
Universidade de Aveiro
2023

Arnaldo António
Pinto Pereira

Consulta e Visualização de Dados Semânticos

Querying and Visualisation of Semantic Data

Programa de Doutoramento em Informática
das Universidades do Minho, Aveiro e Porto





Universidade de Aveiro
2023

Arnaldo António
Pinto Pereira

Consulta e Visualização de Dados Semânticos

Querying and Visualisation of Semantic Data

Tese apresentada à Universidade de Aveiro para cumprimento dos requisitos
necessários à obtenção do grau de Doutor em Informática, realizada sob a
orientação científica do Doutor José Luís Guimarães Oliveira, Professor Cat-
edrático do Departamento de Eletrónica, Telecomunicações e Informática
da Universidade de Aveiro, e do Doutor Rui Pedro Sanches de Castro Lopes,
Professor Coordenador do Departamento de Informática e Comunicações,
da Escola Superior de Tecnologia e Gestão do Instituto Politécnico de Bra-
gança.

Programa de Doutoramento em Informática
das Universidades do Minho, Aveiro e Porto

Cofinanciado por:





o júri / the jury

presidente / president Doutora Ana Margarida Corujo Ferreira Lima Ramos
Professora Catedrática da Universidade de Aveiro

vogais / examiners committee Doutor José Luis Guimarães Oliveira
Professor Catedrático da Universidade de Aveiro (Orientador)

Doutor Francisco José Moreira Couto
Professor Associado com Agregação da Universidade de Lisboa

Doutora Maria Beatriz Alves de Sousa Santos
Professora Associada com Agregação da Universidade de Aveiro

Doutor Gabriel de Sousa Torcato David
Professor Associado da Universidade do Porto

Doutor Enrique Fernández-Blanco
Professor Associado da Universidad da Coruña





agradecimentos Agradeço aos meus orientadores, Professor José Luís Oliveira e Profes-
sor Rui Pedro Lopes, pela valiosa orientação e conselhos. Agradeço ao
Instituto de Engenharia Eletrónica e Telemática de Aveiro (IEETA) as
excelentes condições para a realização do meu trabalho. Agradeço a to-
dos os meus colegas, com quem tive inúmeras conversas frutíferas, pelo
seu apoio e amizade. Em especial, estou grato ao meu bom amigo e
colega João Almeida pelo seu forte apoio e encorajamento. Agradeço à
minha família, por tudo. Por fim, agradeço à Fundação para a Ciência e
a Tecnologia (FCT) que apoiou este trabalho (PD/BD/142877/2018).

acknowledgments I would like to thank my supervisors, Professor José Luís Oliveira and
Professor Rui Pedro Lopes, for their valuable guidance and advice. I
gratefully acknowledge the Institute of Electronics and Informatics En-
gineering of Aveiro (IEETA) for providing excellent conditions to carry
out my work. Thank all my colleagues, with whom I had numerous
fruitful conversations, for their support and friendship. In particular,
I am grateful to my good friend and colleague João Almeida for his
strong support and encouragement. Thanks to my family for every-
thing. Finally, I also thank the Fundação para a Ciência e a Tecnologia
(FCT) that supported this work (PD/BD/142877/2018).





palavras-chave Web Semântica, Dados Semânticos, Dados Vinculados, Bases de Con-
hecimento, Dados FAIR, Interfaces de Linguagem Natural, Pergunta-
Resposta, Visualização de Dados.

resumo As tecnologias semânticas podem descrever dados, mapear e vincu-
lar conjuntos de dados distribuídos para uso por pessoas e máquinas.
Ao longo dos anos, muitos repositórios de dados semânticos foram
disponibilizados na web. No entanto, isso criou novos desafios no que
diz respeito à exploração desses recursos de forma eficiente. Normal-
mente, os serviços de consulta usam linguagens de consulta formais
que exigem conhecimento além da experiência do utilizador padrão, o
que é crítico na adoção de soluções semânticas. Várias propostas para
superar essa dificuldade vêm sugerindo o uso de sistemas pergunta-
resposta que fornecem interfaces amigáveis, permitindo entradas em
linguagem natural. Por outro lado, processar e integrar os resultados
nas formas tabulares usuais não ajuda a entender melhor as informações
recuperadas.
Esta tese propõe soluções e métodos para facilitar o acesso e recuper-
ação de informação no contexto de repositórios de dados semânticos.
Uma primeira contribuição diz respeito à proposta de uma estratégia
de criação e publicação de dados semânticos para diferentes domínios
de aplicação, com ênfase em dados biomédicos. Uma segunda con-
tribuição propõe um novo método para aceder aos dados semânticos
usando linguagem natural como entrada. Por fim, analisam-se várias
possibilidades de visualização de dados semânticos para facilitar sua
compreensão e exploração. As propostas foram validadas considerando
casos de uso no domínio biomédico usando dados e metadados de pa-
cientes com Alzheimer e pacientes com doença de Huntington.





keywords Semantic Web, Semantic Data, Linked Data, Knowledge Bases, FAIR
Data, Natural Language Interfaces, Question-Answering, Data Visual-
isation.

abstract Semantic technologies can describe data, map, and link distributed
datasets for people and machines. Over the years, many semantic
data repositories have been made available on the web. However, this
has created new challenges regarding exploiting these resources effi-
ciently. Usually, querying services use formal query languages requiring
knowledge beyond the standard user’s expertise, which is critical in
adopting semantic solutions. Several proposals to overcome this dif-
ficulty have suggested using question-answering systems that provide
user-friendly interfaces allowing natural language inputs. On the other
hand, processing and integrating the results in the usual tabular forms
does not help to understand the retrieved information better.
This thesis proposes solutions and methods to facilitate access and re-
trieval of information in the context of semantic data repositories. A
first contribution concerns the proposal of a strategy for creating and
publishing semantic data for different application domains, emphasis-
ing biomedical data. A second contribution proposes a new method to
access semantic data using natural language as input. Finally, several
possibilities for visualising semantic data to facilitate their understand-
ing and exploitation are analysed. The proposals were validated con-
sidering use cases in the biomedical domain using data and metadata
from patients with Alzheimer’s and patients with Huntington’s disease.
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Chapter 1

Introduction

Advanced laboratory equipment and increasing digitisation led to large volumes of data
and extended life sciences into data-driven sciences (Kolker et al., 2012). The result
was a fragmented universe of spreadsheets, databases, non-relational repositories, or
just simple raw data dumps, in many cases in the long tail of science and technology,
in silos, compromising its reuse (Wallis et al., 2013; Mons et al., 2017). Considering
only the clinical and biomedical contexts, one have electronic health record databases
(Wade, 2014), patient registries (Sernadela et al., 2017a), omics datasets (Perez-Riverol
et al., 2017), medical imaging repositories (Tagare et al., 1997), and virtual biobanks
(Jacobs et al., 2018).

Efficient use of secondary data is of paramount importance to improve medical care
quality, draw up public health policies, perform pharmacological vigilance, and select
patients for clinical trials, to mention a few cases (Schneeweiss and Avorn, 2005). Its use
to extract knowledge in the life sciences increased considerably with the surge of data
repositories and the digitisation of biobanks (Villanueva et al., 2019). However, this
did not immediately translate into a coherent data ecosystem because of heterogeneity,
sparsity, and lack of interoperability between distributed data (Golshan et al., 2017).

Researchers continuously struggle to analyse data to answer questions and need so-
lutions to reuse distributed data. They also seek uncomplicated tools for data sharing
so that others can benefit, reproduce scientific work, and give credit (Goodman et al.,
2014). The use of semantic databases assists in solving data integration and interop-
erability, allowing the semantic aggregation of information (Berners-Lee et al., 2001;
Speicher et al., 2015). They lie at the core of many systems in data-intensive research
areas, such as system biology, biopharmaceutics, and translational medicine (Chen et
al., 2012). Semantic technologies can describe data and link distributed datasets for
people and machines, allowing information search from a single entry point (Paraiso-
Medina et al., 2013).
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Chapter 1. Introduction

An informal assessment of the popularity of utilising semantic technologies in the
biomedical data landscape is to consider the trend of published scientific articles since
the introduction of the Semantic Web concept in 2001. PubMed1 is a resource widely
used by medical and biomedical researchers, providing over 33 million life sciences lit-
erature records (Sayers et al., 2021). A quick search in this database using keywords
related to semantic data and knowledge graphs reveals an exponential interest in se-
mantic technologies, as seen in Figure 1.1(a). One can also observe in Figure 1.1(b)
that the creation of life sciences semantic data is a significant portion of the general
semantic linked data repositories scenario.

(a) Count of PubMed articles (b) Linked Open Data Cloud

Figure 1.1: Informal evaluation of the use of semantic data. The count of PubMed arti-
cles considering semantic data-related keywords is on the left. The figure shows the total
number of articles per year in PubMed, retrieved using the search string "semantic web"
OR "semantic data" OR "knowledge graph*" OR "ontolog*" and the filter "from 2001
- 2022/7/31". The Linked Open Data Cloud (https://lod-cloud.net/), as of May 2020,
is on the right. Several life sciences datasets can be spotted as pink bubbles in the lower left
of (b).

The explosion of online deployment of semantic databases has raised the question
of querying them. On the one hand, there are out-of-the-box query interfaces to input
queries in a formal language, but manoeuvring such logical forms is too complex for
standard users despite being powerful instruments (Höffner et al., 2017). On the other
hand, visual navigation interfaces profiting from the knowledge bases’ graph structure
primarily facilitate visiting nodes in exploratory walks, but they cannot answer more
complex questions (Catarci et al., 1997).

1https://pubmed.ncbi.nlm.nih.gov/
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Chapter 1. Introduction

1.1 Objectives

The main objective of this work is to investigate new methodologies that simplify
the exploration of semantic data. Therefore, the intention is to answer the following
research question:

Research Question: Can the use of formal languages be avoided by using natural
language to formulate complex questions to obtain answers from biomedical semantic
data, and can a varied set of visualisations be used to facilitate exploring this data?

Four sub-goals can be highlighted:

1. Research of state-of-the-art methods and techniques for semantic data querying
(Chapter 3).

2. Creation of new techniques for querying semantic data using natural language
inputs (Chapter 5).

3. Exploration of semantic data visualisations (Chapter 6).

4. Application of the founded solutions to biomedical use cases (Chapters 4, 5, and
6).

1.2 Research Methodology

The research work was guided by the method proposed by Peffers et al. (2007), which
considers an iterative process consisting of six steps, as illustrated in Figure 1.2.

Source: Peffers et al. (2007)

Figure 1.2: Research methodology steps: problem identification and motivation, define the
objectives for a solution, design and development, demonstration, evaluation, and communi-
cation.
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Each of the stages has specific objectives and guided the work carried out, as de-
scribed below:

1. Problem identification and motivation - The purpose of this step is to con-
textualise and specify the problem. The literature review is the primary tool to
understand and integrate previous knowledge as a starting point for creating new
knowledge.

2. Define the objectives for a solution - Based on the previous step, objec-
tives and requirements are stated for new artefacts that can solve the problem.

3. Design and development - This phase relates to the design and development
of artefacts embodying the previously theorised proposals.

4. Demonstration - The demonstration is performed considering application scenar-
ios or use cases, allowing the instantiation of constructed artefacts to determine
if the stated problem is conveniently solved.

5. Evaluation - In the evaluation phase, quantitative/qualitative evaluations are
carried out.

6. Communication - Finally, the produced knowledge is disseminated to relevant
audiences through creating written communications and sharing the developed
software.

Computer science can benefit from using systematic literature reviews to synthesise
the best evidence about state-of-the-art (Kitchenham et al., 2004). A systematic lit-
erature review was carried out using a strict methodology to gain in-depth knowledge
about the research topic, starting by asking the question: What KBQA methods are
there, and what are the solved and unsolved challenges?

From past surveys and overviews, namely Mishra and Jain (2016), Höffner et al.
(2017), Ojokoh and Adebisi (2018), Affolter et al. (2019), and Dimitrakis et al. (2020),
the keywords shown in Table 1.1 were collected and mapped against the Population,
Intervention, Comparison, Outcomes (PICO) structure (Thabane et al., 2009).

Scopus, Web of Science, IEEE Xplore, and the ACM Digital Library were used to
find papers, with the search query following the logical form:

(Population OR Comparison) AND (Intervention OR Outcomes) (1.1)

Then, studies about KBQAmethods or specific KBQA challenges (e.g., modular design,
module reusability) were selected. Books, surveys, overviews, tutorials, talks, panel ses-
sions, conference reviews, editorials, abstracts, summaries of workshops or challenges,
dissertations, grey literature, and papers not available in English were excluded, as well
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Table 1.1: PICO template slot values for building the search query.

PICO Slot Values

Population
"Knowledge Base*" OR "Knowledge Graph*" OR
"Semantic Web" OR "Linked Data*" OR "RDF Data*"
OR "data web"

Intervention Question-Answer* OR "natural language que*" OR
"Natural Language Interface"

Comparison SPARQL OR "Query Graph*"

Outcomes QALD* OR SimpleQuestions OR WebQuestions OR
WebQSP OR LC-QuAD

as those where it was impossible to retrieve the full text. When faced with multiple
documents by the same author about the same subject, only those needed to report
the core ideas were kept. Articles with unclear, underreported, vague, or inconsistent
contributions were also excluded. Furthermore, excluded papers were classified using
the criteria listed below to minimise accidental paper rejection further.

• Natural language processing research topics unrelated to KBQA, such as word
sense disambiguation (WSD) or textual entailment (TE) recognition.

• Paper on ontologies, taxonomies, or vocabularies. Ontology engineering, ontology
learning, or ontology alignment. Knowledge extraction. KB construction and KB
completion. KB quality assessment or improvement. Link prediction. Graph
embedding, or graph mining. Benchmark dataset.

• Papers about solutions just using formal query languages (e.g., SPARQL) or their
extensions (e.g., GeoSPARQL). Query builders, data-semantics-unaware keyword
search, or controlled natural language interfaces.

• Papers on question answering over free text, multimedia metadata, or SQL
databases. Solution for querying non-semantic data through ontologies. QA on
RDF data cubes. Conversational agents. Community question answering. Text
mining. Document retrieval and document classification.

• Studies applying existing KBQA solutions without further development.

• Image captioning. Visual question answering. Video question answering. Visual
entity linking.

• Mainly about visualisation. Visual query interfaces. Visual query builders.

5
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• Other articles that not comply with the inclusion criteria.

The final selection of papers was guided by the PRISMA (Preferred Reporting Items
for Systematic Reviews and Meta-Analyses) guidelines (Moher et al., 2009). Regarding
the writing of the thesis, the inclusion of an example often obeys the author’s intuition.
However, the rule of thumb followed was: choices justified in loco by a bibliographic
reference or guiding examples for future fruitful readings. To enable repeatability is
available a replication package at https://osf.io/hxyvw.

1.3 Outcomes

The dissertation reports on the following outcomes:

• Systematic review of question-answering over knowledge bases. Ar-
chitectural types framing the opponent proposals were considered to meet the
challenges posed by implementing KBQA solutions.

• Use of the Findable, Accessible, Interoperable, and Reusable (FAIR)
data principles to solve the problem of creating, publishing, and accessing se-
mantic data.

• SCALEUS-FD: a FAIR data tool. SCALEUS-FD is a FAIR Data software
tool for data integration and semantic annotation and enrichment. The core func-
tionalities of the solution follow the SW and LD principles, offering a FAIR REST
API for machine-to-machine operations. The source code is publicly available at
https://github.com/bioinformatics-ua/scaleus-fair.

• NLP techniques to extract information from structured and unstruc-
tured data. The semantic parsing approach transforms natural language ques-
tions into SPARQL by applying various NLP techniques. End-to-end solutions to
perform KBQA are based on applying methods to retrieve triples directly from
the knowledge base. The proposal to query semantic data using natural language
improves these techniques with automatically created templates. The source code
is publicly available at https://bioinformatics-ua.github.io/BioKBQA/.

• Exploration of semantic data visualisations. Different visualisations of se-
mantic data were proposed to support decision-making when choosing biomedical
databases.

This document is based on the following papers by the author:

• Rui Antunes, João Figueira Silva, Arnaldo Pereira, Sérgio Matos (2019). “Rule-
based and machine learning hybrid system for patient cohort selection.” In: Pro-
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ceedings of the 12th International Conference on Health Informatics (HEALTH-
INF), pp. 59-67. DOI: 10.5220/0007349300590067.

• João Rafael Almeida, Olga Fajarda, Arnaldo Pereira, José Luís Oliveira (2019).
“Strategies to access patient clinical data from distributed databases.” In: Pro-
ceedings of the 12th International Conference on Health Informatics (HEALTH-
INF), pp. 466-473. DOI: 10.5220/0007576104660473.

• Arnaldo Pereira, Rui Pedro Lopes, José Luís Oliveira (2020). “SCALEUS-FD:
a FAIR data tool for biomedical applications.” BioMed Research International,
vol.2020, pp. 1-8. DOI: 10.1155/2020/3041498.

• Arnaldo Pereira, Rui Pedro Lopes, José Luís Oliveira (2021). “Easing the ques-
tioning of semantic biomedical data.” In: Proceedings of the 34th International
Symposium on Computer-Based Medical Systems (CBMS), pp. 384-388. DOI:
10.1109/CBMS52027.2021.00044.

• Arnaldo Pereira, Alina Trifan, Rui Pedro Lopes, José Luís Oliveira (2022). “Sys-
tematic review of question answering over knowledge bases.” IET Software, vol.
16(1), pp. 1-13. DOI: 10.1049/sfw2.12028.

• Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, Alejandro Pazos, José
Luís Oliveira (2022). “Discovery of biomedical databases through semantic ques-
tioning.” Studies in Health Technology and Informatics, vol. 294, pp. 585–586.
DOI: 10.3233/SHTI220535.

• Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, José Luís Oliveira (2022).
“Visualising time-evolving semantic biomedical data.” Proceedings of the 35th
International Symposium on Computer-Based Medical Systems (CBMS), pp. 264-
269. DOI: 10.1109/CBMS55023.2022.00053.

• Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, José Luís Oliveira.
“Querying semantic catalogues of biomedical databases.” (Submitted.)

• Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, José Luís Oliveira. “Se-
mantic data visualisation for biomedical database catalogues.” (Submitted.)

1.4 Organisation of the Dissertation

The dissertation has six chapters, besides the introduction, as presented below.

Chapter 2 - Semantic Data. Core concepts about semantic data are presented,
starting with the web data model and pointing out connections with graph theory. After
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approaching vocabularies and ontologies, the issue of using formal query languages is
addressed.

Chapter 3 - Question-Answering over Knowledge Bases. This chapter dis-
cusses systems that accept natural language inputs for querying semantic data. The
architectures used to build these solutions are visited after the initial concepts presen-
tation. The datasets and benchmarks used to assess them are also discussed. Then,
state-of-the-art based on a systematic review of the literature is presented. The final
part overviews the remaining challenges and future research directions.

Chapter 4 - SCALEUS-FD: A FAIR Data Tool. This chapter is about a tool
that facilitates the creation and deployment of semantic data. The tool follows the
Findable, Accessible, Interoperable, and Reusable data principles. An evaluation of
the software solution closes the chapter.

Chapter 5 - Querying Semantic Data. This chapter presents a strategy for retriev-
ing semantically annotated biomedical datasets, using an interface built by applying a
methodology to transform natural language questions into formal language queries.

Chapter 6 - Visualisation of Semantic Data. This chapter explores different visu-
alisation and comparison techniques applied to semantic data. This analysis identifies
points to improve a catalogue that publishes metadata from multiple health databases,
exemplifying the transverse limitations of the most common catalogues. Possible visu-
alisations for semantic information in different health contexts are shown.

Chapter 7 - Conclusions and Future Work. In this final chapter, the research
carried out is discussed, summarising the contributions and presenting the limitations
and some lines of future work.
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Chapter 2

Semantic Data

Semantic technologies make it easier to deal with interoperability and data sharing
needs in data-intensive scientific domains. In general, graph data models are suitable
abstractions for building knowledge bases. In particular, a special type of graph
allowed the creation of a linked data universe by relating entities contained in web
documents (see Figure 2.1), with many exciting applications in various domains.

Web of Documents Web of Linked Data

Source: https://www.w3.org/DesignIssues/Abstractions.html

Figure 2.1: From the web of documents to the web of Linked Data (WLD). First, one started
by linking documents to get information by navigating between them. In the WLD, one
connect the entities the documents describe to build knowledge networks for the machine
agents to consume.
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Chapter 2. Semantic Data

This chapter establishes semantic data core concepts, starting with the knowledge
base definition. Then, a data model proposed for the web is seen and what are vo-
cabularies and ontologies. It is also approached accessing semantic data using formal
queries.

2.1 The Basics of Semantic Data

There is no consensus when defining Knowledge Base (KB) or Knowledge Graph (KG)
(Ehrlinger and Wöß, 2016; Paulheim, 2017), which will be considered synonymous
in this work.A possible definition, based on Mahlmann and Schindelhauer’s (2006)
formulation of edge labelled multidigraph (or directed labelled multigraph), appeals to
graph theory:

A Knowledge Base (or Knowledge Graph) is an edge labelled multidigraph K = (V, E∗)
that is defined by a node set V = V1 ∪ V2 and a labelled arc set E∗ = {(v1, l, v2) : v1 ∈
V1, v2 ∈ V2, l ∈ L}, l being an element of the label set L. Considering a subset M ⊆ L

of arc labels, the M-projection of K is the subgraph KM composed of all nodes of K

and all arcs labelled by the elements of M . The arcs of KM are called the M-arcs.

These relatively liberal definitions, intentionally vague about the nature of the el-
ements of sets V , E∗, and L, gets spicier when adding more restrictive conditions to
accommodate the World Wide Web Consortium (W3C) RDF (Resource Description
Framework) graph standard (Schreiber and Raimond, 2014). Let’s start by recalling
that an IRI (Internationalized Resource Identifier) is a sequence of characters defined in
RFC 3987 (Dürst and Suignard, 2005) that can be used to identify resources (physical
and non-physical entities). Literals are associated with a datatype and can optionally
be associated with a language tag. Anything in the universe of discourse that is not
denoted by an IRI or a literal is called blank node (or bnode for short). Bnodes rep-
resent resources that have not been assigned a specific value (anonymous resources,
undetermined objects). They are local in scope, so one must be aware of possible name
collisions in operations such as graph union. The following is the definition of RDF
graph:

Considering the pairwise disjoint sets I of IRIs, B of blank nodes, and L of literals,
an RDF triple (or statement) has the form (s, p, o), where s ∈ I ∪ B, p ∈ I, and
o ∈ I ∪ B ∪ L. s is referred as the subject (the resource being described), p as the
predicate (the property, the relationship, the relation), and o as the object (the property
value). An RDF graph is a set of RDF triples. A subset of the triples in an RDF graph
is a subgraph.A ground RDF graph has no bnodes.
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In addition to the definitions, some properties can also be considered (Cyganiak
et al., 2014; Hyland et al., 2014):

• RDF graphs are static snapshots of information (atemporality).

• An IRI should never change its intended referent (immutable IRIs, sameness).

• A software agent should not obtain any information about a referenced resource
from the sequence of characters composing the IRI reference (opacity of IRIs).

• Literals are constants and never change their value (immutable literals).

• A relation between two resources at one time may not hold at another time
(mutable relations).

Cyganiak et al. (2014) also defined entailment, equivalence, and isomorphism. One
call simple interpretations (or models) the concrete arrangements of the world that
make an RDF graph true. Considering the RDF graphs K1 and K2, K1 entails K2 (K1

is a semantic extension of K2) if every model of K1 is also a model of K2 (K1 truth
also makes K2 true). K1 and K2 are equivalent if and only if K1 entails K2 and K2

entails K1. K1 and K2 are isomorphic if there is a bijection M between the nodes of
K1 and K2, such that: (i) M maps bnodes to bnodes, node literals to node literals,
node IRIs to node IRIs, and (ii) (s, p, o) ∈ K1 if and only if (M(s), p, M(o)) ∈ K2.

An RDF graph is a KB, with V1 = I ∪ B, V2 = I ∪ B ∪ L, and L = I ∪ B ∪ L.
An IRI may co-occur as the predicate of one statement and as the subject or object
of others. In this case, one node will be considered for all uses as a subject or object
and one labelled arc for each appearance as a predicate. Notice that a property is a
binary relation. But it is possible to model an n-ary relationship with n > 2 using
an additional, intermediate node (usually a bnode) or argument lists (Noy and Rector,
2006). Figure 2.2 depicts a graphical representation of an RDF graph in which subjects
and objects are the nodes connected by lines (arcs) labelled by the predicates.

Another way currently used by several commercial solutions to implement a KB is
to use a Property Graph (PG) (Angles et al., 2017). PGs allow a single node type and
not three as in RDF graphs (IRIs, bnodes and literals). A core feature is that arcs
and nodes can hold any number of attributes (see Figure 2.3 for an example). Neo4j1

(Robinson et al., 2015), for instance, is a popular native graph database platform that
adopts the property graph model. As there are conversion strategies between property
graphs and edge labelled graphs (Das et al., 2014), one can focus only on the latter.

Based on the above arguments, several graph theory concepts can be considered,
such as degree, path, distance, neighbourhood, and so on (Angles and Gutierrez, 2008).

1https://neo4j.com/
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Figure 2.2: The graph presents some relations of the electronic resource identified by the IRI
“http://www.w3.org/TR/rdf-syntax-grammar” and named “RDF/XML Syntax Specification
(Revised),” edited by Dave Beckett. IRI nodes are represented as ovals, all predicate arcs are
labelled, and literal nodes are depicted as rectangles. The grey circle represents a bnode (in
this case, to model a ternary relation). This figure results from using RDFShape (https:
//rdfshape.herokuapp.com/dataInfo) (Gayo et al., 2018) to process the code in Example
19 of Beckett et al. (2014).

• The node outdegree is the number of exiting arcs (equal to the number of triples
with the node as the subject). The node indegree is the number of entering arcs
(the same as the number of triples with the node as the object). For instance,
in Figure 2.2, the bnode indegree is one, and its outdegree is 2. Depending on
the problem, these metrics might be related only to a non-empty subset of the
labels (relations). More specifically, for an M-projection KM , the concepts of
M-outdegree and M-indegree can be considered.

• A path is a sequence (e0, r1, e1, ..., rn, en), n > 0, of alternating entities and rela-
tions. Valid paths have no repeated triples. Depending on the use case, one can
consider loops in path construction. The length of a path is equal to its number of
arcs. For instance, Hertling et al. (2016) applied these concepts when proposing

Figure 2.3: The property graph depicted presents the same information as Figure 2.2. The
conversion proposed by Angles et al. (2020) was used, which maps into PG nodes the RDF
non-literal entities and the bnodes, RDF literal entities into PG attributes, and which maps
RDF relations into PG properties. The PG modelling was done using the arrows.app (https:
//arrows.app/) tool.
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a method to find the k shortest paths between a pair of nodes in an RDF graph.
For M-projections, one can speak of M-paths.

• Given an RDF graph K = (V, E∗), the M-projection KM , and a node u ∈ V ,
the distance from u to v, denoted by dM(u, v), is the number of M-arcs in the
shortest M-path – or infinity if v is not reachable from u (Gubichev et al., 2010).
The Nh(u) h-hop neighbourhood of u is the set of nodes whose distance from u is
less than or equal to h (Khan et al., 2011).

For writing down RDF graphs, concrete syntaxes describe several serialisation
formats: N-Triples2, Turtle3 (see Listing 2.1 example), TriG4, N-Quads5, JSON-
LD6 (JSON-based RDF syntax), RDFa7 (for HTML and XML embedding), and
RDF/XML8 (XML syntax for RDF).

1 @prefix rdf: <http :// www.w3.org /1999/02/22 - rdf -syntax -ns#> .
2 @prefix dc: <http :// purl.org/dc/ elements /1.1/ > .
3 @prefix ex: <http :// example .org/stuff /1.0/ > .
4
5 <http :// www.w3.org/TR/rdf -syntax -grammar >
6 dc:title "RDF/XML Syntax Specification ( Revised )" ;
7 ex: editor [
8 ex: fullname "Dave Beckett ";
9 ex: homePage <http :// purl.org/net/ dajobe />
10 ] .

Listing 2.1: RDF Turtle example. A prefix label is associated with an IRI using
the @prefix directive. A predicate list describes that subject <http://www.w3.org/TR/
rdf-syntax-grammar> is referenced by several predicates, avoiding writing the full list of
triples. An unlabelled blank node is an object in a triple with predicate ex:editor and
subject in triples with the predicates ex:fullname and ex:homePage of the nested predicate
list.

