of 
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passenger transportation, since less bus services are used for the mixed transportation of freight and 

passengers. 

Thus, in this case, the aim is to minimize the number of bus services used for transportation of 

requests. To define this optimization problem, the following additional variables are introduced: 

 

𝑦𝑡𝑝
′  –   binary variable that is equal to 1 if at least one request is dropped in hub 𝑡 ∈ 𝑇 and loaded in 

bus service 𝑝 ∈ 𝑃(𝑝); and is equal to 0, otherwise. 

 

Then, the NBS model is defined by the following ILP formulation: 

 

Minimize    ∑ ∑ 𝑦𝑡𝑝
′

𝑝∈𝑃(𝑡)𝑡∈𝑇

                                                                                                                         (10) 

Subject to: 

(1) – (5) 

𝑧𝑘𝑡𝑝𝑠 ≤ 𝑦𝑡𝑝
′                                     , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                                (11) 

𝑦𝑡𝑝
′ ∈ {0,1}                                     , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                                                         (12) 

 

 

The objective function (10) is the minimization of the number of bus services used for all requests. 

Constraints (1) to (5) are the same constraints presented before to model a feasible solution. 

Constraints (11) guarantee that a bus service is accounted when at least one request is delivered in 

hub 𝑡 ∈ 𝑇 and loaded in bus service 𝑝 ∈ 𝑃(𝑡). This is guaranteed because when assigning a request 

to a new combination of bus hubs, bus services and stops (𝑧𝑘𝑡𝑝𝑠 = 1), the variables 𝑦′𝑡𝑝 are equal to 

one as well for that same combination of bus hub and bus service, to fulfil constraints (11). Note that 

if all variables 𝑧𝑘𝑡𝑝𝑠 associated to a given bus service are set to 0, the corresponding variable 𝑦′𝑡𝑝 is 

also set to 0 (although it can be assigned with 1 by constraints (11) due to the minimization of the 

objective function (10) where variables 𝑦′𝑡𝑝 have associated positive parameters. Constraints (12) 

are the variable domain constraints of the additional variables. 

 

5.2.4. Maximizing the robustness to bus service suppressions (RBS)  

In this optimization problem, the focus is on considering possible failures in the bus network causing 

bus service suppressions, i.e., a bus service might be unexpectedly suppressed by driver non-

appearance or by a bus vehicle failure (still within the bus hub) that is replaced by another without 

the logistical adaptation for freight transportation (in the latter case, the bus service is suppressed 

only for freight transportation). The aim of this problem is to incorporate robustness to deal with 

these unexpected events that can suppress a bus service which, accordingly the BTO, are very likely 

to occur. 

To achieve a robust solution to bus service suppressions, each request is assigned with a main bus 

service (modelled by the previously defined 𝑧𝑘𝑡𝑝𝑠 basic variables) and, if possible, with an alternative 

bus service starting in the same bus hub of the main bus service and also fulfilling the delivery time 

window of the request. Then, the aim is to maximize the number of requests assigned with an 

alternative bus service, trying to have the highest number of requests with an alternative bus service 
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assigned to it. Thus, a robust solution is one that maximizes the number of requests that can be 

assigned with an alternative bus service. This robust solution provides intelligence to the operations 

informing the BTO of how to react in case of a bus service suppression occur, acting as an alternative 

transportation plan for all requests that were previously assigned to the suppressed bus service. To 

define this optimization problem, the following additional binary variables are considered, modelling 

the assignment of alternative bus services:  

 

𝑥𝑘𝑡𝑝𝑠 –  binary variable that is equal to 1 if the alternative bus service of request 𝑘 ∈ 𝐾 is bus service 

𝑝 ∈ 𝑃(𝑡) starting on hub 𝑡 ∈ 𝑇 and bus stop 𝑠 ∈ 𝑆(𝑝); and is equal to 0, otherwise. 

 

With these additional variables, the RBS model is defined by the following ILP formulation: 

 

Maximize    ∑ ∑ ∑ ∑ 𝑥𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                                (13) 

Subject to: 

(1) – (2), (5) 

∑ ∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠) 
𝑠∈𝑆(𝑝)𝑘∈𝐾

≤ 𝑈𝑡𝑝                 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                   (3′) 

∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠)
𝑘∈𝐾

≤ 𝑈𝑡𝑝𝑠                                 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)              (4′) 

∑ ∑ ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)

≤ ∑ ∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)

   , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇                                        (14) 

∑ (ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠 + ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠)

𝑠∈𝑆(𝑝)

≤ 1                          , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                  (15) 

∑ ∑ ∑ (1 − ℎ𝑘𝑡𝑝𝑠)𝑥𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0                        , ∀ 𝑘 ∈ 𝐾                                                         (16) 

𝑥𝑘𝑡𝑝𝑠 ∈ {0,1}                                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                        (17) 

 

 

The objective function (13) is the maximization of the number of requests with assigned alternative 

bus services. Constraints (3’) and (4’) replace the previous constraints (3) and (4) and guarantee that 

the requests loaded on each bus service 𝑝 ∈ 𝑃(𝑡), in constraints (3’), and offloaded on each bus stop 

𝑠 ∈ 𝑆(𝑝), in constraints (4’), are within the bus service and bus stop capacities, respectively, even if 

the requests are transported in their alternative bus services. This is guaranteed because these 

constraints sum the demand of all requests assigned for each combination of bus hub, bus service, 

and ensure it is not higher than the bus capacity (constraints (3’)) and bus stop capacity (constraints 

(4’)). The reason to sum the two variables 𝑧𝑘𝑡𝑝𝑠 and 𝑥𝑘𝑡𝑝𝑠 is to sum the demand assigned to a specific 

bus that acts as main bus for some requests and alternative bus for other requests simultaneous, 

always guaranteeing capacity for all requests assigned to it. 

Constraints (14) guarantee that the alternative bus service to each request, when possible, starts in 

the same hub of the main bus service. Note that constraints (1) and (2) guarantee that the right-hand 

expression of constraints (14) is 1 for one of the hubs and 0 for all other hubs. So, constraints (14) 



82 

 

together with constraints (1) and (2) guarantee that each request is assigned with at most one 

alternative bus service from the same hub of the main bus service. On the other hand, constraints 

(15) guarantee that the main and the alternative bus services cannot be the same bus service, since 

the constraints ensure that the same combination of bus hub, service, stop cannot be assigned 

simultaneous as a main bus and alternative bus (the sum of 𝑧𝑘𝑡𝑝𝑠 and 𝑥𝑘𝑡𝑝𝑠 has to be equal or less 

than 1). 

Constraints (16) are similar to constraints (2) but now applied to the additional variables, i.e., they 

guarantee that each request 𝑘 ∈ 𝐾 cannot be assigned with one alternative bus service 𝑝 ∈ 𝑃(𝑡) in 

one hub 𝑡 ∈ 𝑇 to be offload in one bus stop 𝑠 ∈ 𝑆(𝑝) such that the associated parameter ℎ𝑘𝑡𝑝𝑠 is zero. 

Finally, constraints (17) are the variable domain constraints of the additional variables. 

Note that, for each request such that one of the variables 𝑥𝑘𝑡𝑝𝑠 is equal to 1 in the solution of the 

optimization problem, the above formulation does not guarantee that the alternative bus service 

assigned to a request departs later than the main bus service of that same request, since the 

formulation does not guarantee that the select bus service defined by variable 𝑥𝑘𝑡𝑝𝑠 departs later than 

the main bus service defined by variable 𝑧𝑘𝑡𝑝𝑠. For the requests such that this condition is not met, 

the final solution is defined by switching the role of the two bus services, i.e., considering the bus 

service defined by 𝑥𝑘𝑡𝑝𝑠 as the main bus service and the bus service defined by 𝑧𝑘𝑡𝑝𝑠 as the alternative 

bus service. In this way, it is always guaranteed that the main service assigned to a request will depart 

first from the bus hub and an alternative later bus service is also assigned to the request to act as an 

alternative solution in case the main bus service is suppressed. 

One alternative to potentially strength the proposed formulation is to break the symmetry between 

variables 𝑧𝑘𝑡𝑝𝑠 and 𝑥𝑘𝑡𝑝𝑠 by defining constraints that guarantee the time relation between the main 

and the alternative bus services. Symmetry occurs when two different mathematic solutions 

correspond to the same real solution and it is known that symmetry can negatively impact the 

performance of branch-and-bound algorithms. According to Margot, (2010) an ILP is symmetric if 

its variables can be permuted without changing the structure of the problem, which is precisely what 

occurs in this formulation.  

This can be done by replacing the previous constraints (15) by the following constraints: 

 

∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)

+ ∑ ∑ ℎ𝑘𝑡𝑎𝑠𝑥𝑘𝑡𝑎𝑠

𝑠∈𝑆(𝑎)𝑎∈𝐴(𝑝)

≤ 1       , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                (15′) 

 

 

In these constraints, set 𝐴(𝑝) is a set of bus services composed by bus service 𝑝 plus all bus services 

departing from the same hub of bus service 𝑝 whose departing time from the hub is before the 

departing time of bus service 𝑝. Thus, with these constraints, for each request the alternative bus 

service to be assigned to it must be after the main bus service. This is guaranteed because in the 

second part of this inequality, the subset 𝐴(𝑝) considers all the bus services departing from the same 

bus service of 𝑝 (including) and all the services that departure before the service 𝑝, and the sum of 

variables 𝑧𝑘𝑡𝑝𝑠 and 𝑥𝑘𝑡𝑝𝑠 can be at most 1, meaning that no bus service prior to the service 𝑝 can be 

selected as alternative bus service. 

 

5.2.5. Maximizing the robustness to last mile failures (RLMF) 

In this optimization problem, the focus is on considering possible failures in the last mile process, 

when the LMO cannot arrive on time to a given bus stop of a given bus service for the planned 
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offload of requests. This desynchronization of bus service and LMO can be caused by different 

unexpected events, such as traffic congestions or even a vehicle failure. By default, when a request 

is not collected at bus service, it returns to the Bus Hub of bus service to be integrated into the next 

day deliveries. Nevertheless, consider the case when the LMO is still able to offload the requests in 

one of the next stops of the same bus service, acting as an alternative bus stop where the requests can 

be offloaded. In this case, to incorporate robustness to deal with these events, the aim of this problem 

is to maximize the number of requests that can be assigned with an alternative bus stop still fulfilling 

the delivery time windows of the requests. Again, this robust solution provides intelligence to the 

process informing the BTO and LMO, beforehand, of how to react in case of a last mile offload 

failure. To define this optimization problem, the following additional binary variables are considered:  

 

𝑥𝑘𝑡𝑝𝑠
′  –  binary variable that is equal to 1 if the alternative bus stop of request 𝑘 ∈ 𝐾 is bus stop 𝑠 ∈

𝑆(𝑝) of bus service 𝑝 ∈ 𝑃(𝑡) starting on hub 𝑡 ∈ 𝑇; and is equal to 0, otherwise. 

 

With these additional variables, the RLMF model is defined by the following ILP formulation: 

 

Maximize    ∑ ∑ ∑ ∑ 𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                                (18) 

Subject to: 

(1) – (3), (5) 

∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠
′ )

𝑘∈𝐾
≤  𝑈𝑡𝑝𝑠                               , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)             (4′′) 

∑ ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)

≤ ∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)

                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                   (19) 

ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠 + ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠
′ ≤ 1                                       , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), 𝑠 ∈ 𝑆(𝑝)  (20) 

∑ ∑ ∑ (1 − ℎ𝑘𝑡𝑝𝑠)𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0                        , ∀ 𝑘 ∈ 𝐾                                                         (21) 

𝑥𝑘𝑡𝑝𝑠
′ ∈ {0,1}                                                                , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝) (22) 

 

The objective function (18) is the maximization of the number of requests with assigned alternative 

bus stops. Constraints (4’’) replace the previous constraints (4) and now guarantee that the requests 

offloaded on each bus stop are within the bus stop capacities even if the requests are offloaded in 

their alternative bus stops. This is guaranteed because these constraints sum the demand of all 

requests assigned for each combination of bus hub, bus service, and ensure it is lower than the bus 

stop capacity, independently if the bus stop acts as a main bus stop or an alternative bus stop for the 

request. 

Constraints (19) guarantee that the alternative bus stop assigned to each request, when possible, is in 

the same bus service of the main stop. Note that constraints (1) and (2) guarantee that the right-hand 

expression of constraints (19) is 1 for one of the bus services and 0 for all other bus services. So, 

constraints (19) together with constraints (1) and (2) guarantee that each request is assigned with at 

most one alternative bus stop. On the other hand, constraints (20) guarantee that the main and the 

alternative bus stops cannot be the same. 
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Constraints (21) are similar to constraints (2) but now applied to the additional variables, i.e., they 

guarantee that each request 𝑘 ∈ 𝐾 cannot be assigned with one alternative bus stop 𝑠 ∈ 𝑆(𝑝) on a 

bus service 𝑝 ∈ 𝑃(𝑡) of a hub 𝑡 ∈ 𝑇 such that the associated parameter ℎ𝑘𝑡𝑝𝑠 is zero. Finally, 

constraints (22) are the variable domain constraints of the additional variables. 

Note that, similarly to the previous optimization problem, for each request such that one of the 

variables 𝑥𝑘𝑡𝑝𝑠
′  is equal to 1 in the solution of the optimization problem, the above formulation does 

not guarantee that the bus stop defined by variable 𝑥𝑘𝑡𝑝𝑠
′  is subsequent on the route of the bus than 

the bus stop defined by variable 𝑧𝑘𝑡𝑝𝑠. For such requests, the final solution is defined by switching 

the role of the two bus stops, i.e., considering the bus stop defined by 𝑥𝑘𝑡𝑝𝑠
′  as the main bus stop and 

the bus stop defined by 𝑧𝑘𝑡𝑝𝑠 as the alternative bus stop. 

Again, one alternative to potentially strength the proposed formulation is to break the symmetry 

between variables 𝑧𝑘𝑡𝑝𝑠 and 𝑥𝑘𝑡𝑝𝑠
′  by defining constraints that guarantee the time relation between 

the main and the alternative bus services. This can be done by replacing the previous constraints (20) 

by the following constraints: 

 

ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠 + ∑ ℎ𝑘𝑡𝑝𝑏𝑥𝑘𝑡𝑝𝑏
′

𝑏∈𝐴(𝑠,𝑝)

≤ 1                 , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), 𝑠 ∈ 𝑆(𝑝)       (20′) 

 

In these constraints, set 𝐴(𝑠, 𝑝) is the set of bus stops of bus service 𝑝 composed by the bus stop 𝑠 

plus all bus stops whose arrival time is before the arrival time of bus stop 𝑠. Thus, with these 

constraints, for each request the alternative bus stop to be assigned to it must be subsequent to the 

main bus stop of the bus service route. 

 

5.2.6. Lexicographic optimization of two planning objectives 

Several times, when aiming to optimize a given planning objective, multiple solutions with the same 

optimal value can be obtained. To select one of such solutions, a second planning objective of interest 

can be used. Overall, the aim is the lexicographic optimization of two objectives where the first 

objective is the most important to be optimized while the second objective is the second most 

important. 

When the optimization problem of each objective can be defined with an ILP model, an optimal 

solution for the lexicographic optimization of two objectives is computed as follows. First, the ILP 

model of the first objective is solved, and its optimal value is registered. Then, the ILP model of the 

second objective is augmented with: (i) one constraint guaranteeing the registered optimal value of 

the first objective, and (ii) all constraints of the first ILP model that are not in the second ILP model. 

Then, the augmented ILP model is solved. 

In the computational results, five operational planning cases of practical interest, which will be 

explained later, are considered where pairs of two of the previous objectives are lexicographically 

optimized.  

Next, it is illustrated an example of how the lexicographic optimization is conducted for the 

combination of the objective functions of models NBO and RLMF. 

Consider that the planning objective is first to minimize the number of bus offloads (NBO) and then 

to maximize the robustness to last mile failures (RLMF). With this aim, the NBO model presented 

in Section Minimizing the number of bus offloads (NBO) is solved individually, providing a solution 

with the objective function value 𝑣. Then, the second model is now solved, ensuring that this value 

is kept. To do so, the second model is augmented as follows:  
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Maximize    ∑ ∑ ∑ ∑ 𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                  (18) 

Subject to: 

(1)–(3), (4’’), (5) , (8)–(9), (19)–(22) 

∑ ∑ ∑ 𝑦𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

≤ 𝑣                                                                                                          (7′) 

 

The objective function (18) is the one of the RMLF model. Constraint (7’) is added to guarantee that 

the value of the NBO objective is not worse than 𝑣 and all other constraints are the constraints of the 

RLMF model plus the constraints of the NBO model that are not in the RLMF model. Note that the 

constraint that guarantees the value obtained in the first optimization, in this example constraint (7’), 

is defined as an inequality because even though the value 𝑣 is known after the first optimization, 

preliminary computational tests suggested that inequalities, using ≤ 𝑜𝑟 ≥ instead on = (depending 

on if the first model is a Maximization or Minimization problem), would help the solver performance 

when solving the augmented model. 

Finally, this augmented model is solved, and its solution minimizes the RLMF objective (18) 

guaranteeing that the NBO objective value is 𝑣.   

Later in this chapter, in section 5.4 and 5.6, along with the outcome of each individual optimization 

problem, motivation and discussed results are presented for the study of the lexicographic 

optimization. 

 

 

5.3. Instances dataset generation 

This section presents the dataset generated to be used in computational experiments. The goal is to 

detail all the information and parameters used in the optimization’s methods. Two main groups of 

instances were generated: Fictional instances and Pilot instances. 

 

5.3.1. Fictional instances 

To evaluate the proposed optimization models, six fictional instances were generated to test the 

models’ performance and scalability. These instances are divided in two sets, they are based on two 

different fictional bus networks: a small bus network and a large bus network. 

 

5.3.1.1 Small bus network instances 

In this set of fictional instances, four of the instances (Instances 1 to 4) have been created. These 

instances use a bus network based on a fictional city center partitioned in 4 different zones (labelled 

from 1 to 4) simulating the LMO partitioning process, which contain a total of 8 bus stops (labelled 

from 2 to 9). The timespan considered in all instances is from 8 a.m. to 10 p.m. and the time unit is 

in minutes, which means that the instant 0 minutes is referring to 8:00 a.m. The bus network for the 

instance 1, 2, 3 and 4 is shown in Figure 17.  
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Figure 17 - Bus network and city center destination zones of Instances 1, 2, 3 and 4 

 

 

The network illustrated in Figure 17 has 2 hubs and 24 bus services: the first twelve services 

departing from hub 1 and the other twelve services departing from hub 10. To complete the 

information about the network, the maximum service time to load a request into a bus service, for 

both bus hubs 1 and 10, is 10 minutes, the capacity of bus stops is 80 for each offload and the bus 

travel time between consecutive bus stops is 10 minutes. 

From each hub, the bus services include three different routes which are used four times during the 

day (routes of each bus service shown in Table 11). 
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Table 11 - Bus schedule for each bus hub 

Departure 

bus hub 

Bus 

service 

Bus 

capacity 

Departure time 

(min) 

Nr of bus 

stops 

Route (Hub-Stops-

Hub) 

 

1 100 20 4 1-2-3-4-5-1 

2 120 80 6 1-2-3-4-7-8-9-1 

3 100 140 4 1-9-8-7-6-1 

4 120 200 4 1-2-3-4-5-1 

5 100 260 6 1-2-3-4-7-8-9-1 

6 120 320 4 1-9-8-7-6-1 

7 120 380 4 1-2-3-4-5-1 

8 100 440 6 1-2-3-4-7-8-9-1 

9 120 500 4 1-9-8-7-6-1 

10 100 560 4 1-2-3-4-5-1 

11 120 620 6 1-2-3-4-7-8-9-1 

12 100 680 4 1-9-8-7-6-1 

 

13 120 20 4 10-3-2-5-4-10 

14 100 80 6 10-3-2-5-6-9-8-10 

15 120 140 4 10-8-9-6-7-10 

16 100 200 4 10-3-2-5-4-10 

17 120 260 6 10-3-2-5-6-9-8-10 

18 100 320 4 10-8-9-6-7-10 

19 120 380 4 10-3-2-5-4-10 

20 100 440 6 10-3-2-5-6-9-8-10 

21 120 500 4 10-8-9-6-7-10 

22 100 560 4 10-3-2-5-4-10 

23 120 620 6 10-3-2-5-6-9-8-10 

24 100 680 4 10-8-9-6-7-10 

 

 

Table 11 details the 24 bus services used in these instances, where 12 depart from bus hub 1 and 12 

depart from bus hub 2. The bus services have a pattern, since there are only 3 routes that repeat over 

the day, each 3 hours. For example, bus service 1, 4, 7, and 10 are different services that perform the 

same route but in different times of the day. This table also shows the bus services capacity. 

Instance 1 is used as the reference instance for the three subsequent instances. These subsequent 

instances are based on the first one, only changing one parameter at a time, so it is possible to evaluate 

the impact of changing each parameter in the results. 

For all the four instances of this set, the maximum LMO travel time between each bus stop and each 

destination zone is characterized in the following Table 12. For example, the first row of the table 

defines that a request collected by the LMO at bus stop 2 takes a maximum of 30, 45, 45 and 60 

minutes to be delivered to an address within destination zone 1, 2, 3 and 4, respectively. 

1 

10 
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Table 12 - Maximum delivery time (in minutes) of the LMO from each bus stop to each destination zone 

Bus stop 

ID 

Destination zone 

1 2 3 4 

2 30 45 45 60 

3 45 30 60 45 

4 45 30 60 45 

5 30 45 45 60 

6 45 60 30 45 

7 60 45 45 30 

8 60 45 45 30 

9 45 60 30 45 

 

 

Concerning the data related to the requests, Instance 1 considers a set of 36 requests with delivery a 

time window duration of 4 hours and with random demand values between 1 and 100 each. The 

delivery time windows were equally distributed throughout the time span of a day. The destination 

zone of the requests was randomly generated with equal probability to all four destination zones. 

Also, all the requests are available in both bus hubs at the beginning of the time span. 

Table 13 presents the details of Instance 1 with “Req. ID” indicating the request ID, “Dest. Zone” 

indicating the destination zone of each request, “Demand” indicating the demand and “Earliest del. 

time - Latest del. Time” indicating the delivery time window at the destination address of each 

request.  

 

Table 13 - Demand detailed data of instance 1 

Req. 

ID 

Dest. 

zone 
Demand 

Earliest del. time - 

Latest del. time 

 
Req. 

ID 

Dest. 

zone 
Demand 

Earliest del. 

time - Latest 

del. time 

1 4 14 60-300  19 1 36 300-540 

2 1 10 60-300  20 3 41 300-540 

3 2 50 60-300  21 3 38 360-600 

4 1 17 60-300  22 2 24 360-600 

5 3 40 120-360  23 4 17 360-600 

6 4 30 120-360  24 1 25 420-660 

7 2 52 120-360  25 3 45 420-660 

8 1 20 120-360  26 3 35 420-660 

9 2 50 180-420  27 1 70 480-720 

10 3 45 180-420  28 4 20 480-720 

11 4 60 180-420  29 2 15 480-720 

12 1 17 180-420  30 3 45 480-720 

13 3 12 240-480  31 3 30 540-780 

14 2 50 240-480  32 2 20 540-780 
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15 1 23 240-480  33 4 12 540-780 

16 4 41 240-480  34 1 43 540-780 

17 4 25 300-540  35 4 10 600-840 

18 2 14 300-540  36 2 25 600-840 

 

 

As mentioned previously, Instances 2, 3 and 4 were computed based on Instance 1 changing one 

single parameter at each instance.  

Instance 2 considers all requests with a delivery time window duration of 2 hours, increasing 1 hour 

to the earliest time and reducing 1 hour to the latest time of the interval. The aim is to evaluate the 

impact on the results of different delivery time window durations.  

Instance 3 is similar to Instance 1 but considers zone 1 as the destination zone for all requests. The 

goal is to study the impact of concentrating the delivery addresses of all requests in the same zone of 

the city. In this case, capacity constraints of bus stops within destination zone 1 may push the offloads 

to a different zone of the requests’ destination, leading to a higher delivery time by LMO, in general. 

Instance 4 is similar to Instance 1 but considers that all requests can be dropped only in bus hub 1 by 

their clients. The purpose is to assess the impact of all requests departing from only 1 hub. In this 

case, it is expected a significant impact on the results and performance, since reducing the number 

of bus hubs available, also limits the number of bus services available to transport the requests, since 

only twelve bus services depart from each bus hub (recall that transshipments between bus hubs are 

not allowed). 

Table 14 summarizes the characteristics and differences between the four instances. Instances’ ID 

are “F1” to “F4” to indicate that they belong to the group of fictional instances. For each instance, 

“Nr Req.” indicates the number of requests, “Nr bus services” indicates the number of bus services, 

“Nr Bus stops” indicates the number of bus stops, and “TWD” indicates the time window duration. 

 

Table 14 - Characteristics and differences between the four instances F1 – F4 

Instance 

ID 

Nr 

Req. 