The true power of the triples is only perceived when considering large datasets. An
RDF store (or triplestore) is a proper database for the storage and retrieval of triples.
Some well-known solutions can be listed for quick reference: OpenLink Virtuoso9,

2https://www.w3.org/TR/n-triples/
3https://www.w3.org/TR/turtle/
4https://www.w3.org/TR/trig/
5https://www.w3.org/TR/n-quads/
6https://www.w3.org/TR/json-ld11/
7https://www.w3.org/TR/rdfa-primer/
8https://www.w3.org/TR/rdf-syntax-grammar/
9https://virtuoso.openlinksw.com/
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Eclipse RDF4J10 (formerly known as Sesame), Apache Jena11, and GraphDB12.
Much more than just creating standardised information about resources, the SW is

about data linking. Laying the foundations of the LD paradigm, Berners-Lee (2006)
recommended using HTTP URIs for naming things so that people can look up and be
provided with helpful information and new links to discover new things:

1. Use URIs as names for things.

2. Use HTTP URIs so that people can look up those names.

3. When someone looks up a URI, provide useful information, using the standards
(RDF*, SPARQL).

4. Include links to other URIs. so that they can discover more things.

Some initiatives offering RDF repositories are:

• DBpedia13 (Lehmann et al., 2015) uses a dedicated open-source extraction
framework to extract and turn data from Wikipedia information, such as in-
foboxes, categories information, geographic coordinates, and external links, into
triples.

• Freebase (Bollacker et al., 2008) incorporates the Fashion Model Directory
(FMD)14, the Notable Names Database (NNDB)15, MusicBrainz16, and Wikipedia
data, allowing end-users to do data editions. Presently, only data dumps17 are
available after the initiative termination. Meanwhile, Wikidata integrated Free-
base data (Tanon et al., 2016).

• UniProt (Universal Protein Resource)18 (UniProt Consortium, 2020) offers man-
ually curated protein sequences and associated detailed functional annotation.

• Wikidata19 (Vrandečić and Krötzsch, 2014) is a multilingual database that stores
facts and the corresponding sources for validity checking purposes.

• WikiPathways20 (Martens et al., 2020) is a database of annotated biological
pathway models, which are sets of interactions among biological entities, such as
proteins and metabolites, regarding a particular context (Hanspers et al., 2021).

10http://rdf4j.org/
11https://jena.apache.org/
12http://graphdb.ontotext.com/
13https://www.dbpedia.org/
14https://www.fashionmodeldirectory.com/
15https://www.nndb.com/
16https://musicbrainz.org/
17https://developers.google.com/freebase
18https://www.uniprot.org/
19https://www.wikidata.org/
20https://www.wikipathways.org/
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• YAGO (Yet Another Great Ontology)21 (Suchanek et al., 2007) is GeoNames22,
WordNet23, and Wikipedia-based, using different heuristics to merge information.

2.2 Knowledge Representation

Defining the web data model to have a way to make assertions about resources is just
the starting point for constructing the SW. After that, it is necessary to consider mech-
anisms that allow users to represent domains of interest by giving semantic meaning
to resource IRIs. Adding new concepts is done by semantic extension. This strategy
enables the presentation of specific logical-linguistic constructions to make assertions
as unique elements for future use with a precise meaning. The most elementary form
of knowledge organisation in this context involves defining vocabularies. An RDF vo-
cabulary is a set of IRIs establishing entities and relations (jointly referred to as terms)
used to describe an area of concern.

RDF Schema (RDFS) is a data-modelling vocabulary providing building blocks
(classes and properties) for creating other vocabularies (Brickley and Guha, 2014).
Classes are helpful to sort resources into categories. For instance, the rdf:Property24

class allows declaring class attributes, while the rdfs:label is a property used to
provide human-readable resource names. Table 2.1 summarises the primary RDFS
modelling constructs.

Standardised vocabularies reuse permits greater efficiency in semanticizing new do-
mains as mapping data to established elements reinforces the interconnection and takes
better advantage of the opportunities to infer new knowledge. A dataset uses a vo-
cabulary if a term in that vocabulary appears in the predicate position of a triple or
in the object position of a triple whose predicate is rdf:type (Schmachtenberg et al.,
2014). According to the Linked Open Vocabularies (LOV)25 initiative, the five most
commonly used non-outdated vocabularies are as follows:

• DCMI Metadata Terms26 describe media (text, images, movies, etc.).

• Friend of a Friend (FOAF)27 provides terms to describe people in social net-
works context.

21https://yago-knowledge.org/
22http://www.geonames.org/
23https://wordnet.princeton.edu/
24The namespace IRI of the IRIs of a vocabulary is a common substring often associated by

convention with a short name, the namespace prefix (e.g., rdf, rdfs).
25https://lov.linkeddata.es/
26https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
27http://xmlns.com/foaf/spec/
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Table 2.1: RDFS constructs (Schreiber and Raimond, 2014). rdf:type is used to state that
a resource is a class instance. The rdfs:subClassOf and rdfs:subPropertyOf properties
enable the creation of class and property hierarchies. rdfs:domain clarifies the subject of a
relation is an instance of a specific class. rdfs:range states the values of a property.

Syntactic form Description
C rdf:type rdfs:Class Resource C is an RDF class.
P rdf:type rdf:Property Resource P is an RDF property.
I rdf:type C Resource I is an instance of class C.
C1 rdfs:subClassOf C2 Class C1 is a subclass of class C2.
P1 rdfs:subPropertyOf P2 Property P1 is a sub-property of property P2.
P rdfs:domain C Domain of property P is class C.
P rdfs:range C Range of property P is class C.

• Vocabulary for Annotating Vocabulary Descriptions (VANN)28.

• Simple Knowledge Organization System (SKOS)29 allows describing
Knowledge Organization Systems (KOS) like thesauri, classification schemes, tax-
onomies, etc.

• Creative Commons Rights Expression Language (CC REL)30 charac-
terises copyright licenses.

In many situations, it is necessary to encode certain logical aspects, such as for-
mal axiom declaration, to infer knowledge from semantic annotations. The ontology
concept covers this need allowing the building of stronger logical formalisation. An on-
tology formally specifies a shared conceptualisation of a domain (Gruber, 1993; Borst,
1997). When using a formal language like the Web Ontology Language (OWL), it is
possible to describe classes, properties, individuals, and data values in a standardised
way (Hitzler et al., 2012). The expressiveness o OWL allows for defining not only the
vocabulary comprised of terms and relations but also expressing rules for combining
terms and relationships, enabling the definition of vocabulary extensions.

Several communities have used ontologies to structure knowledge domains. Regard-
ing life sciences, a couple of examples deserve to be mentioned. The Human Phenotype
Ontology (HPO) provides a standardised vocabulary of phenotypic abnormalities en-
countered in human diseases (Köhler et al., 2016). The Gene Ontology (GO) defines
concepts to describe gene function along with three different aspects: molecular func-

28http://purl.org/vocab/vann/
29https://www.w3.org/TR/skos-reference/
30https://creativecommons.org/ns
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tion, cellular component, and biological process (Gene Ontology Consortium, 2016).
Many more biomedical ontologies and terminologies are available on the NCBO Bio-
Portal31.

RDFS and OWL are intended for inference and are unsuitable for OO-type mod-
elling. OO classes have unique attributes (strong typing), while the same RDF relation
exists solo and can relate to multiple RDF entities. This flexibility leads to the inabil-
ity to determine what shape data should take for a specific use. In other words, there
is no interface mechanism preventing users from creating meaningless or incomplete
data. Shapes Constraint Language (SHACL)32 (Knublauch and Kontokostas, 2017)
is a shape language that specifically addresses the need to constrain graph data to a
particular shape (see Listing 2.2).

1 ex: PersonShape
2 a sh: NodeShape ;
3 sh: targetClass ex: Person ;
4 sh: property [ # _:b1
5 sh:path ex:ssn ;
6 sh: maxCount 1 ;
7 sh: datatype xsd: string ;
8 sh: pattern "^\\d{3} -\\d{2} -\\d{4}$" ;
9 ] ;
10 sh: property [ # _:b2
11 sh:path ex: worksFor ;
12 sh:class ex: Company ;
13 sh: nodeKind sh:IRI ;
14 ] ;
15 sh: closed true ;
16 sh: ignoredProperties ( rdf:type ) .

Listing 2.2: Shapes graph example (Knublauch and Kontokostas, 2017).

As seen in Listing 2.2, one can declare the shape that a given RDF graph should have,
and it can be verified if a given instance complies with this interface. In the example,
ex:Person class has two attributes, ex:ssn (at most one value) and ex:worksFor
(unlimited values). The first is a literal of type xsd:string while the second is an IRI,
instance of the ex:Company class.

31https://bioportal.bioontology.org/
32https://www.w3.org/TR/shacl/
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2.3 Querying Semantic Data

Modern semantic query languages like SPARQL (W3C SPARQL Working Group,
2013), Cypher (Francis et al., 2018), and Gremlin (Rodriguez, 2015) are convenient
tools for creating, reading, updating, and deleting data from semantic databases.
Gremlin is closer to functional programming languages than SQL-like ones, focusing on
navigational queries rather than matching patterns. Cypher uses patterns-like building
blocks for querying property graphs, following a “pictorial” intuition to encode nodes
and edges with arrows between them, as can be seen in Listing 2.3.

1 CREATE (: Resource {
2 IRI: "http :// www.w3.org/TR/rdf -syntax -grammar ", title:

"RDF/XML Syntax Specification ( Revised )"
3 }) -[: editor ]->(: Person {
4 fullname : "Dave Beckett "
5 }) -[: homePage ]->(: Webpage {
6 IRI: "http :// purl.org/net/ dajobe /"
7 })

Listing 2.3: This Cypher query can create the graph presented in Figure 2.3. The “editor”
and “homePage” relations connect the “Resource,” “Person,” and “Webpage” nodes. Neo4j
Cypher Query Formatter (https://www.tristanperry.com/cypher-query-formatter/)
was used to format the query exported from arrows.app.

SPARQL 1.1 is the W3C recommendation intended to provide mechanisms for
querying and manipulating RDF graphs content. SPARQL has four query forms:
SELECT, CONSTRUCT, ASK, and DESCRIBE. SELECT (see Listing 2.4) returns variables
and bindings directly and CONSTRUCT returns a single RDF graph. ASK returns a
boolean indicating whether a query pattern matches or not and DESCRIBE returns an
RDF graph that describes the resources found (Harris and Seaborne, 2013).
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1 Query ::= Prologue SelectQuery ValuesClause
2 Prologue ::= ( BaseDecl | PrefixDecl )*
3 SelectQuery ::= SelectClause DatasetClause * WhereClause

SolutionModifier
4 SelectClause ::= 'SELECT ' ('DISTINCT ' | 'REDUCED ')? (( Var |

('(' Expression 'AS ' Var ') '))+ | '*')
5 DatasetClause ::= 'FROM ' ( DefaultGraphClause |

NamedGraphClause )
6 WhereClause ::= 'WHERE '? GroupGraphPattern
7 SolutionModifier ::= GroupClause ? HavingClause ? OrderClause ?

LimitOffsetClauses ?

Listing 2.4: Excerpt from the SPARQL grammar with the core productions of the SELECT
clause. GroupGraphPattern contains the patterns to be combined with the RDF data. The
SolutionModifier allows aggregation, grouping, sorting, duplicate removal, or returning
only a specific found values window.Extended Backus-Naur Form (EBNF) operators:
| (disjunction), ? (zero or one occurrences), * (zero or more occurrences), + (one or more
occurrences).

The result from a SELECT or an ASK query can be serialised as a JSON object or in
XML or CSV/TSV formats. In addition, there are also operations to create, update,
and remove semantic data. SPARQL also allows graph navigation queries for finding
paths between two nodes (Angles et al., 2017).

It is necessary to define a SPARQL endpoint to allow queries to an online seman-
tic repository.A SPARQL endpoint interfaces a knowledge base in a machine-friendly
way, using the HTTP protocol to establish a client-server connection. For instance,
Figure 2.4 shows a query to the DBpedia SPARQL endpoint33 and a partial screenshot
of the query return: a list of band members and bands.

For a comprehensive list of public SPARQL endpoints, one can go to SPARQLES34

(Vandenbussche et al., 2017), which also has extra information about endpoint sanity
checks to assess availability (up/down), performance (cold/warm runs), interoperabil-
ity (SPARQL 1.0/1.1), and discoverability (VoID35 and service descriptions). In this
context, availability refers to the ability of the endpoint to respond to a request through
the SPARQL protocol. Performance concerns the response time to a SPARQL request
over HTTP, and interoperability concerns compliance with the SPARQL 1.1 specifi-
cation. Finally, the discoverability dimension assesses the degree of self-description of

33https://dbpedia.org/sparql
34https://sparqles.ai.wu.ac.at/
35https://www.w3.org/TR/void/
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Figure 2.4: DBpedia query example using the OpenLink Virtuoso query interface.

the endpoint. As an example, some SPARQL endpoints are listed in Table 2.2.

Table 2.2: SPARQL endpoints.

Database SPARQL Endpoint

DBpedia https://dbpedia.org/sparql

UniProt https://sparql.uniprot.org/

Wikidata https://query.wikidata.org/

WikiPathways https://sparql.wikipathways.org/sparql

YAGO https://yago-knowledge.org/sparql/query

Federated querying over different endpoints is a must-have feature for many LD
use cases. SPARQL specification defines the SERVICE keyword to allow querying dis-
tributed repositories and merging data from various sources (Prud’hommeaux and
Buil-Aranda, 2013).

2.4 Summary

In this chapter, were revisited concepts related to semantic data representation. A tour
of the semantic web ecosystem was made, looking at graphs’ more general picture, and
presenting ontologies to organise knowledge. Finally, using formal languages to query
semantic data was introduced.
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Chapter 3

Question-Answering over
Knowledge Bases

This chapter presents a systematic review of KBQA methods to identify the main
advantages and limitations (Figure 3.1(a) shows the papers selection steps), a topic
with the keywords seen in Figure 3.1(b) and at the intersection of Information Retrieval
(IR), Computational Linguistics (CL), and SW.

Semantic technologies have enabled the creation of numerous online resources. Still,
access to this data is difficult when using formal languages, and a possible help is using
Natural Language (NL) interfaces. Question Answering (QA) is about systems that
allow users to use NL interfaces to ask questions and receive concise answers. The first

(a) PRISMA flow diagram (b) Keywords co-occurrence network

Figure 3.1: On the left is the flow diagram of the paper selection process. After searching
the bibliographic databases and duplicates removal, there were 1982 records. This num-
ber dropped to 298 articles after rejection by screening for titles and abstracts. Finally,
after a full-text assessment, 66 studies were eligible for a state-of-the-art review (see Ap-
pendix A). On the right is the keyword co-occurrence network (built with VOSviewer - https:
//www.vosviewer.com/) from the literature on KBQA retrieved (see Table A.1). Nodes’ size
is proportional to the keyword occurrence frequency, and the line thickness represents the
co-occurrence intensity between keywords.
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QA solution, in the 1960s, intended to answer English questions about baseball games
from information saved in a list-structured database (Green et al., 1961). Later, the
relational data model gained prominence, and researchers pushed the development of
Natural Language Interfaces for Databases (NLIDB). However, just five years after the
World Wide Web (WWW) creation, Androutsopoulos et al. (1995) reported the lack of
interest in investigating NLIDB. In those days, the focus went to information retrieval
techniques to create web search engines using the keyword-based search paradigm.
Meanwhile, QA over text was advancing (Hirschman and Gaizauskas, 2001), and the
SW vision formulated by Berners-Lee et al. (2001) brought attention to semantic data
and KBQA systems.

Search engines started presenting direct answers to some user questions (Guha et al.,
2003). Instead of just giving a list of links to documents where the answer is likely to
be found, the idea is to satisfy the need for information without further searching and
navigation.Questions whose answer is an entity are ideal for this type of approach and
using large semantic databases that capture general knowledge has become of great
value. In this context, triples extraction to answer questions is priceless and motivates
more academic research.

Highlighting the importance of KBQA methods, several researchers using semantic
data have been integrating NL interfaces into their systems. To mention just a couple
of examples, one can refer to Asiaee et al. (2015), who applied a KBQA solution to
parasite immunology, and Hamon et al. (2017), which created a querying platform for
linked biomedical data.Other KBQA systems retrieve information from open knowl-
edge databases, such as DBpedia or Wikidata, or proprietary enterprise knowledge
graphs, such as Google Knowledge Graph or Bing Satori (Lukovnikov et al., 2017).

Later in this chapter, several proposals framed in different architectural types are
presented after recollecting basic concepts. The finale addresses open challenges and
future research directions.

3.1 The Basics of KBQA

Considering the nature of the data sources, one can have QA over unstructured data
(e.g., text, images), QA over semi-structured data (e.g., graph databases), and QA over
structured data (e.g., relational databases). In KBQA systems, the underlying data is
semantic data.Hybrid systems are those operating with more than one type of data
source. Regarding the scope of data, on the one hand, there are domain-specific solu-
tions when the data schema refers to a particular body of knowledge (e.g., biomedical
data) that limits the question types that are accepted. On the other hand, open-domain
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systems consider data on generic subjects specified by general ontologies.
Several benchmarks and evaluation campaigns have promoted the advancement of

KBQA systems.

• The Question Answering on Linked Data (QALD)1 challenge launched in 2011 is
the oldest running campaign, and its ninth edition provided a training dataset
with 408 questions in 11 different languages for the open-domain semantic QA
over DBpedia task (Usbeck et al., 2018).

• Shortening the QALD dataset size limitations, the Large-Scale Complex Question
Answering Dataset (LC-QuAD)2 provides 30,000 questions with corresponding
SPARQL queries for DBpedia and Wikidata (Dubey et al., 2019).

• Free917 3 is a benchmark with 917 utterances paired with target logical formulas
for the Freebase dataset (Cai and Yates, 2013).

• To avoid using logical forms, Berant et al. (2013) created theWebQuestions
(WebQ)4 dataset containing 5810 Freebase question-answer pairs.

• Yih et al. (2016) added SPARQL queries to WebQuestions and created the We-
bQuestionsSP (WebQSP)5 benchmark.

• Bordes et al. (2015) achieved, with SimpleQuestions (SimpleQ)6, a significant
scale-up of the numbers with 108,442 questions over Freebase for possible rephras-
ing in the form (subject, relationship, ?).

• ComQA7 is a dataset of 11,214 questions collected from WikiAnswers, a commu-
nity question answering website.

• The BioASQ8 series of challenges has a task on domain-specific semantic QA on
biomedical data to evaluate systems outputting relevant triples and text snippets
(Tsatsaronis et al., 2015).

Appendix B allows observing some of the information contained in the different bench-
mark datasets.

To meet the challenges posed in implementing KBQA solutions, it is important to
identify the most common architectures. From the analysis of the papers selected, it
was found that they can be classified considering four different architectures. Semantic

1https://github.com/ag-sc/QALD/tree/master/9/data
2https://github.com/AskNowQA/LC-QuAD2.0/tree/master/dataset
3https://nlp.stanford.edu/software/sempre
4https://worksheets.codalab.org/worksheets/0xba659fe363cb46e7a505c5b6a774dc8a
5https://www.microsoft.com/en-us/download/details.aspx?id=52763
6https://github.com/davidgolub/SimpleQA/tree/master/datasets/SimpleQuestions
7http://qa.mpi-inf.mpg.de/comqa/
8http://bioasq.org
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parsing pipelines are solutions based on semantic parsing, which uses a pipe and filter
style where data flows to generate a formal query from the original input in NL. It is
the most straightforward architectural style of KBQA systems and relies on connecting
components to form a pipeline, as shown in Figure 3.2.

Figure 3.2: General architecture for semantic parsing pipelines. The direction of the arrows
denotes the direction of the data flows. Generally speaking, four phases are at play: the
division of the question into linguistic units, linking linguistic elements to KB objects, the
creation of a formal query, and, finally, generating the answers.

The idea is to apply several data transformations from the question in NL to the
logical form or formal query. To achieve that, natural language processing (NLP)
techniques such as tokenization, part-of-speech tagging, named entity recognition, de-
pendency parsing, and entity/relation linking are used.

• Tokenization is the task of breaking a string of characters into pieces, called
tokens, eventually discarding certain characters such as punctuation.

• Part-of-speech tagging (also known as POS tagging) assigns a part of speech like
NOUN or VERB to each input word establishing its grammatical role in the
sentence.

• Named entity recognition (NER) allows assigning tags referring entities from a
lexical resource, like PERSON, LOCATION, or ORGANIZATION, to sets of
words.

• Dependency parsing determines the grammatical structure and relationships be-
tween the words of a sentence.

• Entity linking (EL) is the task of assigning a unique KB individual to an entity
mentioned in a text.

• Relation linking (RL) is the task of assigning a unique KB individual to a relation
mentioned in a text.

An alternative way of using semantic parsing is based on the observation that exe-
cuting a formal query is equivalent to finding a subgraph, as depicted in Figure 3.3.
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Figure 3.3: Subgraph matching approach.

Systems capable of answering complex questions (e.g., questions that cannot be
reduced to a simple triple pattern) require more sophistication than the systems
presented so far. A template is a query skeleton with an arbitrary degree of complexity
that fits the knowledge base to be questioned and has slots that must be filled with
information from entities and relations. The quality of the template-based system
depends on the effort put into creating the templates. These systems rely on the
manual or automatic creation of a template database assuming an architectural
configuration such as that shown in Figure 3.4.

Figure 3.4: Template-based KBQA general architecture.

In the offline phase, it is necessary to create templates. This involves considering
pairs of questions and answers used to obtain successively more abstract representa-
tions that are used to generate pairs of question-query templates after alignment. The
online phase is straightforward: a question is matched with a template to produce
a query template, the slots are filled with entities and relations, and the answer is
provided by issuing the query candidate.
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End-to-end solutions perform sequence-to-sequence translation or apply methods
to extract triples directly from the KB. The selection of the final answer is based on
the representations of the questions in NL obtained by applying machine learning
techniques, as can be seen in Figure 3.5. After extracting the candidate answers from
the KB, they are evaluated against a predefined score using a specialized function.

Figure 3.5: IE-based KBQA general architecture.

Figure 3.6 shows the distribution of the selected articles divided by types of archi-
tecture and distributed over years. As can be seen, there is a consistent decline in the
use of pipeline-based approaches. On the other hand, after an increase in subgraph
matching solutions, a slight drop in 2020 is observable. After a boom in 2016, the pro-
posals for information extraction fell to a plateau still higher than the other proposals.
Finally, template-based systems fluctuated to an annual maximum of two proposals in
2017 and 2018.

Figure 3.6: Distribution of papers by year and architecture.
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Höffner et al. (2017) highlighted significant challenges faced by semantic QA. The
lexical gap occurs when the surface forms used in a question are different from those
used in the KB. The ambiguity stemming from the fact that the same word can repre-
sent various entities is also problematic. Another significant problem is finding answers
to questions manoeuvring several units combined in complex queries requiring ordered,
aggregated, or filtered outputs. Equally challenging is multilingualism, which concerns
two distinct realities that may or may not co-occur. The first involves the problem
of using the same interface to ask questions in several NLs, and the second has to do
with the possibility of the KB data being multilingual. However, systems relying on
languages other than English end up receiving far less attention from the scientific com-
munity, limiting the number of available solutions. For instance, very few developers
have participated in challenges like QALD with multilingual systems. Some systems
try to prevent difficulties by using controlled natural languages (CNLs), which are con-
structions that restrict in some way the lexicon, syntax, or semantics of the NL from
which they start. This review does not focus on multilingualism or the use of CNL
interfaces.

3.2 State-of-the-art of KBQA

A solution for retrieving facts from a semantic database is to use semantic search en-
gines based on keywords (Shekarpour et al., 2015). SANTé (Marx et al., 2021) allows
the publication, browsing, and querying of arbitrary RDF data. SANTé’s keyword-
based search engine relies on building a network of terms using the values of the
rdfs:label9 property, following the formalisation of Marx et al. (2016). Azad et
al. (2021) proposed a system allowing users to enter the search term and to choose
whether to perform a forward or a backward search. In forwarding search, the term
inserted is a triple’s subject, aiming to obtain triple’s objects, while backward search
starts from the object to the subjects. Another approach is Semankey (Abad-Navarro
et al., 2021) which creates SPARQL queries from a list of user-entered keywords. The
tool pipeline consists of an entity recognition module, an ontology-based tree generator,
and a query generator that uses a set of rules to translate previously produced query
trees into SELECT queries with filters. However, natural language interfaces must
go beyond keyword-based search, allowing the processing of more complex inputs by
capturing the dependency tree of the questions or other sophisticated patterns between
different lexical items (Ojokoh and Adebisi, 2018).

The solutions for creating natural language interfaces for knowledge bases can be

9https://www.w3.org/TR/rdf-schema/#ch_label
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divided into two main groups: 1) semantic parsing and 2) information extraction. In
the first group, it is performed semantic parsing applying NLP techniques intending
to transform the NL question into a formal query that is used to obtain the answers,
ending the process. In the second group, solutions can be found to get the answers
by extracting information directly from the knowledge base without creating a formal
query.

3.2.1 Semantic Parsing Pipelines

Hamon et al. (2017) use a multi-step method to answer the QALD-4 Task 210 biomed-
ical interlinked data questions. NL questions go through an annotation process and a
linkage phase of surface forms to biomedical entities. In query construction time, fixed
rules allow using the previously identified elements to build a SPARQL query. Similarly,
the QuerioDALI solution (Lopez et al., 2016) first performs a NER to classify named
entities, and then an EL filter binds a unique identity to each entity identified in the
previous step. Finally, the system uses fusion and ranking of possible answers.

Ruseti et al. (2015) use DBpedia and Wikipedia to map NL question phrasal con-
structs to ontology entities. To address the lexical gap, Yin et al. (2015) perform
question paraphrasing. Hakimov et al. (2015) consider a combinatorial categorical
grammar with handcrafted lexical items and lambda-type calculus expressions to ob-
tain semantic representations. In this way, the input utterances must comply with the
grammar. As is naturally emphasized by the authors, performance improves according
to the lexicon size. Yih et al. (2016) reached the same conclusion, showing that learning
from labelled semantic parsers improves overall performance.

TR Discover (Song et al., 2015) solution uses a grammar that maps first-order logi-
cal expressions to SPARQL. Dubey et al. (2016) also propose a grammar but consider
an additional normalisation step to create intermediate canonical syntactic forms rep-
resenting NL questions.

The query-generation (QG) process of a QA pipeline occurs after the entity and
relation linking subtasks. Zafar et al. (2018) start with the identified entities and
relations and generates walks on the KB by using the adjacent connections within a
one-hop distance. Valid walks are the ones containing all the starting entities. Finally,
the creation of SPARQL queries occurs after evaluating the candidate walks against the
question type. To extend QG to ordinal and filter questions, Abdelkawi et al. (2019)
added extra constraints to the list of all possible answers.

Several KBQA-related contributions can be reported as part of the WDAqua Marie

10http://qald.aksw.org/index.php?x=task2&q=4
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Skłodowska Curie ITN11 effort to advance the QA field. Both et al. (2016) start from
the realisation that QA systems are very complex and usually monolithic to present Qa-
nary12, a vocabulary-driven methodology to allow decoupling of the different semantic
pipeline parts and thus achieve reconfiguration and reuse. First, the Web Annotation
Data Model13 is used to create a vocabulary covering the common abstractions related
to the authors’ idea of a QA pipeline. In addition, the input and output of filters are
described to achieve interoperability, forcing the components to have the same inter-
face, like in a uniform pipe and filter architecture. Diefenbach et al. (2017b) proposed
using timestamps to avoid conflict between Qanary annotations when changing module
input descriptions at runtime to allow user feedback. Considering that no vocabulary
can describe all existing modules, the burden of creating a new description is to compo-
nent developers, making it hard for methodology adoption. The problem of adapting
the input and output of each module to comply with the shared vocabulary is also
burdensome. On the other hand, Diefenbach et al. (2017a) presented a reusable user
interface to call the Qanary APIs to make life easier for end-users.

The idea of creating a generic (pipeline) architecture for QA on linked data to
foster cooperation among developers is championed by QAestro14 (Singh et al., 2017), a
proposal competing with Qanary that can be used to combine building blocks in tailored
systems, allowing a semantic description of both QA components and requirements.
Several important subtasks are covered, such as tokenization, POS tagging, NER, EL,
dependency parsing, triple generation, data mapping, QG, and answer generation.
Question type identification, answer type identification, query ranking, and syntactic
parsing are also available.

Embracing the quest for component reuse, Frankenstein15 (Singh et al., 2018a) is
a platform that collects several core components to solve QA tasks and enables the
creation of different QA pipelines, more precisely 380 when the paper was published.
Highlighting the fact that modern QA systems rely on the flexible integration of many
specialized filters, Singh et al. (2018b) suggests that the construction of the pipeline
could be considered an optimization problem, where each component could be selected
from a set of options for NER and EL, relation extraction and query building. The
prediction of the best-performing components facing a new NL question is tackled as
a supervised learning problem.

The use of semantic pipelines for KBQA is the oldest and most documented approach

11https://github.com/WDAqua
12https://github.com/WDAqua/Qanary
13https://www.w3.org/TR/annotation-model/
14https://github.com/WDAqua/QAestro
15https://github.com/WDAqua/Frankenstein
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in the literature and is preferred by authors who intend to integrate NL interfaces
into their systems quickly. Reinforcing this statement is the existence of frameworks
that allow the decoupling of the different components used to filter the data, thus
offering greater customization. It is also the easiest way for those who do not want to
invest a great deal to develop more technically elaborate solutions, usually with better
performance. Each filter can be independently investigated because they are of interest
in many other applications, not just in QA. For instance, Shen et al. (2015) surveyed
EL issues, techniques, and solutions. Nevertheless, this way of solving the problem
seems to be reaching its maturity and more important future developments will almost
certainly come from other approaches.