Nr bus 

services 

Nr Bus 

stops 
TWD 

Changes compared to 

instance F1 

Rule to conduct the 

change compared to 

instance F1 

F1 36 24 8 4h - - 

F2 36 24 8 2h 2h of time window 

Increasing 60 minutes to 

the lower limit and 

decreasing 60 minutes to 

the upper limit. 

F3 36 24 8 4h 
Only one destination zone to 

deliver requests 

All the requests have 

destination 1 as 

destination. 

F4 36 24 8 4h 
Only one bus hub is 

considered  

All the requests can only 

be transported from bus 

hub 1. 
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5.3.1.2 Large instances 

In order to increase the size of the problem (and consequently its complexity), and evaluate the 

performance of the model in such conditions, two more instances, F5 and F6, were generated. Each 

of these instances are based on a larger bus network and consider a higher number of requests.  

The larger network of these two instances has 2 hubs and 36 bus services: the first eighteen services 

departing from hub 1 and the other eighteen services departing from hub 24. The network considers 

a city center partitioned in 9 destination zones and contains 22 bus stops (labelled from 2 to 23), as 

shown in Figure 18.  

 

 

Figure 18 - Bus network for larger instances 

 

 

From each hub, the bus services include three major routes which are used six times during one day. 

To complete the information about these instances, the maximum service time to load a request into 

a bus service, for both bus hub 1 and 24, is 10 minutes, the capacity of bus stops is 80 for each offload 

and the bus travel time between consecutive bus stops is 10 minutes. Table 15 and Table 16 present 

all the information concerning the bus routes departing from each bus hub, for both instances.  
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Table 15 - Bus schedule information of buses departing from bus hub 1 

Departure 

bus hub 

Bus 

service 

Bus 

capacity 

Departure 

time (min) 

Nr of bus 

stops 
Route (Hub-Stops-Hub) 

 

1 100 20 6 1-2-3-4-5-8-7-1 

2 120 60 8 1-2-9-10-11-13-14-15-8-1 

3 120 100 10 1-3-10-16-17-19-20-22-23-15-7-1 

4 100 140 6 1-2-3-4-5-8-7-1 

5 120 180 8 1-2-9-10-11-13-14-15-8-1 

6 120 220 10 1-3-10-16-17-19-20-22-23-15-7-1 

7 100 260 6 1-2-3-4-5-8-7-1 

8 120 300 8 1-2-9-10-11-13-14-15-8-1 

9 120 340 10 1-3-10-16-17-19-20-22-23-15-7-1 

10 100 380 6 1-2-3-4-5-8-7-1 

11 120 420 8 1-2-9-10-11-13-14-15-8-1 

12 120 460 10 1-3-10-16-17-19-20-22-23-15-7-1 

13 100 500 6 1-2-3-4-5-8-7-1 

14 120 540 8 1-2-9-10-11-13-14-15-8-1 

15 120 580 10 1-3-10-16-17-19-20-22-23-15-7-1 

16 100 620 6 1-2-3-4-5-8-7-1 

17 120 660 8 1-2-9-10-11-13-14-15-8-1 

18 120 700 10 1-3-10-16-17-19-20-22-23-15-7-1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 
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Table 16 - Bus schedule information of buses departing from bus hub 24 

Departure 

bus hub 

Bus 

service 

Bus 

capacity 

Departure 

time (min) 

Nr of bus 

stops 
Route (Hub-Stops-Hub) 

 

19 100 20 6 24-22-23-21-19-18-16-24 

20 120 60 8 24-22-15-14-12-11-10-9-17-24 

21 120 100 10 24-23-14-7-8-5-6-3-2-9-18-24 

22 100 140 6 24-22-23-21-19-18-16-24 

23 120 180 8 24-22-15-14-12-11-10-9-17-24 

24 120 220 10 24-23-14-7-8-5-6-3-2-9-18-24 

25 100 260 6 24-22-23-21-19-18-16-24 

26 120 300 8 24-22-15-14-12-11-10-9-17-24 

27 120 340 10 24-23-14-7-8-5-6-3-2-9-18-24 

28 100 380 6 24-22-23-21-19-18-16-24 

29 120 420 8 24-22-15-14-12-11-10-9-17-24 

30 120 460 10 24-23-14-7-8-5-6-3-2-9-18-24 

31 100 500 6 24-22-23-21-19-18-16-24 

32 120 540 8 24-22-15-14-12-11-10-9-17-24 

33 120 580 10 24-23-14-7-8-5-6-3-2-9-18-24 

34 100 620 6 24-22-23-21-19-18-16-24 

35 120 660 8 24-22-15-14-12-11-10-9-17-24 

36 120 700 10 24-23-14-7-8-5-6-3-2-9-18-24 

 

 

To generate instance F5, 64 more requests were added, performing a total of 100 requests, since the 

data of the 36 requests of Instance 1 were maintained. The delivery time windows of these added 

requests were generated and distributed randomly through the timespan of the instance, but 

maintaining the original length of four hours. Table 17 details the demand data of the new set of 64 

requests of instance F5. Again, “Req. ID” indicates the request ID, “Dest. Zone” indicates the 

destination zone of each request, “Demand” indicates the demand and “Earliest del. time - Latest del. 

Time” indicates the delivery time window at the destination address of each request. 

 

 

 

 

 

 

 

 

24 
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Table 17 - Demand detailed data of the new set of 64 requests of instances 

Req. 

ID 

Dest. 

zone 
Demand 

Earliest del. time 

- Latest del. time 

 Req. 

ID 

Dest. 

zone 
Demand 

Earliest del. time - 

Latest del. time 

37 5 17 120-360  69 9 13 410-650 

38 6 22 60-300  70 6 24 440-680 

39 7 15 70-310  71 7 26 100-340 

40 8 10 110-350  72 5 51 110-350 

41 9 5 115-355  73 6 38 160-400 

42 7 35 220-460  74 5 47 115-355 

43 8 49 210-450  75 7 49 225-465 

44 5 50 230-470  76 9 10 355-595 

45 6 23 340-580  77 8 13 455-695 

46 7 21 250-490  78 8 15 145-385 

47 8 9 190-430  79 7 8 165-405 

48 9 15 180-420  80 9 9 565-805 

49 9 1 210-450  81 6 25 615-855 

50 6 9 155-395  82 5 26 425-665 

51 8 25 90-330  83 5 22 585-825 

52 7 36 85-325  84 6 21 495-735 

53 5 27 450-690  85 8 11 695-935 

54 5 55 520-760  86 7 13 635-875 

55 9 46 680-920  87 9 17 605-845 

56 8 29 700-940  88 6 8 205-445 

57 7 12 650-890  89 5 10 505-745 

58 6 26 580-820  90 8 71 405-645 

59 5 24 490-730  91 9 78 105-345 

60 9 20 430-670  92 7 66 115-355 

61 6 19 350-590  93 6 65 215-455 

62 5 36 320-560  94 5 50 275-515 

63 5 49 640-880  95 9 45 475-715 

64 6 55 660-900  96 8 55 375-615 

65 7 23 500-740  97 7 20 305-545 

66 8 8 400-640  98 7 21 295-535 

67 9 18 300-540  99 6 30 195-435 

68 8 54 310-550  100 8 10 95-335 

 

 

All the requests can be dropped at both bus hubs of the network. Lastly, the maximum LMO delivery 

time between each bus stop and each destination zone is characterized in the following Table 18. 

“Bs.ID” indicates the bus stop ID where the requests may be offloaded. 
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Table 18 - Maximum last mile delivery time (in minutes) by the LMO, for each bus stop to each destination zone of new 

network 

Bs 

ID 

Destination zone Bs 

ID 

Destination zone 

1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 

1 30 45 60 45 45 60 60 60 60 12 45 45 45 45 30 45 45 45 45 

2 30 45 60 45 45 60 60 60 60 13 60 45 45 60 45 30 60 45 45 

3 45 30 45 45 45 45 60 60 60 14 60 45 45 60 45 30 60 45 45 

4 45 30 45 45 45 45 60 60 60 15 60 60 60 45 45 60 30 45 60 

5 45 30 45 45 45 45 60 60 60 16 60 60 60 45 45 60 30 45 60 

6 60 45 30 60 45 45 60 60 60 17 60 60 60 45 45 60 30 45 60 

7 60 45 30 60 45 45 60 60 60 18 60 60 60 45 45 45 45 30 45 

8 45 45 60 30 45 60 45 45 60 19 60 60 60 45 45 45 45 30 45 

9 45 45 60 30 45 60 45 45 60 20 60 60 60 45 45 45 45 30 45 

10 45 45 45 45 30 45 45 45 45 21 60 60 60 60 45 45 60 45 30 

11 45 45 45 45 30 45 45 45 45 22 60 60 60 60 45 45 60 45 30 

 

The next Table 19 summarizes the differences between the instance F5 and instance F6. 

 

 

 

 

 

Table 19 - Characteristics and differences between instance F5 and F6 

Instance 

ID 

Nr 

Req. 

Nr bus 

services 

Nr Bus 

stops 
TWD 

Changes compared to 

instance F5 

Rule to conduct the 

change compared to 

instance F5 

F5 100  36 22 4h - - 

F6 100 36 22 2h 2h of time window 

Increasing 60 minutes 

to the lower limit and 

decreasing 60 minutes 

to the upper limit. 

 

 

 

5.3.2. SOLFI project pilot instances 

All problem instances presented in this subsection are based in a real bus network dataset in the city 

of Porto, Portugal, defined and provided in SOLFI project. As part of the project, a pilot was planned 

to run in Porto and this dataset was the initial plan for the pilot, defined by the main project contractor 

company and based on the bus network of the BTO in Porto. The goal of these instances is to evaluate 
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the feasibility and scalability of the proposed methods. These instances are entitled as “Pilot” due to 

the fact that they are built under a real bus network of Porto city, accounting the real routes and 

schedules for the bus services of the city, which were provided by the BTO for the pilot test. On the 

other hand, all data related to the requests, such as demand and time windows are fictional. The 

considered bus network is based on four bus hubs of the city (with IDs 34, 42, 107 and 305) 

strategically selected by the BTO among the ones with high connectivity from outside the city, and 

seven bus stops (labelled from 1 to 7) strategically selected nearby the areas with higher 

concentration of potential final customers, see Figure 19. For these instances, the BTO has selected 

a total of 220 bus services that can be used for freight and passenger transportation: 66 services 

departing from hub 34, 54 services departing from hub 42, 12 services departing from hub 107 and 

86 services departing from hub 305. Albeit bus hub 305 is located within the city center, the bus BTO 

considers this bus hub as essential to be part of the network as a departing point for buses and 

requests. 

 

 
Figure 19 - Real bus network preselected for SOLFI project of the city of Porto 

 

 

Concerning the LMO, the city is partitioned in three destination zones (highlighted in Figure 19 with 

different colors). Then, the maximum delivery time of each request is computed considering the zone 

of the request destination address and the zone of each bus stop location using the values shown in 

Table 20.  
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Table 20 - Maximum delivery time (in minutes) from each bus stop to each destination zone 

Bus stop 
Destination zone of request 

A B C 

1 60 45 30 

2 30 45 60 

3 60 30 45 

4 60 30 45 

5 30 45 60 

6 30 45 60 

7 60 30 45 

 

 

For these Pilot instances, two sets of 6 problem instances each are considered. The first set is 

composed by instances 1 to 6 and consider (i) all requests with a fixed demand value of 1, (ii) all bus 

services with a load capacity of 7 and (iii) all bus stops (of all bus services) with an offload capacity 

of 5. The second set is composed by instances 7 to 12 and consider (i) the request demand values 

randomly generated between 1, 2 and 3, with equal probability, (ii) all bus services with a load 

capacity of 14 and (iii) all bus stops (of all bus services) with an offload capacity of 10. In both sets, 

all requests can be dropped in any hub and their destination zone is randomly generated considering 

all zones with equal probability. 

Concerning the number of requests of these instances, three values on each set of instances were 

considered: 100, 200 and 300 requests. Finally, for each of the three values, it was considered two 

problem instances: one instance where the delivery time windows are with a duration of 4 hours 

around a central time instant (randomly generated with a uniform distribution) and another instance 

where the previous delivery time windows are shortened to a duration of 2 hours by increasing in 

one hour the earliest delivery time and decreasing in one hour the latest delivering time. All problem 

instances were generated ensuring that the optimization problem is feasible.  In Table 21, ‘Inst’ 

indicates the instance ID starting with “P” (Pilot), ‘|K|’ indicates the number of requests, “Dem.” 

indicates the requests demand, ‘Bus Cap’ indicates the bus service capacity, ‘Stop Cap’ indicates the 

bus stop capacity, ‘W’ indicates the delivery time window duration. 

 

 

Table 21 - Summary of all 12 Pilot instances 

Inst. |K| Dem. 
Bus 

Cap 

Stop 

Cap 
W 

 
Inst. |K| Dem. 

Bus 

Cap 

Stop 

Cap 
W 

P1 100 1 7 5 4 hours  P7 100 1,2 or 3 14 10 4 hours 

P2 100 1 7 5 2 hours  P8 100 1,2 or 3 14 10 2 hours 

P3 200 1 7 5 4 hours  P9 200 1,2 or 3 14 10 4 hours 

P4 200 1 7 5 2 hours  P10 200 1,2 or 3 14 10 2 hours 

P5 300 1 7 5 4 hours  P11 300 1,2 or 3 14 10 4 hours 

P6 300 1 7 5 2 hours  P12 300 1,2 or 3 14 10 2 hours 
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5.4. Computational experiments with exact methods 

The computational results with exact methods were obtained with CPLEX Studio IDE 12.10 running 

on an ASUS VivoBook, intel core i7 processor 1.80 GHz and 16 Gb of RAM and considering a 

runtime limit of 1800 seconds (30 minutes).  

 

5.4.1. Fictional instances 

Table 22 presents the results (optimal/best value and runtime) of each model for each Fictional 

Instance, resulting from the optimization of each model. The results with ‘[a-b]’ show the solution 

found and the lower/upper bound, meaning that a provable optimal solution was not found within the 

runtime limit, and the obtained gap (maximum difference between the obtained value and the optimal 

value) is presented in percentage. 

 

 

 

 

Table 22 - Results of all optimization models for all instances 

 

 

When aiming to minimize the last mile delivery time, model LMDT is very easy to solve in all 

instances, including the largest ones (whose running times are well below 1 second). The maximum 

delivery time of the LMO to deliver a request when the bus stop is in the same zone as the destination 

address was considered to be 30 minutes, for all zones. When solving model (LMDT), the solver 

always obtained the optimal value of 30 minutes meaning that in all cases the network has enough 

capacity to enable all requests to be offloaded in bus stops located in the same zone of their 

destination address. 

When aiming to minimize the number of bus offloads, NBO cannot find provable optimal solutions 

neither for the largest instances (F5 and F6) nor for Instance F4, suggesting that the model is hard to 

solve with high number of requests and large network, and also when all requests depart from the 

same bus hub. The optimal solutions in Instances F1, F2 and F3 show that the 36 requests can be 

Inst 
LMDT 

(minutes) 

NBO 

(no. 

offloads) 

NBS 

(no. used 

buses) 

RBS 

(no. 

requests) 

RLMF 

(no. 

requests) 

Runtime of each model 

(seconds) 

F1 30 15 10 36 36 0.02 | 2.15 | 0.38 | 0.16 | 

0.11 

F2 30 15 10 [35-36] 

(2.86%) 

36 0.03 | 0.48 | 0.22 | 1800 | 

0.06 

F3 30 15 10 36 36 0.03 | 1.03 | 0.36 | 0.28 | 

0.13 

F4 30 [17-16] 

(5.8%) 

11 12 36 0.03 | 1800 | 0.13 | 3.91 | 

0.13 

F5 30 [39-37] 

(5.12%) 

25 [63-64] 

(1.59%) 

100 0.31 | 1800 | 2.70 | 1800 | 

1.11 

F6 30 [41-37] 

(9.75%) 

25 [60-61] 

(1.67%) 

100 0.25 | 1800 | 275.2 | 1800 | 

0.88 
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offloaded in the same 15 bus offloads both when shorter delivery time window are considered and 

when all requests are destined to one single destination zone. On the other hand, if all requests are 

dropped only in one hub (Instance F4), the minimum number of bus offloads increases from 15 to 

17. In this latter case, the number of bus services that can be used to transport requests departing 

from 1 hub is reduced to half, since Instance F4 only considers the use of bus hub 1 and its 

corresponding network. Consequently, considering the same demand for just one hub and 

corresponding bus fleet that departs from the hub, the model is solved only using half of the network 

that are used for the base Instance 1. In this case, the solver could not obtain a provable optimal value 

for the model NBO, obtaining a feasible solution of 17 offloads in 30 minutes (two more offloads 

compared to Instance 1). Additionally, the solver found a lower bound of 16 offloads, which means 

that the optimal value for this instance F4 is either 16 or 17 offloads, (maximum gap to the optimal 

solution of 5.8 %).  

For instances F5 and F6 (larger instances with a large network and more demand), the solver could 

not obtain a provable optimal solution for the model NBO. Nevertheless, the solver obtained a 

feasible solution, during the runtime, of 39 and 41 offloads, for instance P5 and P6 respectively. This 

increase of offloads is expected since there is a higher number of requests distributed to a higher 

number of destination zones. 

Additionally, the obtained lower bounds mean that a maximum gap between the solution found and 

the potential optimal solution can be calculated for both instances, which is 5.12% and 9.75% for F5 

and F6, respectively. Thus, these results have shown that to solve NBO model with an instance with 

increasing number of demand requests and a larger network turns the problem significantly harder 

to solve and to prove the optimality of the obtained solutions. 

When aiming to minimize the number of bus services, NBS is easy to solve in the smaller instances 

and becomes harder to solve in the larger instances although obtaining the optimal solutions below 

the runtime limit (Instance F5 in 2.7 seconds and Instance F6 in 275.2 seconds). The optimal 

solutions in Instances F1, F2 and F3 show that the 36 requests can be assigned to a minimum of 10 

bus services both when shorter delivery time windows are considered and when all requests are 

destined to one single destination zone. On the other hand, if all requests are dropped only in one hub 

(Instance F4), the minimum number of required bus services suffers a slight increase from 10 to 11 

(of the total 12 bus services allowed in this instance) showing that using only one possible bus hub, 

forces the utilization of almost all bus services departing from that hub. For the largest instances, the 

100 requests have been assigned to a minimum of 25 bus services out of 36 in both instances, showing 

again that the delivery time window duration does not have any impact on this optimal value, since 

the value is the same when comparing the F1 and F2 instances and comparing F5 and F6, where only 

the time window width is changed between the pair of instances.  

When aiming to maximize the robustness to bus service suppressions, RBS is very easy to solve for 

Instances F1 and F3. Instance F4 was solved in 3.91 seconds and the remaining instances ended by 

runtime limit although with small gaps (below 3%) in all cases. The obtained solutions in Instances 

F1, F2 and F3 show that all (or almost all) of the 36 requests can be assigned with an alternative bus 

service, both when shorter delivery time windows are considered and when all requests are destined 

to one single destination zone. On the other hand, if all requests are dropped only in one bus hub 

(Instance F4), the reduction to half of the bus services that can be assigned to requests makes the 

robustness of the solution to be significantly reduced as only one third (12 out of 36) of the requests 

can be assigned with one alternative bus service. This is an expected behavior since only buses from 

the same hub can be assigned to requests as alternative bus and for this instance F4 only 12 buses 

depart from each bus hub. For Instances F5 and F6, the optimality was not reached, obtaining values 

with small gaps to the optimal value of less than 2%. Moreover, the number of requests assigned 

with an alternative bus is significantly lower than the total number of requests (100 requests), with 

the value of 63 and 60 respectively, showing that, for these instances, the set of available bus services 

is not enough to reach full robustness to bus service suppressions. 
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When aiming to maximize the robustness to last mile failures, RLMF is very easy to solve in all 

instances, including the largest ones (whose running times are around 1 second). Moreover, a fully 

robust solution was obtained in all cases as all requests were assigned with an alternative bus stop. 

These results highlight the importance of a careful planning of the bus network and associated 

destination zones: by considering at least two bus stops in each destination zone, as considered of 

both bus networks (Figure 17 and Figure 18), the possibility of obtaining robust solutions is only 

constrained by the bus stop capacities since it allows requests to be offloaded in the second bus stop 

of the same destination zone if a last mile failure occurs in the first bus stop. 

 

Table 23 presents the results of the same instances for models RBS and RLMF, considering 

symmetry breaking constraints (15’) instead of (15) of RBS model, and (20’) instead of (20) of 

RLMF model. The goal of these experiments is to assess if the models are easier to solve with them 

or not. 

 

 

 

 

Table 23 - Results of RBS and RLMF models for all instances with symmetry breaking constraints 

 

 

 

 

 

 

 

 

 

 

 

 

 

The results show that incorporating symmetry breaking constraints allow to prove the optimality of 

35 requests in 9.97 seconds for F2 in the RBS model (this solution was found with no symmetry 

breaking constraints but the optimality was not proven (Table 22). On the other hand, the lower 

bound obtained for F5 in the same RBS model with the symmetries breaking constraints has 

decreased from 63 to 62 requests, increasing the gap to the potential optimal solution. Finally, among 

the other instances, the running times of the two alternatives (with or without symmetry breaking 

constraints) are not substantially different. These results show that, in these models, the two modeling 

alternatives are equivalent in the efficiency of the solvers to compute their solutions. 

Note that, as explained before on Section Lexicographic optimization of two planning objectives, 

when aiming to optimize a given objective, it is possible to have multiple solutions with the same 

optimal value. To select one of such solutions, a second objective might be used. This approach 

requires to solve two ILP models in sequence (see Section Lexicographic optimization of two 

 With symmetry breaking constraints 

Instance 
RBS 

(no. requests) 

RLMF 

(no. 

requests) 

Runtime of each model 

(seconds) 

F1 36 36  0.22+0.08 

F2 35 36 9.97+0.09 

F3 36 36 0.38+0.09 

F4 12 36 0.56 + 0.23 

F5 [62-64] 

(3.12%) 

100 1800+ 1.22 

F6 [60-61] 

(1.67%) 

100 1800 + 0.89 
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planning objectives). In the next subsections, the results of the lexicographical optimization for 

different pairs of previous models are presented. 

 

 

5.4.1.1 LMDT-NBO 

This combination of objective functions focuses entirely in the last mile delivery process, since both 

individual objectives functions are focused on the last mile process. This combination allows us to 

obtain the solution with the lowest average delivery time for all the requests and, then, the lowest 

number of bus offloads to guarantee the previous average delivery time, fully facilitating the 

integration of last mile operation in the LMO daily business. Since the optimization of the LMO 

daily operation is not in scope of this thesis, the aim is to find a solution that facilitates the 

incorporation of the request’s transportation on the LMO daily transportation routes.  

In this combination, the focus is on optimizing the last mile delivery by first minimizing the last mile 

delivery time (LMDT) and, then, minimizing the number of bus offloads (NBO), to obtain the 

minimum number of bus offloads guaranteeing that all requests are offloaded as close as possible to 

their destination.   

This combination of objective functions results in an augmented model LMDT-NBO. This model is 

similar with the model NBO itself, simply adding the constraint with the value v obtained for model 

LMDT – constraint (6’) below. The augmented model LMDT-NBO is defined by the following ILP 

formulation: 

 

Minimize    ∑ ∑ ∑ 𝑦𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

                                                                                                            (7) 

Subject to: 

(1) – (5) 

1

|𝐾|
∑ ∑ ∑ ∑ 𝑇𝑘𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

≤ 𝑣                                                                                                    (6′) 

𝑧𝑘𝑡𝑝𝑠 ≤  𝑦𝑡𝑝𝑠                                                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)           (8) 

𝑦𝑡𝑝𝑠 ∈ {0,1}                                                           , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                           (9) 
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Table 24 presents the obtained results for fictional instances of the combined model LMDT-NBO. 

Table 24 - Results of LMDT-NBO 

 

 

 

 

 

 

 

 

 

 

 

 

These results show that minimizing the number of offloads, minimizing first the last mile delivery 

time leads to more offloads, on average, than minimizing solely the number of bus offloads. The 

number of offloads increases from 15 to 18 in Instance F1. Reducing the delivery time window from 

4 hours to 2 hours increases the number of offloads from 15 to 22, since with 2 hours of time -window 

duration there is less margin for a bus stop to act as offloading point for different requests at the same 

time (Instance F2). When all requests are destined to one single destination zone (Instance F3), the 

number of offloads remain the same value of 15 because the destination of all requests is closer 

between each other, and only bus stops capacities force the increase of offloads. If all requests are 

dropped only in one hub (Instance F4), the number of bus offloads increases from 17 to 20 because 

the number of bus services that can be used is reduced to half, and key bus services that have the 

possibility to transport more requests may be unavailable. For larger instances (F5 and F6), it was 

possible to get the optimal value of 47 offloads for F5 and 55 offloads for F6, showing again an 

increase of the number due to shortening the delivery time window. On average, the number of bus 

offloads increases 24% over all instances, when minimizing first the last mile delivery time, and then 

the number of offloads keeping the last mile delivery time. 

5.4.1.2 NBO-LMDT 

Like in the previous combination, the focus is on optimizing the last mile delivery, but now 

prioritizing the number of offloads to be done by the LMO. The motivation to study this combination 

of objectives, NBO-LMDT, is to compare this approach with the last one, when the focus is on the 

last mile delivery process. As said in the previous combination of objectives, the goal is to assess the 

system when the focus is on the last mile delivery process to facilitate the integration of this 

distribution tasks by the LMO on its daily tasks/routes. 

In this combination, the focus is on minimizing the number of bus offloads (NBO), and then 

minimizing the last mile delivery time. Thus, the procedure is first to minimize the NBO model to 

obtain the minimum number of offloads possible, and then to minimize the last mile delivery time 

(LMDT), while guaranteeing the minimum number of offloads obtained before. 

This combination of objective functions results in an augmented model NBO-LMDT. This model is 

similar with the model LMDT itself, simply adding the constraint with the value v obtained with 

model NBO – constraint (7’) below, and the new constraints (8) and (9) that are part of the model 

NBO as well. The augmented model NBO-LMDT is defined by the following ILP formulation: 

Instance 
LMDT - NBO 

LMDT (minutes) NBO (no. offloads) Runtime (seconds) 

F1 30 18 0.02+0.23 

F2 30 22 0.03+0.08 

F3 30 15 0.03+0.44 

F4 30 20 0.03+0.45 

F5 30 47 0.31+4.55 

F6 30 55 0.25+0.58 
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Minimize    
1

|𝐾|
∑ ∑ ∑ ∑ 𝑇𝑘𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                      (6) 

Subject to: 

(1) – (5) 

∑ ∑ ∑ 𝑦𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

≤ 𝑣                                                                                                                          (7′) 

𝑧𝑘𝑡𝑝𝑠 ≤  𝑦𝑡𝑝𝑠                                                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)           (8) 

𝑦𝑡𝑝𝑠 ∈ {0,1}                                                           , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                           (9) 

 

 

 

Table 25 presents the obtained results for fictional instances. 

 

 

 

 

Table 25 - Results of NBO-LMDT 

 

 

 

 

 

 

 

 

 

 

 

 

These results show that minimizing the last mile delivery time guaranteeing the minimum number 

of bus offloads leads to longer last mile delivery times, on average, than minimizing solely the last 

mile delivery time. For instances F5 and F6, the optimality was not reached, finding solutions with 

gaps of, around, 21%, showing that these models are very hard to be solved for larger problem 

instances. 

Instance 
NBO – LMDT 

NBO (no. offloads) LMDT (minutes) Runtime (seconds) 

F1 15 32.5 2.15 + 4.75 

F2 15 35 0.48 + 0.78 

F3 15 30 1.3 + 1.41 

F4 17  32.5 1800 + 167.17 

F5 39  [39.6-31.36] 

(20.79%) 
1800 + 1800 

F6 41 [41.25-35.29] 

(20.99%) 
1800 + 1800 



103 

 

The average increase in the last mile delivery time is 17.1% over all instances, when optimizing the 

number of offloads first and then optimizing the delivery time window keeping the number of 

offloads. Since both combinations (this and the previous one) are focused on optimizing the last mile 

delivery (and assuming that both objectives are equally important in the integration of these 

deliveries in the daily operations of the LMO), it is concluded that this second combination is the 

best trade-off between the two objectives as the average increase of the last mile delivery time in this 

combination is much smaller than the average increase in the number of bus offloads obtained with 

the first combination (which is 24%). This may be the best scenario for the LMO, since it leads to 

the minimum number of offloads and travelling as less as possible to deliver the requests, with the 

greater benefits. 

 

5.4.1.3 NBO-RLMF 

For this pair of objectives, the focus is once more on the last mile delivery process because the 

number of offloads/times the LMO needs to collect freight requests from the buses are minimized, 

and also providing an alternative bus stop to collect freight requests in case any disruption occurs 

during the day. It is expected that when the number of bus offloads is minimized, the average number 

of requests to be offloaded by the LMO per bus increases. Therefore, the negative impact of a 

potential last mile failure becomes higher since, in case LMO is not available to collect the requests 

at a given bus stop, a higher number of requests are not offloaded and delivered to final customers. 

This is the reason to combine the objective function NBO with the objective function RLMF: when 

minimizing the number of offloads from the buses that the LMO has to perform, the easiest is the 

process for them to collect and manage with daily activities/route but it also increases the negative 

impact of a potential failure to collect requests at a bus stop. This impact would be significantly 

higher since more requests would not be offloaded from the bus and, consequently, not delivered to 

the final customer/destination. Hence, the robustness to deal with a last mile offload failure is 

incorporated on this combination of objectives, trying to, whenever feasible, assign an alternative 

bus stop to all requests. If all requests have an alternative bus stop to be offloaded from the bus to 

act as alternative plan in case the LMO fails to offload them in the main bus stop, the LMO can still 

offload and collect the requests on respective alternative bus stops. 

In this combination, the focus is on minimizing the number of offloads (NBO), and then maximizing 

the robustness of last mile failures (RLMF), The procedure is first to solve model NBO to obtain the 

minimum number of offloads possible, and then solve model RLMF, while guaranteeing the 

minimum number of offloads obtained before. 

This combination of objective functions results in an augmented model NBO-RLMF. This model is 

similar with the model RLMF itself, adding the constraint with the value v obtained for model NBO 

– constraint (7’) below, and the constraints (8) and (9) that are part of the model NBO as well. Note 

that constraints (4) are not needed to be added from NBO to the augmented model NBO-RLMF 

because they are mathematically guaranteed by constraints (4’’) of model RLMF. The augmented 

model NBO-RLMF is defined by the following ILP formulation: 

 

Maximize    ∑ ∑ ∑ ∑ 𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                                (18) 

Subject to: 

(1) – (3), (5) 

∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠
′ )

𝑘∈𝐾
≤  𝑈𝑡𝑝𝑠                               , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)             (4′′) 
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∑ ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)

≤ ∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)

                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                   (19) 

ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠 + ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠
′ ≤ 1                                       , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), 𝑠 ∈ 𝑆(𝑝)  (20) 

∑ ∑ ∑ (1 − ℎ𝑘𝑡𝑝𝑠)𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0                        , ∀ 𝑘 ∈ 𝐾                                                         (21) 

𝑥𝑘𝑡𝑝𝑠
′ ∈ {0,1}                                                                , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝) (22) 

∑ ∑ ∑ 𝑦𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

≤ 𝑣                                                                                                                          (7′) 

𝑧𝑘𝑡𝑝𝑠 ≤  𝑦𝑡𝑝𝑠                                                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)           (8) 

𝑦𝑡𝑝𝑠 ∈ {0,1}                                                           , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                           (9) 

 

 

 

 Table 26 presents the obtained results for this combination NBO-RLMF 

 

 

Table 26 - Results of NBO-RLMF 

 

 

 

 

 

 

 

 

 

 

These results show that, for the smaller instances F1-F4, it was possible to obtain fully robust 

solutions in all cases (all 36 requests were assigned with an alternative bus stop to be offloaded in 

case any unexpected event occurs) while guaranteeing the minimum number of bus offloads. For 

largest instances F5 it was possible to obtain a fully robust solution with all requests with an 

alternative bus stop after 590 seconds, approximately. For Instance F6, the solver could not solve 

this model within the runtime to obtain the optimal solution but found a feasible solution with 99 

requests with an alternative bus stop assigned, where only one requests cannot get an alternative bus 

stop (gap of 1%).  Again, these results highlight the importance of a careful transportation network 

plan, considering at least two bus stops in each destination zone and route. In this case, probability 

to assign an alternative bus stop that still fulfils the delivery time window of the requests is increased. 

Table 27 presents the results to the same instances for this augmented model NBO-RLMF, 

considering the symmetry breaking constraints (20’) instead of constraints (20) of model RLMF. 

Instance 
NBO-RLMF 

NBO (no. offloads) RLMF (no. requests) Runtime (seconds) 

F1 15 36 2.15+1.09 

F2 15 36 0.48+4.08 

F3 15 36 1.3+1.03 

F4 17 36 1800+5.03 

F5 39 100 1800+589.56 

F6 41 [99-100] (1.01%) 1800+1800 
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Recall that these constraints force the model to select, for each request, an alternative bus stop that 

is subsequent to the main bus stop assigned to it. 

 

 

Table 27 - Results of NBO-RLMF with symmetry breaking constraints 

 

 

 

 

 

 

 

 

 

 

 

The results of this table show that, despite the fact that the runtime of NBO-RLMF has decreased for 

instance F5 on about 250 seconds, no solution was found for instance F6 during the runtime of 30 

minutes (as it is a maximization problem, an upper bound of 100 was returned, which is the total 

number of requests). Moreover, in the other instances, the running times are of the same order as the 

ones with constraints (20). Thus, these results suggest that none of the alternatives is better than the 

other since with the original constraints it was possible to find a solution of value 99 for instance F6. 

5.4.1.4 NBS-RLMF 

This combination of objective functions mixes the interests of the two perspectives: BTO and the 

LMO, although giving more importance to the first one. It is expected that when the number of bus 

services that are used for this joint transportation is minimized, the average number of requests 

assigned per bus service also increases. If the buses are transporting more requests on average, it 

means also that the average number of requests to be collected by the LMO in each offload is also 

higher on average, or it may lead to more offloads at different stops along the same bus route. These 

consequences may place strain on the LMO and may increase the probability of offload failures, as 

it may be harder to fulfill the schedule or be on time at the different bus stops. Again, the negative 

impact of a potential last mile failure becomes higher since a higher number of requests not offloaded 

results in a higher number of requests that fail to be delivered to the final customer. In summary, the 

goal of this combination of objectives is to incorporate robustness to deal with strain on last mile 

delivery process, now created by reducing the number of bus services used for freight transportation. 

This combination of objective functions results in an augmented model NBS-RLMF. This is a 

combination of objectives similar to the previous one but optimizing first the number of bus services 

instead of the number of bus offloads. Thus, the resulting augmented model NBS-RLMF is similar 

with the model RLMF itself, simply adding the constraint with the value v obtained for model NBS 

– constraint (10’) below, and the new needed constraints (11) and (12) that are part of the NBS model 

as well. Again, constraints (4) are not needed to be added from NBS to the augmented model NBS-

RLMF as they are guaranteed by constraints (4’’). The augmented model NBS-RLMF is defined by 

the following ILP formulation: 

 

Instance 

NBO-RLMF: With symmetry breaking constraints 

NBO (no. offloads) RLMF (no. requests) Runtime 

(seconds) 

F1 15 36 2.15+1.39 

F2 15 36 0.48+3.00 

F3 15 36 1.3+1.67 

F4 17 36 1800+6.09 

F5 39 100 1800+239.56 

F6 41 NSOL (Lim=100) 1800+1800 
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Maximize    ∑ ∑ ∑ ∑ 𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                                (18) 

Subject to: 

(1) – (3), (5) 

∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠
′ )

𝑘∈𝐾
≤  𝑈𝑡𝑝𝑠                               , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)             (4′′) 

∑ ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)

≤ ∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)

                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                   (19) 

ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠 + ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠
′ ≤ 1                                       , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), 𝑠 ∈ 𝑆(𝑝)  (20) 

∑ ∑ ∑ (1 − ℎ𝑘𝑡𝑝𝑠)𝑥𝑘𝑡𝑝𝑠
′

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0                        , ∀ 𝑘 ∈ 𝐾                                                         (21) 

𝑥𝑘𝑡𝑝𝑠
′ ∈ {0,1}                                                                , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝) (22) 

∑ ∑ 𝑦𝑡𝑝
′

𝑝∈𝑃(𝑡)𝑡∈𝑇

≤ 𝑣                                                                                                                                    (10′) 

𝑧𝑘𝑡𝑝𝑠 ≤ 𝑦𝑡𝑝
′                                     , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                           (11) 

𝑦𝑡𝑝
′ ∈ {0,1}                                     , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                                                       (12) 

 

 

 

 

 

Table 28 presents the obtained results for this combination NBS-RLMF 

 

Table 28 - Results of NBS–RLMF 

 

 

 

 

 

 

 

 

 

 

Again, these results show that, for the smaller instances (F1-F4) it was possible to obtain fully (or 

almost fully) robust solutions in all cases while guaranteeing the minimum number of bus services 

(only F2 has a request with no alternative bus stop). For the larger instances F5 and F6, no solution 

Instance 
NBS–RLMF 

NBS (no. buses) RLMF (no. requests) Time (seconds) 

F1 10 36 0.38+1.77 

F2 10 35 0.22+77.95 

F3 10 36 0.36+3.30 

F4 11 36 0.13+0.20 

F5 25 NSOL (Lim=100) 2.70+1800 

F6 25 NSOL (Lim=100) 275.2+1800 
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was found during the runtime of 30 minutes, again returning the upper bound of 100 (the total number 

of requests in these instances). These results suggest that for instances with larger number of requests, 

the performance of the solver when running model RLMF after NBS is much worse than after NBO. 

It is an expected behavior because when minimizing the number of bus services first, and forcing 

this minimum number of bus services on the model RMLF, the model has significantly less bus 

services to search for alternatives to select bus services that have in their route bus stops that can be 

used as alternative bus stops for a higher set of requests. Example of these buses are buses that pass 

through the central zones of the city, and therefore may have subsequent bus stops that still can be 

used to offload requests within the time window (zone 4, 5 or 6 of larger instances F5 and F6). 

Table 29 presents the results to the same instances for this combination, considering the symmetry 

breaking constraints (20’) instead of constraints (20) of model RLMF. Recall that these constraints 

force the model to select, for each request, an alternative bus stop that is subsequent to the primary 

bus stop assigned to it.  

 

 

Table 29 - Results of NBS-RLMF with symmetry breaking constraints 

 

 

 

 

 

 

 

 

 

 

 

The results of this table show that using constrains (20’) instead of the original constrains (20) 

jeopardize the overall performance of the RLMF model, since the only significant variation is the 

solution found for F2 of 35 requests with alternative bus stops to be offloaded. With constraints (20’), 

the model could not prove the optimality of the solution found within the runtime of 1800 seconds. 

Nevertheless, from results of  

Table 28, 35 is the optimal value of requests with alternative bus stop. 

 

5.4.1.5 RBS-NBS 

In this combination, the focus is entirely on the decision-making process of the BTO of the city. This 

combination of objectives is primarily concerned to incorporate robustness to the system to deal with 

unexpected events that lead to buses suppressions (model RBS). For this reason, it is very important 

to have a backup plan and assign alternative bus services to all requests, whenever it is possible. On 

the other hand, when the robustness to bus service suppressions is maximized, the total number of 

bus services (acting either as main or as alternative bus services) might become significantly larger 

than the minimum number required. This is an expected behavior when optimizing solely RBS, as 

the model does not optimize the number of services used on the solution. Thus, it is important to 

Instance 
NBS–RLMF: With symmetry breaking constraints 

NBS (no. buses) RLMF (no. requests) Time (seconds) 

F1 10 36 0.38+4.14 

F2 10 [35-36] (2.86%) 0.22+1800 

F3 10 36 0.36+2.03 

F4 11 36 0.13+0.20 

F5 25 NSOL (Lim=100) 2.70+1800 

F6 25 NSOL (Lim=100) 275.2+1800 
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combine the RBS objective function with the NBS, with the aim to incorporate the maximum 

robustness for buses suppressions, and afterwards minimize the number of bus services needed to 

guarantee this level of robustness in the system. 

This combination of objective functions results in an augmented model RBS-NBS, first optimizing 

the robustness to bus service suppressions (RBS) and afterwards optimizing the number of bus 

services used (NBS). The resulting augmented model RBS-NBS is similar with the model NBS itself, 

simply adding the constraint with the value v obtained for model RBS – constraint (13’) below, and 

the constraints (3’), (4’), (14), (15), (16) and (17) that are part of the RBS model as well. Again, 

constraints (4) are not needed in the augmented model RBS-NBS as they are guaranteed by 

constraints (4’). Note that constraints (11) of model NBS have to be changed to include the second 

term 𝑥𝑘𝑡𝑝𝑠, resulting in constraints (11’). This change in constraints (11) is required because these 

constraints ensure that a bus service is accounted when at least one item is delivered in hub 𝑡 ∈ 𝑇 

and loaded in bus service 𝑝 ∈ 𝑃(𝑡), and summing the 𝑥𝑘𝑡𝑝𝑠  to the first part of the inequality ensures 

that alternative bus services are also considered to the total number of bus services. The augmented 

model NBS-RLMF is defined by the following ILP formulation: 

 

Minimize    ∑ ∑ 𝑦𝑡𝑝
′

𝑝∈𝑃(𝑡)𝑡∈𝑇

                                                                                                                       (10) 

Subject to: 

(1) – (2), (5) 

𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠 ≤ 𝑦𝑡𝑝
′                       , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                                (11′) 

𝑦𝑡𝑝
′ ∈ {0,1}                                     , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                                                   (12) 

∑ ∑ ∑ ∑ 𝑥𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇𝑘∈𝐾

                                                                                                                        (13′) 

∑ ∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠) 
𝑠∈𝑆(𝑝)𝑘∈𝐾

≤ 𝑈𝑡𝑝                 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                    (3′) 

∑ 𝐷𝑘(𝑧𝑘𝑡𝑝𝑠 + 𝑥𝑘𝑡𝑝𝑠)
𝑘∈𝐾

≤ 𝑈𝑡𝑝𝑠                                 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)              (4′) 

∑ ∑ ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)

≤ ∑ ∑ ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)

   , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇                                         (14) 

∑ (ℎ𝑘𝑡𝑝𝑠𝑧𝑘𝑡𝑝𝑠 + ℎ𝑘𝑡𝑝𝑠𝑥𝑘𝑡𝑝𝑠)

𝑠∈𝑆(𝑝)

≤ 1                          , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                   (15) 

∑ ∑ ∑ (1 − ℎ𝑘𝑡𝑝𝑠)𝑥𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0                        , ∀ 𝑘 ∈ 𝐾                                                         (16) 

𝑥𝑘𝑡𝑝𝑠 ∈ {0,1}                                         , ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)                  (17) 

 

 

 

Table 30 presents the obtained results for this combination of models. 
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Table 30 - Results of RBS-NBS 

 

 

 

 

 

 

 

 

 

 

These results show that to obtain the maximum robustness to bus service suppressions, most of the 

bus services are used: 21 out of 24 bus services in Instances F1, F2 and F3; and 12 out of 12 bus 

services in Instance F4 (the instance where all requests are dropped only in one hub and, therefore, 

where the number of bus services that can be assigned is reduced to half). In practice, this means 

that, for the smaller instances (F1-F4) full robustness to bus service suppressions is only possible if 

all (or almost all) bus services are available for freight transportation. 

For F5 and F6, the total set of 36 bus services of these instances only allow to 63 and 60 requests 

with an alternative bus service. The difference between them is explained with the reduced delivery 

time window of two hours, since less bus services are used to deliver the requests and respect the 

delivery time window of 2 hours, when compared to 4 hours. The results also prove that it is hard to 

optimize the number of services used after maximizing the robustness to bus service suppressions 

(the augmented model RBS-NBS), since after the runtime limit is reached, no feasible solution was 

found and the upper bound did not decrease (the upper bound equals the total number of 36 bus 

services) 

Table 31 presents the results to the same instances for this combination, considering the symmetry 

breaking constraints (15’) instead of constraints (15) of model RBS. Recall that these constraints 

force the model to select, for each request, an alternative bus service that departs after the primary 

bus service assigned to it.  

Table 31 - Results of RBS-NBS with symmetry breaking constraints 

 

 

 

 

 

 

 

 

 

The results of this table show that including constraints (15’) instead of the original constraints (15) 

jeopardize the overall performance when solving NBS model, since the only significant variation is 

Instance 
RBS-NBS 

RBS (no. requests) NBS (no. buses) Time (seconds) 

F1 36 21 0.16+10.73 

F2 35 [21-20] (5%) 1800+1800 

F3 36 21 0.28+8.36 

F4 12 12 3.91+0.47 

F5 63 NSOL (Lim=36) 1800+1800 

F6 60 NSOL (Lim=36) 1800+1800 

Instance 
RBS-NBS: With symmetry breaking constraints 

RBS (no. requests) NBS (no. buses) Time (seconds) 

F1 36 21 0.16+21.73 

F2 35 [22-21] (4.5%) 9.97+1800 

F3 36 21 0.28+11.8 

F4 12 12 3.91+0.50 

F5 62 NSOL (Lim=36) 1800+1800 

F6 60 NSOL (Lim=35) 1800+1800 
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the solution found for F2 of 22 bus services needed, one more than the solution provided with 

constraints (15). Despite constraints (15’) allowed to prove the optimality of the solution with value 

35 of the first model RBS (already seen in Table 23), it increased 1 more bus service needed in the 

solution of RBS-NBS. 

With these constraints (15’), the solver could not prove the optimality of the solution found within 

the runtime of 1800 seconds, for instance F2. Nevertheless, combining these results with the ones of 

the previous Table 30, it can be concluded that 21 is the optimal value of requests with alternative 

bus stop, since the feasible solution found for F2 in Table 30 is the lower bound found for F2 in Table 

31.  

Analyzing the overall results, it is clear that using symmetry breaking constraints do not 

systematically improve the performance when solving the models. Consequently, adopting the 

strategy of switching the role between primary and alternative bus service/stop is preferable. 

 

5.4.2. SOLFI project pilot instances 

With the aim of testing the optimization models within the scope of the pilot of SOLFI project, the 

combinations LMDT-NBO and NBO-LMDT were tested using the pilot instances, presented before. 

These combinations were selected from the BTO to be run for the pilot tests, as they optimize two 

metrics/objectives that the BTO of the city values the most. 

 

5.4.2.1 LMDT-NBO solved for pilot instances 

Table 32 presents the results of the implementation of LMDT-NBO for the pilot tests, where ‘Inst’ 

indicates the instance ID, ‘|K|’ indicates the number of requests, ‘W’ indicates the delivery time 

window duration, “LMDT” and “NBO’ indicate the value of the solution for each model, “LMDT-

NBO” indicates the two values of the solution found for the combination of objectives, ‘Runtime’ 

indicates the runtime (in seconds) to obtain the solution for “LMDT-NBO” and ‘DZ’ indicates the 

number of requests, in the solution of combination “LMDT-NBO”, that are offloaded in a bus stop 

located in a zone different from the request destination zone. The results highlighted with [a-b] mean 

that an optimal solution was not found within the runtime limit, a is the value of the obtained solution 

and b is the obtained lower bound. However, the gap to the optimal value is 4.7%, at maximum. 
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Table 32- Results of LMDT-NBO for pilot instances 

   
Values of single 

Optimization 
LMDT - NBO 

Inst. |K| W 
LMDT 

(min) 

NBO 

(offloads) 

LMDT 

(mins) 

NBO (offloads) 

[solution 

found-lower 

bound] 

Runtime 

(sec.) 
DZ 

P1 100 4 h 30 20 30 [22-21] (4.5%) 0.67+1800 0 

P2 100 2 h 30 20 30 22 0.55+ 5.64 0 

P3 200 4 h 30 40 30 [42-41] (2.4%) 1.31+1800 0 

P4 200 2 h 30.60 40 30.60 [43-41] (4.7%) 1.08+1800 8 

P5 300 4 h 30.20 60 30.20 [63-62] (1.5%) 1.76+1800 4 

P6 300 2 h 31.95 63 31.95 64 1.84 + 48.9 30 

P7 100 4 h 30 19 30 20 0.69 + 12.8 0 

P8 100 2 h 30 19 30 22 0.59 + 2.5 0 

P9 200 4 h 30 39 30 40 1.42 + 24.7 0 

P10 200 2 h 30.53 39 30.53 41 1.41 + 120 0 

P11 300 4 h 30.15 59 30.15 62 2.17 + 432 3 

P12 300 2 h 31.70 62 31.70 63 2.13 + 53.8 25 

 

 

 

These results show that the first 6 instances, in which all requests have fixed demand of 1 are harder 

to solve compared to the ones where the requests have a random value between 1, 2 or 3 since 

optimality was not reach for instance P1, P3, P4 and P5 within 1800 seconds. On the other hand, for 

the instances with random demand, the model could obtain the optimal solution in all cases. 

The results also show that minimizing the number of offloads after minimizing the last mile delivery 

time (LMDT–NBO) leads to more offloads, on average, than minimizing solely the number of bus 

offloads (NBO). On average, the number of bus offloads increases 5.3% over all twelve instances, 

when minimizing first the last mile delivery time.  All instances with 100 requests have an optimal 

value of 30 minutes, which means that the bus network capacity is enough to offload all requests in 

a bus stop located in the requests’ destination zones. For larger number of requests, this is not the 

case as bus service and bus stop capacities become a constraint. In the instances with 200 requests, 

the delivery time window of 4 hours still allows all requests to be offloaded in a bus stop located in 

the request destination zone but with the delivery time window of 2 hours, 8 out of 200 requests (i.e., 

4% of the requests) are offloaded in zones different from the request destination zone (for instance 

10 all requests are offloaded in the same zone). Moreover, in instances with 300 requests, there are 

always some requests offloaded in zones different from the request destination zones and this number 

is always higher for the instances with the shortest delivery time window duration. 