Some proposals depart very little from the classic pipeline, building the query sub-
graph using a semantic tree, whereas others move away sharply by constructing the
subgraph step by step from a starting entity. Hu et al. (2018a) start by finding the
semantic tree, and then after extracting the semantic relations, they build a semantic
query graph. More elaborately, Yih et al. (2015) propose staged query graph genera-
tion, a solution that formulates a query graph by solving a search problem. A general
query subgraph is supported by the existing entities in the KB, an existential node
not mappable to the KB, and a node for identifying possible aggregation functionality.
The solution revolves around creating an inferential chain starting with a root entity
node and using legitimate actions to grow a query graph. The first step is to find
root candidates by using a lexicon to perform EL over the input query. The next step
considers the lexicon again to extract the expected answer. By relating the root entity
and the kind of answer, it is possible to create a set of candidate subgraphs constrained
by an aggregation function. Finally, a convolutional neural network is used to select
the best candidate. For this last classification task, one can use the proposal by Ma-
heshwari et al. (2019), which considers a self-care mechanism that explores the intrinsic
structure of subgraphs.

Zheng et al. (2015) started from an initial set of NL questions and formal queries
to propose a technique based on studying the similarity of graphs generated from
the utterances and SPARQL queries to match the best candidate pairs to form a
database with templates. Savenkov and Agichtein (2016) used external text data to
explore the central topic of the question and select the best query candidates using
a predefined collection of query templates. However, considering a set of manually
adjusted templates is necessarily limiting, for instance, when new relations are added
to the KB. Literature offers few proposals for this type of system, despite allowing
answers to a wide range of questions. Investing in research to create wider lexicons
to be used in the production of templates promises the creation of systems with even
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higher performance regarding complex questions. However, it seems that the research
effort is shifting to end-to-end systems.

3.2.2 KBQA Based on Information Extraction

Several KBQA solutions using some form of a deep neural network have been reported.
Dong et al. (2015) introduced a multicolumn convolutional neural network to under-
stand questions from three different aspects, answer path, answer context, and answer
type, and learn their distributed representations. Meanwhile, the system enables joint
learning of low-dimensional embeddings of entities and relations in the KB. This ap-
proach can be expanded and enriched by considering more dimensions to convert into
vector representations. Xu et al. (2016b) present a neural network-based relation ex-
tractor to retrieve the candidate answers from Freebase and then infer from Wikipedia
to validate these answers. More precisely, the process involves dividing the original
question into subquestions by applying a set of syntactic patterns. Then, for each
subquestion, EL and relation extraction is performed and refined by a joint inference
model. After retrieving a set of candidate answers, the final solution is obtained by
inference on Wikipedia, searching on the page of the topic entity for evidence about
candidate answers.

The model proposed by Lukovnikov et al. (2017) learns to rank subject–predicate
pairs to enable the retrieval of relevant facts given a question. The network contains a
nested word and character-level question encoder that allows the handling of new and
rare words without compromising the exploitation of word-level semantics. This neural
network approach generates a single process solution that avoids complex NLP pipeline
constructions and error propagation, and it can be retrained or reused for different
domains. In scenarios where training data is limited, overfitting compromises network
performance. To tackle this problem, instead of using a bidirectional long short-term
memory (LSTM) network to create the language representation model, Lukovnikov
et al. (2019), Luo et al. (2020a), and Panchbhai et al. (2020) independently evaluated
the use of Bidirectional Encoder Representations from Transformers (BERT) (Devlin
et al., 2019), the current most performant solution for NL understanding tasks.

Hao et al. (2017) present a model to represent the questions and their correspond-
ing scores dynamically according to the various candidate answer aspects via the cross-
attention mechanism. In addition, they leverage the global knowledge inside the under-
lying KB, aiming to integrate this information into the representation of the answers.
As a result, it could alleviate the out-of-vocabulary problem, which helps the cross-
attention model to represent the question more precisely.

Relation detection is essential to extract candidate answer triples. Yu et al. (2017)
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use deep residual bidirectional LSTM networks to compare questions and relation
names considering different abstraction hierarchies. This relation detector integrates
EL for mutual enhancement, similar to the joint inference feature of Xu et al. (2016b).

The creation of models to generate vector representations of features of interest
from KB avoids the use of semantic pipelines. As there are multiple architectures of
deep neural networks and varied ways of digesting the information to be processed,
the literature already reports several possibilities, and many more will appear shortly.
LSTMs with attention have great room for further development. On the other hand,
transfer learning using pre-trained models is still underrepresented in new system im-
plementations. Finally, the arrival of new and better-performing models allows better
results but at computational costs that are not always bearable.

3.3 Challenges and Future Research Directions

Several obstacles have prevented the full adoption of KBQA systems. Table 3.1 presents
a summary of the challenges KBQA has faced. The preferred technique for solving
simple questions is sequence-to-sequence translators using neural networks. An encoder
converts the NL question to a vector representation, and then a decoder outputs a query
in a formal language. It is also possible to extract features by processing convolutions.

There are several research proposals on complex questions, starting with systems
that propose adding support to another set of SPARQL modifiers. More sophisticated
techniques such as the generation of templates or the use of subgraphs are also on the
agenda. The information extraction approach using a neural model is also reported.
Hybrid systems that use KB data and free text were also found. This technique is also
used to mitigate KB incompleteness. The renewed interest in both topics indicates
that these challenges are not closed. Entity and relation linking are unsolved issues,
although the joint entity and relation linking approach shows promise. Automatic
labelling and distant supervision usually help in obtaining more training data.

In general, almost all papers promise to tune their proposals for better performance.
However, two major problems remain open, as presented in Table 3.2. Future work
to tackle the answers to complex questions revolves around exploring solutions that
allow real-time feedback to the system, such as implementing a conversational agent or
shifting to reinforcement learning so that new knowledge adds can be continuous. On
the other hand, KB incompleteness also limits these systems’ usability. Hybrid systems
that use free text to address this problem have been explored, but there is still a long
way to go. There is a need for more training data and more external knowledge.
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Table 3.1: Question answering over knowledge bases challenges and solutions (papers num-
bered in Appendix A).

Challenges Solutions

Answering complex questions

Hybrid systems (3, 5). Graph
similarity (62). More SPARQL
modifiers compliance (53). Query
ranking (52, 57, 64). Question
paraphrasing (1). Seq2Seq (66).
Siamese CNNs (17). Simple query
composition (32, 56). Subgraphs
matching (10, 51, 61). Templates (46,
63). Unsupervised message passing
(58).

Answering simple questions

BERT transformer (59). CNN (29).
Formal logic (2, 13, 14). Seq2Seq (15,
16, 18, 20, 21, 27, 35, 54). Simple
pipeline (9, 11, 12, 23, 37, 47).
Templates (4, 6).

Entity Linking
BERT transformer (60). Distant
supervision (7). Joint entity and
relation linking (41).

KB incompleteness Hybrid system (19, 38, 65).

Modular design, module reusability
Integration framework (22, 36).
Modules collection (43). Optimal
module selection (48).

Relation Linking

BERT transformer (60). Distant
supervision (33, 34). Hierarchical
RNN (30). Joint entity and relation
linking (41). LSTM (40, 45). Siamese
LSTM (49, 55).

System tunings User interaction (31). User interface
(39). Query builder module (42, 50).

Training data scarcity
Automatic labelling (25, 28). Distant
supervision (24, 26, 44). Multi-column
CNN (8).
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Table 3.2: Remaining challenges, future work (papers numbered in Appendix A).

Challenges. Future work Research Directions

Answering complex questions (8, 15,
10, 16, 19, 21, 25, 42, 45, 53, 54, 57,
59, 64)

Conversational agent (21). Data
augmentation (57). More SPARQL
modifiers compliance (53). More
training data (8, 10). Reinforcement
learning (64).

KB incompleteness (26, 35, 49, 55, 60)
Hybrid system (26). More external
knowledge; more training data (35, 49,
55, 60).

3.4 Summary

This systematic study collected information on the methods and challenges of QA over
KBs, a topic that has gained traction in the search engine industry. The analysis of
66 papers allowed the classification of KBQA systems according to their architectural
styles. Twenty-five semantic parsing pipeline systems were reported, as well as 12 using
subgraph matching and seven based on templates. Twenty-two systems performing
information extraction were also presented. The challenges ahead were presented, and
some directions for future research were identified. Two primary challenges remain
that are particularly sensitive to the success of this technology. On the one hand, it is
necessary to answer increasingly complex questions; on the other hand, it is necessary to
deal with the natural incompleteness of KBs. This study concluded that hybrid systems
and adopting advanced machine learning techniques promise significant advances in the
field.
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SCALEUS-FD: A FAIR Data Tool

Semantic annotations in knowledge management empowered the scientific community
with solutions that make the most of distributed and heterogeneous data. The subject-
predicate-object representation, together with ontologies, enables the annotation of
knowledge and the creation of semantic repositories that can be massive. Additionally,
the Findable, Accessible, Interoperable, and Reusable (FAIR) principles established
guidelines for data sharing, gaining traction in data stewardship. However, one must
deliver solutions smoothly integrated into the FAIR Data ecosystem to explore their
full potential.

This chapter introduces SCALEUS-FD1, a FAIR Data extension of a legacy semantic
web tool for data integration and semantic annotation and enrichment. SCALEUS-FD
enables online FAIR-compliant exposure of data and metadata by creating endpoints
for machine-to-machine interactions. Deployed instances are self-descriptive and can be
catalogued and found using search engines. Concepts revolving around the FAIR ini-
tiative are presented, as well as the software architectural details and implementation.
Finally, a set of metrics allows evaluation of the tool’s FAIRness.

4.1 FAIR Data Principles

The FAIR Data principles proposed by Wilkinson et al. (2016) provide guidelines to en-
sure that humans and machines can discover and reuse data resources. Not constrained
by implementation decisions, the idea is to be as broad as possible, summarising the
experience and best practices of the multiple institutions and individuals involved in
research data sharing (Mons et al., 2017). A persistent identifier must be assigned to
data and metadata and must be ensured to be indexed or registered in a searchable
resource. Relevant attributes meeting domain-relevant community standards must be

1https://github.com/bioinformatics-ua/scaleus-fair

35

https://github.com/bioinformatics-ua/scaleus-fair


Chapter 4. SCALEUS-FD: A FAIR Data Tool

used. Data and metadata use a formal language for knowledge representation and
use vocabularies that follow FAIR principles. Data and metadata can be retrieved us-
ing a standardised communications protocol allowing authentication and authorisation
when required. Furthermore, metadata should remain accessible even if data is no
longer available. As stated by Wilkinson et al. (2016), explicitly, the principles are:

To be Findable:
F1. (meta)data are assigned a globally unique and persistent identifier;
F2. data are described with rich metadata (defined by R1 below);
F3. metadata clearly and explicitly include the identifier of the data it describes;
F4. (meta)data are registered or indexed in a searchable resource.
To be Accessible:
A1. (meta)data are retrievable by their identifier using a standardized communi-

cations protocol;
A1.1. the protocol is open, free, and universally implementable;
A1.2. the protocol allows for an authentication and authorization procedure, where

necessary;
A2. metadata are accessible, even when the data are no longer available.
To be Interoperable:
I1. (meta)data use a formal, accessible, shared, and broadly applicable language

for knowledge representation;
I2. (meta)data use vocabularies that follow FAIR principles;
I3. (meta)data include qualified references to other (meta)data.
To be Reusable:
R1. meta(data) are richly described with a plurality of accurate and relevant at-

tributes;
R1.1. (meta)data are released with a clear and accessible data usage license;
R1.2. (meta)data are associated with detailed provenance;
R1.3. (meta)data meet domain-relevant community standards.

FAIRification work is not trivial and usually demands close collaboration between
IT and domain experts. Although FAIR is not equal to RDF, LD, or SW, these
technologies are a mature option for creating FAIR data (Mons et al., 2017; Wilkinson
et al., 2017). Using the workflow shown in Figure 4.1, proposed by Jacobsen et al.
(2018), helps convert data into FAIR.
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Source: Jacobsen et al. (2018)

Figure 4.1: FAIRification steps: driving question(s) definition, pre-FAIRification analysis,
semantic model definition, data records transformation, metadata definition, deployment,
and query interface provision.

Several steps can be considered, starting with formulating domain questions and
a pre-FAIRification analysis to focus and confront the original data with the desired
outputs. The next step is to look closer at the data elements and define a semantic
model capturing the domain experts’ most relevant concepts and relations. One can
reuse, adapt, combine, and augment existing models. The original data records are
transformed to obtain a FAIR-compliant machine-readable representation by applying
the developed ontological model. Then, the metadata about the data usage license and
provenance in a format meaningful to computers is defined. Finally, after deploying
the FAIR data resource, a query interface or user app is made available to end-users.

Some examples describing efforts to FAIRify life science data repositories can be
reported. For instance, Rodríguez-Iglesias et al. (2016) present the FAIRification of a
portion of the Pathogen-Host Interaction Database (PHI-base). Schaaf et al. (2018)
report the extension of the Open Source Registry for Rare Diseases (OSSE) architecture
to comply with FAIR principles, consisting of integrating a new component to expose
metadata. Outside life sciences, can be highlighted the experiments of Garcia-Silva
et al. (2019) around several Earth science disciplines.

4.2 Requirements and Building Blocks

In this section, the requirements are stated, and the building blocks of the solution are
presented.

4.2.1 System Requirements

The ideas presented in the previous section lead to the following requirements:
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Functional Requirements

• It must be possible to store and describe multiple datasets - The
ability to store different datasets increases flexibility considering multiple
domains or particular views of some specific domain.

• Authorisation - The tool enforces the authorisation levels defined by the dataset
owners when using the solution. All users can access the metadata. Only autho-
rised users can create or modify the metadata.

• It must allow data queries - Compliance with a widely used standard query
language is a must-have.

Nonfunctional Requirements

• It should be a standalone application - Typical users are not IT personnel,
and this underlines the need for the tool to be as simple to use as possible.
The user’s ability to start work immediately, skipping confusing configuration
settings, is of paramount importance. If needed, the configuration process must
be straightforward and well-documented.

• It must be self-describing - The solution must be by itself a FAIR object
in the FAIR ecosystem. At the software level, metadata describing the deployed
instance must be rich and preferably standard to allow the running solution to
be registered and integrated into larger data interoperability systems.

• It should make the data FAIRer - Data resulting from tool processing should
be as FAIR as possible.

• It must expose its services over the web - The tool must offer access
points for other software agents to interact in a networked environment, fulfilling
findability and accessibility criteria. Software agents access the data using a stan-
dardised communications protocol, allowing authentication and authorisation if
required.

• User-friendly interfaces - Users are provided with a dashboard to see the
stored datasets at a glance.

4.2.2 SCALEUS

SCALEUS2 is a semantic web tool for data integration, validated in the scope of rare
diseases (Sernadela et al., 2017b). The solution enables migration to a semantic format

2https://github.com/bioinformatics-ua/scaleus
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without forcing using a predefined data integration ontology. This degree of freedom
gives users greater flexibility in managing their data models. RDF resource loading
is also available. Data is manageable as a collection because the tool supports the
creation of multiple datasets. Another significant advantage is that people can quickly
deploy and start using the single package software distribution, with no wasting time
configuring.

The system enables users to perform a text search or SPARQL queries with inference
rules to retrieve the stored information. Additionally, a simplified REST API allows
several operations with different degrees of granularity, ranging from the dataset level
to the level of the single triples. It is also possible to add, obtain, and remove names-
paces. More importantly, a SPARQL endpoint is available for receiving and processing
SPARQL queries over the web. In summary, the list of essential features is:

• Very easy to deploy and start using.

• Ontology-independent.

• RDF resource loading (.ttl, .rdf, .owl, .nt, .jsonld, .rj, .n3, .trig, .trix, .trdf, .rt).

• Supports importing data from spreadsheets (.xlsx, .xls, .ods).

• Support for multiple datasets.

• Text search.

• SPARQL queries.

• Query federation to the available data.

• Inference support.

• Web services API.

4.2.3 Data and Metadata FAIRness

Metadata establishes how data can be accessed and reused. A FAIR Data Point (FDP),
as was proposed by Bonino da Silva Santos et al. (2016), provides a mechanism for users
to discover properties (metadata) of datasets. The FDP is a central piece of the FAIR
Data infrastructure, allowing the exposure of metadata in intermediate granularity
between fully centralised descriptions of a super-collection of datasets or a fully dis-
tributed scenario where the metadata of each dataset is published individually. Meta-
data clusters with pointers to several datasets streamline indexation, registration, and
search.

Indexing the solution’s entry points in a search engine is paramount for data to
become findable. It is essential to identify which search engines are most suitable for the
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purposes that are intended. Implemented to scale to all metadata published on the web,
the Google Dataset Search3 is a novel way to search for data collections automatically
indexed by Google crawlers (Brickley et al., 2019). So, the solution must expose, using
RDFa, Microdata, or JSON-LD, a description of the entry points for the datasets using
the Dataset or the DataCatalog types from the Schema.org4 vocabulary. Another
possibility is to use the Dataset concept from the W3C Data Catalog Vocabulary
(DCAT) (Maali and Erickson, 2014). Adding simple markup describing datasets to
web pages removes the need to build or directly feed a specific search engine and
allows data exposure to a broad audience.

4.3 SCALEUS-FD

SCALEUS-FD is a semantic data publishing solution that follows the FAIR principles,
as explained in this section.

4.3.1 Architecture of SCALEUS-FD

SCALEUS-FD is built on top of the legacy tool. As presented in Figure 4.2, the left
branch of the architecture includes the SCALEUS components dealing with the process
of semantic data conversion, and the right side shows the new elements of SCALEUS-
FD, which allow the creation and management of metadata.

The components of the solution fall into three main layers: knowledge base, ab-
straction, and services. At the knowledge base layer, the databases store the datasets
converted into semantic graphs by the users. At this same level, another triplestore
stores the metadata as RDF triples, ensuring logical and physical separation between
different types of data. The transaction database component (TDB) ensures that data
are protected against corruption when dealing with creating, reading, updating, and
deleting (CRUD) operations. The abstraction layer deals with managing semantic
datasets at a higher level, comprising the methods for creating and manipulating the
data and metadata. Finally, at the service layer, the tool exposes its functionalities
through an API for machine-to-machine (M2M) interaction and a graphical user inter-
face (GUI) for human clients.

The Data Handler provides the operations for converting the user’s data into the
semantic format. Metadata describing each of the created datasets must be entered or
automatically generated and saved in the system. The ownership, license, and explicit
description of the access points allow data navigation, fulfilling FAIR principles by

3https://toolbox.google.com/datasetsearch
4https://schema.org
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Figure 4.2: SCALEUS-FD architecture and implementation technologies. At the file system
level are the triplestores for the converted data and the metadata. At the abstraction layer,
Apache Jena and Eclipse RDF4J were used to implement the modules for dealing with the
semantic data, comprising data integration, inference, and the management engine. Finally,
a Jetty server allows the building of the services layer.

making reuse possible. Management of these metadata in semantic format is through
the Metadata Handler component, which connects the TDB dealing with the metadata
repository. The Data Handler module can directly trigger this module, although the
metadata is also available via the services API and the GUI.

4.3.2 Metadata Hierarchy

Users can navigate between levels after clicking on any entry point exposed by a search
engine, exploring the hierarchical metadata organisation. Figure 4.3 shows the meta-
data classes used to describe the tool, catalogues, datasets, and distributions. For
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Figure 4.3: SCALEUS-FD metadata.

the profile, four levels of metadata are being considered, using the RE3Data Schema
(Rücknagel et al., 2015) and the DCAT specification as a basis.

The first level of metadata describes the tool itself as a repository. By default, on
the first run of the application, only one catalogue is created, but more can be added
using the REST API. Users can change the default values for the first two layers using
property configurations. In the third layer of metadata, a form is used to set the
information about each added dataset. Finally, the distribution level is automatically
created containing a data access URI.

4.3.3 Implementation

JavaScript libraries like AngularJS5 and CSS frameworks like Bootstrap6 were used to
build a responsive web app. AngularJS is a JavaScript-based open-source front-end
web framework for developing single-page applications. The backend modules use a
standalone Eclipse Jetty7 web server and javax.servlet container. Jersey8 was used to
implement RESTful web services complying with JAX-RS API9.

The Apache Jena10 solution was used to write and extract data from RDF graphs.
Apache Jena is an open-source SW framework for Java. It provides an API to extract
data from and write to RDF graphs. The fairmetadata4j11 library was used to support
the creation, storage, and provision of FAIR metadata. For metadata management,

5https://angularjs.org/
6https://getbootstrap.com/
7https://www.eclipse.org/jetty/
8https://jersey.github.io/
9https://jcp.org/en/jsr/detail?id=370

10https://jena.apache.org/
11https://github.com/FAIRDataTeam/fairmetadata4j
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the FAIRDataPoint12 and Eclipse RDF4J13 were used.

4.3.4 Web Services API

A set of RESTful web services provides data and metadata management endpoints for
external software applications, enabling M2M interaction. For instance, a dataset can
be created or removed, or a list of all existing datasets can be retrieved. The same
type of operation is available for namespaces management and at the level of triples.
Creating, obtaining, or changing the tool’s metadata is also possible by evoking services
(for more details, see the README file that comes with the source code on GitHub).
More importantly, a generic SPARQL endpoint allows querying data and metadata
unleashing the power of the SW approach.

4.4 Validation

This section presents a formal evaluation of the tool and its instantiation, considering
a use case.

4.4.1 FAIR Maturity Assessment

A design framework and exemplar metrics to evaluate the FAIRness of any digital
object were proposed by Wilkinson et al. (2018), considering the multidimensionality
of the FAIR principles. Not only should data be evaluated but also any tool of the
ecosystem must be FAIR compliant. Another important aspect is that this general
framework of FAIR maturity indicators can be complemented with more specific as-
sessment criteria to address the particular needs of particular communities. Next, the
FAIRness assessment of the tool using the mentioned maturity metrics is presented.

F1. The rules of the “Persistent Domains” document presented as a design issue
at https://www.w3.org/DesignIssues/PersistentDomains.html can be fol-
lowed. HTTP URIs can be used to identify digital resources.

F2. With DCAT, data can be described considering different layers of machine-
readable metadata.

F3. SCALEUS-FD’s metadata model allows setting a globally unique and persistent
identifier for each digital resource.

12https://github.com/FAIRDataTeam/FAIRDataPoint
13https://rdf4j.eclipse.org/
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F4. RDFa is used to embed the dcat:Dataset class instances within the web doc-
uments generated by the app, allowing automatic indexation by the Google
Dataset Search engine.

A1. See the assessment of A1.1-2.
A1.1. Data and metadata are retrievable using HTTP, which is a free and open-

source protocol.
A1.2. The application provides basic access authorization to perform REST calls

that create, update, or delete data and metadata (POST, PUT, and
DELETE operations).

A2. After removing any dataset, metadata continues available.
I1. The RDF data model and the OWL formal language for knowledge represen-

tation were used.
I2. Datasets can be described using existing, well-known ontologies such as the

HPO or GO. For the metadata, the DCAT vocabulary was used.
I3. Following the SW principles, ontologies that include semantically rich relation-

ships were used.
R1. See the assessment of R1.1-3.
R1.1. Accessible usage license: the “license” property of the dcat:Distribution class

is used to specify the license document by which the distribution is made
available.

R1.2. The dcat:Catalog class keeps the information about data provenance.
R1.3. SW standards for data and metadata are used.

4.4.2 Huntington’s Disease Use Case

The tool was used to increase the “FAIRification” of a registry with anonymised data
from a cohort of patients with Huntington’s disease (HD), a fatal neurodegenerative
disease affecting the brain. The source of information was a spreadsheet collecting
genetic and phenotypic data from 151 patients. For the sake of security and privacy,
this cohort’s data has been anonymised. Tabular data is a widespread format in the
long tail of science and technology, and the small number of records is usual in the
context of a rare disease, further underlining the importance of “FAIRifying” this data.

The data headers relate to enrolment (e.g., date of informed consent), demographics
(e.g., gender), genetic testing results (e.g., CAG larger allele), medical history, comorbid
conditions, and cognitive data columns related to the Problem Behaviours Assessment
(PBA-s) items (McNally et al., 2015). Figure 3 shows the interface for loading the data
to be converted to the semantic format.
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Figure 4.4: Spreadsheet integration interface.

After loading the data, the columns to be transformed into the semantic format
are selected. For each column, one must associate the semantic entity and namespace
according to the selected ontologies. Concepts from the Dublin Core Metadata
Initiative14, FOAF Vocabulary Specification15, and the Human Phenotype Ontology16

were used. Table 4.1 shows the performed mapping.

Table 4.1: Semantic namespace

Column URI
subject http://purl.org/dc/terms/identifier/
gender http://xmlns.com/foaf/spec/#term_gender/
PBA-s Depression https://hpo.jax.org/app/browse/term/HP:0000716/
PBA-s Irritability https://hpo.jax.org/app/browse/term/HP:0000737/
PBA-s Psychosis https://hpo.jax.org/app/browse/term/HP:0000709/
PBA-s Apathy https://hpo.jax.org/app/browse/term/HP:0000741/

For instance, one can map the “subject” column to the term http://purl.org/dc/
terms/identifier/ from the Dublin Core Metadata Initiative, and the “gender” col-
umn to the property http://xmlns.com/foaf/0.1/gender/ from the FOAF Vocab-
ulary Specification. Other ontologies can be used, as the Human Phenotype Ontology
(https://hpo.jax.org/app/) to map columns like “depression” (HP:0000716), “irri-

14https://dublincore.org/
15http://www.foaf-project.org/
16https://hpo.jax.org/app/
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Figure 4.5: QA interface.

tability” (HP:0000737), “psychosis” (HP:0000709), and “apathy” (HP:0000741). The
conversion process concludes by creating the triples that are loaded into the preselected
dataset. With the data transformed and adequately loaded, one can ask questions using
a graphical interface (see Figure 4.5).

The SPARQL queries and the NL questions use the same form for simplicity since
the system recognises the input type, processing it transparently.

4.5 Summary

SCALEUS-FD is a tool created to ease the burden of publishing FAIR-compliant data
and metadata to facilitate interoperability and reuse. The solution uses the SW and
LD principles, and its “FAIRness” has been assessed against a set of maturity metrics.
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The solution has been validated in the field of rare diseases, proving to be a valuable
aid for people looking for data sharing.

47





Chapter 5

Querying Semantic Data

The secondary use of health data is a valuable source of knowledge that drives ob-
servational studies, leading to important discoveries in the medical and biomedical
sciences. For example, observational studies suit pharmacological surveillance, public
health monitoring, expanding knowledge about endemics and epidemics, and devel-
opment of new treatments (Schneeweiss and Avorn, 2005). The fundamental guiding
principle for conducting a successful observational study is carefully formulating the
research question and the data search approach. However, finding and integrating
suitable datasets to support multicentre studies is challenging, time-consuming, and
not infrequently impossible without a deep understanding of each dataset (Nan et al.,
2022).

This chapter presents a strategy for retrieving semantically annotated biomedical
datasets, using an interface built by applying a methodology to transform natural
language questions into formal language queries (Figure 5.1). Using natural language
interfaces to issue complex questions without directly manipulating a logical query
language enhances the advantages of creating and using biomedical semantic data.

MONTRA  
Framework

Patients' Datasets Researcher

SCALEUS-FD

Figure 5.1: Overview of question answering over semantic biomedical data. The approach
allows the publishing of patient datasets metadata in a biomedical database catalogue built
using the MONTRA (Silva et al., 2018) framework. SCALEUS-FD operates as a FAIR
repository of ontologies. Researchers can consult the data using a built-in question-answering
module described in this chapter.

49



Chapter 5. Querying Semantic Data

The methodology was validated considering a use case based on Alzheimer’s disease
datasets published on a European platform for sharing and reusing biomedical data.
Data were converted to semantic information format using biomedical ontologies in ev-
eryday use in the biomedical community and published as a FAIR endpoint. Three nat-
ural language question types for the biomedical semantic data were considered: single-
concept, exclusion criteria, and multiple-concept questions. Finally, the performance
and limitations of the developed question-answering module were analysed. The source
code is publicly available at https://bioinformatics-ua.github.io/BioKBQA/.

In a nutshell, a strategy for using information extracted from biomedical data and
transformed into a semantic format using open biomedical ontologies was proposed.
The method uses natural language to formulate questions to be answered by this se-
mantic data without directly using formal query languages.

5.1 Contextualisation

The digitisation of medical information resulted in massive amounts of digital health
data used to support health professionals. However, this data can also be used as a
powerful source of information to create new knowledge. Secondary use of data is a
successful strategy for reducing costs and overcoming difficulties arising when primary
data creation procedures are expensive or when target populations are small, as is the
case, for example, with rare disease patients (Cheng and Phillips, 2014). Over time,
researchers worldwide have created repositories of biomedical data in various formats,
from specialised databases to simple tabular data (Kolker et al., 2012). However,
the existence of this data is naturally less effective when it is not possible to share
or integrate it with other data. Sharing data translates into numerous advantages
for researchers. It improves data availability and linkage to other relevant sources of
information, busting new fields of study and significantly increasing the impact and
recognition of research outputs (Wallis et al., 2013).