 

5.4.2.2 NBO-LMDT solved for pilot instances 

Table 33 presents the results of the implementation of NBO-LMDT for the pilot tests (the meaning 

of each column is similar to the previous table). In these cases, the gap to the optimal value is 1.95%, 

at maximum. 
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Table 33 - Results of NBO-LMDT for pilot instances 

   
Values of single 

Optimization 
NBO – LMDT (exact optimization) 

Inst

. 
|K| W 

NBO 

(offloa

ds) 

LMDT 

(min) 

NBO 

(offloads

) 

LMDT 

(min)  

[solution 

found-lower 

bound] 

Runtime 

(sec.) 

D

Z 

P1 100 4 h 20 30 20 
[30.75-30.15] 

(1.95%) 
59.19+1800 0 

P2 100 2 h 20 30 20 
[30.9-30.75] 

(0.49%) 
15.47+1800 0 

P3 200 4 h 40 30 40 
[30.3-30.15] 

(0.5%) 
74.91+1800 0 

P4 200 2 h 40 30.60 40 
[31.725-31.425] 

(0.95%) 
67.34+1800 11 

P5 300 4 h 60 30.20 60 
[30.55-30.40] 

(0.49%) 
191.73+1800 16 

P6 300 2 h 63 31.95 63 
[32.05-31.95] 

(0.31%) 
193.74+1800 39 

P7 100 4 h 19 30 19 
[30.3-30.15] 

(0.49%) 
67.00+1800 0 

P8 100 2 h 19 30 19 
[31.2-30.95] 

(0.76%) 
19.26+1800 0 

P9 200 4 h 39 30 39 30.15 72.70+257.50 0 

P10 200 2 h 39 30.53 39 31.2 65.73+151.75 0 

P11 300 4 h 59 30.15 59 
[30.3-30.22] 

(0.27%) 
172.44+1800 14 

P12 300 2 h 62 31.70 62 31.75 467.97+244.5 28 

 

 

 

The results show that this combination NBO-LMDT is harder to solve compared to the previous 

combination LMDT-NBO, since the solutions found, within 1800 seconds, for all instances with 

fixed demand of 1 are not optimal. Nevertheless, the solutions of this combination NBO – LMDT 

have potential gaps to the optimal value of 0.69% on average, which are very small. 

The results also show that minimizing the last mile delivery time after minimizing the number of 

offloads after (NBO-LMDT) leads to higher delivery time, on average, than minimizing solely the 

last mile delivery time (LMDT), and this number increases as the number of requests also increases. 

This combination is the combination selected by the BTO of the city to be incorporated into the 

decision models of the pilot platform, and the results suggest that despite the optimal solutions could 

only be obtained solving three of twelve instances, the gaps to the optimal value are very small and 

reasonable accepted in terms of transportation engineering. Nevertheless, heuristics approaches for 

this combination were also studied (described in the next subsection) to be included in the SOLFI 

platform.   
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5.5. Problem formulation with heuristic methods 

As a deliverable of the project, heuristic algorithms were developed to be integrated into the SOLFI 

platform. The reason for the development of heuristics are three: (1) the BTO does not have access 

to the CPLEX solver to run and solve the exact models, since the license is expensive; (2) The BTO 

of the city has selected the objective function NBO-LMDT to use at the pilot stage of the project, 

facilitating the integration of requests collection by the LMO (the results of solving NBO-LMDT for 

fictional and pilot instances show that increasing the number of requests make the integer linear 

programming models hard to solve, and heuristics are needed to solve these instances in reasonable 

time); (3) the BTO aims to operate based on a platform that receives the requests release by clients 

one by one and, for these reason, the BTO demands an algorithm that provides a fast acceptance 

feedback to the client upon each request release. When the platform does not accept more requests 

by the client to be delivered, a more efficient and time-consuming algorithm is required to provide 

the best solution possible, performing this optimization task during the night before the day of 

operation. 

Considering the interview to the bus BTO, the platform must run based on two different algorithms. 

The first algorithm runs in each request release by a client and aims to decide as quickly as possible 

if a request can be accepted or not for transportation on the desired day. Thus, an efficient and fast 

request receipt algorithm has to run during the request release by the client, to determine, if its request 

can be transported or not, on the desired day requested by the client. The second algorithm is an 

optimizer to be run when the time window of acceptance of new requests is closed for a certain day 

(typically on the day before). This optimization algorithm considers all the accepted requests and 

determine the best distributed plan for the whole set of requests. 

This subsection describes the two heuristics, to solve each of these two algorithms, developed and 

tested with MATLAB software.  

As previously mentioned, the aim of these optimization algorithms is the lexicographical 

optimization of two objectives NBO-LMDT: first, to minimize the number of bus offloads 

(minimizing the number of times the LMO needs to go to bus stops to collect requests) and then, to 

minimize the average last mile delivery time (selecting the bus stops that are closer, on average, to 

the requests’ destinations), guaranteeing the minimum number of offloads. 

 

5.5.1. Requests receipt algorithm, based on Greedy Randomized 

The Request receipt algorithm is run when a new freight request is triggered by one client for a 

certain day in the future. For each day, there is an acceptance time window to receive requests release 

by the Client (for example, the 7 previous days). During the request release by the Client for a certain 

day, this algorithm evaluate the system capacity to verify if the new requests can be accepted or not 

accepted, considering the already accepted requests for the same day. Although this algorithm 

requires the computation of an operational planning solution, this algorithm is built to finish as soon 

as it computes a feasible solution that accommodates the new request. The aim of this algorithm is 

to give an acceptance response to the requests release within 10 seconds, as the BTO considers this 

the “acceptable” time for response of a request release. For this reason, the optimality is not a 

requirement in this algorithm (the feasible solution found may not be the optimal one), but it 

guarantees that requests can be accepted to be transported on the intended day. In case of no system 

capacity to accept the new request release, the client is informed and he/she can request the 

transportation for another day. 
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5.5.1.1 Greedy randomized  

This subsection explained the GR used as the base for the request receipt algorithm. 

An operational planning solution is a list with a selected option for each request defined by a 

combination of the bus hub, the bus service used to transport the request and the bus stop used for 

offloading it. All options for each request are computed in advance guaranteeing that the bus hub of 

the option is one of the bus hubs where the client of the request can drop the request and the arrival 

time at the bus stop enables the LMO to deliver the request at its destination within the delivery time 

window of the request. Thus, whenever an option is mentioned, it is referred as a singular 

combination of bus hub, bus service and bus stop. 

This algorithm makes use of the GR algorithm (shown at the end of this paragraph) which takes as 

input a set 𝐾𝑖𝑛 of requests and computes an operational planning solution from the scratch. The 

algorithm starts by setting an empty solution Sol and an empty set 𝐾𝑜𝑢𝑡 of requests with selected 

options (line 1). In line 2, the set 𝐾′ of all inputted requests 𝑘 ∈ 𝐾𝑖𝑛 ordered by decreasing order of 

their demand value is determined. This decreasing order of demand, proved to be best strategy for 

the greedy randomized in preliminary tests. This can be explained by the fact that since following 

this decreasing order, the requests with more demand are fitted into the system first, using the larger 

capacity of it first. Thus, requests with lower demand are left to the end of the order, when it is 

potentially easier to fit them into already used bus services to transport the largest requests. Then, 

the ‘For’ cycle (lines 3 to 8) considers each request by the previous order. On each cycle, the 

algorithm tries to select in line 4 an option 𝑖 = 1,2, … , |𝐼𝑘| for each request k that can be 

accommodated in the partial solution Sol given by all previous selected options. If such option exists 

(line 5), the algorithm updates solution Sol with the selected option and adds the request to the set 

𝐾𝑜𝑢𝑡 (line 6). After the cycle, the algorithm computes in line 9 the two objective values of the final 

solution Sol: the number of bus offloads (nBO) and the average last mile delivery time (aLMDT). At 

the end, the algorithm outputs the set 𝐾𝑜𝑢𝑡 of requests with selected options (i.e., the accepted 

requests), together with solution Sol and its objective values. So, if the outputted 𝐾𝑜𝑢𝑡 is equal to 𝐾𝑖𝑛, 

it means that the algorithm was able to accommodate all requests in solution Sol.   

 

GR (Greedy Randomized) Algorithm: 

 

Input: 𝐾𝑖𝑛 

1. Sol  {} ,  𝐾𝑜𝑢𝑡  {} 

2. 𝐾′  order(𝑘 ∈ 𝐾𝑖𝑛) 

3. For 𝑘 = 𝐾′ do 

4.  i  SelectOption(Sol, 𝐼𝑘) 

5.  If 𝑖 ≥ 1 do 

6.   Sol  Sol + {i} ,  𝐾𝑜𝑢𝑡  𝐾𝑜𝑢𝑡 + {𝑘} 

7.  EndIf 

8. EndFor 

9. (nBO, aLMDT)  Compute(Sol) 

Output: 𝐾𝑜𝑢𝑡, Sol, nBO, aLMDT 

 

The strategy used for selection of an option for request k in line 4 of the GR algorithm is as follows. 

First, the subset of options using an already selected bus stop that can still accommodate the request 
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for transportation (i.e., neither the available capacity of the stop nor the available capacity of its bus 

service is lower than the request’s demand) whose LMO delivery time is minimum is computed. If 

this subset is not empty (i.e., it is possible to accommodate the request without increasing the number 

of bus offloads), one of its options is randomly selected. If the subset is empty, it means that a new 

bus stop must be used. Therefore, the subset of options using a bus stop not yet selected that can still 

accommodate the request and whose LMO delivery time is minimum is computed. If this new set is 

not empty, one of its options is randomly selected. Otherwise, i is returned with 0 (a valid option is 

when 1 ≤ i ≤| 𝐼𝑘 |), indicating that the request cannot be assigned with a transportation option by the 

system. 

 

 

5.5.1.2 Request receipt  

As mentioned, requests receipt algorithm is run when a new request is triggered by a client to decide 

in the shortest possible runtime if the new request is or is not accepted. This algorithm is as follows: 

 

REQUESTS RECEIPT algorithm 

Input: 𝐾, Sol, nBO, aLMDT, 𝑘′, DecisionTime 

1. return   FALSE 

2. i  SelectOption(Sol, 𝐼𝑘′) 

3. If 𝑖 ≥ 1 do 

4.  𝐾𝑜𝑢𝑡  𝐾 + {𝑘′} ,  Sol  Sol + {i} 

5.  (nBO, aLMDT)  Compute(Sol) 

6.  return   TRUE 

7. Else 

8.  𝐾𝑖𝑛  𝐾 + {𝑘′} 

9.  While return = FALSE and Runtime < DecisionTime do 

10.   (𝐾𝑜𝑢𝑡, Sol_aux, nBO_aux, aLMDT_aux)   GR(𝐾𝑖𝑛) 

11.   If 𝐾𝑜𝑢𝑡 = 𝐾𝑖𝑛 do 

12.    Sol  Sol_aux ,  nBO  nBO_aux ,  aLMDT  aLMDT_aux 

13.    return   TRUE 

14.   EndIf 

15.  EndWhile 

16. EndIf 

Output: 𝐾𝑜𝑢𝑡, Sol, nBO, aLMDT, return 

The Requests receipt algorithm takes as input the set of already accepted requests 𝐾, the solution Sol 

obtained when the last request of 𝐾 was accepted (together with its two objective values nBO and 

aLMDT), the new request 𝑘′ and a maximum decision time DecisionTime. At the end, the algorithm 

outputs a Boolean variable return as TRUE if the new request is accepted or as FALSE, otherwise. 

Depending on this decision, the algorithm returns either the new solution (that includes the new 

request) or the initial inputted solution not including the new request. 
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The Boolean variable return is initially set to FALSE (line 1). To speed up the decision time, first, 

the algorithm tries to select in line 2 an option 𝑖 = 1,2, … , |𝐼𝑘′| for the new request 𝑘′ that can be 

accommodated in the inputted solution Sol. If such option exists (line 3), the algorithm computes set 

𝐾𝑜𝑢𝑡 with all requests, updates solution Sol and its objective values with the selected option (lines 4 

and 5) and sets return with TRUE. Otherwise (line 7), a ‘While’ cycle is run (lines 9 to 15) until 

either a solution is found for all requests or the runtime reaches the DecisionTime value (line 9). In 

each cycle, a greedy randomized solution is first computed with the GR algorithm (line 10). Then, if 

the solution includes all requests (line 11), solution Sol (and its objective values) are updated (line 

12) and variable return is set to TRUE. If the ‘While’ cycle ends without finding a solution that 

includes all requests, the variable return remains as FALSE and the outputted solution Sol remains 

the same as the inputted solution Sol, not accepting the new request and maintaining the inputted 

solution for the already accepted requests. 

An example of the Request receipt algorithm is shown on the Table 34. 

 

Table 34 - Example of the Requests Receipt algorithm 

Request ID Bus Hub ID Bus Service ID Bus stop ID Number of offloads  

R01 3 122 5 1 

R02 1 1 7 2 

R03 3 122 5 2 

R04 1 1 7 2 

R05 2 79 4 3 

R06 2 68 4 4 

R07 2 68 4 4 

R08 2 79 4 4 

R09 1 19 2 5 

R10 1 17 2 6 

R11 1 17 2 6 

R12 1 23 5 7 

R13 1 23 5 7 

R14 1 19 2 7 

R15 1 25 8 8 

R16 1 31 5 9 

R17 1 31 5 9 

R18 1 33 2 10 

R19 1 33 2 10 

R20 1 1 7 10 

 

 

 

This table shows the final solution of the request receipt algorithm to give response to 20 separated 

requests. Those requests were triggered by clients one by one, following the order in the table (i.e., 

first the algorithm received the R01 then R02 and so on). For each request receipt, the Request receipt 



117 

 

algorithm is run for a total runtime limit of 10 seconds, stopping whenever an option is found, 

according to the strategy already explained above. As mentioned, an option is a combination of bus 

hub, bus service and bus stop that fulfil the system capacity and the delivery time of request. As 

example, in the final solution of the table, the R01 is assigned to the option composed by: bus hub 3, 

bus service 122 and bus stop 5; while the R02 is assigned to the option bus hub 1, bus service 1 and 

bus stop 7, etc. 

Each time a new request is received, the algorithm tries first to fit the request in an option that already 

is used by previous accepted requests, meaning that when running the algorithm tries first to 

minimize the get the solution as faster as possible. This behaviour is observed on the table for the 

R03, and R04, where the algorithm found a way to accept the request on the same option already 

selected for R01 and R02, respectively. That is why the total number of offloads remains 2 after the 

four first requests. Thus, whenever an already used option can be found, the new incoming request 

is assigned to it. 

After the acceptance of the request R20, the final solution illustrated on Table 34 has a total number 

of 10 bus offloads, since every different option means a different offload and there is a total of 10 

different options used to transport all the R20 requests. 

 

5.5.2. Optimizer algorithm  

The Optimizer algorithm is run when the deadline of the acceptance time window for a certain day 

is reached, typically, at the end of the day before. The aim of this algorithm is to compute the best 

possible solution during a predetermined decision time duration, obtaining the final operational 

planning solution for all the accepted requests for the day. An operational planning solution is a 

transportation plan, containing an option for all accepted requests that optimizes the objective 

function, in this case, NBO-LMDT. 

The Optimizer algorithm is based on a GRASP metaheuristic approach which uses two basic 

algorithms: the previously described GR algorithm and a Local Search (LS) algorithm. The LS 

algorithm is as follows: 

 

LS (Local Search) Algorithm: 

Input: Sol, nBO, aLMDT 

1. Sol_final  Sol ,  nBO _final  nBO ,  aLMDT _final  aLMDT 

2. continue  TRUE 

3. While continue = TRUE do 

4.  (Sol, nBO, aLMDT)  BestNeighbor(Sol_final) 

5.  If nBO < nBO_final or (nBO = nBO_final and aLMDT < aLMDT_final) do 

6.   Sol_final  Sol 

7.   nBO_final  nBO 

8.   aLMDT_final  aLMDT 

9.  Else 

10.   continue  FALSE 

11.  EndIf 

12. EndWhile 

Output: Sol_final, nBO_final, aLMDT_final 
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The LS algorithm takes as input a given solution Sol and its two objective values (nBO and aLMDT) 

and starts by setting the final solution Sol_final with the inputted solution (line 1). Then, the ‘While’ 

cycle (lines 3 to 12) is run until the boolean variable continue becomes FALSE (this variable is 

initialized as TRUE in line 2). On each cycle, the best solution Sol which is neighbor to Sol_final is 

first computed in line 4 (with its objective values). Then, if the neighbor solution Sol is better than 

the current final solution Sol_final (line 5), the final solution is updated (line 6) together with its two 

objective values (lines 7 and 8) and the cycle is repeated: Sol is better than Sol_final if its number of 

bus offloads is lower or if its number of bus offloads is equal and the average last mile delivery time 

is lower (line 5). If the neighbor solution Sol is not better than the current Sol_final (line 9), the 

variable continue is set with FALSE (line 10) to end the cycle (i.e., the final solution Sol_final is a 

local optimum solution, which means that there is no neighbor solution that can improve the 

optimization objectives NBO-LMDT). At the end, the algorithm outputs solution Sol_final and its 

objective values. 

The selection of the best neighbor solution of the LS algorithm (line 4) is as follows. For a given 

solution Sol_final, a neighbor solution is a solution that is different from Sol_final on the selected 

option of a single request. The algorithm computes all possible individual option swaps and returns 

the neighbor solution Sol (together with its two objective values) with the lowest number of bus 

offloads and, if multiple solutions exist with the same minimum number of bus offloads, the one with 

the minimum value of the average last mile delivery time.  

The Optimizer algorithm runs a GRASP metaheuristic when the deadline time for requests release 

of a certain day is reached, to compute the final operational planning solution for all previous 

accepted requests for that day. Optimizer algorithm (shown at the end of this paragraph) takes as 

input the set of accepted requests 𝐾, the solution Sol previously obtained by the Request receipt 

algorithm for the set 𝐾 (together with its two objective values nBO and aLMDT) and a maximum 

decision time DecisionTime. The final solution Sol_final is first set with the local optimum solution 

obtained by giving the inputted solution Sol to the LS algorithm (line 1). Then, a ‘While’ cycle is run 

(lines 2 to 10) until the runtime reaches the DecisionTime value. On each cycle, a new local optimal 

solution Sol is first computed by generating first a solution with the GR algorithm (line 3) and giving 

it as input to the LS algorithm (line 4). Then, if the new solution is better than the previous solution 

Sol_final (line 5), solution Sol_final is updated together with its objective values (lines 6 to 8). At 

the end, the algorithm outputs Sol_final (and its two objective values) which is the best solution 

computed in all cycles.  

 

 

Optimizer Algorithm 

Input: 𝐾, Sol, nBO, aLMDT, DecisionTime 

1. (Sol_final, nBO_final, aLMDT_final)  LS(Sol, nBO, aLMDT) 

2. While Runtime < DecisionTime do 

3.  (Sol, nBO, aLMDT)  GR() 

4.  (Sol, nBO, aLMDT)  LS(Sol, nBO, aLMDT) 

5.  If nBO < nBO_final or (nBO = nBO_final and aLMDT < aLMDT_final) do 

6.   Sol_final  Sol 

7.   nBO_final  nBO 

8.   aLMDT_final  aLMDT 
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9.  EndIf 

10. EndWhile 

Output: Sol_final, nBO_final, aLMDT_final 

 

Table 35 shows the results of the Optimizer algorithm for the same example before with a set of 20 

requests, for a decision time of 10 minutes. 

 

Table 35 - Example of Optimizer algorithm for 20 requests example 

Request ID Bus Hub ID Bus Service ID Bus stop ID Number of offloads  

R01 3 127 8 1 

R02 1 5 3 2 

R03 3 127 8 2 

R04 1 5 3 2 

R05 1 17 8 3 

R06 1 7 5 4 

R07 1 7 5 4 

R08 1 17 8 4 

R09 1 27 2 5 

R10 1 22 2 6 

R11 1 22 2 6 

R12 1 27 2 6 

R13 1 34 5 7 

R14 1 27 2 7 

R15 1 28 3 8 

R16 1 34 5 8 

R17 1 36 8 9 

R18 1 28 3 9 

R19 1 36 8 9 

R20 1 5 3 9 

 

 

 

The interpretation of Table 35 is similar to Table 34. 

The Optimizer algorithm could, within a decision time period of 10 minutes, improve the solution 

found by the Request receipt algorithm, since this solution only contains 9 bus offloads instead of 

10, which is the primary objective to optimize (minimization).  
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5.6. Computational experiments with heuristic methods  

Table 36 presents the results of computational experiments of Pilot instances solved by the Requests 

receipt and Optimizer algorithms. The “NBO – LMDT (exact optimization)” section presents the 

results obtained using exact optimization through CPLEX for comparison, and “Heuristic” section 

presents the results of Request receipt Algorithm run with a maximum runtime of 10 seconds and 

Optimizer algorithm with a runtime of 30 minutes (1800 seconds). Recall that these algorithms are 

based on NBO – LMDT combination of objective functions, which means that first minimizes the 

number of offloads and then the average delivery time. 

 

 

Table 36 - Results of NBO-LMDT using Request receipt algorithm and Optimizer algorithms solving pilot instances 

   NBO – LMDT (exact optimization) Heuristic 

Inst. |K| W 

NBO 

(unloa

ds) 

LMDT 

(min) 

Runtime 

(sec.) 

Request 

Receipt 

Algorithm 

Optimizer 

Algorithm 

N

B

O 

LMDT 

(min) 

N

B

O 

LMDT 

(min) 

P1 100 4 h 20 [30.75-30.15] (1.95%) 59.19++1800 23 38.55 22 34.5 

P2 100 2 h 20 [30.9-30.75] (0.49%) 15.47+1800 27 37.5 22 36.3 

P3 200 4 h 40 [30.3-30.15] (0.5%) 74.91+1800 45 40.8 44 37.425 

P4 200 2 h 40 [31.725-31.425] (0.95%) 67.34+1800 46 39 44 34.425 

P5 300 4 h 60 [30.55-30.40] (0.49%) 191.73+1800 71 40.75 65 38.5 

P6 300 2 h 63 [32.05-31.95] (0.31%) 193.74+1800 NS NS NS NS 

P7 100 4 h 19 [30.3-30.15] 67.00+1800 23 40.35 21 34.05 

P8 100 2 h 19 [31.2-30.95] (0.76%) 19.26+1800 23 41.25 22 33.45 

P9 200 4 h 39 30.15 72.70+257.50 44 40.05 42 36.375 

P10 200 2 h 39 31.2 65.73+151.75 46 38.03 45 34.43 

P11 300 4 h 59 [30.3-30.22] (0.27%) 172.44+1800 70 39.4 68 34.3 

P12 300 2 h 62 31.75 467.97+244.5 NS NS NS NS 

 

 

The results show the advantages of the Optimizer algorithm run with a larger runtime limit of 1800 

seconds, since compared to the Requests receipt algorithm, with runtime limit of 10 seconds, it 

reduces the number of offloads, on average, by 3 offloads for the first 6 instances and by 1,6 offloads 

for the last 6 instances. Recall that the request receipt algorithm is run during the request release and 

stops as soon as it founds a feasible solution. For this reason, the results of Request receipt algorithm 

are not optimized and the solution values are significantly higher than the solution values, found for 

NBO-LMDT through exact optimization, which are optimal values or close to the optimal value 

(gaps less than 2%). On the other hand, the results of Optimizer algorithm are significantly closer to 

the results found for NBO-LMDT through exact optimization. 

For instances with 300 requests and delivery time windows of 2 hours, P6 and P12, the scalability 

point is reached at receipt #255 with the Request receipt algorithm, i.e. it can accept the request #254 

but the algorithm cannot accept the new request #255 in 10 seconds. As previously mentioned, the 

Request receipt algorithm is based on a GR first using the previous solution for n-1 requests, and 

trying to fit the last request into the same solution. When the request cannot fit the previous solution, 
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the GR runs considering the set of all requests accepted so far to build a solution. The results show 

that the algorithm can accept the request #254 fitting it in the previous solution found for request 

#253 but cannot accept the request #255 fitting it into the solution of #254. Moreover, when the GR 

is run considering the entire set of requests, no solution is found for P6 and P12, during the runtime 

limit of 10 seconds. For these cases, it was tested to run the Requests receipt algorithm for 1800 

seconds and still no feasible solutions were found. On the other hand, for instances with 300 requests 

with 4 hours of delivery time window, P5 and P11, it was possible to accept all 300 requests. This is 

explained by the fact that when the delivery time window is 4 hours, there are much more options 

(|𝐼𝑘|) for a request to be transported, and therefore the GR has more flexibility to select an option 

that can be used for a higher number of requests. 

The Optimizer algorithm is built based on a Greedy Randomized with Adaptive Search Procedure 

and therefore, it requires an initial feasible solution to use as a starting point of the adaptive search 

procedure. Since for instances P6 and P12 no initial feasible was found the Optimizer could not be 

run to improve this initial solution found.  

Nevertheless, the scalability point on request #254 was considered as an acceptable number of 

requests for a day during the pilot test of the project. Additionally, the results of the optimizer 

algorithm after 1800 seconds were relatively close to the results obtained with exact optimization 

during 1800 seconds for all instances up to 200 requests. This allows to conclude that these 

algorithms are efficient to be used for the pilot phase of the project, since their results are acceptable 

compared to the optimal solutions. 

 

 

5.7. Chapter resume and conclusion 

In this chapter the problem FNFAP was introduced and addressed with exact optimization models 

and heuristic optimization models. To run the optimization models fictional and pilot instances were 

generated, to be used by the models in the computational experiments. The results of these 

experiments were detailed and gave helpful insights of the performance of the optimization models 

proposed in this chapter.  

After gathering all the results from the experiments, some conclusions can be highlighted: 

1. Decrease the time window of requests delivery from 4h to 2h can lead to more offloads than 

compared to the time window of 4 hours. 

2. In the fictional instances, the second combination NBO-LMDT has the best trade-off 

between the two objectives compared to LMDT-NBO. The lexicographic optimization of 

combination NBO-LMDT leads to an average increase of 24% over all instances on the last 

mile delivery time, while the combination LMDT-NBO leads to an average increase of 17% 

on the number of offloads, over all instances.  

3. On the other hand, the NBO-LMDT is much harder to solve, since the runtimes are higher 

and no optimality was reach for the largest instances (F5-F6). The NBO-LMDT was the 

combination selected to be solved using heuristics optimization methods (section 5.5), since 

the problem is harder to solve using exact optimization but the global benefits are higher. 

4. The symmetry in the problems under study has not a significant impact on the solvers 

performance while solving the optimization models. The experiments allowed to conclude 

that including the symmetry breaking constraints into the robustness models (symmetry only 

occurs when optimizing models RBS and RLMF) do not improve consistently the 

performance of solving those models. Thus, the best strategy to deal with the symmetry is to 

switch the role between alternative and main bus services and bus stops, whenever the 

symmetry occurs. 
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5. The results have also shown that to achieve robustness to deal with last mile failures (i.e. 

failure to offload the request in a specific bus stop), it is truly important that each delivery 

zone of the city has a minimum of two bus stops to be used for the mixed freight and 

passenger transportation solution. Thus, having more bus stops in the same area will 

maximize the probability of request being assigned with an alternative bus stop to be 

offloaded in case of a failure offloading in the main bus stop. 

6. Reducing the number of services to be used for freight and passenger transportation can 

potentially remove the probability of robustness of the system to deal with last mile delivery 

failures, because reducing bus services can lead to not using key buses that pass through 

central zones of the city. The BTO has to be careful when reducing the number of bus 

services beforehand, and should try to keep the bus services that give more flexibility to the 

system, i.e., key services that passes through the central area of the city and, consequently, 

can be used by several requests as an option to be transported. 

7. Robustness to bus services suppressions is significantly impacted by the delivery time 

window duration of the requests. Thus, the larger is the delivery time window, the higher is 

the number of requests that can have an alternative bus service assigned to it, to be used in 

case of the main bus service is suppressed. 

8. The scalability tests to heuristic algorithms done in section 5.6 help to conclude that, for the 

pilot instances, the Request receipt algorithm and the Optimizer algorithm can deal 

efficiently with a total of 200 requests with 4 hours of delivery time window. 
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6. Strategic approach for the Bus Network 

Planning Problem (BNPP) 
 

 

 

 

6.1. Motivation for the strategic approach to the problem 

The base problem under study in this chapter is the one presented on the section 4.4, but now the 

decision-making lays on the strategic layer of the problem.  

The work on this chapter contributes to the literature by addressing a strategic planning problem - 

the BNPP. The distinct feature addressed in this well-known problem results from the integration of 

the freight delivery process into the decision of sizing a bus fleet to perform both passenger and 

freight transportation for short-distance trips in an urban environment. The aim is to determine the 

subset of bus services whose buses should be physically adapted for passenger and freight 

transportation, from an installed bus network solely prepared for passengers’ transportation. On the 

previous problem FNFAP, the pilot instances were based on a pilot network of 220 bus services, 

which is a considerable number of bus services allocated to the integrated passenger and freight flow 

addressed on the SOLFI project. Thus, this BNPP problem is worth of being investigated as the main 

motivation for such urban logistic solution is to use the current bus networks (in particular, during 

the periods when the number of passengers using the network is lower) to transport freight requests 

of small size to the city centers instead of using dedicated vehicles to transport them. 

To the best of current knowledge, only three researches - Azcuy et al. (2021), El Ouadi et al. (2021) 

and Nieto-Isaza et al. (2022) - have specifically investigated strategic problems in the context of 

integrated passenger and freight flows in UL. Location analysis and network design have emerged 

as two major research areas for these three studies. This work, on the other hand, contributes to the 

literature by investigating fleet optimization from a strategic planning level, where the BTO aims to 

minimize the number of bus services required to support urban logistics activities, because, typically, 

they need to be physically adapted to be able to transport goods and passengers. The bus adaptation 

to transport goods is expensive and so the goal is to select the minimum number of adapted buses 

while covering a wide range of future demand scenarios, ensuring that all transportation requests are 

met. According to Lei et al. (2016), the fleet sizing of Pickup and Delivery (PD) vehicles “is one of 

the most important decisions as it is a major fixed investment for starting any business”. Ghilas et al. 

(2018) highlight as future research the minimization of adapted vehicles needed to jointly transport 

passengers and goods in an efficient network, which is precisely the aim of this work. 

This work, in addition to contributing to a new approach within the BNPP, includes some new 

perspectives, namely the consideration of uncertainty, through the incorporation of stochastic 

This chapter addressed the strategic layer problem BNPP, applied to the field of UL with 

integrated passenger and freight flows. The problem is new in the literature as it is 

focused on the strategic layer of the problem, to help the decision-making process of the 

LMO of the city to decide what should be the set of bus services to use on the integrated 

solution of passenger and freight flow. Exact formulations and heuristic algorithms are 

proposed to tackle this problem, providing computational experiments and conclusions 

for both types of algorithms. The problems are based on a set of scenarios of possible 

realizations for certain parameters to model uncertainty to the parameters and robustness 

to the found solution, which is also a novel feature when addressing this problem. 
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parameters, and the development of a scenario-based optimization heuristic algorithm to support the 

BTO to deal with the problem. Azcuy et al. (2021) also uses a scenario-based heuristic for their 

strategic problem but the focus is on the location routing problem to determine the transfer station 

location to demand transfer. As a result, this study of BNPP can be used as a starting point for future 

research incorporating uncertainty, with stochastic parameters, such as demand, delivery time 

windows and destination address of the requests, while considering a scenario-based heuristic 

algorithm, with the aim to minimize the bus resources needed for the UL process using a network of 

passengers’ city buses to also move freight. 

The aim is to plan the fleet size of a given workday that is robust to uncertainty in terms of the 

requests that are expected for that day. To simulate the demand of a certain workday, a set of 

scenarios is used as a set of possible realizations of requests for that workday being planned. In this 

problem, it is considered a set of 100 scenarios of possible realizations of requests with stochastic 

parameters for the demand, destination zone and delivery time window of each request.  The goal is 

to find a minimum number of bus services to be adapted, guaranteeing that all requests are fulfilled 

for all the scenarios. The same number of scenarios used by in their work was selected for this study, 

and therefore it is considered that 100 scenarios is reasonable and large enough to find good solutions 

for the future realization that can occur. This problem can be formulated as a generalization of the 

classic bin-packing problem (BPP) which is defined as the placement of a set of different-sized items 

into identical bins such that the number of used bins is minimized. In the BNPP problem, a set of 

requests (items), with different demands, must be assigned to a minimum set of bus services (bins). 

Considering the particular case when all requests can be assigned to any bus service (i.e., can be 

delivered to the final customer at any time during the day), all requests transported on each bus 

service can be offloaded at any bus stop and the demand uncertainty modelled by a single request 

scenario, BNPP problem is formulated as a classic BPP. Following Munien & Ezugwu (2021), the 

BPP is an age-old NP-hard combinatorial optimization problem and so is this problem. Therefore, 

besides proposing an ILP model that can be solved to compute the optimal solutions of relatively 

small problem instances, two heuristic algorithms are also proposed to get solutions for larger 

problem instances (i.e., with larger number of uncertainty scenarios and number of requests).  

Although this problem is a design problem that must be solved at a strategic planning level where 

there is no time pressure, heuristics are needed to address larger instances within realistic 

computation time and affordable hardware configuration. Next, the ILP model is described in the 

first subsection. Then, the two proposed heuristic algorithms (Heuristic 1 and Heuristic 2) are 

described. 

 

 

6.2. Problem formulation based on exact methods 

The exact method is based on an ILP formulation that is solved by a standard commercial solver.  

Consider a bus network with a set of hubs 𝑇 (where requests can be dropped by clients), a set of bus 

stops 𝑆 (where requests can be offloaded by the LMO) and a set of bus services 𝑃 (with routes from 

hubs to stops). Each hub 𝑡 ∈ 𝑇 has an associated set of bus services 𝑃(𝑡) ⊂ 𝑃 that depart from 𝑡. 

Each bus service 𝑝 ∈ 𝑃(𝑡) has an associated set of bus stops 𝑆(𝑝) ⊂ 𝑆. Finally, each bus stop 𝑠 ∈
𝑆(𝑝) of bus service 𝑝 ∈ 𝑃(𝑡) has an associated arrival time 𝐻𝑡𝑝𝑠 (according to the route of the bus 

service 𝑝). 

Consider the demand uncertainty modelled by a set of demand scenarios 𝑈, with scenario 𝑢 ∈ 𝑈 

defined by a set of requests 𝐾𝑢 whose characteristics are randomly generated with the probability 

distributions assumed for the demand uncertainty. Each request 𝑘 ∈ 𝐾𝑢 of each scenario 𝑢 ∈ 𝑈 is 

characterized by a demand 𝐷𝑢𝑘 (in number of freight parcels), a destination address 𝐵𝑢𝑘 and a 

delivery time window [𝐸𝑢𝑘 , 𝐿𝑢𝑘] defining the earliest 𝐸𝑢𝑘 and the latest 𝐿𝑢𝑘 delivery time instant of 



125 

 

the request at its destination address 𝐵𝑢𝑘. Moreover, the hubs at which the client of request 𝑘 ∈ 𝐾𝑢 

can be dropped are modelled by the binary parameters 𝐴𝑢𝑘𝑡 that are equal to 1 if request 𝑘 ∈ 𝐾𝑢 can 

be dropped in hub 𝑡 ∈ 𝑇 or are equal to 0, otherwise. 

Consider an LMO whose service is characterized by the maximum time 𝑇𝑢𝑘𝑠 to deliver request 𝑘 ∈
𝐾𝑢 from each bus stop 𝑠 ∈ 𝑆 to the request destination address 𝐵𝑢𝑘. 

The bus network planning problem aims to select a minimum subset of bus services, from the global 

bus network operating in the city, that need to have the physical logistic means for freight 

transportation. A bus service 𝑝 ∈ 𝑃(𝑡) with such means is characterized by a load capacity 𝐶𝑡𝑝 (the 

maximum number of freight parcels that can be transported) and each of its bus stops 𝑠 ∈ 𝑆(𝑝) is 

characterized by an offload capacity 𝐶𝑡𝑝𝑠 (the maximum number of freight parcels that can be 

offloaded by the LMO which bounds the maximum waiting times of passengers during offloads). 

Table 37 summarizes all notations of the problem. 

 

Table 37 - All notations of the problem 

Notation Type Description 

𝑇 

Set 

Set of bus hubs 𝑡 ∈ 𝑇 

𝑃 Set of bus services 𝑝 ∈ 𝑃 

𝑆 Set of bus stops 𝑠 ∈ 𝑆 

𝑃(𝑡) ⊂ 𝑃 Set of bus services 𝑝 departing from hub 𝑡 ∈ 𝑇 

𝑆(𝑝) ⊂ 𝑆 Set of bus stops 𝑠 of bus service 𝑝 ∈ 𝑃 

𝑈 Set of demand scenarios 𝑢 ∈ 𝑈 

𝐾𝑢 Set of requests 𝑘 ∈ 𝐾𝑢 

𝐻𝑡𝑝𝑠 

Parameter 

Arrival time of bus service 𝑝 ∈ 𝑃(𝑡) to bus stop 𝑠 ∈ 𝑆(𝑝) 

𝐶𝑡𝑝 Load capacity of bus service 𝑝 ∈ 𝑃(𝑡) 

𝐶𝑡𝑝𝑠 Offload capacity of bus service 𝑝 ∈ 𝑃(𝑡)  in bus stop 𝑠 ∈ 𝑆(𝑝) 

𝐷𝑢𝑘 Demand of request 𝑘 ∈ 𝐾𝑢 

𝐵𝑢𝑘 Destination address of request 𝑘 ∈ 𝐾𝑢 

𝐸𝑢𝑘 Earliest delivery time of request 𝑘 ∈ 𝐾𝑢 at its destination address 

𝐿𝑢𝑘 Latest delivery time of request 𝑘 ∈ 𝐾𝑢 at its destination address 

𝐴𝑢𝑘𝑡 Binary parameter indicating if request 𝑘 ∈ 𝐾𝑢 can be dropped in hub 𝑡 ∈ 𝑇 

𝑇𝑢𝑘𝑠 Maximum delivery time of request 𝑘 ∈ 𝐾𝑢 from bus stop 𝑠 ∈ 𝑆 to its 

destination address  

ℎ𝑢𝑘𝑡𝑝𝑠 Binary parameter indicating if hub 𝑡 ∈ 𝑇 is one of the hubs where the request 

𝑘 ∈ 𝐾𝑢 of scenario 𝑢 ∈ 𝑈 can be dropped by the client and if the arrival time 

of the bus service 𝑝 ∈ 𝑃(𝑡) on bus stop 𝑠 ∈ 𝑆(𝑝) plus the maximum delivery 

time of the LMO from bus stop 𝑠 to the request’s final destination is within the 

delivery time window [𝐸𝑘 , 𝐿𝑘] 

𝑧𝑢𝑘𝑡𝑝𝑠 

Decision 

variable 

Binary variable indicating if request 𝑘 ∈ 𝐾𝑢 is dropped in hub 𝑡 ∈ 𝑇, loaded in 

bus service 𝑝 ∈ 𝑃(𝑡) and offloaded in bus stop 𝑠 ∈ 𝑆(𝑝) 

𝑦𝑡𝑝 Binary variable indicating if at least one request 𝑘 ∈ 𝐾𝑢 of any scenario 𝑢 ∈ 𝑈 

is dropped in hub 𝑡 ∈ 𝑇 and loaded in bus service 𝑝 ∈ 𝑃(𝑡) 
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To model the optimization problem, first consider the following additional parameters. For request 

𝑘 ∈ 𝐾𝑢 of scenario 𝑢 ∈ 𝑈, the binary parameter ℎ𝑢𝑘𝑡𝑝𝑠 is defined as: 

 

ℎ𝑢𝑘𝑡𝑝𝑠 = {
1 , 𝐴𝑢𝑘𝑡 = 1  ⋀  𝐸𝑢𝑘 ≤ 𝐻𝑡𝑝𝑠 + 𝑇𝑢𝑘𝑠 ≤ 𝐿𝑢𝑘

0 , otherwise
 

 

i.e., ℎ𝑢𝑘𝑡𝑝𝑠 is equal to 1 if hub 𝑡 ∈ 𝑇 is one of the hubs where the request 𝑘 ∈ 𝐾𝑢 of scenario 𝑢 ∈ 𝑈 

can be dropped by the client and if the arrival time of the bus service 𝑝 ∈ 𝑃(𝑡) on bus stop 𝑠 ∈ 𝑆(𝑝) 

plus the maximum delivery time of the LMO from bus stop 𝑠 to the request’s final destination is 

within the delivery time window [𝐸𝑘 , 𝐿𝑘]. These parameters are computed beforehand and then, are 

used in the ILP formulation. 

Then, the following decision variables are considered: 

𝑧𝑢𝑘𝑡𝑝𝑠 –binary variable that is equal to 1 if request 𝑘 ∈ 𝐾𝑢 is dropped in hub 𝑡 ∈ 𝑇, loaded in bus 

service 𝑝 ∈ 𝑃(𝑡) and offloaded in bus stop 𝑠 ∈ 𝑆(𝑝); and is equal to 0, otherwise. 

𝑦𝑡𝑝 –  binary variable that is equal to 1 if at least one request 𝑘 ∈ 𝐾𝑢 of any scenario 𝑢 ∈ 𝑈 is 

dropped in hub 𝑡 ∈ 𝑇 and loaded in bus service 𝑝 ∈ 𝑃(𝑡); and is equal to 0, otherwise. 

Finally, the optimization problem is modelled by the following ILP formulation: 

 

Minimize    ∑ ∑ 𝑦𝑡𝑝

𝑝∈𝑃(𝑡)𝑡∈𝑇

                                                                                                                         (1) 

Subject to: 

∑ ∑ ∑ ℎ𝑢𝑘𝑡𝑝𝑠𝑧𝑢𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 1                          , ∀ 𝑢 ∈ 𝑈, ∀ 𝑘 ∈ 𝐾𝑢                                              (2) 

∑ ∑ ∑ (1 − ℎ𝑢𝑘𝑡𝑝𝑠)𝑧𝑢𝑘𝑡𝑝𝑠

𝑠∈𝑆(𝑝)𝑝∈𝑃(𝑡)𝑡∈𝑇

= 0              , ∀ 𝑢 ∈ 𝑈, ∀ 𝑘 ∈ 𝐾𝑢                                               (3) 

∑ ∑ 𝐷𝑢𝑘𝑧𝑢𝑘𝑡𝑝𝑠 
𝑠∈𝑆(𝑝)𝑘∈𝐾𝑢

≤  𝐶𝑡𝑝𝑦𝑡𝑝               , ∀ 𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                            (4) 

∑ 𝐷𝑢𝑘𝑧𝑢𝑘𝑡𝑝𝑠
𝑘∈𝐾𝑢

≤  𝐶𝑡𝑝𝑠𝑦𝑡𝑝                                , ∀ 𝑢 ∈ 𝑈, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)     (5) 

𝑧𝑢𝑘𝑡𝑝𝑠 ∈ {0,1}                                            , ∀ 𝑢 ∈ 𝑈, ∀ 𝑘 ∈ 𝐾, ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡), ∀ 𝑠 ∈ 𝑆(𝑝)     (6) 

𝑦𝑡𝑝 ∈ {0,1}                                                                 , ∀ 𝑡 ∈ 𝑇, ∀ 𝑝 ∈ 𝑃(𝑡)                                            (7) 

 

 

The objective function (1) is the minimization of the number of bus services that can transport all 

requests of all demand scenarios. 

Constraints (2) guarantee that for each scenario 𝑢 ∈ 𝑈,  the assigned bus service and bus stop to each 

request 𝑘 ∈ 𝐾𝑢 starts in one of the possible hubs for each request (considering the Logistic service 

time of that hub) and meets with its delivery time window (i.e., the associated parameter ℎ𝑘𝑡𝑝𝑠 is 

equal to one). These constraints guarantee this because the variable 𝑧𝑢𝑘𝑡𝑝𝑠 is multiplied by a 

predetermined parameter ℎ𝑢𝑘𝑡𝑝𝑠 (that is equal to one if all mentioned conditions are fulfilled) and 



127 

 

the constraints force the result to be 1, i.e., to select one combination of assignment of request to bus 

hub, bus service and bus stop. 

Constraints (3) guarantee that for each scenario 𝑢 ∈ 𝑈, each request 𝑘 ∈ 𝐾𝑢 cannot be assigned with 

one bus service 𝑝 ∈ 𝑃(𝑡) in one hub 𝑡 ∈ 𝑇 to be offload in one bus stop 𝑠 ∈ 𝑆(𝑝) such that the 

associated parameter ℎ𝑢𝑘𝑡𝑝𝑠 is zero. Constraints (3) are not necessary to obtain feasible solutions 

since constraints (2) alone guarantee that variable 𝑧𝑢𝑘𝑡𝑝𝑠 contains a feasible solution. However, 

constraints (3) are valuable because, although they increase the number of constraints of the model, 

they allow the solver to eliminate from the model the variables 𝑧𝑢𝑘𝑡𝑝𝑠 for all the combination of 

requests, bus hubs, bus services and bus stops that are not feasible. Some preliminary experiments 

were conducted with and without constraints (3), and the solver could, generally, achieve the 

solutions faster with these constraints, improving the performance. Note that constraints (3) can be 

eliminated from the model if the involved variables are eliminated from the set of the variables of 

the model, obtaining in this way a more compact model (i.e., with a smaller number of variables and 

constraints). In fact, the results reported in this chapter were obtained with this more compact model 

but the ILP model is described as above for clarity.  

Constraints (4) guarantee that for each demand scenario 𝑢 ∈ 𝑈, the total demand of the requests 

loaded on each bus service 𝑝 ∈ 𝑃(𝑡) of each hub 𝑡 ∈ 𝑇 is not higher than the bus capacity 𝐶𝑡𝑝 if the 

bus service 𝑝 is in the solution (i.e., if 𝑦𝑡𝑝 is one) or is zero if the bus service 𝑝 is not in the solution 

(i.e., if 𝑦𝑡𝑝 is zero).  Similarly, constraints (5) guarantee that for each demand scenario 𝑢 ∈ 𝑈, the 

total demand of the requests offloaded on each bus stop 𝑠 ∈ 𝑆(𝑝) of each bus service 𝑝 ∈ 𝑃(𝑡) of 

each hub 𝑡 ∈ 𝑇 is not higher than the bus stop offload capacity 𝐶𝑡𝑝𝑠 if the bus service 𝑝 is in the 

solution (i.e., if 𝑦𝑡𝑝 is one) or is zero if the bus service 𝑝 is not in the solution (i.e., if 𝑦𝑡𝑝 is zero).  

Finally, constraints (6) and (7) are the domain constraints of the variables. 

 

 

6.3. Problem resolution with heuristic algorithms  

Heuristic algorithms are procedures that try to find a good solution in reasonable running time but 

without any guarantee that the best solution found at the end is the optimal one. To model a solution 

of BNPP, the set of all possible options for each request of each scenario that fulfil their delivery 

time window constraints is first computed. The set of options for request 𝑘 ∈ 𝐾𝑢 of scenario 𝑢 ∈ 𝑈 

is identified as 𝐼𝑢𝑘 and each option 𝑖 = 1, 2, … , |𝐼𝑢𝑘| is defined as a 3-tuple in the form (𝑡𝑖, 𝑝𝑖 , 𝑠𝑖) 

indicating the hub 𝑡𝑖,, the bus service 𝑝𝑖 and the bus stop 𝑠𝑖 of the option. An option (𝑡𝑖, 𝑝𝑖 , 𝑠𝑖) is in 

set 𝐼𝑢𝑘 if:   

 

𝐴𝑘𝑡 = 1  ⋀  𝐸𝑘 ≤ 𝐻𝑡𝑝𝑠 + 𝑇𝑘𝑠 ≤ 𝐿𝑘 ,            , 𝑡 = 𝑡𝑖 , 𝑝 = 𝑝𝑖  , 𝑠 = 𝑠𝑖 

 

i.e., if hub 𝑡𝑖 is one of the hubs where the request can be dropped by the client and if the arrival time 

of the bus service 𝑝𝑖 on bus stop 𝑠𝑖 plus the maximum delivery time of the LMO from bus stop 𝑠𝑖 to 

the request’s destination is within the delivery time window [𝐸𝑘 , 𝐿𝑘]. So, an operational planning 

solution is obtained by selecting one of the options in 𝐼𝑢𝑘 for each request 𝑘 ∈ 𝐾𝑢 of each scenario 

𝑢 ∈ 𝑈 such that the capacities of all selected bus services and stops are met at each scenario. 

In this section, two heuristic algorithms are proposed (Heuristic 1 and Heuristic 2), both based on 

GRASP, a metaheuristic first introduced in Feo & Resende (1989) and successfully applied to many 

optimization problems since then. A GRASP metaheuristic includes two basic procedures: a greedy 
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randomized procedure that computes a random solution from scratch and an adaptive search 

procedure that tries to improve a given input solution to a better one. 

The two algorithms proposed in this chapter use the same adaptive search procedure but are different 

in their greedy randomized procedure. The next subsections describe first the greedy randomized 

procedure used on each of the two algorithms; then the adaptive search procedure used in both 

algorithms and, finally, the two algorithms are described. 

 

6.3.1. Greedy randomized procedure of Heuristic 1 

The core idea of the greedy randomized procedure used in Heuristic 1 is to build a planning solution 

by iterating over all scenarios and, for each scenario, selecting one option to each request of the 

scenario giving preference to the options of the bus services previously selected both on the current 

scenario and on all previous scenarios. The procedure is as follows:  

 

Heuristic 1 – Greedy Randomized Procedure 

 

1. Sol  {} 

2. SelectedBS  {} 

3. For 𝑝 ∈ 𝑃 do 

4.  𝑛𝑝   number of options that include bus service 𝑝 in all sets 𝐼𝑢𝑘 

5. EndFor 

6. For 𝑢 = random(𝑢 ∈ 𝑈) do 

7.  For 𝑘 = order(𝑘 ∈ 𝐾𝑢) do 

8.   (Sol, SelectedBS)  BestOption(Sol, SelectedBS, 𝐼𝑢𝑘, {𝑛𝑝, 𝑝 ∈ 𝑃}) 

9.  EndFor 

10. EndFor 

Output(Sol, SelectedBS) 

 

 

The procedure starts by considering an empty solution Sol (line 1) and an empty set of selected bus 

services SelectedBS (line 2). Then, parameter 𝑛𝑝 is computed for each bus service 𝑝 ∈ 𝑃 (lines 3–5) 

with the number of options that include bus service 𝑝 in all sets 𝐼𝑢𝑘. Note that a bus service with a 

higher value of 𝑛𝑝 can potentially be assigned to more requests and, therefore, these values are used 

when a new bus service is to be selected. Then, the nested ‘For’ cycle (lines 6–10) iterates over all 

scenarios (line 6) and over all requests of each scenario (line 7) to select one option for each request 

(line 8). 