Different strategies to solve data sharing and interoperability problems can be
pointed out. One approach is to map the original data to a relational common data
model, as advocated by international consortia such as the Observational Health Data
Sciences and Informatics (OHDSI)1 initiative (Hripcsak et al., 2015). This approach
focuses on agreement among domain experts on relevant concepts after systematically
analysing observational data dispersed across multiple databases. In addition, a set of
tools and strategies allows for extracting and transforming the original data into the
new format to be loaded into a database or made available as tabular data. Natu-

1https://www.ohdsi.org/
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rally, there is the downside that information from databases with sensitive information
is somehow made available to the community, requiring extra effort to protect clin-
ical data in data harmonisation and migration operations due to legal and ethical
constraints (Francis and Francis, 2017). A strategy for publishing these databases’ ex-
istence is based on characterising each dataset, using data aggregation and meta-data.
Instead of releasing the databases, these characterisations are publicly available in a
database catalogue. Researchers can analyse the meta-data and find the databases
that should fit the study’s needs. Then they can access the data using data access
pipelines, such as Fajarda et al.’s (2018) pipeline depicted in Figure 5.2.

Source: Fajarda et al. (2018)

Figure 5.2: Query process workflow of common data model-based databases. A researcher
creates a question to be processed by a study manager who scripts the necessary SQL
queries using a work management system, such as TASKA (https://bioinformatics.ua.
pt/taska) (Almeida et al., 2018). The data custodians run the script and forward anonymised
results to the study manager, who compiles, aggregates, and sends them to the researcher,
closing the loop.

An evolution of the previous solution, shown in Figure 5.3, uses semantic technolo-
gies to harmonise the different databases using semantic adapters (Almeida et al.,
2019). However, users need to create SPARQL queries which are not easy to do by
standard users.
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Figure 5.3: Query process workflow of semantically annotated databases. In this scenario,
the study manager scripts SPARQL queries. A set of adapters interfaces with the databases
using a pre-agreed ontology that assists in data retrieval.

Correctly selecting the study design and databases is essential to ensure the study’s
feasibility. Therefore, user interface functionalities are central elements for the success-
ful use of the system. Although logical query languages allow extracting any desired
information, their handling is complex and reserved for computer specialists (Höffner
et al., 2017). Contrarily, the objective is simple data access without losing power in
question formulation. A first approach to solving this problem can be using query
builders. Using predefined options, a query builder guides users by providing question
skeletons. However, this solution has the critical limitation of being closely linked to
the data schema, which implies that users should at least know some details of the
logical structuring of the data (Ferré, 2017).

Question answering over knowledge bases allows asking natural language questions
to obtain concise answers from semantic databases, freeing users from knowledge of the
data schema and formal languages (Pereira et al., 2022). These systems rely heavily
on advanced natural language processing techniques and are constantly evolving to ac-
commodate increasingly complex natural language queries, as was surveyed in Chapter
3. However, their use for biomedical semantic data remains challenging because of
lexical ambiguity, question abstraction issues, and query generation problems (Hamon
et al., 2017).
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5.2 Background

Semantic technologies allow researchers to share their data in a distributed and inter-
operable way. In this context, it is essential to know how to query these data and the
maturity of the available user interfaces. In addition, several life sciences communities’
search for biomedical semantic datasets made it essential to create metadata catalogues
related to datasets of interest.

5.2.1 Discovery of Biomedical Databases

Searching for datasets raises different challenges from those faced with current web
searches (Kern and Mathiak, 2015). When looking for datasets, users are also in-
terested in using and retrieving data characterisations, such as the data origin, the
data production date, publication formats, access policies, and the number of records,
among others (Kacprzak et al., 2017). Other difficulties arise from the proliferation of
publishers with publishing practices outside known platforms, which does not favour
finding the datasets, even if they are somewhere on the web (Goel et al., 2010). Achiev-
ing this type of search in a similar way to that of current web search engines is still
very dependent on the metadata offered by the entity that provides the dataset with
crawlers only recognising some vocabularies such as Schema.org2 (Brickley et al., 2019).

Data discovery solutions must provide intuitive interfaces that allow users differ-
ent ways of carrying out their searches. It is also desirable that the solutions adhere
to the Findable, Accessible, Interoperable and Reusable guidelines. The FAIR data
principles intend to ensure that humans and machines can discover and reuse data re-
sources (Wilkinson et al., 2016). The key idea behind formulating these principles is to
be as comprehensive as possible in summarising data custodians’ best practices without
committing to any implementation decisions (Mons et al., 2017). Persistent identifiers
must be assigned to data and metadata and guarantee registration in a searchable
resource. One must use relevant attributes that adhere to community standards per-
tinent to the domain. Data and metadata must have a formal representation using
FAIR-compliant vocabularies. The retrieval of data and metadata must be done us-
ing a standardised communication protocol allowing authentication and authorisation
when necessary. Finally, metadata must remain accessible even when the annotated
data is no longer available.

Some examples of biomedical data discovery platforms can be pointed out. The ap-
plication of semantic technologies is at the base of several platforms. BioSharing covers
life science topics related to standards, databases, and policies (McQuilton et al., 2016).

2https://schema.org/
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Also, YummyData (Yamamoto et al., 2018) is based on Linked Data to promote the
discovery of biomedical databases and the Open PHACTS Discovery Platform (Groth
et al., 2014) regarding pharmacological databases. DataMed uses the DATS unified
data model to allow metadata submission about datasets and provides a search en-
gine that allows users to enter queries (Sansone et al., 2017). The EHR4CR platform
integrates clinical data from several hospitals and pharmaceutical companies in seven
European countries (De Moor et al., 2015). The EMIF-Catalogue is used for sharing
and reusing biomedical data. Through this system, data custodians can publish and
share different levels of information, while the researchers can search for databases that
fulfil research requirements (Oliveira et al., 2019).

5.2.2 Managing Biomedical Data with Semantic Web Tech-
nologies

Semantically organised data present a logical structure that facilitates inferring new
knowledge, and can be used directly to answer questions (Fan et al., 2012). Therefore, it
is convenient to store the knowledge extracted from structured or unstructured data in
a Knowledge Base (KB). The data of a KB can be considered to be organised as an edge-
labelled multidigraph (Paulheim, 2017). Nodes usually represent real-world entities
or quantities, and labelled arcs represent relationships between entities. Semantic
web standards go further in formalising and restricting the nature of KB elements.
RDF (Resource Description Framework) data consists of triples (s, p, o), where s is
the subject (the resource being described), p is the predicate (the property), and o is
the object (the property value) (Schreiber and Raimond, 2014). Based on this simple
data model, one can build more complex models by semantic extension.

Standard vocabularies and ontologies allow modelling shared conceptualisations
of knowledge domains by establishing classes, properties, individuals, and data val-
ues (Borst, 1997). Some notable contributions regarding life sciences can be pointed
out. The Human Phenotype Ontology (HPO) vocabulary describes human diseases’
phenotypic abnormalities (Köhler et al., 2016). The Orphanet Rare Disease Ontol-
ogy (ORDO) is a resource for annotating rare disease data that provides relationships
between relevant traits, namely diseases and genes (Weinreich et al., 2008). Gene
Ontology (GO) describes genes considering molecular functions, cellular components,
and biological processes (Gene Ontology Consortium, 2016). The ELIXIR3 (European
Life Sciences Infrastructure for Biological Information) initiative also offers an ontology
repository platform (Drysdale et al., 2020). Many more biomedical ontologies and ter-

3https://elixir-europe.org/
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minologies are available on the BioPortal repository (Whetzel et al., 2011), sponsored
by the National Center for Biomedical Ontology (NCBO).

Several organisations and projects dealing with biomedical data benefit from us-
ing semantic approaches. ELIXIR organisation’s primary goal is to bring together life
science resources across Europe. ELIXIR’s activities touch on five areas: 1) register
and benchmarking of software tools, 2) data access, 3) data interoperability, 4) cloud
computing platforms, and 5) the establishment of a training community for researchers
across Europe. The RD-Connect4 initiative created an infrastructure for rare disease
research to improve the analysis and sharing of genomic data, patient registries, and
virtual biobanks (Thompson et al., 2014). The Biodiversity Community Integrated
Knowledge Library (BiCIKL)5 project aims to promote open science by providing ac-
cess to data, tools, and services related to biodiversity research, pointing out various
data linking strategies, namely using semantic technologies (Penev et al., 2021).

5.3 Materials

The proposal aims to add new functionality to search semantic data in natural language.
This work seeks to improve a legacy biomedical data catalogue solution and uses a
previously developed ontology repository.

5.3.1 MONTRA Framework

In multicentre studies, there is a need to identify the best datasets to conduct a research
study. With the explosion of data creation in the medical community, ideas like using
catalogues to collect dataset characteristics gained momentum. Community catalogues
fit into this philosophy, enabling research groups with the same interests to share
metadata about their databases.

The EMIF initiative focused on creating a European Medical Information Frame-
work to provide better healthcare using the vast amounts of biomedical data available.
A web solution was thus designed to offer the EMIF Catalogue6 (Oliveira et al., 2019),
a FAIR platform where data custodians can publish metadata about their biomedical
databases with different levels of granularity (Trifan and Oliveira, 2018). This cata-
logue used the MONTRA7 framework (Silva et al., 2018) to allow the publishing and
discovering of data.

4https://rd-connect.eu/
5https://bicikl-project.eu/
6https://emif-catalogue.eu/
7https://github.com/bioinformatics-ua/montra
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The MONTRA framework can create database catalogues using a data skeleton to
capture the entities of interest. This skeleton can be defined by the data owners using
a simple spreadsheet which is then loaded to determine the catalogue fields. The so-
lution’s architecture is flexible and allows for the integration of external components.
Plugin integration can increase the basic functionality. For example, a new metadata
search module can be added, improving the base search capabilities. The solution also
incorporates a REST API that allows interactions with third-party software applica-
tions.

Search functionalities are a central aspect of a catalogue’s good operation. The
MONTRA platform allows users to search for datasets using forms like a query builder.
The query in its simplest version can be built by filling in a predefined set of fields.
The operator AND then operates these fields. This more simplified search model only
allows the construction of simple queries, which does not always serve users’ interests.
One also has a form with all possible fields, with which can be built complex questions
using the AND and OR operators. However, this functionality is problematic for most
users as it implies thorough knowledge of the solution’s metadata layer.

The use of questions in natural language is an asset for users because it allows
the construction of complex queries without prior knowledge of the data structure.
The proposal that enables a natural language interface was developed as a MONTRA
plugin. In addition to the classic form-based search methods, now there is an easier
and more intuitive way of searching for databases described in a catalogue.

5.3.2 SCALEUS-FD

A catalogue of biomedical datasets, such as those that can be built using MONTRA,
provides users with a centralised access point to descriptions that help them make
decisions with a profound impact on their research. Conveniently, these descriptions
can be found using suitable user interfaces to facilitate this work. Mapping data in a
semantic format using an ontology allows linking and relating the metadata, simplifying
searching.

The management of multiple semantic datasets can be operationalised using a tool
such as SCALEUS-FD. This solution allows the conversion of tabular data into seman-
tic data. In addition to this primary function, the solution is a robust solution when
used as an ontology repository. Software agents can load and access ontologies since
SCALEUS-FD offers a RESTful API to perform these operations (Pereira et al., 2020).

The publication of ontologies must ensure that they can be registered or indexed
by search engines. Their findability is crucial for researchers to benefit from their
information. In addition, it is needed to ensure they can be accessed using open com-
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munication protocols that allow machine-machine interactions. Data interoperability
is assured when using semantic standards. As for the reuse of data, access policies
must be perfectly defined and available to users. All these characteristics guarantee
that the data is FAIR, as prescribed by good practices. SCALEUS-FD as an ontology
repository ensures all these desirable FAIR characteristics, as assessed by Pereira et al.
(2020) using the maturity metrics proposed by Wilkinson et al. (2018).

When using metadata to describe catalogues, it is established how data can be
accessed and reused. To create access points to catalogues described by metadata
and allow their interoperability, they must follow a standard vocabulary such as Data
Catalog Vocabulary (DCAT)8. SCALEUS-FD uses RDFa to enable web crawlers to
index DCAT annotations automatically.

Due to the high number of characteristics of each dataset fingerprint, it is acknowl-
edged that creating better forms of data search would optimise the cohort selection
process. A common way researchers define cohorts is by constructing questions. In-
spired by this philosophy, a question-answering (QA) system was created to identify
databases in the catalogue, formulating questions in natural language.

5.4 Methods

A semantic data questioning system using natural language and its integration in a
biomedical database catalogue solution (Figure 5.4) is proposed. The solution includes
several phases, starting with the creation of lexicons of entities and relationships. These
lexicons are then used in the subsequent two phases. The template generation allows
for capturing the main components of natural language questions and formal language
queries, while the generalisation phase makes it possible to construct a more generic
base to cover other use cases. The integration of these templates in a database catalogue
platform and its operation are the final steps of the pipeline and are further detailed
in Section 5.4.2.

Figure 5.4: General overview of the QA approach.

8https://www.w3.org/TR/vocab-dcat-2/
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5.4.1 Natural Language Queries over Knowledge Bases

Considering the pairwise disjoint sets I of IRIs, B of blank nodes, and L of literals,
an RDF-Schema KB is an edge labelled multidigraph K = (V, E∗) that is defined
by a node set V = V1 ∪ V2 with V1 = I ∪ B, V2 = I ∪ B ∪ L, and a labelled arc
set E∗ = {(v1, l, v2) : v1 ∈ V1, v2 ∈ V2, l ∈ L}, l being an element of the label set
L = I ∪ B ∪ L. A labelled arc will commonly be called a predicate. As for their
quality, nodes can be of different natures. More specifically, the set of nodes can be
broken down into V = C ∪ In ∪ L, where C is a set of classes, In is a set of class
instances, and L is a set of literals. A multitude of predicates can exist connecting two
nodes. Each pair of nodes plus the connecting predicate is called a fact. A path is a
sequence (v0, a1, v1, ..., an, vn), n > 0, alternating nodes (vi, i = 0, ...n) and labelled arcs
(aj, j = 1, ...n). The length of a path is equal to its number of arcs. The shortest paths
between two nodes are those that contain the fewest number of arcs. The smallest
subgraph containing a subset N of nodes comprises all shortest paths between all
pairs of nodes of N . Nodes representing n-ary relations can also be considered to
accommodate more complex cases, coded by creating an individual representing the
relation instance itself or using an RDF vocabulary for lists.

Creation of Lexicons

The first step is the construction of two lexicons using distant supervision to use later
to eliminate the ambiguity of phrasal nouns and phrasal verbs identified in the NL
question. More precisely, a lexicon Lexe was created mapping text fragments to entities
and a lexicon Lexr mapping text fragments to relations. The starting point is to
annotate entities of interest on a text corpus with DBpedia Spotlight (Daiber et al.,
2013).

To build Lexe, each (e1, r, e2) triple is used to detect, for instance, the
〈e1 r syntactic_unit1〉 and 〈syntactic_unit2 r e2〉 patterns in the annotated texts, be-
ing added to the lexicon the mappings {syntactic_unit1 → e2, syntactic_unit2 → e1}.
It is followed a similar principle to construct the predicate lexicon. For this set, con-
sidering each (e1, r, e2) triple, the pattern 〈e1 syntactic_unit e2〉 is identified and the
mapping {syntactic_unit → r} is added to Lexr. Note that more patterns can be
added later to increase the system’s sensitivity.

Template Generation

A query q is a set of triples patterns, and the answers to that query will be denoted by
Aq. Templates are generated at training time to allow to answer questions at testing
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(answering) time. Training stage inputs are pairs of NL questions u and its answer
set Au, being the training set T = {(u, Au)}. One starts by annotating a training NL
question u with the named entities it contains and disambiguating these to KB entities
using a named-entity disambiguation system, as can be seen in Figure 5.5.

Figure 5.5: The first step is to create the entity and relation lexicons using distant supervision
based on rules that map pieces of text to individuals in the KB. Then the pairs of questions
in NL and the respective answer entities are considered. In step 3, the utterance is split into
its syntactic elements and by a disambiguation process, surface forms are mapped into KB
entities.

Next, as seen in Figure 5.6, for each answer a ∈ Au, the smallest subgraph of the KB
containing the entities detected in the question and a is found. To this end, starting
with an entity found in the question, all paths of length two when the middle node is
an n-ary node and paths of length one otherwise are explored, to restrict the search
space. Like Yih et al. (2015), there is the assumption that this subgraph captures the
meaning of the question and connects it to one of its answers a. There may be multiple
such graphs. Then each subgraph is transformed into a backbone query q̂ by replacing
a with the variable ?x. Note that this procedure is performed for each a ∈ Au for a

given u, resulting in multiple queries.

Figure 5.6: In this step, the smallest subgraph that links the disambiguated entities to
each answer is determined. After that, the new entities found are replaced with a variable.
Likewise, a variable replaces as.

Capturing the answer types given in the question is important for precision. Identi-
fying the expected answer type of an utterance boosts the performance of QA systems.
Templates that capture which phrases in the question evoke types in the query are
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created automatically and use the full KB type system as potential mapping targets.
Starting with q̂ generated thus far, the answer variable node in q̂ is connected to one
type constraint for each c ∈ C such that the variable originates from the answer entity
a ∈ Au and (a, type, c) ∈ KB (Figure 5.7).

Figure 5.7: Looking at the answer a (currently variable ?y), it is determined to which classes
it belongs as an instance. Two classes are shown in the figure, but of course, the number of
classes can be different.

With (u, q̂) pairs at hand, the constituents of u and q̂ are aligned. The alignment
gives the chunking of u into phrases that map to semantic items in q̂. Alignment
is driven by lexicons Lexe and Lexr (see Figure 5.8), but faces inherent ambiguity,
either from truly ambiguous phrases or from noise in the automatically constructed
lexicons. The resolution of this ambiguity is modelled as constrained optimisation and
uses Integer Linear Programming (ILP) to address it.

Figure 5.8: This step applies the entity and relationship lexicons to find relationships between
entities and, possibly, some new entities.

A bipartite graph with Ph, the set of all phrases from u, is built on one side and Sq̂,
the set of semantic items in q̂ on the other. Ph = ph1, ph2, ... is generated by taking
all subsequences of tokens in u. An edge is added between each phi ∈ Ph and sj ∈ Sq̂
where (phi → sj) ∈ Lexe∪Lexr with a weight wij from the lexicon. Now, for semantic
item sj , Ej , Cj and Pj are 0/1 constants indicating whether sj is an entity, type, or
predicate, respectively. Xij is a 0/1 decision variable whose value is determined by the
solution of the ILP. The edge connecting phi to sj in the bipartite graph is retained
if Xij = 1. Given a set of types connected to a variable v from which one wants to
pick at most one, this set of types is S(v) = c1, c2, ... and the set of phrases that can
map to types in S(v) is Ph(v). Finally, to solve the ILP problem, IBM ILOG CPLEX
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Optimizer9 is used, but other solvers can be integrated programmatically because the
system is solver-agnostic.

Template Generalisation and System Operation

The aligned utterance-query pairs obtained from the alignment process are generalised.
On the utterance side, the utterance u is represented using its dependency parse tree
and restricted to the smallest connected subgraph that contains the tokens of all phrases
participating in m. To create a template from this subgraph, the nodes participating
in m are converted into placeholders by removing their text and keeping the POS tags
and semantic alignment annotations (ent, type, pred). Universal POS tags are used
for stronger generalisation power. Compound nouns are replaced with a noun token
that can be used to match compound nouns at testing time to ensure generalisation.
At testing time, the templates allow for robust chunking of an incoming question into
phrases corresponding to entities (i.e. as named entity recognisers), predicates (i.e. as
relation extractors) and types (i.e. as noun phrase chunkers). On the query side, the
concrete labels of edges (predicates) and nodes (entities and types) participating in m

are removed from the query, keeping the semantic alignment annotations. The number
of utterance-query pairs which generate a template is used as a signal in query ranking.

When a user presents a new question, u, in the online phase, a comparison is made
against all models in the model repository. First, the dependency parse tree of utterance
u, with its part-of-speech tags, is determined. A match to a template (ut, qt, mt) exists
if there is an isomorphic subgraph of the dependency parse tree of utterance u to ut. For
each matching utterance template (usually several), the corresponding query template
qt is instantiated based on the alignment mt and the lexicon Lexe ∪ Lexr.

5.4.2 System Integration

The proposed KBQA applied to bio-databases reuses two open-source tools, avoiding
the development of new components with similar goals. Therefore, the MONTRA
Framework was adopted to integrate the tool as a plugin and the SCALEUS-FD to
serve as an ontology repository. Figure 5.9 represents an overview of the architecture
of the proposal. Some of the components of MONTRA Framework and SCALEUS-FD
were omitted since these would not increase the value of this description.

The BioKBQA consists of some components that are worth describing. The API
Connector can receive questions in natural language and subsequently forward them
to the Question Processor. This component uses the NLP processor to perform the

9https://www.ibm.com/analytics/cplex-optimizer
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Figure 5.9: Component diagram showing the integration of SCALEUS-FD, MONTRA, and
the BioKBQA plugin. The MONTRA block is a client of SCALEUS-FD that works as a
repository of ontologies and of the BioKBQA plugin that allows querying ontologies using
natural language.

semantic parsing of the query. It also uses Template Management, which serves to
match the processed question and the available templates. The SPARQL Processor
can extract the desired information from the semantic database. Finally, the responses
handled by the Answer Management module are sent to the API Connector, thus
ending the processing.

The proposal aims to help discover datasets of interest based on a research question.
This research question is placed on the BioKBQA plugin, integrated into the MONTRA
framework. This input set in free-text is converted into SPARQL and sent to MONTRA
to obtain the datasets that match this query. MONTRA uses SCALEUS-FD as an
ontology repository, which would produce the IRIs of interest for the questions and
answers in the data placed on the database catalogue. This would be filtered on
MONTRA, retrieving the databases of interest for a question.
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Semantic Questioning

The question answering (QA) module added to SCALEUS-FD allows querying stored
semantic data. On the one hand, it can operate traditionally by using SPARQL. This
option enables advanced users to exploit a logical query language’s power to construct
complex queries. Therefore, asking questions in natural language (in English) allows
users less familiar with formal query languages to consult the knowledge stored in the
KB. The linguistic processing tools were integrated into the module to enable semantic
parsing. The system processes the information by transforming the NL question into
a formal query that the system internally uses to obtain the answers. However, the
strength of the solution is the possibility of using templates in the information retrieval
process.

To access the module’s functionalities, one can use API calls that make it possible
to retrieve information through software agents. Two endpoints were created to ask
questions using SPARQL or questions in natural language:

• SPARQL endpoint:
GET /api/v1/sparqler/{dataset}/sparql?query={query}&
inference={inference}&rules={rules}&format={format} HTTP/1.1

• NL endpoint:
GET /api/v1/sparqler/{dataset}/nl?query={query}&
inference={inference}&rules={rules}&format={format} HTTP/1.1

A fundamental component of the QA module is the template repository which, to-
gether with the parsing unit, allows improved performance in the conversion of complex
questions. This repository is fed before putting the tool into production and can be
enriched with more templates whenever they are available for use. Figure 5.10 shows
the offline and online phases of creating and using templates.

5.5 Results

The different initiatives created to explore one or multiple datasets of patient data
usually require some technical background to use the tools designed for filtering and
cleaning the data. The use of query builder-like tools is an excellent strategy, but
these are typically limited to the data schema and require initial learning by users.
Therefore, providing solutions where it is possible to define a question in a free-text
format, which will result in a query to be executed in the dataset, may attract users
with less technical knowledge.
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Figure 5.10: A high-level view of creating and using templates considering the offline and
online phases. A corpus is processed in the offline phase to create pairs of natural language
question templates and formal language query templates. Each question is disaggregated in
the online stage, with the system running to determine the most suitable model.

The proposed methodology can be used by researchers to define simple cohorts over
patient datasets, independently of the dataset used. This proposal’s main overhead
is defining and mapping the fields and concepts in the database to the ontologies.
However, this stage is already performed in some scenarios, with different goals. For
instance, there are situations where the ontology is used to enrich the existing knowl-
edge in the data. In other cases, the ontology associates concepts in the data with
their standard definition.

5.5.1 Use Case Overview

Simple models have been identified that provide a good starting point for users to get
enough information about datasets of interest. In this way, it is possible to see the
validity of using particular datasets in a more profound analysis guided by specialists
in the domain. Therefore, three main categories of question-answering templates were
defined in the methodology: 1) direct questions; 2) questions with exclusive conditions;
3) questions resulting in data aggregation. This approach aims to provide a quick and
easy strategy to perform a high-level analysis of each dataset, without having to use
sophisticated tools and methodologies. This methodology can be applied in different
contexts, as long as an ontology is defined to create metadata annotations about the
datasets.

The European Medical Information Framework (EMIF)10 project aimed to improve
access to patient-level data from distinct health institutions across Europe, and to
carry out multi-cohort studies on different diseases. One of its tracks, the European
Medical Information Framework’s Alzheimer’s disease (EMIF-AD) initiative, aimed

10http://www.emif.eu
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to accelerate the discovery and validation of new biomarkers to diagnose Alzheimer’s
disease in the predementia stage, and to predict the rate of decline. This involved
collecting and mapping to an ontology defined for this disease the data of more than
141,050 patients suffering from this disease. The Alzheimer’s disease community in
this catalogue has currently publicly available information about 65 datasets, with
more than 63 still in the addition phase. Each dataset is characterised by more than
480 meta-concepts.

5.5.2 Ontology

This contribution follows from the work of the EMIF-AD project, where an ontology
was constructed to annotate Alzheimer’s disease data11. In parallel, a questionnaire was
also made available by this initiative that was used as a skeleton for the construction
of the EMIF Catalogue using MONTRA. The ontology is based on the fields of this
MONTRA-loaded questionnaire12.

An ontology was built, reusing standard medical and biomedical ontologies and vo-
cabularies, guided by the METHONTOLOGY methodological framework (Fernández
et al., 1997). DCAT was used to annotate essential information about the reposito-
ries described on the platform. The DCMI Metadata Terms13 were used to annotate
bibliographic resources. To report about clinical trials, the Ontology for Biomedical
Investigations14 was used. To describe nuclear radiology entries, the RadLex radiology
lexicon15 was used.

The name of the database was mapped to the DCAT property http://purl.org/
dc/terms/title, and the http://purl.org/dc/terms/accessRights term provides
access privileges and security status information. To insert a bibliographic reference,
the term http://purl.org/dc/terms/bibliographicCitation was used. An exclu-
sion criterion in a clinical trial was annotated with the term http://purl.obolibrary.
org/obo/OBI_0500028. A magnetic resonance imaging (MRI) was annotated with the
term http://radlex.org/RID/RID10312. Therefore, the ontology follows a hierarchi-
cal structure and is subdivided into the following 26 domains:

1. Database General Information: provides general information about the database,
namely the name of the database, acronym, institutional data, and responsible
people.

11https://bioportal.bioontology.org/ontologies/EMIF-AD/?p=summary
12https://github.com/bioinformatics-ua/BioKBQA/blob/master/resources
13https://www.dublincore.org/specifications/dublin-core/dcmi-terms/
14http://purl.obolibrary.org/obo/obi.owl
15http://radlex.org/
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2. Key Publications: registration of publications containing relevant information
about the study design, such as the number of participants and the techniques/in-
struments used. It is not necessary to be exhaustive in the bibliographic report.

3. Data Access: Indicates data sharing availability and whether additional informed
consent or other procedures are required. Data sharing includes direct or medi-
ated access after a research request submission and approval.

4. Inclusion/Exclusion Criteria: General categories of inclusion and exclusion, such
as age group or pre-existing clinical conditions.

5. Number of Subjects: Estimated number of subjects available.

6. Clinical Information: Indicate what information is available in the data for anal-
ysis, such as educational status.

7. Dementia and Functional Rating Scales: The used dementia rating scales. De-
scription of the measurement instruments, version (if applicable), frequency of
application, and time interval between applications (monthly, annual, etc.).

8. Subjective Cognitive Impairment: The used subjective cognitive rating scales.
Description of the measurement instruments, version (if applicable), frequency
of application, and time interval between applications (monthly, annual, etc.).

9. Neuropsychiatric Scales: The used neuropsychiatric scales. Description of the
measurement instruments, version (if applicable), frequency of application, and
time interval between applications (monthly, annual, etc.).

10. Quality of Life: Quality of life assessment. Description of the measurement
instruments, version (if applicable), frequency of application, and time interval
between applications (monthly, annual, etc.).

11. Caregiver: Caregiver burden, impacts, and work status or productivity assess-
ment. Description of the measurement instruments, version (if applicable), fre-
quency of application, and time interval between applications (monthly, annual,
etc.).

12. Health Resource Utilisation: Types and frequency of health care utilization, such
as hospitalization. Frequency (an isolated case, recurrent cases), the time inter-
val between occurrences (monthly, annual, etc.). Indication of the information
collection method (self-report, electronic health records, another specific instru-
ment, etc.).

13. Remote Monitoring Technologies: Usage of remote monitoring technologies, such
as wearable devices, smartphone-based solutions, sensor-based technologies, and
computer-based technologies.
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14. Cognitive Screening Tests: The used cognitive screening tests. Description of
the measurement instruments, version (if applicable), frequency of application,
and time interval between applications (monthly, annual, etc.).