The BestOption() procedure in line 8 is the key component of this greedy randomized procedure. It 

considers as input the current solution Sol, the current selected set of bus services SelectedBS, the set 

of options 𝐼𝑢𝑘 for the current request and the set of parameters 𝑛𝑝. If the current request can be 

assigned to multiple bus services in SelectedBS, it selects one option using the bus service in 

SelectedBS with the current lowest load (the load of a bus service is the sum of the demands of all 

requests assigned to it). The aim is to maintain as much free capacity as possible in all already 
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selected bus services to maximize the probability of the requests not yet assigned to fit on one of 

them. Otherwise, it selects an option on the bus service 𝑝 not in SelectedBS (i.e., not yet selected) 

with the highest value of 𝑛𝑝 among the bus services included in the set of options 𝐼𝑢𝑘. At the end, 

the procedure outputs solution Sol and its set of selected bus services SelectedBS. 

In order to generate different solutions on each run of the procedure, the order by which the scenarios 

are iterated (line 6) is randomly selected. On the other hand, the order by which the requests of each 

scenario are iterated (line 7) has an impact on the algorithm efficiency. In general, the efficiency 

improves (i.e., either generates better solutions in the same running time or generates similar 

solutions in shorter running time) if the order is from the requests which are the hardest to be assigned 

to the requests which are the easiest to be assigned. There are two possible criteria. One criterion is 

to consider the requests ordered from the ones with the highest demand value (i.e., highest 𝐷𝑢𝑘 value) 

to the ones with the lowest demand value, as the requests with high demand are harder to fit in the 

already selected bus services. Another criterion is to consider the requests from the ones with the 

lowest number of options (i.e., lowest |𝐼𝑢𝑘| value) to the ones with the highest number of options, as 

the requests with the lowest number of options have a lower probability to be assigned to the already 

selected bus services. The three following orders were tested: 

(a) Order requests from the highest to the lowest demand value and, for the requests with the 

same demand value, order from the lowest to the highest number of options. 

(b) Order requests from the lowest to the highest number of options and, for the requests with the 

same number of options, from the highest to the lowest demand values. 

(c) Random order of the requests. 

The preliminary computational tests have shown that case (b) provides the best efficiency on average 

and, therefore, the results reported in the computational results for Heuristic 1 only consider this case. 

 

6.3.2. Greedy randomized procedure of Heuristic 2 

The key idea of the greedy randomized procedure used in Heuristic 2 is to build a planning solution 

by selecting one bus service at a time and, for each selected bus service, assigning as much requests 

as possible in all scenarios until all requests of all scenarios have been assigned with one option each. 

The procedure is as follows:  

 

Heuristic 2 – Greedy Randomized Procedure 

 

Input(r) 

1. Sol  {} 

2. SelectedBS  {} 

3. tRequests  total number of requests on sets 𝐾𝑢 of all scenarios 𝑢 ∈ 𝑈  

4. For 𝑢 ∈ 𝑈 do 

5.  𝐾𝑢  𝐾𝑢 

6.  For 𝑘 = 𝐾𝑢 do 

7.   𝐼𝑢𝑘  𝐼𝑢𝑘 

8.  EndFor 

9. EndFor 

10. While Sol is not complete do 
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11.  𝑃′  𝑃\SelectedBS 

12.  For 𝑝 ∈ 𝑃′ do 

13.   𝑛𝑝   number of options that include bus service 𝑝 in all sets 𝐼𝑢𝑘 

14.  EndFor 

15.  nRequests   total number of requests on sets 𝐾𝑢 of all scenarios 𝑢 ∈ 𝑈 

16.  r’   ⌈𝑟 ×
𝑛𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠

𝑡𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠
⌉ 

17.  𝑝   random selection among the r’ bus services in 𝑃′ with the highest values of 𝑛𝑝 

18.  For 𝑢 ∈ 𝑈 do 

19.   For 𝑘 =  order(𝑘 ∈ 𝐾𝑢) do 

20.    (Sol, Out)  Assign(Sol, 𝐼𝑢𝑘, 𝑝) 

21.    If Out = TRUE do 

22.     𝐾𝑢   𝐾𝑢\{𝑘} 

23.     𝐼𝑢𝑘  {} 

24.    Else 

25.     𝐼𝑢𝑘  eliminate from 𝐼𝑢𝑘 the options using bus service 𝑝  

26.    EndIf 

27.   EndFor 

28.  EndFor 

29.  SelectedBS  SelectedBS ∪ {𝑝} 

30. EndWhile 

Output(Sol, SelectedBS) 

 

 

The procedure has an input integer parameter r which is used to control the randomness of the 

generated solution when the procedure is run multiple times.  

The procedure starts by considering an empty solution Sol (line 1) and an empty set of selected bus 

services SelectedBS (line 2). The variable tRequests is set with the total number of requests of all 

scenarios (line 3). Set 𝐾̃𝑢 represents at any step of the algorithm the set of requests of each scenario 

that still do not have a selected option and set 𝐼𝑢𝑘 represents at any step of the algorithm the available 

options of each request on each scenario. So, at the beginning (lines 4–9), the set 𝐾̃𝑢 of each scenario 

is initialized with 𝐾𝑢 and the set 𝐼𝑢𝑘 of each request at each scenario is initialized with 𝐼𝑢𝑘. Then, a 

‘While’ cycle (lines 10–30) is run until solution Sol is complete (i.e., until Sol has one option selected 

to each request of each scenario). 

Each ‘While’ cycle starts by computing set 𝑃′ with all not yet selected bus services (line 11) and by 

computing a parameter 𝑛𝑝 for each bus service in 𝑃′ with the number of options that include bus 

service 𝑝 in all sets 𝐼𝑢𝑘  (lines 12–14). As in the case of heuristic 1, a bus service with a higher value 

of 𝑛𝑝 can potentially be assigned to more requests and, therefore, these values are used next to select 

each new bus service. Then, an integer parameter r’ is computed (line 16) as r (the input parameter) 

multiplied by the fraction of the requests that still do not have a selected option (computed in line 15 

as variable nRequests) divided by the total number of requests tRequests and the resulting value 

rounded to the nearest integer greater than or equal to it. Then, a bus service 𝑝 is randomly selected 
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(line 17) among the r’ bus services in 𝑃′ (i.e., the bus services still not selected) with the highest 

values of 𝑛𝑝. Then , for each scenario 𝑢 ∈ 𝑈 (line 18) and each request of 𝐾̃𝑢  (line 19), the algorithm 

tries to assign one of the options in 𝐼𝑢𝑘 using the selected bus 𝑝 (line 20): the solution Sol is either 

updated with the selection of an option for the current request and the Boolean variable Out is 

returned as TRUE or solution Sol is returned unchanged and the variable Out is returned as FALSE. 

If Out is returned as TRUE (line 21), the current request 𝑘 of the current scenario 𝑢 is eliminated 

from 𝐾̃𝑢 (line 22) and its set of options 𝐼𝑢𝑘 becomes empty (line 23). Otherwise (line 24), all options 

in 𝐼𝑢𝑘 using the selected bus service 𝑝 are eliminated from 𝐼𝑢𝑘 (line 25). Lastly, the selected bus 

service 𝑝 is added to the set of already selected bus services SelectedBS (line 29). At the end, the 

procedure outputs solution Sol and its set of selected bus services SelectedBS. 

The Assign() procedure in line 20 assigns the first option in 𝐼𝑢𝑘 among the ones using bus service 𝑝 

such that neither the bus service capacity nor the bus stop capacity is violated and returns solution 

Sol updated with the selected option (together with the variable Out set as TRUE) or returns the input 

solution Sol unchanged (together with the variable Out set as FALSE) if either there is no option in 

𝐼𝑢𝑘 using bus service 𝑝 or if none of the options can be selected without violating the bus service and 

bus stop capacities. 

Note that, at the end of each ‘While’ cycle, the set of requests 𝐾̃𝑢 of each scenario 𝑢 ∈ 𝑈 only 

contains the requests that still not have a selected option (the other requests were eliminated in line 

22). Moreover, the set of options 𝐼𝑢𝑘 is either empty if the request 𝑘 of scenario 𝑢 has already one 

selected option (line 23) or it contains only options using not yet selected bus services (the other 

options were eliminated in line 25). So, in the next cycle, the computation of the parameters 𝑛𝑝 with 

the number of options that include each bus service in 𝑃′ (lines 12–14) takes into consideration only 

the options of the requests that still not have a selected option. 

Similar to the greedy randomized procedure used in Heuristic 1, the order by which the requests of 

each scenario are iterated (line 19) has again an impact on the overall algorithm efficiency (recall the 

discussion in the previous algorithm). The conducted preliminary tests have confirmed for this 

procedure the same conclusions that have been previously described in the case of Heuristic 1: the 

best efficiency is obtained by considering, for each scenario, the requests ordered from the ones with 

the lowest number of options to the ones with the highest number of options and, for the requests 

with the same number of options, from the ones with the highest demand value to the ones with the 

lowest demand values. So, the results reported in the computational results for Heuristic 2 only 

consider this ordering case. 

Finally, as already explained, the randomness of the solutions generated by the greedy randomized 

procedure is given by the parameter r’ when selecting a new bus service (line 17) which is equal to 

the input value r in the first ‘While’ cycle and then decreases proportionally to the number of requests 

with selected options in the subsequent cycles. On standard GRASP approaches, though, a simpler 

strategy is usually used, which is to consider a fixed value of r in all cycles. The preliminary results 

have shown that the proposed approach is more efficient as using a large value of r’ at the first cycles 

improves the diversity of the solutions provided by different runs of the procedure but in the last 

cycles of the procedure (when only a small portion of the requests still do not have selected options) 

it is important to select the next bus service among the very few ones with the best values of 𝑛𝑝. 

 

6.3.3. Adaptive search procedure for both algorithms 

In general, the adaptive search procedure of GRASP takes an input solution and tries to improve it, 

step by step, until no further improvement can be obtained. In BNPP, the aim is to obtain a solution 

that minimizes the number of selected bus services. So, the aim of the adaptive search procedure is 

to try to eliminate each bus service of the input solution, one by one, by changing the selected options 

using it to options using other bus services of the solution. This proposed Adaptive Search Procedure 
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is significantly different from the standard approaches which usually apply local search methods (a 

multiple step algorithm where at each step the best among all neighbor solutions of a current solution 

is first computed and the current solution is replaced by the best neighbor solution if it is better 

moving to the next step, or the current solution is a local optimum solution and the algorithm stops). 

In BNPP, a neighbor is a solution where a current selected bus service can be eliminated. In this case, 

if it cannot be eliminated at the initial step, there is no need to compute again such neighbor solution, 

whatever the current solution is in the next steps. Moreover, all neighbor solutions that allow the 

elimination of one bus service represent the same objective value improvement and, therefore, the 

current solution is replaced as soon as a better neighbor solution is found. As a consequence, the 

proposed Adaptive Search Procedure runs much quicker than the traditional approach. 

The procedure is as follows:  

 

Adaptive Search Procedure 

Input(Sol, SelectedBS) 

1. Sol_final  Sol 

2. SelectedBS_final  SelectedBS 

3. For 𝑝 = order(𝑝 ∈ SelectedBS) do 

4.  Out  TRUE 

5.  For 𝑢 ∈ 𝑈 do 

6.   𝐾𝑝𝑢  all requests of 𝐾𝑢 whose selected option in Sol uses bus service 𝑝 

7.   For 𝑘 ∈ 𝐾𝑝𝑢 do 

8.    (Sol, Out)  Eliminate(𝑘, Sol, SelectedBS, 𝐼𝑢𝑘, 𝑝) 

9.    If Out = FALSE do 

10.     Break 

11.    EndIf 

12.   EndFor 

13.   If Out = FALSE do 

14.    Break 

15.   EndIf 

16.  EndFor 

17.  If Out = TRUE do  

18.   Sol_final  Sol 

19.   SelectedBS_final  SelectedBS_final\{𝑝} 

20.  EndIf 

21. EndFor 

Output(Sol_final, SelectedBS_final) 
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The algorithm takes as input a given solution Sol and its set of selected bus services SelectedBS and 

starts by initializing the final solution Sol_final and its set of selected bus services SelectedBS_final 

with the input solution (lines 1–2). Then, a ‘For’ cycle iterates over all bus services 𝑝 in SelectedBS 

(lines 3–21) by an order (line 3) which is discussed later. 

In each ‘For’ cycle (lines 3–21), the Boolean variable Out is used to determine if bus service p can 

or cannot be eliminated and this variable is initially set with TRUE (line 4). Then, an inner ‘For’ 

cycle (lines 5–16) iterates over all scenarios (line 5) where the set of requests of the scenario using 

bus service p is first computed as set 𝐾𝑝𝑢 (line 6) and the options of the requests in 𝐾𝑝𝑢 are tried to 

be swapped with options using one of the other bus services in the solution (lines 7–12). The 

procedure Eliminate() in line 8 assigns the first option in 𝐼𝑢𝑘 of request 𝑘 among the ones using a bus 

service in SelectedBS\{𝑝} such that neither the bus service capacity nor the bus stop capacity is 

violated and returns solution Sol updated with the swapped option (together with the variable Out set 

as TRUE) or returns the input solution Sol unchanged (together with the variable Out set as FALSE) 

if either there is no option in 𝐼𝑢𝑘 using one of the bus services in SelectedBS\{𝑝} or if none of the 

options can be selected without violating the bus service and bus stop capacities. So, at the end of 

the inner ‘For’ cycle (lines 5–16), the variable Out is either TRUE if bus service 𝑝 was eliminated in 

all scenarios or FALSE, otherwise. Then, if Out is TRUE (line 17), the final solution Sol_final is 

updated with solution Sol and bus service 𝑝 is eliminated from the final set of selected bus services 

(line 19). At the end, the procedure outputs solution Sol_final and its set of selected bus services 

SelectedBS_final. 

Note that when the Eliminate() procedure returns Out as FALSE, there is no need to keep trying to 

eliminate the current bus service 𝑝 in the remaining requests of the current scenario or in the 

remaining scenarios. In this case, the ‘For’ cycle of lines 7–12 is immediately terminated (lines 9–

11) and the ‘For’ cycle of lines 5–16 is also immediately terminated (lines 13–15). 

The order by which the bus services 𝑝 ∈ SelectedBS are iterated (line 3) influence the final solution 

obtained by the adaptive search procedure. The three following orders were tested: (i) from the bus 

service with the highest load to the bus service with the lowest load in the input solution Sol, (ii) 

from the bus service with the lowest load to the bus service with the highest load in the input solution 

Sol and (iii) selecting a random order. None of the three alternatives was the best in the preliminary 

tests since there were always a significant percentage of cases where each of the three alternatives 

was better than the other two. Moreover, the tests have shown that the running time of the adaptive 

search procedure is at most 2% of the running time of any of the two previously described greedy 

randomized procedures. So, in both algorithms (described next), when a solution is to be improved, 

instead of running a single adaptive search procedure, the adaptive search procedure is run 6 times: 

the first time with the first order, the second time with the second order and the 4 additional times 

with a random order. 

 

 

 

6.3.4. Algorithm of Heuristic 1 and Heuristic 2 

The general GRASP algorithm used in both proposed algorithms (Heuristic 1 and Heuristic 2) is as 

follows: 

GRASP algorithm of Heuristic 1 and Heuristic 2 

 

Input(MaxTime) 

1. b   |𝑆| 
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2. While ruuning time < MaxTime do 

3.  (Sol, SelectedBS)  GreedyRandomizedProcedure() 

4.  For i = 1, 2, 3, …, 6 do 

5.   (Sol_aux, SelectedBS_aux)  AdaptiveSearchProcedure(Sol, SelectedBS) 

6.   aux  | SelectedBS_aux | 

7.   If aux < b do 

8.    Sol_best  Sol_aux 

9.    SelectedBS_best  SelectedBS_aux 

10.    b  aux 

11.   EndIf 

12.  EndFor 

13. EndWhile 

Output(Sol_best, SelectedBS_best, b) 

 

The algorithm takes as input the maximum decision time MaxTime. The integer variable b is used to 

compute the number of selected bus services of the best solution and, therefore, is initialized with 

the total number of bus services (line 1). Then, the ‘While’ cycle (lines 2–13) runs while the running 

time does not reach MaxTime (line 2). On each cycle, a solution Sol (and its set of selected bus 

services SelectedBS) is first computed by the greedy randomized procedure (line 3). Then, the 

adaptive search procedure is run 6 times (lines 4–12) with the same input solution Sol (line 5) – recall 

the discussion at the end of the previous section. The number of selected bus services of each Sol_aux 

outputted by each run of the adaptive search procedure (line 5) is computed in variable aux (line 6). 

If value of aux is lower than the number of selected bus services of the best solution found so far 

(line 7), the best solution Sol_best is updated (line 8), together with its set of selected bus services 

SelectedBS_best (line 9) and its number of selected bus services b (line 10). At the end, the algorithm 

outputs the best-found solutions Sol_best, its set of selected bus services SelectedBS_best and its 

number of selected bus services b. 

The Heuristic 1 algorithm is obtained by using in line 3 of the GRASP algorithm the Greedy 

Randomized procedure previously described for Heuristic 1. The Heuristic 2 algorithm is obtained 

by using the Greedy Randomized procedure previously described for Heuristic 2, which, in this case, 

requires the input parameter r that controls the randomness of the generated solutions.  

 

 

6.4. Instances dataset generation 

Recall that the last mile delivery process is performed by the LMO, which is responsible to offload 

the requests at the bus stops and deliver them to the final customer destination addresses, within the 

time window of each request. The considered problem instances assume that the LMO partitions the 

city center in different destination zones and defines a maximum delivery time to deliver any request 

from each bus stop to each zone. All problem instances consider the city center geometry with 9 

destination zones shown in Figure 20. Moreover, there are 22 bus stops labelled from 2 to 23 (their 

location within each zone is also show in Figure 1) and 2 bus hubs located outside the city center 

labelled as 1 and 24. 
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Figure 20 - Bus hubs, bus stops and city center destination zones of BNPP 

 

 

Depending on the type of vehicles used by the LMO (bicycles vs. motorcycles vs. vans), the mobility 

constraints in the city center (one-way streets, pedestrian streets) and/or the geographical area of the 

zones, the existing LMO might impose different delivery constraints on its delivery service. In order 

to assess the impact of different LMO constraints, three possible cases were considered: 

1. The LMO accepts to offload requests only from bus stops located in the same destination 

zone of the requests’ destination addresses. 

2. The LMO accepts to offload requests only from bus stops located either in the destination 

zone of the requests’ destination addresses or in one of the neighboring zones. Consider the 

following three examples in Figure 20: a request offloaded on bus stops 2 or 3 can only be 

to a destination address in zones 1, 2, 4 or 5; a request offloaded on bus stops 9 or 10 can 

only be to a destination address of the zones 1, 2, 4, 5, 7 or 8; finally, a request offloaded on 

bus stops 11, 12 or 13 can be to any destination address as in this case the neighbor zones of 

zone 5 are all other zones. 

3. The LMO accepts to offload requests from any bus stop to any destination address. 

In all cases, the LMO maximum delivery time is 30 minutes from any bus stop to any address located 

in the same zone of the stop of the offload. In case 2 and case 3, the LMO maximum delivery time 

is 45 minutes from any bus stop to an address of a neighbor zone of the stop. In case 3, the LMO 

maximum delivery time is 60 minutes from any stop to an address of a zone that is neither the zone 

of the stop nor one of its neighbor zones. Neighbor zones are pairs of zones that are adjacent (on 

Figure 20, zone 1 is neighbor of zone 2, 4 and 5, for example). 

In general, the LMO defines a daily activity period and imposes its constraints concerning the 

delivery time windows they can accept for their last mile delivery process. First, all problem instances 

consider a daily activity period of 12 hours starting at 8:00 and ending at 20:00 where the delivery 

time window [𝐸𝑢𝑘 , 𝐿𝑢𝑘] imposed by the LMO for any request of any scenario must have a duration 

of 3 hours (i.e., 𝐿𝑢𝑘 − 𝐸𝑢𝑘 = 3 hours). As a consequence, the earliest and latest delivery windows 
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that can be accepted for any request are [8:00 11:00] and [17:00-20:00]. The problem instances 

considering these constraints are referred to as having a ‘random’ time window type since the 

requested windows can be freely selected between these time window limits. Moreover, for internal 

organization of the daily deliveries, the LMO can have an additional requirement imposing the 

delivery time windows to be only one of a possible set of disjoint time windows. To access the impact 

of this additional LMO constraint, it is considered the case where the delivery time window imposed 

by the LMO for any request must be only one of the four possible options: [8:00-11:00], [11:00-

14:00], [14:00-17:00] [17:00-20:00] and the problem instances considering these constraints are 

referred to as having a ‘clustered’ time window type. 

The bus network used for all instances has 96 bus services: 48 services departing from bus hub 1 and 

48 services departing from hub 24. From each hub, the bus services include three different routes 

which are used sixteen times in one day, with an interval of 45 minutes for each route. For 

consecutive routes, the time difference of departure time is 15 minutes. Table 38 details the three 

different routes departing from each bus hub. In all bus services, the time difference between the bus 

departure from the hub and the instant of arriving to the first stop is 30 minutes and the time difference 

between arrivals on consecutive stops is 10 minutes. 

 

Table 38- Bus service routes departing from each bus hub of the city 

 

 

The freight capacity of all bus services prepared for the combined transportation of passengers and 

freight is 12 parcels, and the offload capacity of all stops is 6 parcels.  

On each problem instance, the demand uncertainty is modelled by a set of scenarios 𝑈 where the set 

of requests 𝐾𝑢 of each scenario 𝑢 ∈ 𝑈 are computed in the following way: 

1. The demand of each request is randomly generated as 1, 2 or 3 parcels, with probabilities 

0.5, 0.3 and 0.2, respectively. The motivation to select these probabilities is the fact that, for 

this type of business and integrated flow, it is expected more requests of single parcels and 

less requests of multiple parcels. 

2. The destination zone of each request is randomly generated as an integer between 1 and 9 

with given probabilities 𝑝𝑖, with 1 ≤ 𝑖 ≤ 9. Different sets of probability values are presented 

as Cases in Table 39. In case A, all requests have their destination zone equally distributed 

in the city. In cases B and C, most of the requests are for the central zone 5 of the city (recall 

Figure 20). In cases D and E, most of the requests are for the corner zone 1 of the city center. 

In cases F and G, there are much more requests for zones 1, 2 4 and 5 when compared to the 

remaining zones. The aim is to assess the impact of different distributions of the destination 

addresses among the different destination zones in the solutions of the planning problem. 

3. The delivery time window of each request is randomly generated with a fixed width of 3 

hours. First, in the instances considering ‘random’ time windows, the time window is 

randomly generated with a uniform distribution between [8:00 11:00] and [17:00-20:00]. 

Hub 
Bus 

route 

Departur

e time 
Route description Hub 

Bus 

route 

Departure 

time 
Route description 

1 1 06:30 1-2-3-4-5-8-7-1 24 1 06:30 
24-22-23-21-19-18-

16-24 

1 2 06:45 
1-2-9-10-11-13-14-

15-8-1 
24 2 06:45 

24-22-15-14-12-11-

10-9-17-24 

1 3 07:00 
1-3-10-16-17-19-

20-22-23-15-7-1 
24 3 07:00 

24-23-14-7-8-5-6-3-

2-9-18-24 
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Then, for each of these instances, an instance considering ‘clustered’ time windows is 

generated by shitting the previous randomly generated delivery time window to the nearest 

option among the 4 possible ones: [8:00-11:00], [11:00-14:00], [14:00-17:00] [17:00-20:00]. 

 

Table 39 – Requests’ zone probabilities for each case 

Cases 
Destination Zones 

1 2 3 4 5 6 7 8 9 

A 11,1% 11,1% 11,1% 11,1% 11,1% 11,1% 11,1% 11,1% 11,1% 

B 10,0% 10,0% 10,0% 10,0% 20,0% 10,0% 10,0% 10,0% 10,0% 

C 7,5% 7,5% 7,5% 7,5% 40,0% 7,5% 7,5% 7,5% 7,5% 

D 20,0% 10,0% 10,0% 10,0% 10,0% 10,0% 10,0% 10,0% 10,0% 

E 40,0% 7,5% 7,5% 7,5% 7,5% 7,5% 7,5% 7,5% 7,5% 

F 15,0% 15,0% 8,0% 15,0% 15,0% 8,0% 8,0% 8,0% 8,0% 

G 20,0% 20,0% 4,0% 20,0% 20,0% 4,0% 4,0% 4,0% 4,0% 

 

 

6.5. Computational experiments 

Concerning the computational experiments for the exact methods, the ILP model was solved by 

CPLEX Studio IDE 12.0 with a runtime limit of 1 hour (3600 seconds). Like many other solvers, 

CPLEX includes a default pre-processing phase that analyses the input problem and adds symmetry 

breaking constraints in order to improve its resolution time of the resulting model. After some 

preliminary tests with the symmetry detection option of CPLEX turned on, in some cases the solver 

took more than 1600 seconds in the pre-processing phase. The same tests without the symmetry 

breaking detection option showed that, in the hardest problem instances, the performance of the 

solver becomes worst with this option (i.e., either it takes longer times to find the optimal solution 

or it ends with a worse solution when the runtime limit is reached). For this reason, all the results for 

the ILP model presented next do not consider the symmetry breaking detection option.  

For the heuristic algorithms, Heuristic 1 (H1) and Heuristic 2 (H2) were run with a runtime limit of 

10 minutes (600 seconds) and H2 was run with parameter r = 10, since in the preliminary tests the 

best results were obtained when r is around 10% of the total number of buses (96 buses). In the 

results presented next, time values associated to the heuristics are the runtime instants when the best 

solution was found by the respective heuristic. 

A first evaluation of the results obtained by the three methods (the exact method and the two 

heuristics) is presented based on problem instances where the demand uncertainty considers a set of 

|𝑈|=10 scenarios (small enough to guarantee that the exact method always finds the optimal 

solution). This first evaluation considers only instances where the destination addresses of the 

requests are equally distributed among all 9 zones (case A in Table 39) and the number of requests 

per scenario is 50, 100 or 150. Table 40 presents the results for the instances with ‘random’ time 

windows while Table 41 presents the results for the instances with ‘clustered’ time window. In these 

tables, “ILP” indicates the solution value (i.e., the number of selected bus services) found by the 

solver, “H1” indicates the solution value found by the Heuristic 1 and “H2” indicates the solution 

value found by Heuristic 2. Moreover, column “U” indicates the number of demand scenarios, 

column “K” indicates the number of requests per scenario, column “LMO” indicates the type of 

LMO delivery process and column “TW” indicates the type of delivery time windows. For each 

instance, the best among the two heuristic methods (H1 or H2) is highlighted in bold, where the best 
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means that the method that has obtained either the best solution value or a solution with the same 

value found in a shorter runtime. 

  

Table 40 - Computational results of the three optimization methods with random time windows 

 

 

Table 41 - Computational results of the three optimization methods with “clustered” time windows 

 

 

 

Case U K LMO TW ILP Time (s) H1 Time (s) H2 Time(s) 

A 10 50 1 Random 17 1.5 20 3.1 18 93.6 

A 10 50 2 Random 10 71.8 11 11.8 11 4.3 

A 10 50 3 Random 10 12.6 10 2.5 10 21.6 

A 10 100 1 Random 20 44.4 23 3.2 24 1.92 

A 10 100 2 Random 17 33.3 17 54.1 17 17.5 

A 10 100 3 Random 17 20.9 17 38.6 17 1.3 

A 10 150 1 Random 24 407.1 28 347.0 29 293.3 

A 10 150 2 Random 24 123.8 25 4.2 25 6.8 

A 10 150 3 Random 24 84.1 24 82.6 24 84.4 

Case U K LMO TW ILP Time (s) H1 Time (s) H2 Time(s) 

A 10 50 1 Clustered 20 1.1 20 1.2 21 95.9 

A 10 50 2 Clustered 10 12.9 11 2.8 11 3.6 

A 10 50 3 Clustered 10 6.9 10 15.6 10 574.4 

A 10 100 1 Clustered 21 8.3 22 5.2 24 13.4 

A 10 100 2 Clustered 17 110.1 17 90.0 18 45.6 

A 10 100 3 Clustered 17 30.1 17 13.9 17 16.2 

A 10 150 1 Clustered 24 358.2 27 2.8 29 2.1 

A 10 150 2 Clustered 24 27.0 25 168.6 25 7.6 

A 10 150 3 Clustered 24 239.9 24 20.6 24 365.3 
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In these instances, the exact method obtained the optimal solution of all instances with the hardest 

cases solved under 7 minutes. The results of H1 and H2 suggest that the heuristic methods are 

efficient for the instances with the LMO processes 2 or 3, since they either obtain the optimal value 

provided by the exact method (in number of buses needed to transport all requests) or one more bus 

than the optimal value, requiring in general less runtime than the exact method to find their solutions.  

On the other hand, for the instances with the LMO process 1, the results suggest that the heuristics 

methods are not efficient, since in some cases the best found solution has a gap of 20% to the optimal 

value obtained by the ILP. These observations are justified as follows. In the LMO process 1, the 

number of bus services and bus stops that can be assigned to each request is very limited, which 

makes the ILP model to be more efficiently solved by CPLEX (as it contains a smaller number of 

variables), while it makes harder the heuristic methods to find good solutions. In the LMO processes 

2 and 3, the number of variables of the ILP model grows significantly making its resolution harder 

(although in these instances, all ILP models were solved to optimality) while the number of possible 

services and bus stops that can be assigned to the requests becomes larger enabling the heuristic 

methods to find optimal or near optimal solutions. 

In general, the larger the number of scenarios is, the more robust the solution becomes (to demand 

uncertainty) but there is a limit beyond which the optimal solution value does not change. After 

preliminary tests, it was concluded that such limit is 100 scenarios for the BNPP. The next tables 

present the results of the three methods for the same cases as the previous tables but with problem 

instances where the demand uncertainty considers a set of |𝑈|=100 scenarios. First, Table 42 and 

Table 43 present the computational results only for LMO process 1 (the meaning of each column is 

the same as in the previous tables). In these tables (and next ones), when the ILP model was not 

solved to the optimality within the time limit, the results are shown as [LB UB], where LB is a Lower 

Bound of the optimal number of bus services (based on the lower bound provided by CPLEX at the 

end of its execution) and UB is the number of the bus services of the best solution found by CPLEX 

(which is by definition an Upper Bound of the optimal value). 

 

 

Table 42 - Results of instances only for LMO process 1 and random time windows, for each optimization method 

 

 

 

 

 

 

 

Case U K LMO TW ILP Time (s) H1 Time (s) H2 Time(s) 

A 100 50 1 Rand 22 25.7 24 3.8 23 80.5 

A 100 100 1 Rand 22 129.2 25 302.8 27 137.9 

A 100 150 1 Rand [25-44] 3600 30 432.9 31 177.6 

A 100 150 1 Rand [25-26] 14400 30 432.9 31 177.6 
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Table 43 - Results of instances only for LMO process 1 and “clustered time windows, for each optimization method 

 

 

In these instances, with 100 scenarios, the results show that the exact method obtains the optimal 

solution for the problem instances with 50 requests per scenario and at least near optimal solutions 

for 100 requests per scenario. However, for 150 requests per scenario, the gaps between the LB and 

the UB are very high. As an attempt to reduce these gaps, these instances were solved a second time 

with a runtime limit of 4 hours (14400 seconds), whose results are also shown in these tables 

highlighted in grey. The results obtained in this second run reduce the gap from 76% to 4% in the 

case of ‘random’ time windows and from a gap of 37.5% to the optimal solution in the case of 

‘clustered’ time windows. Moreover, these results confirm the previous results that the heuristic 

methods (both H1 and H2) are not efficient to solve the instances with LMO process 1 (the difference 

to the solution values found using exact methods is still high). Thus, the exact method is the more 

efficient method to solve instances with LMO process type 1.  

Note that the heuristic methods H1 and H2 are randomized methods that can find different solutions 

in different runs. Therefore, to obtain the next results, each heuristic method was run 10 times. The 

results obtained by the three methods on the instances with 100 scenarios and LMO process 2 and 3 

are presented in Table 44 (for the instances with ‘random’ time windows) and Table 45 (for the 

instances with ‘clustered’ time windows). In these tables, the results of the heuristics are the best 

value (in number of bus services) among the 10 runs, the average of the 10 solution values, the 

standard deviation of the 10 solution values and the average running time to find the 10 solutions. 

On each case, the best average value between heuristic H1 and heuristic H2 is highlighted in bold. 

The results of Table 44 show that H2 is the best method for the instances with ‘random’ time windows 

since the average values found for the 10 runs are always lower than the results of H1. Moreover, the 

average values found by H2 are very close to the lower bounds provided by the exact method. On 

the other hand, the results of Table 45 show that H1 is the best method to solve the instances with 

‘clustered’ time windows since the average values are always better than the results of H2. Moreover, 

the average values found by H1 are very close to the lower bounds provided by the exact method.  

Finally, both heuristics perform better than the exact method since their average values are lower 

than the value of the exact method in almost all cases with much shorter running times. 

 

 

 

 

 

 

Case U K LMO TW ILP 
Time 

(s) 
H1 Time (s) H2 Time(s) 

A 100 50 1 Clustered 20 38.8 20 12.8 21 220.7 

A 100 100 1 Clustered [23-24] 3600 27 13.0 26 136.4 

A 100 150 1 Clustered [24-33] 3600 31 29.0 31 144.0 

A 100 150 1 Clustered 25 14201 31 29.0 31 144.0 
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Table 44 - Results for instances of Case A with 100 scenarios and LMO process 2 and 3 for random time windows 

 

Table 45 - Results for instances of Case A with 100 scenarios and LMO process 2 and 3 for clustered time windows 

 

To determine if there are significant statistical differences between the results of heuristic H1 and 

heuristic H2 (in terms of average solution values and average runtimes), a Paired sample T-test was 

conducted (Kent State University Libraries, 2022). First, the data was tested in SPSS and the results 

have shown that the data is normally distributed, random, and similar spread between variables and 

the variables of interest are continuous, which are the assumptions required for the validity of the 

Paired sample T-test. 

Concerning the results related to the ‘random’ time windows instances (Table 44), the results of 

paired samples T-Test indicate that the average solution values obtained by H1 and H2 are 

statistically different from each other (since in Table 46 the P1 value is lower than 0.05), while there 

are no significant differences between the two heuristics concerning the average running times (P2 

value is higher than 0.05 in Table 46). Moreover, because of the small dimension of the samples, the 

non-parametric Wilcoxon test (matched samples) was also used with this data. Results agreed with 

the T-Test, namely rejecting the equality of the medians (p1-value = 0,028) between the average 

solution values obtained by H1 and H2, and not rejecting the equality of medians (p2-value = 0,753) 

between the average running times of H1 and H2. These results indicate that H2 computes 

statistically better solutions than H1 in similar running times.  

K LMO 

ILP H1 H2 

ILP 
Runtime 

(s) 

Best 

Value 

Avg. 

Value 

Std. 

Dev 

Avg. 

Runtime 

Best 

Value 

Avg. 

Value 

Std. 

Dev 

Avg. 

Runtime 

50 2 [10-13] 3600 12 12 0 39.79 11 11.5 0.53 163.71 

50 3 [10-12] 3600 11 11 0 22.45 10 10.9 0.31 66.162 

100 2 [17-29] 3600 18 18.5 0.53 162.28 18 18.1 0.32 163.20 

100 3 [17-18] 3600 18 18 0 218.191 17 17.2 0.42 221.20 

150 2 [24-56] 3600 25 25.8 0.42 207.70 25 25.5 0.53 127.12 

150 3 [24-31] 3600 25 25.6 0.52 161.06 25 25 0 79.96 

K LMO 

ILP H1 H2 

ILP 
Runtime 

(s) 

Best 

Value 

Avg. 

Value 

Std. 

Dev 

Avg. 

Runtime 

Best 

Value 

Avg. 

Value 

Std. 

Dev 

Avg. 

Runtime 

50 2 10 2784 11 11 0 39.79 11 11.9 0.32 123.71 

50 3 10 3552 11 11.1 0.32 22.45 11 11.4 0.52 189.17 

100 2 [17-21] 3600 18 18.3 0.48 162.28 19 19.6 0.52 139.76 

100 3 [17-19] 3600 18 18 0 218.191 18 18.7 0.67 224.68 

150 2 [24-32] 3600 26 26.4 0.52 207.70 27 27.1 0.32 245.68 

150 3 [24-29] 3600 25 25 0 161.06 26 26.1 0.32 261.27 
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Concerning the results related to the ‘clustered’ time windows instances (Table 45), the results of 

paired samples T-Test indicate that the average solution values obtained by H1 and H2 are also 

statistically different from each other (since in  

Table 47 the P1 value is lower than 0.05) and, again, there are no significant differences between the 

average running times of the two heuristics (P2 value is higher than 0.05 in  

Table 47). These results indicate that H1 computes statistically better solutions than H2 in similar 

running times. 

Next, the computational results of all cases (defined in Table 39) are presented in Table 48 (where 

the previous results obtained for Case A are repeated for comparison reasons). In these results, the 

previous conclusions were used to select the best method for each problem instance as indicated in 

column “Method” of Table 48. Columns “Case A”, “Case B”, …, “Case F” and “Case G” indicates 

the value of the solution obtained for each problem instance in number bus services needed to 

transport all requests of all 100 scenarios. 

Table 46 - Paired samples T-Test for average solution values between H1 and H2, for random time windows 

 

Table 47 - Paired samples T-Test for average solution values between H1 and H2, for clustered time windows  

K LMO 

H1 H2 H1 H2 

Average Solution 

Value for 10 runs 

Average Solution 

Value for 10 runs 

Average runtime 

for 10 runs 

Average runtime for 

10 runs 

50 2 12,00 11,50 39,79 163,61 

50 3 11,00 10,90 22,45 66,16 

100 2 18,50 18,10 162,28 163,20 

100 3 18,00 17,20 218,19 221,20 

150 2 25,80 25,50 207,70 127,12 

150 3 25,60 25,00 161,06 79,96 

p value  P1=0.006  P2=0.961 

K LMO 

H1 H2 H1 H2 

Average Solution Value 

for 10 runs (buses) 

Average Solution 

Value for 10 runs 

(buses) 

Average runtime 

for 10 runs 

(seconds) 

Average runtime 

for 10 runs 

(seconds) 

50 2 11,00 11,90 14,01 123,71 

50 3 11,10 11,40 82,50 189,17 

100 2 18,30 19,60 207,90 139,76 

100 3 18,00 18,70 44,20 224,68 

150 2 26,40 27,10 177,16 245,68 

150 3 25,00 26,10 197,54 261,27 
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Table 48 - Results of the all instances solved by the best method for each instance type 

 

 

The results show that for the instances with 50 requests, the LMO process significantly impacts the 

number of required bus services needed to transport requests, since on average, there is a reduction 

around 50% on the number of required bus services changing the LMO process from 1 to 3. For the 

instances with 100 requests, the LMO process still impacts the number of required bus services, but 

the reduction when LMO process is changed from 1 to 3 is significantly lower (around 20%). For the 

instances of 150 requests, the impact of the different LMO processes is negligible, since the reduction 

of required bus services changing the LMO process from 1 to 3 is around 4% for instances with 

‘random’ time windows and is around 6%, and 9% for instances with ‘clustered’ time windows.  

p value P1=0.002  P2=0.071 

U K LMO TW Method Case A Case B Case C Case D Case E Case F 
Case 

G 

100 50 1 Rand ILP 22 22 22 22 21 22 22 

100 50 2 Rand H2 12 11 11 11 11 11 11 

100 50 3 Rand H2 11 10 10 10 10 10 10 

100 100 1 Rand ILP 22 22 24 22 22 22 22 

100 100 2 Rand H2 18 19 19 18 18 18 18 

100 100 3 Rand H2 18 18 18 17 17 17 17 

100 150 1 Rand ILP [25-26] [24-26] 27 24 [25-26] [24-26] [24-27] 

100 150 2 Rand H2 26 25 25 25 25 25 25 

100 150 3 Rand H2 25 25 25 25 24 25 25 

100 50 1 Clust ILP 20 20 23 20 21 21 20 

100 50 2 Clust H1 11 11 11 11 10 10 11 

100 50 3 Clust H1 10 10 10 10 10 9 9 

100 100 1 Clust ILP [23-24] 22 28 23 [22-23] 22 23 

100 100 2 Clust H1 18 18 18 18 18 18 18 

100 100 3 Clust H1 18 18 19 17 18 18 18 

100 150 1 Clust ILP 25 [25-27] 33 25 29 [25-27] 26 

100 150 2 Clust H1 26 26 26 27 27 27 26 

100 150 3 Clust H1 25 26 26 25 25 25 26 
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There are some cases, highlighted in grey in the Table 48, where the value of the solution found for 

an instance with the LMO process 2 is higher than the value of the solution for the equivalent instance 

with the LMO process 1 (this can happen as these results are obtained with heuristics which do not 

guarantee that the found solutions are optimal). In these cases, the first value can be replaced with 

the second value, since a solution for an instance using the LMO process 1 is also a valid solution 

for the instance using the LMO process 2. The same replacement can be applied between the 

instances using the LMO process 3 when compared to the equivalent instances using LMO process 

2. 

Recall that Case A considers that all 9 zones have the same probability of being the destination zones 

of the request. On the other hand, the cases C, E and G are the cases where the probabilities between 

the 9 zones are more unbalanced. Comparing Case C (where the requests have a probability of 40% 

to be destinated to the central zone 5) with Case A, for the instances with 50 requests and ‘random’ 

time windows, the number of required bus services in Case C is either the same or even one bus less 

than the required number of bus services in Case A. For the equivalent instances with 100 or 150 

requests, the number of required bus services start to increase (except in the instance with 100 

requests and the LMO process 2, with one bus less). For instances based on Case C, with ‘clustered’ 

time windows, the number of required bus services is always higher when the LMO process is 1 and 

the same or one more bus to the LMO process 2 and process 3. Note that for Case C, as 40% of 

requests have the central destination zone as their destination, for these requests the LMO process 2 

is equivalent to LMO process 3 (as all other zones are neighbor zones of the central zone 5), and 

therefore the results are expected to be similar.  

Comparing the instances of Case E (where requests have a probability of 40% to be destinated to a 

zone located in a corner of the city center), for ‘random’ time windows, with the equivalent instances 

based on Case A, the results show that the number of required bus services for Case E is always 

lower or the same value of the number of required bus services on the equivalent instances of Case 

A. For the equivalent instances with ‘clustered’ time windows, the results show that for a large set 

of requests and using LMO process 1 and 2, the number of required bus services is increased 

compared to the instances of Case A. 

Regarding the instances of Case G, where requests have more probability to go to a subset of zones 

in the city center, the results show that for instances of 150 requests using the LMO process 1, the 

obtained value of required buses is one more when compared to case A. Additionally, compared to 

case A, one less bus is required for the instances with ‘random’ time windows using the LMO process 

2 and the number of required buses is the same for instances with the LMO process 3. For the 

equivalent instances with ‘clustered’ time windows, one additional bus is required for all LMO 

processes when compared with the number of required buses in the equivalent instances of Case A. 

 

 

6.6. Chapter resume and conclusion  

This chapter contributes to the literature with a new approach to the integration of passenger and 

freight flows in the field of UL, studying the strategic BNPP. The study of Azcuy et al. (2021), is the 

most similar comparing to BNPP problem, since they address a strategic problem in the field of UL 

with uncertainty in the customer locations and use a scenario based approach to solve it. 

Nevertheless, the present study goes a step further, since in the test instances, a network with two 

depots and three transit lines is considered, while their study considers a stylized system for a single 

depot and a single transit line. Moreover, uncertainty widely addressed, by incorporating it in more 

parameters, and also consider a higher number of scenarios. While Azcuy et al. (2021) consider the 

uncertainty in customer locations, the work of this chapter addresses uncertainty in final customer 

locations, demands and delivery time windows, and uses 100 scenario realizations instead of only 10 
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in their work. Combining all these aspects, the findings of this work bring novelty to the UL field. In 

the overall, the main findings of the obtained results and their analysis are: 

• All proposed optimization methods (the exact method and the two heuristics H1 and H2) are 

of interest in practice to solve the addressed Bus Network Planning optimization problem 

since it was clearly identified the type of instances characteristics for which each method is 

more efficient. 

• The LMO constraints concerning the delivery between different destination zones have a 

huge impact on the required number of buses in the early stages of the integrated passenger 

and freight flows service: when the number of requests is 50 per day, the LMO process 1 

(the most constraining case) requires much more bus services than the LMO process 3 (the 

least constraining case) and the difference between the two LMO processes becomes small 

for 100 requests per day and negligible for 150 requests per day. 

• The LMO constraints concerning delivery time windows do not have a significant impact on 

the required number of bus services, as the differences between the instances with ‘random’ 

time windows and with ‘clustered’ time windows are small for all cases. 

• Different distributions of destination addresses among the different destination zones 

(modelled by Case A, Case B, …) also do not have a significant impact on the required 

number of bus services as the differences between the instances of the different cases are 

small.  
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7. Conclusion 
 

 

 

 

7.1. Thesis overview  

In conclusion, this PhD dissertation underscores the importance of efficient urban logistics solutions 

in addressing the contemporary challenges posed by the ever-expanding urban environments. In a 

world where urbanization continues to surge, the integrated flow of goods into city centers has 

become an imperative for sustaining economic growth, reducing environmental impacts, and 

enhancing the overall quality of urban life. Thus, one groundbreaking approach that has emerged is 

the integration of passenger and freight flows within urban areas. In a society increasingly driven by 

interconnectedness, it is only fitting to harness this synergy to revolutionize the way goods are 

transported into city centers. The research presented has demonstrated that by optimizing the 

utilization of existing resources, particularly the spare capacity of buses, it is possible to alleviate the 

burden placed upon city centers by the abundant presence of vans and trucks. 

The concept of utilizing public transportation networks for freight transport not only minimizes the 

congestion and pollution typically associated with goods delivery but also promises to enhance the 

overall efficiency of urban logistics operations. Embracing this integrated approach can unlock the 

full potential of urban transportation systems, making them more sustainable and environmentally 

friendly. 

This thesis proposes “Models and methods to support decision making in urban logistics context”, 

studying the integration of passenger flows to propose a new urban logistics solution to transport 

goods to city centers. The research was done in the scope of the SOLFI project, with the main 

contributions outlined in the next section. 

 

 

7.2. Summary of contributions 

In what follows, it is presented a summary of the contributions throughout the Chapters 2, 4, 5, 6. 

 

7.2.1. Systematic literature review on urban logistics problems addressing 

integrated flows 

In Section 2.4 of Chapter 2, a SLR was conducted to gather and discuss the existing literature that 

uses Operational Research models and methods in the field of Urban Logistics, particularly 

addressing integrated passenger and freight flows.  

The results of this review contributed to the understanding of the research gap in the literature and 

how the researchers are addressing this topic. Thus, an analysis of the review results was performed 

to respond to the RQ1:  

This chapter closes the present dissertation. It begins with an overview about the Urban 

Logistics concept under research. Then, the research contributions for each chapter are 

discussed. Lastly, limitations and future research are outlined. 
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How have researchers addressed the Urban Logistics integration of passenger and freight flows 

problem from an operational research perspective?  

 

Even though there are several researches in the field of Urban Logistics, the integration of passenger 

and freight flows is a relatively new topic under investigation, as the results suggested. Table 4 

presented in section 2.4, summarized the characteristics of the main relevant researches on this topic. 

Regarding to RQ1, the following conclusions could be made about the state-of-the-art: 

1. Researches about the integration of passenger and freight flows, using OR models and 

methods is relatively scarce, but trending in recent years; 

2. The majority of the research addresses the topic from the operational planning point of view, 

such as tackling the routing of the transport vehicles and assigning the demand to the 

vehicles; 

3. Few researchers address uncertainty on their problems to model the problem data and 

parameters; 

4. None robust approach was found in the operational layer of integrating passenger and freight 

flows, which is one of the main contributions in the present research for the FNFAP problem. 

By performing this review, an overview of how these problems is being tackled in the literature could 

be obtained, as well as the gaps to be filled could be identified.  

 

7.2.2. Integrating stakeholders’ expectations into the integrated 

transportation system 

In Chapter 4, qualitative and quantitative research methodologies were utilized to analyze the 

stakeholders' requirements for the integrated transportation system. The research done on this thesis 

was based on the SOLFI project, which included a variety of stakeholders with varying viewpoints 

and needs for such an integrated transportation system. Therefore, the primary purpose of Chapter 4 

was to collect all of the needs and anticipate potential conflicts while designing and developing the 

integrated transportation system, guaranteeing that the adoption of the integrated solution by 

stakeholders would be facilitated. 

Firstly, a questionnaire was developed and shared with potential final customers of the integrated 

transportation solution, resulting in a total of 302 respondents. The main results obtained from this 

questionnaire are threefold: i) the majority of the material purchased online, nowadays, by the 

respondents is clothes and footwear, which can be transported by the SOLFI system (small orders 

with low volume and weight); ii) currently, the respondents’ preference is to receive their orders at 

their domicile residence; iii) nevertheless, respondents are willing to accept the use of new 

conveniences on their delivery process when purchasing online, such as collecting their packages at 

a neighbor store or smart lockers, even if the price of the delivery increases. These three main 

conclusions were considered on the problems addressed as requirements/expectations of the final 

customers. 