15. Neuropsychological Tests: The used neuropsychological tests. Description of the
measurement instruments, version (if applicable), frequency of application, and
time interval between applications (monthly, annual, etc.).

16. Physical Examination: Indication of what anthropomorphic measures have been
utilized. Specification of how the assessment was made for a neurological ex-
amination or evaluation of extrapyramidal signs or symptoms. Indication of the
data collection frequency and the time interval between measurements (monthly,
annual, etc.).

17. Lifestyle Factors: Lifestyle factors measurements.

18. Blood Collection: Specification of blood collection, sera, or plasma and if DNA
or RNA analyses were performed. Upload the procedure or protocol manual, or
enter information about the details of the collection procedures.

19. CSF Collection: Specify if CSF was collected and analyzed. Upload the proce-
dure or protocol manual, or enter information about the details of the collection
procedures.

20. Urine Collection: Specify if urine was collected and analyzed. Upload the proce-
dure or protocol manual, or enter information about the details of the collection
procedures.

21. MRI: Specifies whether an MRI was performed only once or in multiple visits
and the time interval between exams. Upload the procedure or protocol manual,
or enter information about the details of MRI scanning procedures.

22. PET: Specifies whether a PET was performed only once or in multiple visits and
the time interval between exams. Upload the procedure or protocol manual, or
enter information about the details of PET scanning procedures.

23. CT Scans: Specifies whether a CT scan was performed only once or in multiple
visits and the time interval between exams. Upload the procedure or protocol
manual, or enter information about the details of CT scanning procedures.

24. SPECT Scans: Specifies whether a SPECT scan was performed only once or
in multiple visits and the time interval between exams. Upload the procedure
or protocol manual, or enter information about the details of SPECT scanning
procedures.
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25. Electrophysiology: Specifies if electrophysiology measures were performed only
once or in multiple visits and the time interval between measurements. Upload
the procedure or protocol manual, or enter information about the details of
electrophysiology measures procedures.

26. Neuropathology: Specifies if neuropathology on autopsy was obtained. Upload
the autopsy procedure or protocol manual, or enter information about the au-
topsy details.

FAIRness is guaranteed by the used tools. The EMIF Catalogue is a FAIR platform,
as demonstrated by Trifan and Oliveira (2018). Likewise, the SCALEUS-FD used as
an ontology repository is a FAIR tool, as assessed by Pereira et al. (2020) using the
maturity metrics proposed by Wilkinson et al. (2018).

5.5.3 Use Case Examples

A researcher interested in analysing Alzheimer’s disease datasets could perform a few
questions in a free-text format in order to understand the feasibility of the research
question before going through the study design, which is time-consuming. For instance,
questions that retrieved the number of patients undergoing a specific test during follow-
up visits, or the number of patients having an exam without taking specific medication,
or patients having two or more particular exams. These examples are types of infor-
mation that fit the three main categories of question-answering templates defined in
the methodology.

The starting point was “The Book Of Ohdsi”16, where a broad set of questions is
formulated for the creation of cohorts from the consultation of database catalogues.
Table 5.1 presents six examples of the 30 questions processed that fit into three de-
fined categories for this research application: C1) Single concept question; C2) With
exclusion criteria; C3) With Multiple concepts. The output can be provided as: O1)
a summary of the data, which aggregates the information, usually a numeric count; or
O2) patients’ data filtering and retrieval, providing a cohort of patients based on the
question conditions.

5.5.4 Validation and Error Analysis

The proposed methodology seems promising in exploring semantic datasets, achiev-
ing an accuracy of 0.76, which results from the successful processing of 23 of the 30
questions considered. Studying the limitations, sometimes the error is because it is

16https://ohdsi.github.io/TheBookOfOhdsi/DataAnalyticsUseCases.html#
characterization
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Table 5.1: Examples of questions, divided into three main categories (C) with two out-
puts (O): C1) simple question; C2) question with exclusion criteria; C3) questions with more
than one concept; O1) data aggregation; and O2) patients’ data filtering and retrieval.

Output Category Question Example

C1 How many patients performed the neu-
ropsychological examination?

O1 C2 Amount of patients performed a PET
exam but did not perform the auditory
verbal learning test.

C3 Number of patients that performed the
animal fluency test in 1 and 2 minutes.

C1 Which patients performed attention and
MRI scan?

O2 C2 All the patients that performed the
Boston naming test and WAIS?

C3 Datasets with visuoconstruction and bat-
teries tests.

impossible to map the relationship between two entities. This happens, for example,
with the question “What test is recommended to detect Lewy Body Dementia?”. For
this question, the disease is registered in the dataset, there are patients entered, and
a mention of tests performed is found. The problem is that the “is recommended”
relationship does not exist. So there is no correct triple that can be extracted from the
database to get an answer.

Regarding some questions, the process of converting the natural language question
and its mapping in a template is not performed correctly. This problem is due to lim-
itations in the NLP processes used to convert surface textual forms into the semantic
elements present in the database. For example, it was not possible to define a strategy
capable of defining two sets of patients and comparing them. An example of a ques-
tion related to the presented research use case would be “Between males and females
undergoing the CERAD word list exam, which had the higher scores?”. The problem
is that the system cannot compare two groups of subjects using a global score. This
situation refers to the difficulty in mapping order relationships between groups. In this
case, it was impossible to return the group (men or women) with the best CERAD
word list exam results.
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5.6 Discussion

Creating metadata to describe biomedical databases allows researchers to find them in
an integrated way. A wide range of mature tools can be used to create, maintain, and
store ontologies to operationalise semantic operations. Tools like Protégé allow building
the ontology to capture the knowledge domain. The conversion to semantic data can
be performed using tools such as SCALEUS-FD, which can also be used as an ontology
repository. Furthermore, this tool follows the FAIR principles. Finally, platforms for
cataloguing biomedical databases are increasingly common. These catalogues can be
built using tools like MONTRA, a solution suitable for building data catalogues for any
data domain. The proposal makes the most of these technologies, augmenting them to
overcome their limitations in using natural language so that standard users can find
the information they need more quickly.

The importance of observational studies for creating new knowledge in areas as di-
verse as the creation of new drugs or the implementation of new public health policies
cannot be overstated. Secondary use of data is naturally only effective if researchers
can discover and access biomedical databases suited to their interests. It is typical for
initiatives to emerge in the biomedical community attempting to combine the efforts
of different actors (patient associations, doctors, researchers) to share data of common
interest. This effort translates into creating strategies and tools that can be used for
the benefit of the community. For example, the OHDSI initiative proposes a standard
data model and offers tools to query a given database using a query builder directly.
But this approach does not allow discovering other databases and operating in a sce-
nario of interoperability, as is possible with semantic technologies. So, once again,
the proposal overcomes these difficulties because enables to search the metadata of
database catalogues using a natural language interface for simplicity.

Figure 5.11 identifies the various possible steps of an observational study. In the
first phase, it is necessary to define precisely the research question for which the study
intends to obtain an answer. The next stage establishes the study design and protocol.
Here, the researchers define the subjects’ inclusion and exclusion criteria and describe
the primary and secondary outcomes. It is essential to avoid biases to prevent contami-
nating this phase with results obtained in later stages of the pipeline, even if some duly
documented recursion is admissible. Researching the data of interest is crucial for the
study’s success. A recommendation system that offers the datasets can be used at this
stage (Almeida et al., 2020). However, this solution is not always flexible and effective
as it depends on historical data. The proposal targets this phase as it allows researchers
to locate data efficiently and intuitively. After identifying the relevant databases, the
study continues in the following phases: contacting the data owners, defining access
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policies, analysing data, and publishing results.

Define research question

Find databases of interest

Contact database owners

Analyse data

Stablish study design and protocol

Publishing results

Figure 5.11: Typical observational study pipeline, from the research question definition phase
to publication of the results.

Therefore, after specifying the study protocol, a researcher using the proposed sys-
tem defines the question in natural language handled by the BioKBQA plugin, as shown
in Figure 5.12. This element is integrated into the MONTRA framework to which it
forwards the SPARQL query resulting from the processing of the natural language
question. MONTRA exchanges messages with the SCALEUS-FD ontology repository,
filtering the datasets of interest that return to the user in the last phase. The first
message aims to retrieve the form fields corresponding to the entities present in the
translated query. The second message retrieves the IRIs for the answers for each of
these fields. This second interaction is required since the data about each database is
stored in MONTRA; therefore, SCALEUS-FD cannot filter this in the first interaction.

The BioKBQA plugin is an extension of the system in addition to the two query con-
struction forms available. The first form provides a small set of conjunction-operated
fields for building more straightforward questions. A second form, a complete option
with all fields with disjunction and conjunction operators, is available but complex to
use, which motivated this work.

5.6.1 Future Directions

The semantic database that supports the answers to the questions is not always suf-
ficiently complete. Thus, questions well processed by the question-answering module
end up not getting a response. This limitation has aroused interest in investigating
systems capable of suggesting adjustments to the questions depending on the specific
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Researcher

Making question in free-text

BioKBQA Plugin MONTRA 
Framework SCALEUS-FD

Send SPARQL query for details

Retrieve databases of interest

Send SPARQL to MONTRA Core

Retrieve details’ IRIs

MONTRA Framework filters datasets of 
interest by matching the annotated attributes 

and values with the retrieved IRIs

Plugin association - SDK layer

Send SPARQL query for schema

Retrieve schema’s IRIs

Figure 5.12: Interaction diagram showing the interactions between the different systems
involved in answering a question asked by a researcher using natural language.

knowledge base. It is also interesting to increase the available data while simultane-
ously considering unstructured data, such as text. If this is the case, one is considering
hybrid systems, which have also aroused great interest.

Sometimes the created ontologies reveal a limited scope concerning possible ques-
tions of interest that researchers need to ask, resulting in lower user adherence because
of that data incompleteness. One way to mitigate the incompleteness of ontologies is
to find more powerful methods of mining entities and relationships in a text corpus.
The idea is to find new entities and relationships, allowing answers to a broader range
of questions.

5.7 Summary

Multicentre studies empower clinical research by extending the research to different
populations with similar characteristics. However, finding databases of interest is com-
plex due to the vast number of data partners in the community. Some of these databases
are currently characterised in catalogues, but identifying the right ones using traditional
filters is difficult and time-consuming.

The proposed system extends the functionality of biomedical database catalogues
to simplify searching for databases. So, in addition to the possibility of using forms
to build queries, one can now use an interface that accepts questions in natural lan-
guage. The method uses automatically constructed templates and is based on creating
an ontology that is used to annotate the descriptors of the databases of interest. The
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proposal was implemented using established biomedical tools and was validated con-
sidering a catalogue of datasets related to Alzheimer’s disease.

Although this system was applied in a catalogue of databases of Alzheimer’s disease
patients, the technical aspects of this system are not limited to this disease. This strat-
egy can be applied to other, more generic, databases by defining a different ontology.
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Visualisation of Semantic Data

Medical studies enable a deeper understanding of health conditions, diseases and treat-
ments, helping improve medical care services. In observational studies, it is crucial to
select adequate datasets to ensure the study’s success and the quality of the results
obtained. Biomedical databases often have restricted access policies and governance
rules. Thus, an adequate description of their content is essential for researchers who
wish to use them to conduct medical research. A strategy for publishing information
without disclosing patient-level data is through database fingerprinting and aggregate
characterisations. However, this information is still presented in a format that makes it
challenging to search, analyse, and decide on the best databases for a domain of study.

Several strategies can be used to visualise and compare the characteristics of multiple
biomedical databases. This study focused on a European platform for biomedical data
sharing and dissemination. Semantic data visualisation techniques were used to assist
in comparing descriptive metadata from several databases. The great advantage lies
in streamlining the database selection process, ensuring that sensitive details are not
shared. To address this goal, two levels of data visualisation were considered, one
characterising a single database and the other involving multiple databases in network-
level visualisations.

Regarding observational studies, during the feasibility study phase, one defines in-
clusion and exclusion criteria and specific database characteristics to construct the
cohort. However, the comparison of database characteristics and their evolution over
time are not easily identified during this selection. Data comparisons can be made
using the data properties and aggregations, but the inclusion of temporal information
becomes more complex due to the continuous concepts’ evolution over time. Two vi-
sualisation methods are proposed to better describe data evolution in clinical registers
using biomedical standard vocabularies to overcome this issue.

This study revealed the impact of the proposed visualisations and some open chal-
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lenges in representing semantically annotated biomedical datasets. One of this work’s
outcomes was identifying future directions in this scope.

6.1 Contextualisation

The secondary use of health data is currently a common strategy in medical research to
conduct observational studies in various domains (Hripcsak et al., 2015), ranging from
pharmacological research to public health policy design (Cheng and Phillips, 2014).
Several steps are necessary to plan and execute this type of study successfully. The
first step is to define the research question focusing on solving the problems. Therefore,
the cohort group is established, with the inclusion and exclusion criteria and the out-
puts to be evaluated. After formalising the study protocol, researchers must identify
relevant information resources and possible data partners. That is accomplished by
contacting the database owners to guarantee a data access agreement, analysing the
data and publishing the research results (Hripcsak et al., 2016). Along this process,
identifying databases of interest is a critical step in conducting high-quality observa-
tional studies. Therefore, solutions that simplify searching for biomedical databases
may help researchers at this stage.

When assembling a cohort for an observational study, medical researchers need
to choose and access the most suitable databases for the purposes pursued. This
task becomes simpler when database catalogues oriented to the scientific community’s
interests to which the researcher belongs are available (Sequeira et al., 2021). Using
these resources becomes even more necessary in the case of multicentre studies, where
the achievement of the study objectives brings more challenges in terms of research
protocol development, work management, and harmonised access to data (Almeida et
al., 2021).

Biomedical data is prevalent in the international scientific landscape, enabling the
creation of numerous repositories and databases published online (Kolker et al., 2012).
For the benefit of researchers who need these sources of information to conduct their
research, mechanisms to find data are required. Although retrieving information from
web pages using search engines has been usual for many years, the same solution for
data repositories is still at an early stage (Brickley et al., 2019). Another way is to
use database catalogues. Data owners use catalogues to publish descriptive informa-
tion about their databases. They provide database fingerprint information, which is
characteristics of the database content, including institutional details and the access
policies and governance rules (Oliveira et al., 2019; Silva et al., 2018).

Some illustrative examples of catalogues in biomedicine can be considered. Cafe
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Variome1, for instance, enables data discovery based on the semantic similarity of dis-
eases, phenotypes and drugs, relating patient data to the terms of an ontology (Lan-
caster et al., 2015). YummyData2 monitors SPARQL endpoints to collect biomedical
linked data (Yamamoto et al., 2018). FAIRsharing3 is another resource that describes
and links data policies, repositories and databases, with a strong focus on the natural
sciences (Sansone et al., 2019).

Database catalogues make information accessible from a centralised access point.
However, sometimes it is still not trivial to choose the best data sources. When there
are different databases satisfying different requirements, performing more specific stud-
ies may be complex, such as conducting patient-level prediction studies (Bos et al.,
2018). In this type of study, researchers need to identify the datasets used to train the
prediction models and the datasets used to validate the predictions (Reps et al., 2018).
These decisions usually involve a deeper understanding of the datasets publicised by
the community. It is desirable to lighten the burden of these choices by having some
recommendation mechanism or user-friendly interfaces allowing the data to be queried
in a way that is both simple to use and able to provide non-trivial results (Gall et al.,
2008).

When using a recommendation system, recommendations are based on rules that
can be more or less adaptive to new situations (Almeida et al., 2020). While history-
based learning, when using these tools, can lead to better results over time, it is still not
the best approach for many cases. Queries can be built using forms that combine the
descriptive metadata of the datasets of interest for better results. However, creating
more complex queries is not always easy. The use of natural language interfaces can
greatly facilitate searches (Pereira et al., 2022), but even with a good search strategy,
reading the results may not be intuitive enough.

The presentation of semantic search results for metadata is usually reduced to simple
tabular data (Lancaster et al., 2015; Yamamoto et al., 2018; Sansone et al., 2019).
However, presenting tabular data does not take advantage of the relationships that link
the various entities. Graphs are another common way of giving semantic data (Lopes
and Oliveira, 2013), but they may not provide the best information for extensive graphs.
On the other hand, mechanisms are also wanted that allows browsing the data and
possibly building new queries. Using information visualisation helps improve decision
processes. Adding visualisations to biomedical database catalogues allows for better
analyse and comparing data from a single database or assessing the network level of
several databases.

1https://www.cafevariome.org/
2http://yummydata.org/
3https://fairsharing.org/
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Medical data are constantly evolving (Siegler, 2010). Therefore the time dimension is
of interest to the data selection process. Incorporating the concepts’ temporal evolution
into these two visualisation levels can mitigate possible data scarcity. Is convenient to
store information about insertions, deletions, and data changes. Historical data could
increase the range of possible options regarding database selection, attending that it
is not uncommon for biomedical data catalogues to have a log system allowing for
tracking data over time. However, this data is only used to verify the sanity of the
solution or carry out data restoration actions in case of system disruptions (Chiueh
and Pilania, 2005).

This work explores different visualisation and comparison techniques applied to se-
mantic data. The analysis identifies points that can be improved in a catalogue used to
publish metadata from multiple health databases, exemplifying the transverse limita-
tions of the most common catalogues. Possible visualisations for semantic information
in different health contexts are shown. The objective is to understand the best strate-
gies to represent data applied to this domain and identify the open challenges for better
representation of biomedical datasets. Two types of visualisation that show the tempo-
ral evolution of semantic data are also proposed. The first proposal intends to present
the data at the database level and allows to see the temporal evolution of a particular
selected element. The second proposal aims to visualise the temporal evolution of the
data at the semantic network level. The main goal of these visualisations is to improve
the use of biomedical data catalogues to help researchers make better data choices for
their research studies.

6.2 Background

Visualising and interacting with semantic data improves the way researchers find and
perceive the most relevant information for their studies. This section addresses the
visualisation and comparison of semantic data and the problem of criteria changing for
the inclusion or exclusion of elements in an observational study.

6.2.1 Querying and Visualisation of Semantic Data

The visualisation of semantic data ranges from the simple organisation of semantic
triples in tables to the visualisation of graphs taking advantage of the relationships
between the different entities. This last form allows richer visualisations; still, it is
not uncommon to fall into scenarios where the high number of entities and relation-
ships prevents a clear reading by users. Some examples of solutions for querying and
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visualising semantic data can be presented. Yet Another SPARQL GUI (YASGUI)4

(Figure 6.1) is a SPARQL client that uses module tabs to allow independent access
to multiple endpoints (Rietveld and Hoekstra, 2013). The tool is packaged with auto-
complete support, syntax checking, syntax highlighting, query sharing, query retention,
and file upload/download.

Figure 6.1: Screenshot of the YASGUI interface. The SPARQL queries input area can be seen
at the top of the available module tab. At the bottom pane, can be seen the query results
using different views.

SPARQLGraph5 is a web-based platform implemented using the diagramming li-
brary mxGraph6 for graphically querying biological semantic databases (Schweiger et
al., 2014). Users can compose graph queries on a drawing board by adding new visual
elements (nodes and edges). Users can only choose between elements resulting from a
previous choice made by the tool’s creators, which is a limitation.

The PIBAS FedSPARQL7 (Djokic-Petrovic et al., 2017) solution (Figure 6.2) was
applied to a use case where data is collected from tests with bioactive substances and
annotated against an ontology. The proposed solution enables the federation of those
data with supplementary information that can be extracted from global initiatives
such as Bio2RDF (Callahan et al., 2013), Chem2Bio2RDF (Chen et al., 2010), and
the EMBL-EBI platform (Li et al., 2015). The system offers templates and generates
static federated SPARQL queries for retrieval of relevant information. The results are
presented in tabular form.

The Spatial-Temporal Content Explorer (SPEX)8 (Scheider et al., 2017) is a tool for
4https://github.com/TriplyDB/Yasgui
5https://github.com/tadKeys/sparqlgraph
6https://jgraph.github.io/mxgraph/
7https://github.com/marijadjokic/PIBASFedSPARQL
8https://github.com/lodum/SPEX
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Figure 6.2: Screenshot of the PIBAS FedSPARQL interface. At the bottom, can be appreci-
ated the tabular view of the results of a query.

visualising the temporal and spatial dimensions encoded in semantic data. Users can
construct queries using a graph, or they can issue SPARQL queries directly. Figure 6.3
shows the different panels of interest in the application interface.

Figure 6.3: Screenshot of the SPEX interface. At the upper left is the query pane to construct
query patterns. The space-time filter pane is at the upper right. At the bottom is a tabular
presentation of results and a SPARQL query box.

Lekschas and Gehlenborg (2017) proposed SATORI9 (Figure 6.4), an integrative
search and visual exploration interface for biomedical data repositories. It allows per-
forming ontology-guided visual exploration, enabling researchers to search, browse and
semantically query data repositories seamlessly. The solution is based on a fixed list
of datasets and does not automatically incorporate a methodology to infer structural

9https://satori.lekschas.de/
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information (ontology). Nor can be connected to an arbitrary SPARQL endpoint,
immediately starting to navigate the data.

Figure 6.4: The interface of SATORI consists of the dataset and exploration view.

Semantic data have a graph or network structure that allows graph visualisations,
emphasising the relationships between the various entities. Elaborated and high-
level programming languages with abstraction layers can be directly used to construct
graphs, establishing a balance between expressiveness and ease of programming. The
lower the degree of abstraction, the greater the requirement for programming knowledge
and the lower the productivity. Some data subtleties can be captured with lower-level
programming, which otherwise might go unnoticed. However, visualisation libraries
are naturally used in most applications because they provide convenient resources for
various applications (Li et al., 2022).

Despite the various display options presented, limitations remain. There are strate-
gies to create different dashboards to visualise data and compare them. However,
regarding semantic data, the availability of filters is more limited. For example, when
a researcher wants to select a set of databases to answer the research questions and
notices that the initial cohort is not the most suitable for the study to be carried out.
Or when adjusting some of the returned parameters according to specific needs, such
as adding a certain threshold. Another typical situation is when choosing a set of
patients suffering from a particular disease or taking a specific drug. It is necessary to
navigate the underlying ontology by visually adjusting the parameters to generate new
data queries.
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6.2.2 Interacting with Semantic Data Visualisations

A visual query system (VQS) is a non-formal solution to database querying that uses
visual representations to depict the domain of interest and help express knowledge base
queries. VQS divides into form-based, diagram-based, icon-based, faceted, and hybrid.
A form (e.g., a table) is a named collection of objects with the same structure and is the
most basic approach after plain text use. Diagram-based representations (e.g., a graph)
allow exploring and showing relationships between entities. Icons denoting entities
allow performing queries by combinations according to some spatial syntax on icon-
based solutions. Faceted systems use classifications that organise items into multiple
independent views. Solutions that combine more than one visual representation are
called hybrid solutions (Catarci et al., 1997; Lloret-Gazo, 2016).

Proper development of information systems depends on understanding users’ needs.
It is necessary to have exploratory search mechanisms to use data repositories help-
fully. As highlighted by Marchionini (2006), short queries typed into search boxes do
not fulfil current users’ needs. Compared to analytical search strategies that depend
on a carefully planned series of questions, browsing depends on on-the-fly choices, en-
compassing selection, navigation, and most importantly, trial-and-error tactics. Query
suggestions are also expected. This dynamic behaviour poses many challenges because
the system should follow users’ expectations, providing rich interactive features.

Strictly related to user interfaces allowing working at multiple levels of detail, Cock-
burn et al. (2009) identified four approaches: overview+detail, zooming, focus+context,
and cue-based techniques. The overview+detail approach creates a spatial separation
between contextual and detailed information. Zooming allows perspectives with vary-
ing degrees of proximity to the objects of interest (with temporal separation between
the views). Focus+context allows integrating both focus and context into a single
display. Finally, cue-based depicts the elements modified to highlight, suppress, or
contextualise them.

In general, information visualisation has two main dimensions: representation and
interaction. Regarding the first dimension, there are many possibilities for graph rep-
resentation, as can be seen in Figure 6.5, like arc diagrams, area grouping, centralised
burst, radial convergence, centralised ring, circled globes, circular ties, spheres, and
scaling circles (Lima, 2011).

Yi et al. (2007) and Heer and Shneiderman (2012) pointed out the following guide-
lines for interaction techniques:

• Visualise data by choosing visual encodings;

• Organise multiple windows and workspaces;

82



Chapter 6. Visualisation of Semantic Data

Source: Lima (2011).

Figure 6.5: The 15 typologies of network visualisation. In arc diagrams, a single axis is used
to display all nodes and semicircles to represent the arcs. Area grouping makes clusters of
interconnected nodes evident, and a centralised burst highlights important nodes identifiable
as highly connected. Tree graphs can be visualised using ramifications. Radial convergence
allows visualising relations between nodes arranged in a circle. A centralised ring can be
used to check the relationship of multiple nodes with a single central node. Circled globes are
projections of other topologies on a globe. Circular ties connect several centralised rings to a
central node. It can be helpful to have nodes and arcs drawn on spheres. Scaling circles allow
aggregating of similar nodes. Other basic network depictions include elliptical implosion, flow
chart, organic rhizome, segmented radial convergence, and radial implosion.

• Select and mark something as interesting;

• Explore (navigate) to show something else;

• Reconfigure to deliver a different arrangement;

• Encode to offer a diverse depiction;

• Abstract (elaborate) to see more or less detail;

• Filter to see something conforming to a condition;

• Connect (coordinate) to see related items

• Sort items to expose patterns;

• Derive values or models from source data;

• Record analytics history for revisitation, review, and sharing;
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• Annotate patterns to document findings.

Interaction must adapt to the particular problem to be solved, and it organises
around a user’s intent, hiding the system’s low-level interaction details. In our context,
visualisation means choosing the application layout that best fits users’ intents. It
ties in closely with organising multiple windows and workspaces. The “select” feature
allows users to mark and track items of interest, like nodes and edges. When exploring
(navigating), users want to examine a different subset of data cases to gain understand-
ing and insight. The abstraction/elaboration interaction provides the necessary level
adjustment of a data representation, while the filtering can reduce the representation’s
complexity by hiding the elements that are not relevant to the user. The “connect”
primitive traces the same object when presented simultaneously in different views. The
sorting operation is used to surface trends or organise data around some analysis unit.
Through their actions, users create imminently unrepeatable hypotheses and gener-
ate chains of queries the app must save for future use. The “record” and “annotate”
features are helpful to deal with that issue. “Encoding” allows changes in the visual
appearance of each data element, like changing size or shape. In a more general way,
the reconfiguration feature must provide users with different perspectives to uncover
hidden characteristics of nodes and their relations.

Users’ behaviour is iterative and depends on their cognitive style (Knight and Spink,
2008). However, when referring to usability, aspects belonging to the domain of be-
havioural sciences are not relevant in contrast to the scientific understanding of us-
ability based on experimental data. Evaluation is essential to assess the system’s
relative success compared with others (Elmqvist and Yi, 2015). Elbedweihy et al.
(2015) overviewed semantic search evaluation initiatives, pointing out the importance
of considering information retrieval evaluation activities in general. It is interesting
to know how users’ search requests are handled by performing a system-oriented eval-
uation. Equally crucial are user-oriented assessments. Efficiency, learnability, utility,
and user satisfaction can be highlighted. Typical assessment tools include event logs,
think-aloud, and questionnaires. As a final note, it can be mentioned that Hilbert and
Redmiles (2000) extensively studied the extraction of usability information from user
interface events by processing logs.

Queries can be intuitively built using a query builder with visual artefacts. However,
it is necessary to go further and obtain visualisations that allow reissue questions and
manipulate the results in a flexible way that will enable comparisons and refinements
(e.g., to redefine cohorts).
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6.2.3 Time-evolving Semantic Data

Temporal data management allows querying, accessing and navigating through differ-
ent data versions to understand their evolution or choose pieces of information from
a given moment that are more suited to the user’s interests (Kaufmann et al., 2013).
Within the scope of relational databases, the temporal dimension is considered by cre-
ating specialised data structures to optimise accesses. The same principle is valid for
pure graph databases. For instance, Khurana and Deshpande (2016) proposed a his-
torical graph store for large-scale volumes of data integrating a new temporal graph
index and a temporal graph analysis framework to perform complex temporal analytical
tasks.

Time coding strategy can be divided into copy systems or log systems (Böhlen et
al., 2017). With each change, the updated full copy of the data is saved in the copy
approach. In the log approach, the first complete version of the data is kept, and
changes are recorded in a log. Hybrid systems that consider both approaches can also
be adopted.

Querying data that evolves can follow alternative patterns (Salzberg and Tsotras,
1999). The first considers a time interval and extracts valid entities for that time
interval. Another querying approach takes a time interval and a set of entities to
retrieve those entities’ temporal evolution. Finally, one can take just a collection of
entities and check their entire evolutionary history.

The visualisation of semantic data considering the temporal dimension allows ob-
serving patterns and determining when there is a greater concentration of entities of
interest. Time-oriented data visualisation techniques can be classified from the ar-
rangement point of view as linear or cyclic and from the time primitives point of view
as instant oriented or interval (Aigner et al., 2011).

The discovery and study of patterns are facilitated when using time curves, violating
the linearity of the spatial provision of the most usual timelines. Bach et al. (2016)
consider a non-linear time tape curving according to data similarity at each moment,
with the advantage of being possible to ascertain the depth of the changes.