Secondly, three semi-structured interviews were conducted with three key stakeholders of the SOLFI 

project: a logistic company, the bus BTO and the LMO. The goal for these interviews was to 

understand their requirements and constraints to use the integrated transportation system, to build a 

flexible solution appropriate in those stakeholders’ operations. The interviews were different, 

however with similar questions to understand the different perspectives about the same constraint of 

the problem.  

With the research done on this chapter, it was possible to answer the RQ2:  
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How can an urban logistics transport system that integrates passenger and freight flows be enriched 

for real world contexts?  

 

Analyzing the results of the responses for the questionnaire and interviews, allowed to understand 

the realistic constraints and demands of the different stakeholders, translating them into the 

assumptions and parameters for the problems formulations, and the structure of data needed for the 

instances to solve the developed models. These findings are summarized on the Table 8 of this thesis. 

 

7.2.3. Operational approach for the Freight Network Flow Assignment 

Problem (FNFAP) 

The operational approach for the FNFAP was studied in Chapter 5. The main goal of this problem 

was developing models to obtain operational solutions for the integrated passenger and freight 

transportation. An operational solution is achieved when three decisions are made: (i) Assign each 

request to a bus hub where bus services depart from; (ii) Assign the request to a bus service starting 

on the assigned hub; and (iii) Assign the request to a bus stop of the assigned bus service, to be 

offloaded by the LMO and delivered at final customer destination.  

Different models are proposed according to the objective function of interest to be optimized on each 

model. One of the key novel points of the research on the scope of FNFAP problem, is the 

incorporation of robustness to deal with disruptions that can occur on real world application. Two 

disruptions were considered: i) when a bus service is planned to transport passengers and requests 

and it is suppressed in short notice; ii) When the last mile offload of a request at the bus stop is not 

conducted by the LMO, and the requests are not collected from the buses. Therefore, RQ3 was 

fulfilled with the research done in this chapter:  

How to address uncertainty and robustness in an urban logistics transport system that integrates of 

passenger and freight flows?  

 

By addressing the robustness to deal with the mentioned disruptions. Lexicographic optimization is 

also addressed to study combination of objectives, resulting in “augmented” models. Heuristic 

algorithms were also proposed for the FNFAP problem. The importance of heuristic algorithms to 

solve this problem is enhanced by the fact that in a real-world scenario, the operational decision has 

to be made in a very short period, and so be incorporated on the SOLFI platform. Thus, when the 

client on the SOLFI platform performs a request release, the decision of the platform is as fast as 

possible. Both exact and heuristic proposed formulations are solved using generated datasets, and 

results are obtained when solving the models. Therefore, RQ4.1 was fulfilled in this chapter: 

How to model and solve the assignment of parcels to into city centers in the urban logistic problem 

of integrated freight and passenger flows?  

 

The main results are present on section 5.7 of this thesis.  

 

7.2.4. Strategic approach for the Bus Network Planning Problem (BNPP) 

The strategic approach for the BNPP was studied in Chapter 6. The main goal for studying this 

problem is to achieve, in a strategic layer, the minimum fleet size of buses needed to be part of the 

integrated transportation solution. Part of the role of the BTO of the city is to make decisions and 

manage the fleet and routes of buses running in the city. Considering the integrated transportation 

solution, a decision has to be made and known, beforehand, how many buses would need to be part 
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of the integrated solution, and therefore, physically adapted to guarantee the safety of the passengers 

and freight. To help this decision of the BTO, Chapter 5 presents the problem formulation using 

exact models and heuristic algorithms, using a scenario-based approach of stochastic parameter 

realizations. The scenario approach for parameter realizations is specifically important to model 

uncertainty into the models, allowing to achieve solutions that represent the uncertainty of the real-

world. This approach allowed to respond to the RQ3: “How to address uncertainty and robustness 

in an urban logistics transport system that integrates of passenger and freight flows?” since the 

uncertainty was guaranteed by the scenario approach of realizations of stochastic parameters for the 

problem BNPP. 

The exact formulation using ILP and the heuristic algorithms based on GRASP allowed to model the 

problem BNPP, which was solved using generated instances. Proposing these model formulations 

and solving them allowed to respond to the RQ4.2:  

How to model and solve the adapted bus fleet size needed in the urban logistic problem of integrated 

freight and passenger flows? 

 

The main conclusions for the research of BNPP problem in Chapter 6 can be stated in two main 

domains: 

From a macro perspective, this is a new approach to a problem that is critical for the BTO of the city 

and municipalities to make efficient decisions regarding future resources needed and to evaluate the 

system feasibility. So, the solution approaches developed tackle an important decision problem at 

the strategic planning level, estimating the required number of buses that must be adapted to transport 

goods while also transporting passengers, considering a set of future demand scenarios. To the best 

of the author's knowledge, no research is available to this specific strategic problem and 

characteristics, using realizations of demand to achieve solutions that are closer to reality, in the 

planning stage of the network design. 

The results provide also important insights to practice. For the stakeholders involved in the network 

strategic network design problem such as, policy makers, BTO, logistics companies, LMOs, 

passengers and residents, solution approaches provide valuable insights as they incorporate 

uncertainty to get solutions as closest to the reality as possible. Additionally, the results allow 

stakeholders to anticipate the impact of their operational decisions in an integrated passenger and 

freight network, at a planning stage. For example, results suggest that delivering requests scattered 

across all the area of the city, and having a clustered time windows to deliver them, do not have a 

huge impact on the number of bus required. 

 

7.3. Limitations and future research 

A number of research future paths can be followed in order to continue the work presented in this 

thesis. In what follows, some interesting future research directions are outlined. 

Data collection: In Chapter 4 questionnaires and semi-structured interviews were conducted. 

Concerning the semi-structured interviews, the sample of stakeholders interviewed is limited to just 

one stakeholder of each type (Logistic Operator, Bus Transport Operator, Last Mile Operator). As 

future research, other stakeholders could also be interviewed to gather requirements and derive 

assumptions based on different inputs, avoiding the bias caused by the small sample size. Concerning 

the questionnaire to the final customers, all respondents are geographical limited to city of Porto, and 

other target groups and regions of the country could be considered in the future. 

 

Applicability: In Chapters 5 and 6, it were used fictional generated instances to be used to solve the 

models. Pilot instances were generated as well, where only the bus network data was realistic, based 
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on the bus network of Porto city. Evidently, extending the computational experiments with some 

instances that reflect other city bus networks would be beneficial to the conclusions that can arise 

from the computational experiments. Furthermore, the demand data utilized in all instances is purely 

fictitious, attempting to model a prospective demand behavior. This is less important for the BNPP 

problem since using scenarios with various realizations broadens the range of parameter values 

utilized on the instances. As future research, historical data for demand characterization could also 

improve the confidence level for the decision making in the scope of these problems. 

 

Problems formulation: In Chapters 5 and 6 the two problems FNFAP and BNPP were formulated 

based on the stakeholders’ inputs, researchers experience and knowledge on OR and logistics/ 

transportation fields. Nevertheless, even though a significant set of models with different 

optimization algorithms were addressed, other formulations and methods can be used to extend the 

scope of the work done on this thesis. Transportation costs, supply chain costs, and environmental 

factors from an integrated passenger and freight system might be some optimization goals that 

expand the current work. 

 

Scalability: This study was conducted as part of the SOLFI project. The first practical stage in this 

project is a pilot test, in which some of the algorithms suggested in this research are tested in a real-

world setting. Although this study was developed to meet the demands of a pilot setting, some scaling 

experiments with realistic data would be a future research route that would infer the performance of 

the suggested models in a realistic and fast-paced context. 
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Appendix 

Appendix A: Customer questionnaire. 

 

Questionário clientes particulares on-line 

1. Género:   

 Masculino  Feminino  

2. Faixa etária:   

 0 – 17 anos     18 – 25 anos         26 – 40 anos          41 – 65 anos      + 65 anos 

3. Profissão / Situação profissional:   

 Estudante          Empregado por conta própria      Empregado p/ conta de outrem                                

 Desempregado       Reformado 

4. Com que frequência realiza compras on-line?  

 Não compro on-line                1 a 3 vezes por ano                 4 a 6 vezes por ano                                    

7 a 12 vezes por ano                       Mais de 12 vezes por ano    

5. Que tipos de produtos costuma comprar on-line? (assinale com um X o(s) tipo(s) de produto(s) 

que costuma comprar) 

 Peças de roupa/calçado/acessórios                       Produtos eletrónicos  

 Produtos alimentares e bebidas                     Produtos de saúde/cosmética/perfumaria          

 Produtos de papelaria                                              Artigos para o lar 

 Produtos desportivos e outros produtos de lazer/entretenimento   Outros: 

___________________________ 

6. Quando compra on-line, em que horários prefere receber a respetiva encomenda? 

  Manhã (8h-13h)    Tarde (13h-18h)         Noite (18h-24h)     
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7. Usando a escala que se segue, assinale o quanto gostaria de receber uma encomenda ao fim 

de semana (Pinte o círculo da posição que melhor corresponde à sua apreciação) 

 

 

7.1 Receber uma encomenda ao Sábado das 8h às13h 

 

7.2 Receber uma encomenda ao Sábado das 13h às 18h 

 

7.3 Receber uma encomenda ao Sábado das 18h às 24h 

 

7.4 Receber uma encomenda ao Domingo das 8h às13h 

 

7.5 Receber uma encomenda ao Domingo das 13h às 18h 

 

7.6 Receber uma encomenda ao Domingo das 18h às 24h  

8.  Qual o seu local de preferência para a receção das suas compras on-line? 

 Domicílio      Emprego      Loja do retalhista      Loja de recolha (ponto de entrega)      

9. Para os serviços abaixo listados assinale com um X aquele(s) que mais valoriza em relação 

ao local de recolha das suas compras on-line? Estaria disposto a ter um custo adicional para 

ter esse serviço incluído nas suas compras on-line?  

Serviço Disposto(a) a 

pagar? 

Se respondeu sim, quanto? 

Permitir que eu receba a encomenda mais 

rápido.    

 Sim        Não       Até 2,5 euros      De 2,5 

a 5 euros 

 De 5 a 10 euros  Até 

________ 

Permitir reduzir o tempo/esforço que eu 

gasto na recolha da encomenda.                                                

 

 Sim        Não       Até 2,5 euros      De 2,5 

a 5 euros 

 De 5 a 10 euros  Até 

________ 

Dar-me liberdade/flexibilidade em relação 

ao horário de entrega                                                       

 

 Sim        Não       Até 2,5 euros      De 2,5 

a 5 euros 

 De 5 a 10 euros  Até 

________ 

 

10. Imagine a existência de um serviço de entregas baseado numa rede de lojas de recolha, com 

o mesmo horário de funcionamento da respetiva loja, onde recolheria a sua encomenda com 

impacto positivo na pegada ecológica uma vez que vai reduzir o número de veículos a assegurar 

a atividade de logística urbana na cidade.  

  1           2            3            4           5 

  Gostaria muito   Não gostaria 
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    10.1 Estaria disposto a utilizar este serviço, dado o seu impacto ambiental e a sua 

flexibilidade na recolha? 

       Sim     Não. Porquê? __________________________________ 

    10.2 Se respondeu sim, qual o tempo, em minutos, que estaria disposto a caminhar para 

recolher a sua mercadoria? Considere o tempo de ida e volta. 

       até 5 minutos    De 5 a 10 Minutos             De 10 a 15 Minutos 

    10.3 Quanto estaria disposto a pagar por esse serviço? Para efeitos do valor a pagar 

considere como referência uma    encomenda até 32 Kg.  

       Nada, pois prefiro manter a opção atual                 Até 2,5 euros              De 2,5 a 5 euros 

       De 5 a 10 euros                                                             Até ________ 

       Não importa o valor, pois prefiro sempre optar por este serviço amigo do ambiente                 

11. Imagine a existência de um serviço de entregas baseado numa rede de pontos de recolha 

automática (por exemplo cacifos) onde recolheria a sua encomenda com impacto positivo na 

pegada ecológica uma vez que vai reduzir o número de veículos a assegurar a atividade de 

logística urbana na cidade.  

    11.1 Estaria disposto a utilizar este serviço, dado o seu impacto ambiental e a sua 

flexibilidade na recolha? 

       Sim    Não. Porquê? __________________________________ 

    11.2 Se respondeu sim, qual o tempo, em minutos, que estaria disposto a caminhar para 

recolher a sua mercadoria? Considere o tempo de ida e volta. 

       até 5 minutos    De 5 a 10 Minutos             De 10 a 15 Minutos 

    11.3 Quanto estaria disposto a pagar por esse serviço? Para efeitos do valor a pagar 

considere como referência uma    encomenda até 32 Kg.  

       Nada, pois prefiro manter a opção atual                 Até 2,5 euros             De 2,5 a 5 euros 

       De 5 a 10 euros                                                             Até ________ 

       Não importa o valor, pois prefiro sempre optar por este serviço amigo do ambiente        

 

12. Imagine a existência destes dois serviços: entregas em rede de lojas e entregas automáticas 

em rede de cacifos pela cidade. Qual dos serviços utilizaria como preferencial? 

 Entregas numa rede de lojas como ponto de recolha                 Entregas numa rede de cacifos 

como ponto de recolha    

 Nenhuma, prefiro utilizar a opção atual 
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Appendix B: Interview protocol to private logistic operator. 

 

GUIÃO DE ENTREVISTA A OPERADORES LOGÍSTICOS 

➢ Dados gerais: 

1. O principal negócio da Rangel Distribuição (Express) é B2B ou B2C? 

1. Tipos de serviço que executam (recolhas, entregas, etc)?  

2. Qual a viabilidade do funcionamento do SOLFI nos moldes em que estamos a considerar? 

Que requisitos e necessidades antecipa que seriam necessários assegurar no âmbito do serviço 

de logística urbana, proposto pelo projeto SOLFI, para que a Rangel pudesse ser parceira 

deste serviço?  

3. Tipo de equipamento/tecnologias/software usados para o planeamento e gestão das 

encomendas a entregar pela Rangel? Fazem atualização em tempo real do estado das 

encomendas? 

4. Qual a forma recomendada de comunicação da informação da/para a solução SOLFI de/para 

a Rangel? 

5. Considera adequada uma abordagem em que o SOLFI negoceia com a Rangel um instante ou 

uma janela temporal para entrega da encomenda/tipologias de encomenda no hub de 

autocarros ou seria na sua ótica mais adequada outra abordagem e nesse caso qual? 

6. Tendo em consideração a etapa do processo de entrega de encomendas no hub de autocarros 

por parte da Rangel, faria mais sentido optar por um período diário, fixo ou variável (nesse 

caso o que pode fazer depender), para este serviço? Estaríamos a falar de um período em que 

ordem de grandeza?  

7. Considera adequada a abordagem em que o SOLFI realiza o planeamento das encomendas 

no dia anterior? Qual seria o horizonte temporal para lidar com as entregas planeadas? e em 

casos de entregas urgentes? 

➢ Sobre a distribuição na cidade do porto 

8. Existe sazonalidade em relação ao número de encomendas a entregar na cidade do Porto?  

9. Que períodos do dia são os mais críticos em relação ao número de encomendas a entregar na 

cidade do Porto?  

10. Número médio de encomendas para o centro da cidade do Porto que entregam por dia? 

Número médio de viagens por dia? 

11. Existe entreposto de suporte operacional dentro da cidade do Porto? Onde? 
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12. Têm rotas estabelecidas para a distribuição das encomendas? Se sim, como são organizadas? 

(em caso de não existir rotas estabelecidas, avançar para pergunta 13) 

a. As rotas são fixas ou dinâmicas?  

b. Há horários estabelecidos para cada rota? Qual é a duração média para percorrer 

uma rota? 

c. Quantas paragens por rota/ Quantas encomendas transportam em média em cada 

rota? 

13. Atualmente a partir de que pontos pode ser enviada a mercadoria – apenas Alfena ou também 

de outros pontos? Quais? Principais vias de acesso utilizadas para as entregas? Zonas que 

entregam encomendas com mais frequência? 

14. Equipamentos utilizados para efetuar a descarga/carga de encomendas? 

15. Antecipa que seja estritamente necessário a presença de uma pessoa para receber a 

encomenda no destino? Neste caso no hub de autocarros? Ou acha que seria viável avançar 

para um processo automático de confirmação da entrega da encomenda no hub de autocarros, 

sem interação com qualquer outra pessoa? 

16. Cada encomenda corresponde apenas a um só destino? E é entregue de uma só vez?  

17. Qual é a entidade responsável pela mercadoria em caso de acidentes, perdas ou danos da 

mesma durante o seu transporte? 

18. Qual é a entidade responsável pela segurança e integridade da mercadoria durante o seu trajeto 

no SOLFI? Qual a melhor abordagem a adotar? A rangel tem algum sistema de verificação 

da mercadoria que transporta? 

19. Qual a abordagem que aconselharia para lidar com uma falha na entrega por parte da Rangel 

e/ou por parte do SOLFI? 

➢ Sobre a frota 

20. Tipos e dimensões (capacidade) dos veículos que operam no Porto? Que tipos são amigos do 

ambiente (emissões de CO2)? Há a afetação de tipos de veículos por áreas/zonas urbanas de 

atuação? 

➢ Sobre os produtos 

21. Tipos de produtos que transportam que considera que poderiam ser entregues via SOLFI? 

22. É normal lidarem com produtos que necessitam de cuidados especiais? (temperatura 

controlada, fragilidade do produto etc.). Seria vantajoso incluir este tipo de produtos no 

âmbito da solução SOLFI? 

23. Pesos e dimensões médios e máximos dos volumes que transportam? É necessário saber as 

três dimensões da encomenda? Volumes organizados por encomenda? Como vai agregada 
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(embalada) a encomenda? Seria viável usarmos contentores com algumas dimensões padrão 

alternativas? 

24. Existem outros dados que caracterizam uma encomenda? 

25. Utilizam embalagens retornáveis na entrega dos seus produtos? 
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Appendix C: Interview protocol to bus transport operator. 

 

GUIÃO DE ENTREVISTA À STCP 

➢ Dados gerais: 

2. Qual a viabilidade do funcionamento do SOLFI nos moldes em que estamos a considerar? 

Que requisitos e necessidades antecipa que seriam necessários assegurar no âmbito do 

serviço de logística urbana proposto pelo projeto SOLFI para que a STCP pudesse ser 

parceira deste serviço?  

3. Qual a forma recomendada de comunicação da informação da/para a solução SOLFI da/para 

a STCP 

4. Para o tracking dos veículos que equipamento/tecnologia/software é usado? 

5. Sabendo que existe sazonalidade ao longo do ano em relação ao número de utentes de 

transportes públicos, esta é relevante?  

6. Que períodos do dia são os mais críticos em relação à utilização da capacidade disponível? 

E quais os períodos com maior folga? Qual a taxa de ocupação média do autocarro em cada 

uma destas alturas? 

7. Tendo em consideração toda a etapa do processo sob a responsabilidade da STCP, faria mais 

sentido optar por uma janela temporal diária para este serviço fixa ou variável (nesse caso o que 

pode fazer depender)? Estaríamos a falar de um tempo em que ordem de grandeza?  

8. Com que antecedência necessitaria a STCP de saber que tem uma dada encomenda para 

transportar? 

9. Relativamente ao custo/receita associados à prestação do serviço por parte da STCP ao 

SOLFI, que abordagem lhes parece adequada para a relação entre a STCP e a solução SOLFI?  

 

➢ Sobre a distribuição na cidade do Porto 

10. Quantos Interfaces/centros de autocarros na cidade do Porto suportam a STCP nas suas 

operações e sua localização? Seria viável usarmos estes pontos como pontos de receção da 

mercadoria proveniente do exterior da cidade? Numa situação de funcionamento pleno do 

serviço, seria exequível a afetação de um recurso humano nestes pontos para assegurar a 

gestão das encomendas? Existem, nestes locais, condições físicas para a armazenagem de 

mercadoria? 

11. Principais vias de acesso utilizadas? Zonas com mais rotas associadas? 

12. O que carateriza uma paragem de autocarro (espaço, características da via, etc) e que 

condições devem ser asseguradas nestas para que possam funcionar como pontos de 
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transbordo da mercadoria no âmbito do SOLFI? Qual a estimativa do tempo máximo que 

poderia ser gasto na retirada da mercadoria do autocarro para não comprometer a qualidade 

do serviço a passageiros?  

13. Tempo médio de espera em cada paragem? 

14. Como lidar com uma situação de exceção quando a mercadoria não é recolhida na paragem? 

 

➢ Sobre a frota  

15. Tipos e dimensões dos veículos que operam no Porto? Que tipos são amigos do ambiente 

(emissões de CO2)?  

16. Existem na frota veículos com capacidade de armazenagem de mercadoria? Se não existem, 

em que condições considera que seria possível o transporte de mercadoria no autocarro e 

quais os requisitos em termos de infraestruturas físicas de apoio à atividade logística? Se 

existem, qual é a capacidade de transporte de bagagens/encomendas para cada tipo de 

autocarro que operam na cidade do Porto? 

17. Há a afetação de tipos de veículos por áreas/zonas urbanas de atuação?  

18. Parece-lhe viável no futuro a existência de um serviço de transporte de mercadorias em 

autocarro, com a separação física das mercadorias dos passageiros, com recurso a 

tecnologias avançadas em que o check-in e check-out da mercadoria possa ser assegurado 

com segurança com o mínimo de intervenção humana, recorrendo por exemplo à tecnologia 

RFID, com controlo de acessos à mercadoria? 

19. Quais as condições/restrições a considerar na utilização da frota que devam ser incorporadas 

no SOLFI? Será importante considerar um limite de capacidade em relação ao peso/volume 

de encomendas a serem transportadas via STCP?  
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Appendix D: Interview protocol to last mile operator of the city. 

 

GUIÃO DE ENTREVISTA À CONTRA-RELÓGIO 

➢ Sobre a empresa: 

20. Há quanto tempo opera a empresa na cidade do Porto. 

21. Qual é a missão, visão e objetivos da empresa? 

➢ Dados gerais: 

22. O principal negócio é B2B ou B2C? 

23. Tipos de serviço que executam (recolhas, entregas, etc)?  

24. Tipo de equipamento/tecnologias/software usados para o planeamento e gestão das 

encomendas da Contra Relógio? Qual a forma recomendada de comunicação da informação 

da/para a solução SOLFI da/para a Contra Relógio? 

25. Fazem tracking dos veículos? Se sim, tipo de equipamento/tecnologia/software usados? 

26. Fazem atualização em tempo real do estado das encomendas? Se não, quanto é o delay?  

27. Considera adequada uma abordagem em que a Contra Relógio negoceia um tempo de 

serviço/custo para a entrega da encomenda/tipologias de encomenda entre a paragem de 

autocarro e o cliente final ou seria na sua ótica mais adequada outra abordagem e nesse caso 

qual? 

➢ Sobre a distribuição na cidade do porto 

28. Têm rotas estabelecidas para a distribuição das encomendas? Se sim, como são organizadas? 

(em caso de não existir rotas estabelecidas, avançar para pergunta 10) 

a. As rotas são fixas ou dinâmicas?  

b. Há horários estabelecidos para cada rota? Qual é a duração média para percorrer 

uma rota? 

c. Quantas paragens por rota/ Quantas encomendas transportam em média em cada 

rota? 

29. Principais vias de acesso utilizadas? Zonas mais frequentemente utilizadas? 

30. Equipamentos utilizados para efetuar a descarga/carga de encomendas? 

31. É estritamente necessário a presença de uma pessoa para receber a encomenda no destino? 

Conferir o material? 

32. Se sim, como procedem se o destinatário não se encontra no local? 

33. Número médio de volumes por dia? Quais são as horas mais críticas ao longo do dia? 

34. Existe sazonalidade relevante ao longo do ano? Em que alturas são as mais críticas e qual a 

variação de volumes? 
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35. Existe entreposto de suporte operacional na cidade do Porto? Onde? 

36. Existe alguma restrição em relação ao local de entrega que dependa das condições da área 

urbana onde deverá ser realizada a entrega, ou basicamente, dentro da cidade do Porto, 

conseguem entregar em qualquer local? 

➢ Sobre os produtos 

37. Tipos de produtos que transportam? Representatividade do transporte de volumes e de 

documentos? 

38. Conseguem responder à necessidade de lidar com os produtos de forma especial? 

(temperatura controlada, fragilidade do produto etc.). Quais as restrições em relação ao tipo 

de artigos que podem transportar? 

39. Pesos e dimensões médios e máximos dos volumes que transportam? 

40. Embalagens utilizadas para o transporte de encomendas? 

 

➢ Sobre a frota 

  

41. Quantidade, tipos e dimensões (capacidade) dos veículos que operam no Porto? Que tipos 

são amigos do ambiente (emissões de CO2)? Há a afetação de tipos de veículos por 

áreas/zonas urbanas de atuação?  

42. A frota utilizada é própria ou subcontratada? Há uma frota estável e base estável de 

motoristas? 

43. Quais as condições/restrições a considerar na utilização da frota que devam ser incorporadas 

no SOLFI? Será importante considerar um limite de capacidade em relação ao volume de 

encomendas a serem entregues via Contra Relógio? 

 

 

 