6.3 Databases for Observational Health

Observational Health Data Sciences and Informatics (OHDSI)10 initiative (Hripcsak
et al., 2015) is an international, interdisciplinary, multi-stakeholder project to develop
applications to access and analyse large-scale observational health data. The core of
this project lies in adopting a common data model for the treatment of health data.

10https://www.ohdsi.org/
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Solutions to extract, transform, and load data from different sources in the proposed
standard format are available, as well as other tools related to the data modelling
process.

Observational Medical Outcomes Partnership (OMOP) promotes the proper use of
observational healthcare databases (Stang et al., 2010). OMOP Common Data Model
(CDM)11 has been proposed as an open relational data model standard designed to
establish the structure and content of observational health data. OMOP CDM allows
the creation of relational databases to load transformed data from other sources of
information. In this data schema, a set of tables was defined to store the standard
vocabularies in an interoperable structure. These tables can represent each vocabu-
lary and all the information associated with it. This is essential to ensure database
interoperability in multicentre studies when using institutions that adopt different vo-
cabularies in the original data. The tables are defined in the collection denominated
“Standardised Vocabularies”.

ATHENA12 (which stands for “Automated Terminology Harmonisation, Extraction
and Normalisation for Analytics) is a standard vocabulary repository based on an au-
tomated building process. ATHENA allows keyword searching for terms using filters
to select the application domain (drugs, conditions, procedures, devices, observations,
and measurements), type of concepts (for classification, standard or not), class, vo-
cabulary and validity. The search results are presented in a tabular format, and it is
possible to browse the terms shown for those lying inside a hierarchy.

6.4 The EMIF Catalogue Use Case

The European Medical Information Framework (EMIF)13 initiative focused on creating
a European Medical Information Framework to provide better healthcare using the
vast amounts of biomedical data available. A web platform was thus designed to
offer a database catalogue (the EMIF Catalogue14) where data custodians can publish
metadata about their biomedical databases with different levels of granularity. The
EMIF Catalogue also enables the creation of communities that gather around common
interests and that, in this way, share and have access to biomedical data of interest to
them (Oliveira et al., 2019).

For each database described in the catalogue, the data custodian must provide
information that constitutes the database fingerprint (Figure 6.6). This information

11https://ohdsi.github.io/CommonDataModel/cdm54.html
12https://athena.ohdsi.org/
13http://www.emif.eu
14https://emif-catalogue.eu/
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has several fields, such as the name of the database, identification of the institution
that owns it, its location, and the person in charge, among others that were defined
collaboratively by the community members. The fingerprint also contains data relating
to the database content, like the number of subjects and clinical information. Therefore,
researchers can find the databases relevant to their investigation by consulting these
fingerprints.

Figure 6.6: EMIF Catalogue database questionnaire form to collect database characteristics.
On the left are several fields to be filled in, and on the right, the different categories of data
to be entered together with the current filling status.

6.4.1 Searching and Visualisation Features

Searching features over biomedical catalogues is common among medical researchers
to identify databases of interest. There are currently several alternatives for searching
for biomedical databases in the most common catalogues, and in particular, in the
EMIF Catalogue. A basic search is to filter the substrings of a word. For example, a
researcher who searches a database with records of patients with Alzheimer’s disease
and starts by entering “alz” will see the system’s suggestions. Another form of basic
search is the selection of value windows, considering a lower and upper limit.

For structured searches, a simple form can be used with fields operated by the logical
conjunction operation (Figure 6.7). These forms are composed of the most relevant
concepts of the fingerprints collected in each community. The main problem with this
approach is that not all fingerprint concepts are considered.

To define a filter using the remaining concepts, EMIF Catalogue has a different
query builder. For more complex questions, a researcher can use a form combining all
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Figure 6.7: EMIF Catalogue simple query form.

possible options and disjunction operators in addition to the conjunction (Figure 6.8).
The results obtained after defining such filters are presented in a result list.

Figure 6.8: EMIF Catalogue advanced query form.

The platform also allows comparing a small set of databases against a reference
database (Figure 6.9). Although this type of comparison is successful in some scenarios,
it lacks an overview of the database network in the health domain.
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Figure 6.9: EMIF Catalogue databases comparison view.

EMIF Catalogue also allows selecting the question sets and databases to be exported
to a spreadsheet. In this case, the researcher can use the Excel features to navigate the
data, which is not user-friendly since it requires a third-party tool. The view to define
this filter is a two-column list to select databases (Figure 6.10).

6.4.2 Steps for Improved Biomedical Metadata Visualisation

The EMIF Catalogue is a platform for biomedical data discovery that adheres to FAIR
(Findable, Accessible, Interoperable, and Reusable) principles (Trifan and Oliveira,
2018). The solution supports data sharing for different communities, such as the com-
munity interested in research on Alzheimer’s disease. The system uses ontologies to
model the metadata to allow the annotation of several levels of information to describe
the databases registered in the catalogue. The community members can annotate the

Figure 6.10: EMIF Catalogue two-column list selector.
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concepts for the questions, and at a deeper level, they can annotate the answers to
the question in the questionnaire (fingerprint). They can also have higher annotations,
namely to the community itself, so the community can be related to others in the
system that share the same interests.

Although the initial analysis focused on the EMIF Catalogue, it was noticed that
the tabular format is the most commonly used in such platforms. Some may have
charts representing specific concepts, but a lack of visualisations using semantic data
in health database catalogues is identifiable. This fact significantly limits users’ options
when selecting the databases of interest for a new research study, resulting in the reuse
of databases that the researchers are familiar with instead of selecting others in the
community with the potential to empower their findings.

6.4.3 Measuring User Behaviour

Quality improvement is part of the software lifecycle and can be guided by metrics and
thresholds that trigger the improvement process (Agnihotri and Chug, 2021). Evalu-
ating the information visualisations currently available in the catalogue can show how
best to introduce improvements. The platform has more than 1,600 registered users,
distributed among 11 communities. The system was initially designed to collect just a
few metrics about specific views for debugging and functionality improvements. How-
ever, this log is helpful in providing an overview of user actions on the platform. Only
the records of the last two years were used for this study.

EMIF Catalogue uses in its core the Django-Hitcount15 for collecting user metrics.
This package counts the number of hits for a particular object in the code. For instance,
the number of hits on buttons and links that open the different views that expose the
information searched for by users was studied by looking at the logs.

From the study of the logs, the conclusion is that users prefer to use views that
allow individual dataset fingerprints to be consulted. However, the lack of comparison
features in this platform and the appeals in some communities for overviews of the
databases in the network motivated this work.

6.5 Ontology-driven Visualisations Scenarios

Visualising semantic data gives a perception of different situations and guides users
in decision-making. Decisions can be based on studying database descriptions, com-
paring databases, and filtering and browsing data. These three search levels allow for

15https://django-hitcount.readthedocs.io/en/latest/
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informed choices in conducting observational studies. It is also necessary to consider
adequate data structures to capture the temporal evolution of concepts. In this section,
visualisation proposals for all the aforementioned levels of abstraction are presented.

6.5.1 Temporal Knowledge Bases

It is necessary to define a data structure to capture the temporal evolution of the
entities and relationships of an ontology. Recalling the knowledge base concept:

A Knowledge Base is an edge labelled multi-digraph K = (V, E∗) that is defined by a
node set V = V1 ∪ V2 and a labelled arc set E∗ = {(v1, l, v2) : v1 ∈ V1, v2 ∈ V2, l ∈ L}, l

being an element of the label set L.

Adding the time dimension to this data model allows the following definition:

A Temporal Knowledge Base (TKB) is a triple of the form K = (V, E∗, T ), with V

and E∗ as defined before, and a set T = Ti × Tf of timestamps.

The ontological concepts and individuals constitute the set of vertices. Two times-
tamps are associated with each entity. The first timestamp, ti ∈ Ti, records the moment
of inserting the element in the KB. The second timestamp, tf ∈ Tf reports the moment
of concept evolution (removal or alteration). Thus, a timespan is implicitly defined,
useful for applications, namely when discussing visualisations.

Following FAIR principles, removing a concept does not determine its exclusion
from the TKB. The TKB arcs indicate the relationships between the different KB
entities. As a simplification, the temporal dimension is considered only for concepts,
thus excluding individuals. The relationships that make up the KB arcs are also
temporally annotated. Relationships are only marked when they are inserted to avoid
inconsistencies. Thus, the evolution of a relationship generates a new relationship that
does not affect the triples previously entered.

6.5.2 Database-level Visualisations

Information visualisation makes it easier to choose whether to include or exclude a
database when faced with many database descriptors. Treemaps provide a visualisa-
tion of data hierarchies using nested coloured rectangular shapes. Treemaps are an
alternative to visualise hierarchical structures in a compact way that allows a quick
view of the relationship between the amounts of elements for each data category. When
creating this type of visualisation, each category is assigned a rectangle subdivided into
smaller nested rectangles representing the subcategories of data. Each rectangle size
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is calculated by taking the proportion of elements from each category or subcategories
concerning all data. It is usual to use different colours to allow even easier reading at
a glance. This type of visualisation is not suitable for ontologies that contain cycles,
as it generates a recursion phenomenon that prevents the construction of the treemap.

The EMIF Catalogue has thousands of instances for a wide range of concepts. In
addition to viewing how item percentages affect the size of rectangles, the treemap
view must provide numerical information (Figure 6.11). When selecting one of the
rectangles, more detailed information about that entity should be presented.

Figure 6.11: UI mockup proposal of a treemap visualisation.

Semantic data find the most natural form of representation in visualisations that
use graphs since it is easy to appreciate the entities and the relationships between
them (Dadzie and Pietriga, 2016). However, when the number of elements increases,
there is a significant loss of legibility of the presented information. The strategy to
address this problem is to focus on some criterion that allows the creation of more un-
derstandable visualisations for users. Of the multiple possible criteria, the interest in
visualisation at the database level aims to focus the user’s attention on that database.
Therefore, the entities and relationships related to this information must appear promi-
nently in the foreground, introducing a differentiation that can be achieved by changing
the visualised elements’ dimension and colour.

Figure 6.12 shows a graph representing links between different EMIF Catalogue
concepts. Each entity is represented by a point that can be clicked to obtain more
detailed information. Researchers should be able to navigate the graph by selecting
successive points. In this way, it is possible to perceive how the different represented
instances are related.
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Figure 6.12: UI mockup proposal of graph visualisation.

The capture of the temporal dimension allows the study of the evolution of data
classes and their instances. This leads to the need to store the history of the elements
to be monitored on the data side. The storage functionality is already implemented in
the EMIF Catalogue, which keeps historical data in log files that can be accessed to
operationalise the temporal visualisation of the entities of interest. From the visuali-
sation point of view, a timeline is available for each entity or relationship clicked on by
the user. There is also a snapshot of a given instant where researchers can see data at
that given point in time.

For the EMIF Catalogue, there is interest in a graph-type visualisation in which it
is possible to choose any node and see its temporal evolution highlighted (Figure 6.13).
If there is no associated historic data, only the current instance should be presented.
The timeline allows navigating through different moments in time to study the state
of the selected entity.

As new concepts are added, modified or removed from the ontology, the different
versions that document these changes are saved and serve as a basis for visualisations.
Visualisations that do not consider other moments in time aggregate all the infor-
mation, making the presentation of different concepts confusing. With the proposed
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Concept

2022202120202019201820172016

Figure 6.13: UI mockup proposal of a temporal chart visualisation (entity-level view).

visualisation, one can navigate the graph and discover temporal details for each node
individually, which helps to have a clearer perception of the data.

6.5.3 Network-level Visualisations

Comparing databases allows informed choices about the data to use in medical studies.
The possibility of visually comparing the contents of different data sources is an added
value. Using a tabular view, researchers can inspect row by row or column by column
to see the greater or lesser density of the data, that is, to understand how many records
of each concept there are in each database. However, when using tables, as is currently
done in database catalogues similar to the EMIF Catalogue, it is challenging to identify
the databases of interest. Depending on the study, sometimes it is necessary to identify
a database to be used for analysis and others for validation. An example of these
cases is the patient-level prediction studies, in which one database is usually chosen to
train machine learning models. These are tested and validated using other databases.
Knowing the number of samples for the concepts in the study helps determine which
databases should be used for training the models. The different ways of comparing
semantic data related to various datasets start from graph views in an attempt to find
comparisons and hierarchies.

A strategy to compare databases is to highlight hierarchical relationships extracted
from the metadata. This form of structuring can be assumed when defining the ontol-
ogy. In fact, “is-a” and “SubClassOf” relationships allow obtaining dendrogram rep-
resentations allowing navigation from a root node to the various branches and leaves.
The right side of Figure 6.14 shows the dendrogram that results from processing data
from the matrix presented on the left side of the figure. The ontology level corresponds
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to a central node that defines its identification and highlights the ontology’s hierar-
chical structure. The concepts are usually under this node, but an intermediate level
(database level) was added at the network level, which allows connecting the existent
concepts in each database under this ontology node. The concept level can have mul-
tiple layers. However, this idea was simplified by presenting only the leaf nodes. By
simply inspecting the degree of intensity of the colour of the leaf nodes at the concept
level, can be seen which databases have more elements of a given concept. Arcs model
the relationships between the different nodes. For example, a quick inspection of the
dendrogram connections shows that concept 4553810 exists in databases A and B.

Ontology level

Database level

Concept level

Concept DB A DB B DB C DB D

3671655 2.4k

4553810 50k 30k

3671560 3.6k

1411491 304k

3708323 12.7k

4561632 23.6k 55k

4561635 271.1k

1411500 43k

1029193 398.6k

3708331 152.9k

3296466 73.4k

Figure 6.14: UI mockup proposal of a dendrogram visualisation.

Although filters omission in this representative figure, the researchers need to search
by the concepts or domains they want to use in the study. The dendrogram is then
updated based on the filter applied. Several sub-layers of relations may appear between
the database and concept level layers, depending on the searched concepts. Only some
nodes at the concept level are presented to avoid overloading the visualisation. It is
possible to focus attention on particular concepts, choosing a node and activating it
to navigate to related nodes, namely in cases where the same concept has different
identifiers in different vocabularies.

There are concepts with an enormous diversity of child concepts, so it is possible
to obtain more details visually using a view like these. For example, in the SNOMED
vocabulary (Stearns et al., 2001), the concept “Aspirin” has more than 700 child con-
cepts when considering the relation “Specific active ingredient of”. The table supports
the dendrogram because the profusion of child concepts makes the visualisation more
challenging to use due to the number of leaf nodes.

Graphs are very effective for comparing concepts in different databases. Although
these are good to represent entities and relationships of each database, they can also add
other linked information to the visualisation that can be semantically asserted. Besides
this visualisation possibility, each node or edge represented can be selected to obtain
more information. As the amount of data to be presented can increase, this type of

95



Chapter 6. Visualisation of Semantic Data

visualisation provides layers that minimise information overload and enhance the focus
on relevant information. The representation of these data is similar to Figure 6.12,
with the addition of one extra layer in the hierarchy of the ontology corresponding to
each database.

Semantic visualisations can use non-traditional formats for specific domains, using
images in their composition. This technique can be used when the elements of a given
variable have a visual translation that simplifies the representation of the information
and increases its value. An example of applying the technique is using drawings of the
geographical representation of countries. In this way, one obtains illustrations of the
geographic origin of the data that are much easier to grasp than merely reading values
in tables. Figure 6.15 shows different databases from different European countries. The
general scenario with all countries and respective databases simultaneously and with
the same detail can be seen on the left side of the figure. On the right, by selecting
some of the countries (e.g., Portugal and Spain), can be seen highlighted the nodes
that represent the databases of these countries.

Figure 6.15: UI mockup proposal of map charts visualisation.

Counting distinct database records allows an understanding of whether a particular
choice will provide adequate data to conduct a study. Heat maps are a quick and
condensed strategy to understand which databases concentrate more data on a given
variable (e.g., number of patients) than previous visualisations. This type of visualisa-
tion takes two dimensions and expresses the magnitude of a given variable by gradually
varying the colour. For a variable with few registers, a paler colour tone is used, and if
having many more, a loaded one is used. This graphic representation enables a quick
understanding of which databases concentrate more records related to a given variable.
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Figure 6.16: UI mockup proposal of a heat map visualisation.

Figure 6.16 shows an example of simplifying the cross-reference information from
databases relating to different domains and different countries of origin of the data.
Darker colour tones indicate the existence of a more significant number of records.

6.5.4 View Refinements

One crucial step when choosing the databases of interest to conduct a study is the
stage in which the researchers need to understand the study feasibility regarding the
study protocol and data available. To maximise the study’s success, this step may
require several refinements since one of the main issues in medical studies is the lack
of subjects with characteristics compliant with the study needs (Rosenbaum, 2017).
Analysing some aspects of semantic information representation more deeply allows for
gaining perspective on details that might otherwise go unnoticed. The most basic way
of manipulating a graphical representation of information is by zooming in on specific
details of a graph.

The refinement of the information displayed can be achieved by combining it with
a form for selecting values. The side-by-side view of the value refinement form and
the preview pane is a powerful tool to guide users’ choices. When a node of interest is
selected, researchers can make choices from a range of values and observe the impact
of this choice on the visualisation being presented. In this way, they create new queries
to the data and get the results interactively.

Visualising data with a temporal dimension should allow smooth navigation between
moments in time. The chart must offer a timeline for each selectable visual element
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and all elements being viewed. This does not prevent the existence of static elements
in time, that is, elements without historical values. In addition to the timeline, each
element with history must present some overlapping representation that indicates the
trend of evolution of values in the window of the closest past and future times, when
applicable.

Figure 6.17 presents a graph-level representation with a temporal dimension. The
bottom contains a timeline that allows selecting a particular year and seeing the state of
the data network at that moment, as shown at the top of the figure. This feature helps
a researcher navigate the different versions of database characteristics and understand
the evolution of specific concepts over time, which may influence the selection of the
database for the study.

2016 2017 2018 2019 2020 2021 2022

Figure 6.17: UI mockup of a temporal chart visualisation (graph-level view).

One can interact with a visualisation that figuratively represents some of the seman-
tic information nodes based on the position of these elements. The selection actions
must drive a reconfiguration of the information presented, giving greater focus to the
parts linked to the selected visual artefacts. It is not desirable that the components
that pass into the background disappear from view, but rather that they become less
prominent. One way to make selected elements stand out is to place them in a central
position. Linked elements must be aligned on the bottom based on the representation
to make their presence evident. The remaining secondary details can be presented in
a smaller size and with more subdued colours.
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6.6 Discussion

To promote the quality of medical studies’ results, researchers must rely on tools that
help them in each decision-making process. The availability of biomedical database
catalogues is an asset for searching biomedical data. In this section, some typical
problems in using database catalogues are discussed, approaching the use of appropriate
visualisations for semantic data.

6.6.1 Impact of Data Visualisations and Interactive Filtering

When researchers seek information to support a medical study, the interest is in know-
ing whether certain concepts are present in the available databases. In addition, they
also need to know if the number of records is enough to support their work. For exam-
ple, the Clinical Practice Research Datalink (CPRD) offers anonymised UK medical
records, enabling the exploration of multiple dimensions such as demographics, symp-
toms and diagnoses (Herrett et al., 2015). The selection process is streamlined when
viewing the percentages of records for each database concept at a glance is possible.
Treemaps allow visualisation of how the records are distributed by different concepts,
facilitating decision-making.

To set up a cohort, researchers need to understand the relationships between the
concepts to iteratively improve the selection process and move forward with confidence
in the choices they make. For instance, Huang et al. (2020) relates epidemiological,
clinical, laboratory, and radiological data to study COVID-19 treatments and out-
comes. Researchers are also interested in navigating between entities and exploring
the ontology’s connection network. They also hope to interact with the visualisation
to fine-tune value windows or study if any concept is more closely linked to others.
They can also use a layout that adds a value selection panel to this representation to
fine-tune specific parameters. Ultimately, researchers can focus on a single node and
explore in more detail the relationships it participates in for a given domain.

Timeline data often profoundly impact the quality of studies. For example, Esteban-
Gil et al. (2017) consider the temporal dimension in using a semantic repository about
cancer patients. The availability of historical data allows for refining the data of interest
and noticing trends. The temporal dimension can be defined more or less blindly. When
guided, visualisation facilitates the perception of hidden aspects, such as moments in
time where data for a given dimension do not exist. Using a semantic data visualisation
that allows exploring the time dimension should enable the choice of database versions
that best suit the study’s design. This way, the variability of updating different data
sources is minimised, and the selection of data related to the concepts of interest is
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improved.

The importance of comparative analysis of biomedical databases to conduct obser-
vational studies has been highlighted by several initiatives, such as the EMIF project or
the Observational Health Data Sciences and Informatics (OHDSI) initiative (Hripcsak
et al., 2015). OHDSI is an international, interdisciplinary, multi-stakeholder project to
develop applications to access and analyse large-scale observational health data. The
approaches described so far focus on exploring the metadata of a particular biomedical
database about which researchers want to form an inclusion or exclusion opinion in a
specific observational study. However, in a multicentre study, it is necessary to have
a network view of the set of available databases to conduct a comparative analysis
of the different options. Some authors have already contributed to this aim, like the
Alzheimer’s disease community that created strategies to standardise distinct datasets
and provide uniform methods to analyse them (Almeida et al., 2021).

Comparing one or more databases is central to performing multicentre studies, such
as patient-level prediction studies. For example, Reps et al. (2021) use multiple health-
care databases to reproduce two prediction models, one on type 2 diabetes and the other
on dementia. A desirable way of deciding on data to train a model is, for instance,
the possibility of comparatively studying the hierarchical structure of several databases.
The availability of visual tools saves time and gives greater security in decision-making.
In short, users have an advantage in seeing graphical representations in the form of a
tree, as proposed before.

A researcher analysing the metadata of a given database may want to explore
whether a particular concept is referred to in other databases. In this case, the idea
is to focus on this single topic and search for it in other data sources. For instance,
platforms for aggregating information on rare diseases usually collect data from dis-
tinct sources. The Diseasecard platform, which is one of these platforms, adopts graph
representation and offers a navigation tree to examine networks of proteomic data and
medical ontologies (Sequeira et al., 2021). With a graph-like representation, it is pos-
sible to select the node representing a concept for a particular database and navigate
to find equivalents in another. The visual representation of nodes and relationships is
the most intuitive way to explore new data from a previously defined concept for this
type of navigation.

The selection of data based on a geographical criterion makes it possible to study
specific populations. This is very common in multicentre studies, and sometimes the
data is desired to belong to a particular country or set of countries. For instance,
Morales et al. (2021) conducted a study using Spanish databases to identify renin-
angiotensin system blockers and their susceptibility to COVID-19. However, making
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choices using visual artefacts can be helpful, especially when keeping other seemingly
less critical information visible. Access to a graphical representation of this type makes
it possible to see several alternatives without losing focus on additional information that
may be interesting to explore.

In medical studies, it is essential to have information on the types of databases per
country and the number of records relating to a given concept, such as the number of
patients with a given pathology. Researchers can quickly access this information using
a heat map that crosses geographical data and the type of patients studied. Despite the
multiple visualisation proposals discussed being a powerful tool to support researchers’
decision-making in their search for biomedical data, several challenges remain.

6.6.2 Open Challenges and Future Directions

Semantic data visualisation is a subject that continues to raise different challenges de-
pending on the volume of data, the complexity of ontologies, and the type of knowledge
to be described. Dimensionality is critical for semantic networks with very high num-
bers of nodes and relationships, making visualisations hard to interpret. It is necessary
to explore the creation of new algorithms based on the semantic network topology to
reduce the weight of dimensionality in the representation of semantic data (Dadzie and
Pietriga, 2016). In one of the EMIF Catalogue communities, the Alzheimer’s disease
community has a structure for collecting datasets’ information composed of more than
430 concepts (Bos et al., 2018). In some views, with this number of concepts combined
with a large number of registered datasets, performing a complete analysis with the
traditional views is challenging for the researcher. However, the alternative, using a
matrix view, is no better. Therefore, investing efforts in segmenting the information
by adopting and implementing the visualisations described in Figures 6.13 and 6.14
would increase the system’s usability.

New challenges arise when the use of multiple ontologies is required. Difficulties are
compounded by annotation heterogeneity, which leads to the need to identify different
terminologies for equal entities. In health database catalogues, this is common due
to the existence of many domain-specific ontologies, such as the Human Phenotype
Ontology (HPO) for phenotypic abnormalities and diseases (Köhler et al., 2016), the
Gene Ontology (GO) for gene functions (Gene Ontology Consortium, 2016), and the
Ontology for Biomedical Investigations (OBI) for scientific investigations (Brinkman et
al., 2010), among others. There are reports of the use of service-oriented architectures
to help in the efficient discovery of heterogeneous datasets in other domains (Zeshan
et al., 2017). The most promising research directions on semantic similarity in the
health domain point to the use of ontology embeddings in supervised learning ap-
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proaches (Kulmanov et al., 2020).
Linking data over multiple semantic databases allows the creation of rich scenarios

for questioning and visualising data. In this scenario, federated queries to obtain the
desired information can be performed. However, performing federated queries remains
challenging. This problem can be tackled by creating new indexing strategies and query
processing schemes (Wylot et al., 2018).

A topic that sometimes goes unnoticed is privacy issues in publicly released cat-
alogue data. There are already some algorithms to ensure data privacy for tabular
data presentations (Sweeney, 2002; Machanavajjhala et al., 2007). However, this topic
was not thoroughly studied when focusing on exposing the maximum knowledge from
biomedical datasets using the proposed visualisations. Therefore, solid strategies are
still needed to ensure the privacy aspects of semantic biomedical data, namely when the
goal is to balance between maximum exposure, the client’s goal, and minimal disclosure
of information, the provider’s concern.

The proposed time-evolving semantic data charts present advantages for researchers
carrying out medical studies that depend on the careful selection of databases. How-
ever, there are some challenges in implementing and adopting the proposed visuali-
sations. Concept evolution characterisation is challenging because it implies keeping
a succession of states that allows the traceability of this evolution. It also means the
need to compare different versions of the same ontology. One is faced with this scenario
when evaluating data at the level of a single database. At the database level, it would
be desirable for two versions of the ontology to see the operations of adding and delet-
ing semantic entities. The visualisation of these two basic operations becomes complex
when all the ontology elements overlap. Cardoso et al. (2020) solve this problem by
building a historical knowledge graph that collects data related to all critical semantic
operations: add, delete, split, move concepts, relationships or attributes. However, this
problem still lacks an adequate solution, and its resolution would allow more informa-
tive visualisations.

6.7 Summary

The correct selection of databases to conduct a medical study may influence its success.
Some studies could not be concluded due to a lack of a substantial number of subjects.
However, researchers may simplify this process using adequate strategies to represent
each database’s characteristics.

Besides the more traditional querying and navigation techniques, interacting with
semantic data using a set of visual artefacts was proposed, i.e., treemaps, graphs,
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dendrograms, heat maps, and temporal charts. This kind of visualisation helps the
exploration of database catalogues in greater depth, enabling analysis at multiple di-
mensions.

Data scarcity is a drawback when conducting observational medical studies. Consid-
ering historical data from the concept evolution of biomedical vocabularies can expand
the range of data choices when using database catalogues. Information visualisation
mechanisms are needed to facilitate decision-making, allowing for a more detailed view
of the evolution of concepts in a database. It is also essential to compare different
databases using the most appropriate data depictions.

The proposals were driven by the challenges of searching databases from a catalogue.
The catalogue that guided the work contains metadata from biomedical databases with
more than 1,000 fingerprints from 11 communities registered in the system. As a result,
semantic data views at the database and network levels were proposed. This analysis
pointed out future directions to develop new frameworks for representing semantic-
based information. Although some of the proposed visualisations can be adopted using
the available open-source solutions, the aim was to identify strategies that take the
most significant advantage of the data using such visualisations. Some of the proposals
may require implementing new features or components in such frameworks. Still, one
of the issues that computational researchers have when trying to advance in the field
of semantic data visualisation is the availability of practical and real use cases where
new visualisations may have a significant impact.
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Conclusions and Future Work

Data integration and interoperability are problems that cause great concern in the sci-
entific fields that depend heavily on the production and treatment of data. Nowadays,
this reality is transversal to many scientific activities, namely life sciences. A commonly
accepted way to alleviate these difficulties is using semantic data.

Creating large amounts of semantic data has led to multiple online repositories.
However, the issue of creating and publishing these databases poses problems that
need to be resolved for the benefit of users. On the other hand, the fact that standard
users are not proficient in using formal query languages prevents them from effectively
using these solutions.

This work aimed to solve the problem of creating and accessing semantic data by
standard users, namely research domain specialists non-erudite in handling formal ques-
tioning languages.

7.1 Outcomes

A systematic literature review of the state-of-the-art KBQA systems was carried out,
classifying the identified systems into four types of architecture. There are proposals
that use classical semantic parsers to convert natural language questions into queries
in a formal language, such as SPARQL. Another architectural type replaces part of
this pipeline by direct subgraph lookup. Systems that use templates were also men-
tioned, and, finally, end-to-end systems that dispense entirely with the conversion of
the question in natural language into a formal language. This work was published in
the following paper:

Arnaldo Pereira, Alina Trifan, Rui Pedro Lopes, José Luís Oliveira, “Systematic review
of question answering over knowledge bases”, IET Software, 2021, pp. 1-13. https:
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//doi.org/10.1049/sfw2.12028.

The problem of creating and publishing semantic data was approached considering
the FAIR principles. On the one hand, one has to guarantee that the data can be
found in search engines, which implies the creation of mechanisms that allow it to be
seen by crawlers and indexed conveniently. The data must also have a suitable format
that provides interoperability with other data available on the web. It is also necessary
that data repositories are accessible under conditions established transparently and
recoverable using open standards. These reflections were translated into the paper:

Arnaldo Pereira, Rui Pedro Lopes, José Luís Oliveira, “SCALEUS-FD: a FAIR
data tool for biomedical applications”, BioMed Research International, 2020, pp. 1-8.
https://doi.org/10.1155/2020/3041498.

The result of this proposal was embedded in a tool for transforming and enriching
semantic data and is freely available at:

https://github.com/bioinformatics-ua/scaleus-fair

A plugin for querying semantic data was implemented and applied to querying meta-
data registered in a catalogue of biomedical databases. The code is available at:

https://github.com/bioinformatics-ua/BioKBQA

The ideas that support the implementation are developed in the paper:

Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, José Luís Oliveira, “Querying
semantic catalogues of biomedical databases.” (Submitted.)

The application of the KBQA solution to data from patients with Huntington’s
disease was reported in the conference paper:

Arnaldo Pereira, Rui Pedro Lopes, José Luís Oliveira, “Easing the questioning of se-
mantic biomedical data”, In: IEEE 34th International Symposium on Computer-Based
Medical Systems (CBMS), 2021, pp. 384-388. https://doi.org/10.1109/CBMS52027.
2021.00044.

Several proposals were made for visualising semantic data to support decision-
making in choosing biomedical databases, using a catalogue. These visualisations were
discussed in the following two papers:

Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, José Luís Oliveira, “Visu-
alising time-evolving semantic biomedical data”, In: IEEE 35th International Sym-
posium on Computer-Based Medical Systems (CBMS), 2022, pp. 264-269. https:
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//doi.org/10.1109/CBMS55023.2022.00053.

Arnaldo Pereira, João Rafael Almeida, Rui Pedro Lopes, José Luís Oliveira, “Semantic
data visualisation for biomedical database catalogues.” (Submitted.)

7.2 Future Work

Several factors affect the quality of semantic data querying systems that have not
been explored in the scope of this work and are lines of future work that deserve close
attention.

• A limitation of the proposal is that it does not deal well with semantic database
incompleteness. One first line of investigation concerns data quality and its im-
pact on the performance of KBQA systems. Semantic data can be generated in
several ways, namely by automated mining of entities and relationships from text.
This process can cause corrupted or incomplete data, and it is necessary to alle-
viate these difficulties. The use of hybrid systems that complement incomplete
information using text information has been explored. Still, this problem remains
open, and its solution could significantly impact the quality of KBQA systems.

• Another limitation related to query systems in general that also impact the us-
ability of KBQA is the ability to guide the user in the formulation of the question.
A possible solution for this topic of great interest that is still open can be con-
structing conversational systems.
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Appendix A

Systematic Review Publications

Table A.1: List of publications included in the systematic review of KBQA.

ID Paper

1
Answering questions with complex semantic constraints on open knowledge
bases (Yin et al., 2015)

2
Applying semantic parsing to question answering over linked data: addressing
the lexical gap (Hakimov et al., 2015)

3 HAWK - hybrid question answering using linked data (Usbeck et al., 2015)

4
How to build templates for RDF question/answering - An uncertain graph
similarity join approach (Zheng et al., 2015)

5
ISOFT at QALD-5: Hybrid question answering system over linked data and
text data (Park et al., 2015)

6 More accurate question answering on Freebase (Bast and Haussmann, 2015)

7
QAnswer - Enhanced entity matching for question answering over linked data
(Ruseti et al., 2015)

8
Question answering over Freebase with multi-column convolutional neural
networks (Dong et al., 2015)

9 Question answering via phrasal semantic parsing (Xu et al., 2014)

10
Semantic parsing via staged query graph generation: question answering with
knowledge base (Yih et al., 2015)

11
SemGraphQA@QALD-5: LIMSI participation at QALD-5@CLEF
(Beaumont et al., 2015)

12
SINA: Semantic interpretation of user queries for question answering on
interlinked data (Shekarpour et al., 2015)

(continued on next page)
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Table A.1 (continued)

ID Paper

13
TR Discover: A natural language interface for querying and analysing
interlinked datasets (Song et al., 2015)

14
AskNow: A framework for natural language query formalization in SPARQL
(Dubey et al., 2016)

15
CFO: Conditional focussed neural question answering with large-scale
knowledge bases (Dai et al., 2016)

16 Character-level question answering with attention (He and Golub, 2016)
17 Constraint-based question answering with knowledge graph (Bao et al., 2016)
18 GRU-RNN based question answering over knowledge base (Chen et al., 2016)

19
Hybrid question answering over knowledge base and free text (Xu et al.,
2016a)

20
Knowledge base question answering based on deep learning models (Xie
et al., 2016)

21 Neural generative question answering (Yin et al., 2016)

22
Qanary - A methodology for vocabulary-driven open question answering
systems (Both et al., 2016)

23
QuerioDALI: Question answering over dynamic and linked knowledge graphs
(Lopez et al., 2016)

24
Question answering on Freebase via relation extraction and textual evidence
(Xu et al., 2016b)

25
The value of semantic parse labelling for knowledge base question answering
(Yih et al., 2016)

26
When a knowledge base is not enough: Question answering over knowledge
bases with external text data (Savenkov and Agichtein, 2016)

27
An end-to-end model for question answering over knowledge base with
cross-attention combining global knowledge (Hao et al., 2017)

28
Automated template generation for question answering over knowledge
graphs (Abujabal et al., 2017)

29
End-to-end representation learning for question answering with weak
supervision (Sorokin and Gurevych, 2017)

30
Improved neural relation detection for knowledge base question answering
(Yu et al., 2017)

(continued on next page)
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Table A.1 (continued)

ID Paper

31
Introducing feedback in Qanary: How users can Interact with QA systems
(Diefenbach et al., 2017b)

32
KBQA: Learning question answering over QA corpora and knowledge bases
(Cui et al., 2017)

33
Matching natural language relations to knowledge graph properties for
question answering (Mulang et al., 2017)

34
Natural language supported relation matching for question answering with
knowledge graphs (Li et al., 2017)

35
Neural network-based question answering over knowledge graphs on word
and character levels (Lukovnikov et al., 2017)

36
QAESTRO—semantic-based composition of question answering pipelines
(Singh et al., 2017)

37
Querying biomedical linked data with natural language questions (Hamon
et al., 2017)

38
Question answering on knowledge bases and text using universal schema and
memory networks (Das et al., 2017)

39 Trill: A reusable front-end for QA systems (Diefenbach et al., 2017a)

40
An attention-based word-level interaction model for knowledge base relation
detection (Zhang et al., 2018)

41
Answering natural language questions by subgraph matching over knowledge
graphs (Hu et al., 2018a)

42
Formal query generation for question answering over knowledge bases (Zafar
et al., 2018)

43
Frankenstein: A platform enabling reuse of question answering components
(Singh et al., 2018a)

44
Never-ending learning for open-domain question answering over knowledge
bases (Abujabal et al., 2018)

45
Novel knowledge-based system with relation detection and textual evidence
for question answering research (Zheng et al., 2018a)

46
Question answering over knowledge graphs: Question understanding via
template decomposition (Zheng et al., 2018b)

47
Svega: Answering natural language questions over knowledge base with
semantic matching (Li et al., 2018)

(continued on next page)
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Table A.1 (continued)

ID Paper

48
Why reinvent the wheel: Let’s build question answering systems together
(Singh et al., 2018b)

49
Answer-enhanced path-aware relation detection over knowledge base (Chen
et al., 2019)

50
Complex query augmentation for question answering over knowledge graphs
(Abdelkawi et al., 2019)

51
ComQA: Question answering over knowledge base via semantic matching
(Jin et al., 2019)

52
Deep query ranking for question answering over knowledge bases (Zafar
et al., 2019)

53
Handling modifiers in question answering over knowledge graphs (Siciliani
et al., 2019)

54
Knowledge base question answering with a matching-aggregation model and
question-specific contextual relations (Lan et al., 2019)

55
Knowledge base question answering with attentive pooling for question
representation (Wang et al., 2019)

56
Learning to answer complex questions over knowledge bases with query
composition (Bhutani et al., 2019)

57
Learning to rank query graphs for complex question answering over
knowledge graphs (Maheshwari et al., 2019)

58
Message passing for complex question answering over knowledge graphs
(Vakulenko et al., 2019)

59
Pretrained transformers for simple question answering over knowledge graphs
(Lukovnikov et al., 2019)

60
A BERT-based approach with relation-aware attention for knowledge base
question answering (Luo et al., 2020a)

61
A state-transition framework to answer complex questions over knowledge
base (Hu et al., 2018b)

62
Data-driven construction of SPARQL queries by approximate question graph
alignment in question answering over knowledge graphs (Bakhshi et al., 2020)

63
Exploring sequence-to-sequence models for SPARQL pattern composition
(Panchbhai et al., 2020)

(continued on next page)
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Table A.1 (continued)

ID Paper

64
Formal query building with query structure prediction for complex question
answering over knowledge base (Chen et al., 2020)

65
Improving question answering over incomplete KBs with knowledge-aware
reader (Xiong et al., 2019)

66
Knowledge base question answering via encoding of complex query graphs
(Luo et al., 2020b)
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KBQA Benchmark Datasets Data
Samples

Table B.1: Data samples from QALD, LC-QuAD, Free917, WebQuestions, WebQuestionsSP,
SimpleQuestions, ComQA, and BioASQ benchmark datasets.

Benchmark
Question, utterance

Target, logic form, answer

QALD

"language" : "en",
"string" : "List all boardgames by GMT.",

"sparql" : "PREFIX dbo: <http://dbpedia.org/ontology/>
(...)
SELECT ?uri WHERE { ?uri dbo:publisher res:GMT_Games }"

LC-QuAD

"question": "What periodical literature does Delta Air
Lines use as a moutpiece?", (...)
"paraphrased_question": "What is Delta Air Line’s
periodical literature mouthpiece?"

"sparql_wikidata": " select distinct ?obj where {
wd:Q188920 wdt:P2813 ?obj . ?obj wdt:P31 wd:Q1002697 } ",
"sparql_dbpedia18": "select distinct ?obj where (...)

(continued on next page)
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Table B.1 (continued)

Benchmark
Question, utterance

Target, logic form, answer

Free917

{"utterance": "what fuel does an internal combustion
engine use",

"targetFormula": "(!fb:engineering.engine.energy_source
fb:en.internal_combustion_engine)"},

WebQ

"utterance": "what is the name of justin bieber
brother?"

"targetValue": "(list (description \"Jazmyn Bieber\")
(description \"Jaxon Bieber\"))"

WebQSP

"RawQuestion": "what is the name of justin bieber
brother?",
"ProcessedQuestion": "what is the name of justin bieber
brother",

"Sparql": "PREFIX ns:
<http://rdf.freebase.com/ns/>\nSELECT DISTINCT
?x\nWHERE \nFILTER (?x != ns:m.06w2sn5)\nFILTER
(!isLiteral(?x) OR lang(?x) = ” OR langMatches(lang(?x),
’en’))\nns:m.06w2sn5 ns:people.person.sibling_s ?y
.\n?y ns:people.sibling_relationship.sibling ?x .\n?x
ns:people.person.gender ns:m.05zppz .\n\n",

SimpleQ

www.freebase.com/fictional_universe/
fictional_character/character_created_by
www.freebase.com/m/037w1 what American cartoonist is
the creator of andy lippincott

www.freebase.com/m/05kg30

(continued on next page)
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Table B.1 (continued)

Benchmark
Question, utterance

Target, logic form, answer

ComQA

"questions": [
"who plays james potter in the harry potter films?",
"who is james potter the harry potter father?"
],

"answers": [
"https://en.wikipedia.org/wiki/robbie_jarvis"
]

BioASQ

"body": "Which 2 medications are included in the Qsymia
pill?",

{
"p": "http://www.w3.org/2008/05/skos-xl#altLabel",
"s": "http://linkedlifedata.com/resource/umls/id/
C0013227",
"o": "http://linkedlifedata.com/resource/umls/label/
A18591068"
}, (...)

117





References

Abad-Navarro, F., C. Martínez-Costa, and J. T. Fernández-Breis (2021). “Semankey:
a semantics-driven approach for querying RDF repositories using keywords.” In:
IEEE Access 9, pp. 91282–91302. doi: 10.1109/ACCESS.2021.3091413.

Abdelkawi, A., H. Zafar, M. Maleshkova, and J. Lehmann (2019). “Complex query
augmentation for question answering over knowledge graphs.” In: Proceedings
of the OTM Confederated International Conferences “On the Move to Meaning-
ful Internet Systems” (OTM), pp. 571–587. doi: 10.1007/978-3-030-33246-4_36.

Abujabal, A., R. Saha Roy, M. Yahya, and G. Weikum (2018). “Never-ending
learning for open-domain question answering over knowledge bases.” In: Pro-
ceedings of the 27th World Wide Web Conference (WWW), pp. 1053–1062. doi:
10.1145/3178876.3186004.

Abujabal, A., M. Yahya, M. Riedewald, and G. Weikum (2017). “Automated template
generation for question answering over knowledge graphs.” In: Proceedings of the
26th International Conference on World Wide Web (WWW), pp. 1191–1200. doi:
10.1145/3038912.3052583.

Affolter, K., K. Stockinger, and A. Bernstein (2019). “A comparative survey of
recent natural language interfaces for databases.” In: The VLDB Journal 28.5,
pp. 793–819. doi: 10.1007/s00778-019-00567-8.

Agnihotri, M. and A. Chug (2021). “Analyzing the relationship between software
metrics and bad smells using critical metric value (CMV).” In: Proceedings of the
13th International Conference on Contemporary Computing (IC3), pp. 450–456.
doi: 10.1145/3474124.3474193.

119

https://doi.org/10.1109/ACCESS.2021.3091413
https://doi.org/10.1007/978-3-030-33246-4_36
https://doi.org/10.1145/3178876.3186004
https://doi.org/10.1145/3038912.3052583
https://doi.org/10.1007/s00778-019-00567-8
https://doi.org/10.1145/3474124.3474193


References

Aigner, W., S. Miksch, H. Schumann, and C. Tominski (2011). “Survey of visual-
ization techniques.” In: Visualization of Time-Oriented Data. Human–Computer
Interaction Series. London: Springer. Chap. 7, pp. 147–254. doi: 10.1007/978-0-
85729-079-3_7.

Almeida, J. R., O. Fajarda, A. Pereira, and J. L. Oliveira (2019). “Strategies to
access patient clinical data from distributed databases.” In: Proceedings of the 12th
International Conference on Health Informatics (HEALTHINF), pp. 466–473. doi:
10.5220/0007576104660473.

Almeida, J. R., E. Monteiro, L. B. Silva, A. P. Sierra, and J. L. Oliveira (2020). “A
recommender system to help discovering cohorts in rare diseases.” In: Proceedings of
the 33rd International Symposium on Computer-Based Medical Systems (CBMS),
pp. 25–28. doi: 10.1109/CBMS49503.2020.00012.

Almeida, J. R., R. Ribeiro, and J. L. Oliveira (2018). “A modular workflow manage-
ment framework.” In: Proceedings of the 11th International Conference on Health
Informatics (HealthInf), pp. 414–421. doi: 10.5220/0006583104140421.

Almeida, J. R., L. B. Silva, I. Bos, P. J. Visser, and J. L. Oliveira (2021). “A method-
ology for cohort harmonisation in multicentre clinical research.” In: Informatics in
Medicine Unlocked 27, pp. 1–9. doi: 10.1016/j.imu.2021.100760.

Androutsopoulos, I., G. D. Ritchie, and P. Thanisch (1995). “Natural language
interfaces to databases – an introduction.” In: Natural Language Engineering 1.1,
pp. 29–81. doi: 10.1017/S135132490000005X.

Angles, R., M. Arenas, P. Barceló, A. Hogan, J. Reutter, and D. Vrgoč (2017). “Foun-
dations of modern query languages for graph databases.” In: ACM Computing
Surveys 50.5, pp. 1–40. doi: 10.1145/3104031.

Angles, R. and C. Gutierrez (2008). “Survey of graph database models.” In: ACM
Computing Surveys 40.1, pp. 1–39. doi: 10.1145/1322432.1322433.

Angles, R., H. Thakkar, and D. Tomaszuk (2020). “Mapping RDF databases
to property graph databases.” In: IEEE Access 8, pp. 86091–86110. doi:

120

https://doi.org/10.1007/978-0-85729-079-3_7
https://doi.org/10.1007/978-0-85729-079-3_7
https://doi.org/10.5220/0007576104660473
https://doi.org/10.1109/CBMS49503.2020.00012
https://doi.org/10.5220/0006583104140421
https://doi.org/10.1016/j.imu.2021.100760
https://doi.org/10.1017/S135132490000005X
https://doi.org/10.1145/3104031
https://doi.org/10.1145/1322432.1322433


References

10.1109/ACCESS.2020.2993117.

Asiaee, A. H., T. Minning, P. Doshi, and R. L. Tarleton (2015). “A framework for
ontology-based question answering with application to parasite immunology.” In:
Journal of Biomedical Semantics 6.1, pp. 1–25. doi: 10.1186/s13326-015-0029-x.

Azad, H. K., A. Deepak, and A. Azad (2021). “LOD search engine: a semantic search
over linked data.” In: Journal of Intelligent Information Systems, pp. 1–21. doi:
10.1007/s10844-021-00687-0.

Bach, B., C. Shi, N. Heulot, T. Madhyastha, T. Grabowski, and P. Dragicevic (2016).
“Time curves: folding time to visualize patterns of temporal evolution in data.” In:
IEEE Transactions on Visualization and Computer Graphics 22.1, pp. 559–568.
doi: 10.1109/TVCG.2015.2467851.

Bakhshi, M., M. Nematbakhsh, M. Mohsenzadeh, and A. M. Rahmani (2020).
“Data-driven construction of SPARQL queries by approximate question graph
alignment in question answering over knowledge graphs.” In: Expert Systems with
Applications 146, pp. 1–19. doi: 10.1016/j.eswa.2020.113205.

Bao, J., N. Duan, Z. Yan, M. Zhou, and T. Zhao (2016). “Constraint-based
question answering with knowledge graph.” In: Proceedings of the 26th Inter-
national Conference on Computational Linguistics (COLING). URL: https :
//aclanthology.org/C16-1236, pp. 2503–2514.

Bast, H. and E. Haussmann (2015). “More accurate question answering on Freebase.”
In: Proceedings of the 24th ACM International Conference on Information and
Knowledge Management, pp. 1431–1440. doi: 10.1145/2806416.2806472.

Beaumont, R., B. Grau, and A.-L. Ligozat (2015). “SemGraphQA@QALD-5: LIMSI
participation at QALD-5@CLEF.” In: Proceedings of the 16th Conference and Labs
of the Evaluation Forum (CLEF). URL: http://ceur-ws.org/Vol-1391/164-
CR.pdf, pp. 1–10.

Beckett, D., T. Berners-Lee, E. Prud’hommeaux, and G. Carothers (2014). RDF
1.1 Turtle: Terse RDF Triple Language. W3C recommendation. URL: https :

121

https://doi.org/10.1109/ACCESS.2020.2993117
https://doi.org/10.1186/s13326-015-0029-x
https://doi.org/10.1007/s10844-021-00687-0
https://doi.org/10.1109/TVCG.2015.2467851
https://doi.org/10.1016/j.eswa.2020.113205
https://aclanthology.org/C16-1236
https://aclanthology.org/C16-1236
https://doi.org/10.1145/2806416.2806472
http://ceur-ws.org/Vol-1391/164-CR.pdf
http://ceur-ws.org/Vol-1391/164-CR.pdf
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/


References

//www.w3.org/TR/turtle/.

Berant, J., A. Chou, R. Frostig, and P. Liang (2013). “Semantic parsing on Free-
base from question-answer pairs.” In: Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Processing (EMNLP). URL: https :
//aclanthology.org/D13-1160, pp. 1533–1544.

Berners-Lee, T. (2006). Linked Data. URL: https://www.w3.org/DesignIssues/
LinkedData.html.

Berners-Lee, T., J. Hendler, and O. Lassila (2001). “The Semantic Web.” In: Scientific
American 284.5, pp. 34–43. doi: 10.1038/scientificamerican0501-34.

Bhutani, N., X. Zheng, and H. V. Jagadish (2019). “Learning to answer complex
questions over knowledge bases with query composition.” In: Proceedings of the
28th ACM International Conference on Information and Knowledge Management,
pp. 739–748. doi: 10.1145/3357384.3358033.

Böhlen, M. H., A. Dignös, J. Gamper, and C. S. Jensen (2017). “Temporal data
management - an overview.” In: Proceedings of the 7th European Summer School
on Business Intelligence and Big Data (eBISS), pp. 51–83. doi: 10.1007/978-3-
319-96655-7_3.

Bollacker, K., C. Evans, P. Paritosh, T. Sturge, and J. Taylor (2008). “Freebase:
a collaboratively created graph database for structuring human knowledge.” In:
Proceedings of the 2008 ACM SIGMOD International Conference on Management
of Data, pp. 1247–1250. doi: 10.1145/1376616.1376746.

Bonino da Silva Santos, L. O., M. Wilkinson, A. Kuzniar, R. Kaliyaperumal, M.
Thompson, M. Dumontier, and K. Burger (2016). “FAIR data points supporting
big data interoperability.” In: Enterprise Interoperability in the Digitized and
Networked Factory of the Future. URL: https://tinyurl.com/ypt7nspf. ISTE
Press, pp. 270–279.

Bordes, A., N. Usunier, S. Chopra, and J. Weston (2015). “Large-scale simple question
answering with memory networks.” In: CoRR abs/1506.02075, pp. 1–10. doi:

122

https://www.w3.org/TR/turtle/
https://www.w3.org/TR/turtle/
https://aclanthology.org/D13-1160
https://aclanthology.org/D13-1160
https://www.w3.org/DesignIssues/LinkedData.html
https://www.w3.org/DesignIssues/LinkedData.html
https://doi.org/10.1038/scientificamerican0501-34
https://doi.org/10.1145/3357384.3358033
https://doi.org/10.1007/978-3-319-96655-7_3
https://doi.org/10.1007/978-3-319-96655-7_3
https://doi.org/10.1145/1376616.1376746
https://tinyurl.com/ypt7nspf


References

10.48550/arXiv.1506.02075.

Borst, W. N. (1997). “Construction of engineering ontologies for knowledge sharing
and reuse.” URL: http://doc.utwente.nl/17864/. PhD thesis. University of
Twente.

Bos, I., S. Vos, R. Vandenberghe, P. Scheltens, S. Engelborghs, G. Frisoni, J. L.
Molinuevo, A. Wallin, A. Lleó, J. Popp, P. Martinez-Lage, A. Baird, R. Dobson,
C. Legido-Quigley, K. Sleegers, C. V. Broeckhoven, L. Bertram, M. t. Kate,
F. Barkhof, H. Zetterberg, S. Lovestone, J. Streffer, and P. J. Visser (2018).
“The EMIF-AD Multimodal Biomarker Discovery study: design, methods and
cohort characteristics.” In: Alzheimer’s Research & Therapy 10.1, pp. 1–9. doi:
10.1186/s13195-018-0396-5.

Both, A., D. Diefenbach, K. Singh, S. Shekarpour, D. Cherix, and C. Lange (2016).
“Qanary - a methodology for vocabulary-driven open question answering systems.”
In: Proceedings of the 13th European Semantic Web Conference (ESWC), pp. 625–
641. doi: 10.1007/978-3-319-34129-3_38.

Brickley, D., M. Burgess, and N. Noy (2019). “Google Dataset Search: building a search
engine for datasets in an open web ecosystem.” In: Proceedings of the 28th World
Wide Web Conference (WWW), pp. 1365–1375. doi: 10.1145/3308558.3313685.

Brickley, D. and R. V. Guha (2014). RDF Schema 1.1. W3C recommendation. URL:
http://www.w3.org/TR/rdf-schema/.

Brinkman, R., M. Courtot, D. Derom, J. Fostel, Y. He, P. Lord, J. Malone, H.
Parkinson, B. Peters, P. Rocca-Serra, A. Ruttenberg, S.-A. Sansone, L. Soldatova,
C. Stoeckert, J. Turner, and J. Zheng (2010). “Modeling biomedical experimental
processes with OBI.” In: Journal of biomedical semantics 1, pp. 1–11. doi:
10.1186/2041-1480-1-S1-S7.

Cai, Q. and A. Yates (2013). “Large-scale semantic parsing via schema match-
ing and lexicon extension.” In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). URL:
https://aclanthology.org/P13-1042, pp. 423–433.

123

https://doi.org/10.48550/arXiv.1506.02075
http://doc.utwente.nl/17864/
https://doi.org/10.1186/s13195-018-0396-5
https://doi.org/10.1007/978-3-319-34129-3_38
https://doi.org/10.1145/3308558.3313685
http://www.w3.org/TR/rdf-schema/
https://doi.org/10.1186/2041-1480-1-S1-S7
https://aclanthology.org/P13-1042


References

Callahan, A., J. Cruz-Toledo, P. Ansell, and M. Dumontier (2013). “Bio2RDF Release
2: improved coverage, interoperability and provenance of life science linked data.”
In: Proceedings of the 10th International Conference on The Semantic Web: Seman-
tics and Big Data (ESWC), pp. 200–212. doi: 10.1007/978-3-642-38288-8_14.

Cardoso, S. D., M. Silveira, and C. Pruski (2020). “Construction and exploitation
of an historical knowledge graph to deal with the evolution of ontologies.” In:
Knowledge-Based Systems 194, p. 105508. doi: 10.1016/j.knosys.2020.105508.

Catarci, T., M. F. Costabile, S. Levialdi, and C. Batini (1997). “Visual query systems
for databases: a survey.” In: Journal of Visual Languages & Computing 8.2,
pp. 215–260. doi: 10.1006/jvlc.1997.0037.

Chen, B., Y. Ding, and D. J. Wild (2012). “Assessing drug target association using
semantic linked data.” In: PLOS Computational Biology 8.7, pp. 1–10. doi:
10.1371/journal.pcbi.1002574.

Chen, B., X. Dong, D. Jiao, H. Wang, Q. Zhu, Y. Ding, and D. Wild (2010).
“Chem2Bio2RDF: A semantic framework for linking and data mining chemoge-
nomic and systems chemical biology data.” In: BMC Bioinformatics 11.1, pp. 1–13.
doi: 10.1186/1471-2105-11-255.

Chen, D., M. Yang, H.-T. Zheng, Y. Li, and Y. Shen (2019). “Answer-enhanced
path-aware relation detection over knowledge base.” In: Proceedings of the 42nd
International ACM SIGIR Conference on Research and Development in Informa-
tion Retrieval, pp. 1021–1024. doi: 10.1145/3331184.3331328.

Chen, S., J. Wen, and R. Zhang (2016). “GRU-RNN based question answering over
knowledge base.” In: Proceedings of the 1st China Conference on Knowledge Graph
and Semantic Computing (CCKS), pp. 80–91. doi: 10.1007/978-981-10-3168-
7_8.

Chen, Y., H. Li, Y. Hua, and G. Qi (2020). “Formal query building with query
structure prediction for complex question answering over knowledge base.” In:
Proceedings of the 29th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 3751–3758. doi: 10.24963/ijcai.2020/519.

124

https://doi.org/10.1007/978-3-642-38288-8_14
https://doi.org/10.1016/j.knosys.2020.105508
https://doi.org/10.1006/jvlc.1997.0037
https://doi.org/10.1371/journal.pcbi.1002574
https://doi.org/10.1186/1471-2105-11-255
https://doi.org/10.1145/3331184.3331328
https://doi.org/10.1007/978-981-10-3168-7_8
https://doi.org/10.1007/978-981-10-3168-7_8
https://doi.org/10.24963/ijcai.2020/519


References

Cheng, H. G. and M. R. Phillips (2014). “Secondary analysis of existing data:
opportunities and implementation.” In: Shanghai Archives of Psychiatry 26.6,
pp. 371–375. doi: 10.11919/j.issn.1002-0829.214171.

Chiueh, T.-c. and D. Pilania (2005). “Design, implementation, and evaluation
of a repairable database management system.” In: Proceedings of the 21st
International Conference on Data Engineering (ICDE), pp. 1024–1035. doi:
10.1109/ICDE.2005.49.

Cockburn, A., A. Karlson, and B. B. Bederson (2009). “A review of overview+detail,
zooming, and focus+context interfaces.” In: ACM Computing Surveys 41.1,
pp. 1–31. doi: 10.1145/1456650.1456652.

Cui, W., Y. Xiao, H. Wang, Y. Song, S.-w. Hwang, and W. Wang (2017). “KBQA:
learning question answering over QA corpora and knowledge bases.” In: Proceedings
of the 43rd International Conference on Very Large Data Bases (VLDB) 10.5,
pp. 565–576. doi: 10.14778/3055540.3055549.

Cyganiak, R., D. Wood, and M. Lanthaler (2014). RDF 1.1 concepts and abstract
syntax. W3C recommendation. URL: https://www.w3.org/TR/rdf11-concepts/.

Dadzie, A.-S. and E. Pietriga (2016). “Visualisation of Linked Data - reprise.” In:
Semantic Web 8.1, pp. 1–21. doi: 10.3233/SW-160249.

Dai, Z., L. Li, and W. Xu (2016). “CFO: conditional focused neural question answering
with large-scale knowledge bases.” In: Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), pp. 800–810.
doi: 10.18653/v1/P16-1076.

Daiber, J., M. Jakob, C. Hokamp, and P. N. Mendes (2013). “Improving efficiency
and accuracy in multilingual entity extraction.” In: Proceedings of the 9th In-
ternational Conference on Semantic Systems (I-Semantics), pp. 121–124. doi:
10.1145/2506182.2506198.

Das, R., M. Zaheer, S. Reddy, and A. McCallum (2017). “Question answering on
knowledge bases and text using universal schema and memory networks.” In:
Proceedings of the 55th Annual Meeting of the Association for Computational

125

https://doi.org/10.11919/j.issn.1002-0829.214171
https://doi.org/10.1109/ICDE.2005.49
https://doi.org/10.1145/1456650.1456652
https://doi.org/10.14778/3055540.3055549
https://www.w3.org/TR/rdf11-concepts/
https://doi.org/10.3233/SW-160249
https://doi.org/10.18653/v1/P16-1076
https://doi.org/10.1145/2506182.2506198


References

Linguistics (Volume 2: Short Papers), pp. 358–365. doi: 10.18653/v1/P17-2057.

Das, S., J. Srinivasan, M. Perry, E. I. Chong, and J. Banerjee (2014). “A tale of
two graphs: property graphs as RDF in Oracle.” In: Proceedings of 17th Interna-
tional Conference on Extending Database Technology (EDBT), pp. 762–773. doi:
10.5441/002/edbt.2014.82.

De Moor, G., M. Sundgren, D. Kalra, A. Schmidt, M. Dugas, B. Claerhout, T.
Karakoyun, C. Ohmann, P.-Y. Lastic, N. Ammour, R. Kush, D. Dupont, M.
Cuggia, C. Daniel, G. Thienpont, and P. Coorevits (2015). “Using electronic health
records for clinical research: the case of the EHR4CR project.” In: Journal of
Biomedical Informatics 53, pp. 162–173. doi: 10.1016/j.jbi.2014.10.006.

Devlin, J., M.-W. Chang, K. Lee, and K. Toutanova (2019). “BERT: pre-training
of deep bidirectional transformers for language understanding.” In: Proceedings
of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and
Short Papers), pp. 4171–4186. doi: 10.18653/v1/N19-1423.

Diefenbach, D., S. Amjad, A. Both, K. Singh, and P. Maret (2017a). “Trill: a reusable
front-end for QA systems.” In: Proceedings of the 14th European Semantic Web
Conference (ESWC), pp. 48–53. doi: 10.1007/978-3-319-70407-4_10.

Diefenbach, D., N. Hormozi, S. Amjad, and A. Both (2017b). “Introducing feed-
back in Qanary: how users can interact with QA systems.” In: Proceedings
of the 14th European Semantic Web Conference (ESWC), pp. 81–86. doi:
10.1007/978-3-319-70407-4_16.

Dimitrakis, E., K. Sgontzos, and Y. Tzitzikas (2020). “A survey on question answering
systems over linked data and documents.” In: Journal of Intelligent Information
Systems 55.2, pp. 233–259. doi: 10.1007/s10844-019-00584-7.

Djokic-Petrovic, M., V. Cvjetkovic, J. Yang, M. Zivanovic, and D. Wild (2017).
“PIBAS FedSPARQL: a web-based platform for integration and exploration of
bioinformatics datasets.” In: Journal of Biomedical Semantics 8, pp. 1–20. doi:
10.1186/s13326-017-0151-z.

126

https://doi.org/10.18653/v1/P17-2057
https://doi.org/10.5441/002/edbt.2014.82
https://doi.org/10.1016/j.jbi.2014.10.006
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1007/978-3-319-70407-4_10
https://doi.org/10.1007/978-3-319-70407-4_16
https://doi.org/10.1007/s10844-019-00584-7
https://doi.org/10.1186/s13326-017-0151-z


References

Dong, L., F. Wei, M. Zhou, and K. Xu (2015). “Question answering over Freebase
with multi-column convolutional neural networks.” In: Proceedings of the 53rd
Annual Meeting of the Association for Computational Linguistics and the 7th
International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 260–269. doi: 10.3115/v1/P15-1026.

Drysdale, R., C. E. Cook, R. Petryszak, V. Baillie-Gerritsen, M. Barlow, E.
Gasteiger, F. Gruhl, J. Haas, J. Lanfear, R. Lopez, N. Redaschi, H. Stockinger,
D. Teixeira, A. Venkatesan, E. C. D. R. Forum, N. Blomberg, C. Durinx, and
J. McEntyre (2020). “The ELIXIR Core Data Resources: fundamental infras-
tructure for the life sciences.” In: Bioinformatics 36.8, pp. 2636–2642. doi:
10.1093/bioinformatics/btz959.

Dubey, M., D. Banerjee, A. Abdelkawi, and J. Lehmann (2019). “LC-QuAD 2.0: a
large dataset for complex question answering over Wikidata and DBpedia.” In:
Proceedings of the International Semantic Web Conference (ISWC), pp. 69–78.
doi: 10.1007/978-3-030-30796-7_5.

Dubey, M., S. Dasgupta, A. Sharma, K. Höffner, and J. Lehmann (2016). “AskNow: a
framework for natural language query formalization in SPARQL.” In: Proceedings
of the 13th European Semantic Web Conference (ESWC), pp. 300–316. doi:
10.1007/978-3-319-34129-3_19.

Dürst, M. and M. Suignard (2005). Internationalized Resource Identifiers (IRIs).
URL: http://www.ietf.org/rfc/rfc3987.txt.

Ehrlinger, L. and W. Wöß (2016). “Towards a definition of knowledge graphs.” In:
Proceedings of the 12th International Conference on Semantic Systems (SEMAN-
TiCS). URL: http://ceur-ws.org/Vol-1695/paper4.pdf, pp. 1–4.

Elbedweihy, K., S. Wrigley, P. Clough, and F. Ciravegna (2015). “An overview
of semantic search evaluation initiatives.” In: Journal of Web Semantics 30.C,
pp. 82–105. doi: 10.1016/j.websem.2014.10.001.

Elmqvist, N. and J. S. Yi (2015). “Patterns for visualization evaluation.” In: Informa-
tion Visualization 14.3, pp. 250–269. doi: 10.1177/1473871613513228.

127

https://doi.org/10.3115/v1/P15-1026
https://doi.org/10.1093/bioinformatics/btz959
https://doi.org/10.1007/978-3-030-30796-7_5
https://doi.org/10.1007/978-3-319-34129-3_19
http://www.ietf.org/rfc/rfc3987.txt
http://ceur-ws.org/Vol-1695/paper4.pdf
https://doi.org/10.1016/j.websem.2014.10.001
https://doi.org/10.1177/1473871613513228


References

Esteban-Gil, A., J. Fernandez-Breis, and M. Boeker (2017). “Analysis and visualization
of disease courses in a semantic enabled cancer registry.” In: Journal of Biomedical
Semantics 8, pp. 1–16. doi: 10.1186/s13326-017-0154-9.

Fajarda, O., L. B. Silva, P. R. Rijnbeek, M. Van Speybroeck, and J. L. Oliveira
(2018). “A methodology to perform semi-automatic distributed EHR database
queries.” In: Proceedings of the 11th International Joint Conference on Biomed-
ical Engineering Systems and Technologies (HEALTHINF), pp. 127–134. doi:
10.5220/0006579701270134.

Fan, J., A. Kalyanpur, D. C. Gondek, and D. A. Ferrucci (2012). “Automatic knowl-
edge extraction from documents.” In: IBM Journal of Research and Development
56.3, pp. 1–10. doi: 10.1147/JRD.2012.2186519.

Fernández, M., A. Gómez-Pérez, and N. Juristo (1997). “METHONTOLOGY:
from ontological art towards ontological engineering.” In: Proceedings of the
Ontological Engineering AAAI-97 Spring Symposium Series. URL: https :
//www.aaai.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf.

Ferré, S. (2017). “Sparklis: an expressive query builder for SPARQL endpoints
with guidance in natural language.” In: Semantic Web 8.3, pp. 405–418. doi:
10.3233/SW-150208.

Francis, L. P. and J. G. Francis (2017). “Data reuse and the problem of group identity.”
In: Studies in Law Politics and Society 73, pp. 141–164. doi: 10.1108/S1059-
433720170000073004.

Francis, N., A. Green, P. Guagliardo, L. Libkin, T. Lindaaker, V. Marsault, S. Plan-
tikow, M. Rydberg, P. Selmer, and A. Taylor (2018). “Cypher: an evolving query
language for property graphs.” In: Proceedings of the 2018 International Conference
on Management of Data, pp. 1433–1445. doi: 10.1145/3183713.3190657.

Gall, C. S., S. Lukins, L. Etzkorn, S. Gholston, P. Farrington, D. Utley, J. Fortune,
and S. Virani (2008). “Semantic software metrics computed from natural language
design specifications.” In: IET Software 2.1, pp. 17–26. doi: 10.1049/iet-sen:
20070109.

128

https://doi.org/10.1186/s13326-017-0154-9
https://doi.org/10.5220/0006579701270134
https://doi.org/10.1147/JRD.2012.2186519
https://www.aaai.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
https://www.aaai.org/Papers/Symposia/Spring/1997/SS-97-06/SS97-06-005.pdf
https://doi.org/10.3233/SW-150208
https://doi.org/10.1108/S1059-433720170000073004
https://doi.org/10.1108/S1059-433720170000073004
https://doi.org/10.1145/3183713.3190657
https://doi.org/10.1049/iet-sen:20070109
https://doi.org/10.1049/iet-sen:20070109


References

Garcia-Silva, A., J. M. Gomez-Perez, R. Palma, M. Krystek, S. Mantovani, F. Foglini,
V. Grande, F. De Leo, S. Salvi, E. Trasatti, V. Romaniello, M. Albani, C. Silvagni,
R. Leone, F. Marelli, S. Albani, M. Lazzarini, H. J. Napier, H. M. Glaves, T.
Aldridge, C. Meertens, F. Boler, H. W. Loescher, C. Laney, M. A. Genazzio, D.
Crawl, and I. Altintas (2019). “Enabling FAIR research in Earth Science through
research objects.” In: Future Generation Computer Systems 98, pp. 550–564. doi:
10.1016/j.future.2019.03.046.

Gayo, J. E. L., D. F. Álvarez, and H. García-González (2018). “RDFShape: an RDF
playground based on shapes.” In: Proceedings of the 17th International Semantic
Web Conference (ISWC). URL: http://ceur-ws.org/Vol-2180/paper-35.pdf,
pp. 1–4.

Gene Ontology Consortium (2016). “Expansion of the Gene Ontology knowledge-
base and resources.” In: Nucleic Acids Research 45.D1, pp. D331–D338. doi:
10.1093/nar/gkw1108.

Goel, S., A. Broder, E. Gabrilovich, and B. Pang (2010). “Anatomy of the long tail:
ordinary people with extraordinary tastes.” In: Proceedings of the Third ACM
International Conference on Web Search and Data Mining, pp. 201–210. doi:
10.1145/1718487.1718513.

Golshan, B., A. Halevy, G. Mihaila, and W.-C. Tan (2017). “Data integration:
after the teenage years.” In: Proceedings of the 36th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems, pp. 101–106. doi:
10.1145/3034786.3056124.

Goodman, A., A. Pepe, A. W. Blocker, C. L. Borgman, K. Cranmer, M. Crosas, R.
Di Stefano, Y. Gil, P. Groth, M. Hedstrom, D. W. Hogg, V. Kashyap, A. Mahabal,
A. Siemiginowska, and A. Slavkovic (2014). “Ten simple rules for the care and
feeding of scientific data.” In: PLOS Computational Biology 10.4, pp. 1–5. doi:
10.1371/journal.pcbi.1003542.

Green, B. F., A. K. Wolf, C. Chomsky, and K. Laughery (1961). “Baseball: an
automatic question-answerer.” In: Papers Presented at the May 9-11, 1961,
Western Joint IRE-AIEE-ACM Computer Conference, pp. 219–224. doi:

129

https://doi.org/10.1016/j.future.2019.03.046
http://ceur-ws.org/Vol-2180/paper-35.pdf
https://doi.org/10.1093/nar/gkw1108
https://doi.org/10.1145/1718487.1718513
https://doi.org/10.1145/3034786.3056124
https://doi.org/10.1371/journal.pcbi.1003542


References

10.1145/1460690.1460714.

Groth, P., A. Loizou, A. J. G. Gray, C. Goble, L. Harland, and S. Pettifer (2014).
“API-centric Linked Data integration: the Open PHACTS Discovery Platform case
study.” In: Journal of Web Semantics 29, pp. 12–18. doi: 10.2139/ssrn.3199140.

Gruber, T. R. (1993). “A translation approach to portable ontology specifications.”
In: Knowledge Acquisition 5.2, pp. 199–220. doi: 10.1006/knac.1993.1008.

Gubichev, A., S. Bedathur, S. Seufert, and G. Weikum (2010). “Fast and accurate
estimation of shortest paths in large graphs.” In: Proceedings of the 19th ACM
International Conference on Information and Knowledge Management (CIKM),
pp. 499–508. doi: 10.1145/1871437.1871503.

Guha, R., R. McCool, and E. Miller (2003). “Semantic search.” In: Proceedings of the
12th International Conference on World Wide Web (WWW), pp. 700–709. doi:
10.1145/775152.775250.

Hakimov, S., C. Unger, S. Walter, and P. Cimiano (2015). “Applying semantic parsing
to question answering over linked data: addressing the lexical gap.” In: Proceedings
of the 20th International Conference on Applications of Natural Language to
Information Systems (NLDB), pp. 103–109. doi: 10.1007/978-3-319-19581-0_8.

Hamon, T., N. Grabar, and F. Mougin (2017). “Querying biomedical Linked Data
with natural language questions.” In: Semantic Web 8.4, pp. 581–599. doi:
10.3233/SW-160244.

Hanspers, K., M. Kutmon, S. L. Coort, D. Digles, L. J. Dupuis, F. Ehrhart, F. Hu,
E. N. Lopes, M. Martens, N. Pham, W. Shin, D. N. Slenter, A. Waagmeester,
E. L. Willighagen, L. A. Winckers, C. T. Evelo, and A. R. Pico (2021). “Ten
simple rules for creating reusable pathway models for computational analy-
sis and visualization.” In: PLOS Computational Biology 17.8, pp. 1–14. doi:
10.1371/journal.pcbi.1009226.

Hao, Y., Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao (2017). “An end-to-end
model for question answering over knowledge base with cross-attention combining
global knowledge.” In: Proceedings of the 55th Annual Meeting of the Association

130

https://doi.org/10.1145/1460690.1460714
https://doi.org/10.2139/ssrn.3199140
https://doi.org/10.1006/knac.1993.1008
https://doi.org/10.1145/1871437.1871503
https://doi.org/10.1145/775152.775250
https://doi.org/10.1007/978-3-319-19581-0_8
https://doi.org/10.3233/SW-160244
https://doi.org/10.1371/journal.pcbi.1009226


References

for Computational Linguistics (Volume 1: Long Papers), pp. 221–231. doi:
10.18653/v1/P17-1021.

Harris, S. and A. Seaborne (2013). SPARQL 1.1 query language. W3C recommenda-
tion. URL: https://www.w3.org/TR/sparql11-query/.

He, X. and D. Golub (2016). “Character-level question answering with attention.” In:
Proceedings of the 2016 Conference on Empirical Methods in Natural Language
Processing, pp. 1598–1607. doi: 10.18653/v1/D16-1166.

Heer, J. and B. Shneiderman (2012). “Interactive dynamics for visual analysis: a
taxonomy of tools that support the fluent and flexible use of visualizations.” In:
Queue 10.2, pp. 30–55. doi: 10.1145/2133416.2146416.

Herrett, E., A. M. Gallagher, K. Bhaskaran, H. Forbes, R. Mathur, T. van Staa,
and L. Smeeth (2015). “Data resource profile: Clinical Practice Research Datalink
(CPRD).” In: International Journal of Epidemiology 44.3, pp. 827–836. doi:
10.1093/ije/dyv098.

Hertling, S., M. Schröder, C. Jilek, and A. Dengel (2016). “Top-k shortest paths in
directed labeled multigraphs.” In: Proceedings of the Third SemWebEval Challenge
at ESWC 2016, pp. 200–212. doi: 10.1007/978-3-319-46565-4_16.

Hilbert, D. M. and D. F. Redmiles (2000). “Extracting usability information from
user interface events.” In: ACM Computing Surveys 32.4, pp. 384–421. doi:
10.1145/371578.371593.

Hirschman, L. and R. Gaizauskas (2001). “Natural language question answering:
the view from here.” In: Natural Language Engineering 7.4, pp. 275–300. doi:
10.1017/S1351324901002807.

Hitzler, P., M. Krötzsch, B. Parsia, P. F. Patel-Schneider, and S. Rudolph (2012).
OWL 2 Web Ontology Language primer (second edition). W3C recommendation.
URL: https://www.w3.org/TR/owl2-primer/.

Höffner, K., S. Walter, E. Marx, R. Usbeck, J. Lehmann, and A.-C. Ngonga Ngomo
(2017). “Survey on challenges of question answering in the Semantic Web.” In:

131

https://doi.org/10.18653/v1/P17-1021
https://www.w3.org/TR/sparql11-query/
https://doi.org/10.18653/v1/D16-1166
https://doi.org/10.1145/2133416.2146416
https://doi.org/10.1093/ije/dyv098
https://doi.org/10.1007/978-3-319-46565-4_16
https://doi.org/10.1145/371578.371593
https://doi.org/10.1017/S1351324901002807
https://www.w3.org/TR/owl2-primer/


References

Semantic Web 8.6, pp. 895–920. doi: 10.3233/SW-160247.

Hripcsak, G., J. D. Duke, N. H. Shah, C. G. Reich, V. Huser, M. J. Schuemie, M. A.
Suchard, R. W. Park, I. C. K. Wong, P. R. Rijnbeek, J. v. d. Lei, N. Pratt, G. N.
Norén, Y.-C. Li, P. E. Stang, D. Madigan, and P. B. Ryan (2015). “Observational
Health Data Sciences and Informatics (OHDSI): opportunities for observational
researchers.” In: Studies in Health Technology and Informatics 216, pp. 574–578.
doi: 10.3233/978-1-61499-564-7-574.

Hripcsak, G., P. B. Ryan, J. D. Duke, N. H. Shah, R. W. Park, V. Huser, M. A.
Suchard, M. J. Schuemie, F. J. Defalco, A. Perotte, J. M. Banda, C. G. Reich,
L. M. Schilling, M. E. Matheny, D. Meeker, N. Pratt, and D. Madigan (2016).
“Characterizing treatment pathways at scale using the OHDSI network.” In:
Proceedings of the National Academy of Sciences 113.27, pp. 7329–7336. doi:
10.1073/pnas.1510502113.

Hu, S., L. Zou, J. X. Yu, H. Wang, and D. Zhao (2018a). “Answering natural
language questions by subgraph matching over knowledge graphs.” In: IEEE
Transactions on Knowledge and Data Engineering 30.5, pp. 824–837. doi:
10.1109/TKDE.2017.2766634.

Hu, S., L. Zou, and X. Zhang (2018b). “A state-transition framework to answer
complex questions over knowledge base.” In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing (EMNLP), pp. 2098–2108.
doi: 10.18653/v1/D18-1234.

Huang, C., Y. Wang, X. Li, L. Ren, J. Zhao, Y. Hu, L. Zhang, G. Fan, J. Xu,
X. Gu, Z. Cheng, T. Yu, J. Xia, Y. Wei, W. Wu, X. Xie, W. Yin, H. Li, M.
Liu, Y. Xiao, H. Gao, L. Guo, J. Xie, G. Wang, R. Jiang, Z. Gao, Q. Jin,
J. Wang, and B. Cao (2020). “Clinical features of patients infected with 2019
novel coronavirus in Wuhan, China.” In: The Lancet 395.10223, pp. 497–506. doi:
10.1016/S0140-6736(20)30183-5.

Hyland, B., G. Atemezing, and B. Villazón-Terrazas (2014). Best practices for publish-
ing Linked Data. W3C working group note. URL: https://www.w3.org/TR/ld-
bp/.

132

https://doi.org/10.3233/SW-160247
https://doi.org/10.3233/978-1-61499-564-7-574
https://doi.org/10.1073/pnas.1510502113
https://doi.org/10.1109/TKDE.2017.2766634
https://doi.org/10.18653/v1/D18-1234
https://doi.org/10.1016/S0140-6736(20)30183-5
https://www.w3.org/TR/ld-bp/
https://www.w3.org/TR/ld-bp/


References

Jacobs, G., A. Wolf, M. Krawczak, and W. Lieb (2018). “Biobanks in the era of
digital medicine.” In: Clinical Pharmacology & Therapeutics 103.5, pp. 761–762.
doi: 10.1002/cpt.968.

Jacobsen, A., M. Thompson, M. Hanauer, B. Sergi, A. Gray, N. Juty, F. Ehrhart,
C. Evelo, and M. Roos (2018). D8.2: documentation of the tools for the data
manipulation and standard conversions in the rare-disease field. Report. ELIXIR-
EXCELERATE. doi: 10.5281/zenodo.1452467.

Jin, H., Y. Luo, C. Gao, X. Tang, and P. Yuan (2019). “ComQA: question answering
over knowledge base via semantic matching.” In: IEEE Access 7, pp. 75235–75246.
doi: 10.1109/ACCESS.2019.2918675.

Kacprzak, E., L. M. Koesten, L.-D. Ibáñez, E. Simperl, and J. Tennison (2017). “A
query log analysis of dataset search.” In: Proceedings of the 17th International
Conference on Web Engineering (ICWE), pp. 429–436. doi: 10.1007/978-3-319-
60131-1_29.

Kaufmann, M., A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Färber,
and N. May (2013). “Timeline index: a unified data structure for processing
queries on temporal data in SAP HANA.” In: Proceedings of the 2013 ACM
SIGMOD International Conference on Management of Data, pp. 1173–1184. doi:
10.1145/2463676.2465293.

Kern, D. and B. Mathiak (2015). “Are there any differences in data set retrieval com-
pared to well-known literature retrieval?” In: Proceedings of the 19th International
Conference on Theory and Practice of Digital Libraries (TPDL), pp. 197–208. doi:
10.1007/978-3-319-24592-8_15.

Khan, A., N. Li, X. Yan, Z. Guan, S. Chakraborty, and S. Tao (2011). “Neighborhood
based fast graph search in large networks.” In: Proceedings of the 2011 ACM
SIGMOD International Conference on Management of Data, pp. 901–912. doi:
10.1145/1989323.1989418.

Khurana, U. and A. Deshpande (2016). “Storing and analyzing historical graph data at
scale.” In: Proceedings of the 19th International Conference on Extending Database

133

https://doi.org/10.1002/cpt.968
https://doi.org/10.5281/zenodo.1452467
https://doi.org/10.1109/ACCESS.2019.2918675
https://doi.org/10.1007/978-3-319-60131-1_29
https://doi.org/10.1007/978-3-319-60131-1_29
https://doi.org/10.1145/2463676.2465293
https://doi.org/10.1007/978-3-319-24592-8_15
https://doi.org/10.1145/1989323.1989418


References

Technology, pp. 65–76. doi: 10.5441/002/edbt.2016.09.

Kitchenham, B. A., T. Dyba, and M. Jørgensen (2004). “Evidence-based software
engineering.” In: Proceedings of the 26th International Conference on Software
Engineering (ICSE), pp. 273–281. doi: 10.1016/B978-0-12-804206-9.00029-5.

Knight, S.-a. and A. Spink (2008). “Toward a web search information behavior model.”
In: Web Search: Multidisciplinary Perspectives. Springer. Chap. 12, pp. 209–234.
doi: 10.1007/978-3-540-75829-7_12.

Knublauch, H. and D. Kontokostas (2017). Shapes Constraint Language (SHACL).
W3C recommendation. URL: https://www.w3.org/TR/shacl/.

Köhler, S., N. A. Vasilevsky, M. Engelstad, E. Foster, J. McMurry, S. Aymé, G.
Baynam, S. M. Bello, C. F. Boerkoel, K. M. Boycott, M. Brudno, O. J. Buske,
P. F. Chinnery, V. Cipriani, L. E. Connell, H. J. S. Dawkins, L. E. DeMare,
A. D. Devereau, B. B. A. de Vries, H. V. Firth, K. Freson, D. Greene, A. Hamosh,
I. Helbig, C. Hum, J. A. Jähn, R. James, R. Krause, S. J. F. Laulederkind, H.
Lochmüller, G. J. Lyon, S. Ogishima, A. Olry, W. H. Ouwehand, N. Pontikos, A.
Rath, F. Schaefer, R. H. Scott, M. Segal, P. I. Sergouniotis, R. Sever, C. L. Smith,
V. Straub, R. Thompson, C. Turner, E. Turro, M. W. M. Veltman, T. Vulliamy,
J. Yu, J. von Ziegenweidt, A. Zankl, S. Züchner, T. Zemojtel, J. O. B. Jacobsen,
T. Groza, D. Smedley, C. J. Mungall, M. Haendel, and P. N. Robinson (2016).
“The Human Phenotype Ontology in 2017.” In: Nucleic Acids Research 45.D1,
pp. D865–D876. doi: 10.1093/nar/gkw1039.

Kolker, E., E. Stewart, and V. Ozdemir (2012). “Opportunities and challenges for
the life sciences community.” In: OMICS: A Journal of Integrative Biology 16.3,
pp. 138–147. doi: 10.1089/omi.2011.0152.

Kulmanov, M., F. Z. Smaili, X. Gao, and R. Hoehndorf (2020). “Semantic similarity
and machine learning with ontologies.” In: Briefings in Bioinformatics 22.4,
pp. 1–18. doi: 10.1093/bib/bbaa199.

Lan, Y., S. Wang, and J. Jiang (2019). “Knowledge base question answering with
a matching-aggregation model and question-specific contextual relations.” In:
IEEE/ACM Transactions on Audio, Speech, and Language Processing 27.10,

134

https://doi.org/10.5441/002/edbt.2016.09
https://doi.org/10.1016/B978-0-12-804206-9.00029-5
https://doi.org/10.1007/978-3-540-75829-7_12
https://www.w3.org/TR/shacl/
https://doi.org/10.1093/nar/gkw1039
https://doi.org/10.1089/omi.2011.0152
https://doi.org/10.1093/bib/bbaa199


References

pp. 1629–1638. doi: 10.1109/TASLP.2019.2926125.

Lancaster, O., T. Beck, D. Atlan, M. Swertz, C. Veal, R. Dalgleish, and A. Brookes
(2015). “Cafe Variome: general-purpose software for making genotype-phenotype
data discoverable in restricted or open access contexts.” In: Human Mutation 36.10,
pp. 957–964. doi: 10.1002/humu.22841.

Lehmann, J., R. Isele, M. Jakob, A. Jentzsch, D. Kontokostas, P. N. Mendes, S.
Hellmann, P. Morsey Mohamed ans van Kleef, S. Auer, and C. Bizer (2015).
“DBpedia - a large-scale, multilingual knowledge base extracted from Wikipedia.”
In: Semantic Web 6.2, pp. 167–195. doi: 10.3233/SW-140134.

Lekschas, F. and N. Gehlenborg (2017). “SATORI: a system for ontology-guided
visual exploration of biomedical data repositories.” In: Bioinformatics 34.7,
pp. 1200–1207. doi: 10.1093/bioinformatics/btx739.

Li, G., P. Yuan, and H. Jin (2018). “Svega: answering natural language questions
over knowledge base with semantic matching.” In: Proceedings of the 30th Interna-
tional Conference on Software Engineering and Knowledge Engineering (SEKE),
pp. 616–621. doi: 10.18293/SEKE2018-119.

Li, H., Y. Wang, S. Zhang, Y. Song, and H. Qu (2022). “KG4Vis: a knowledge
graph-based approach for visualization recommendation.” In: IEEE Trans-
actions on Visualization and Computer Graphics 28.1, pp. 195–205. doi:
10.1109/TVCG.2021.3114863.

Li, H., C. Xiong, and J. Callan (2017). “Natural language supported relation matching
for question answering with knowledge graphs.” In: Proceedings of the First
Workshop on Knowledge Graphs and Semantics for Text Retrieval and Analysis
(KG4IR), pp. 43–48. doi: 10.1145/3132218.3132229.

Li, W., A. Cowley, M. Uludag, T. Gur, H. McWilliam, S. Squizzato, Y. M. Park,
N. Buso, and R. Lopez (2015). “The EMBL-EBI bioinformatics web and program-
matic tools framework.” In: Nucleic Acids Research 43.W1, W580–W584. doi:
10.1093/nar/gkv279.

135

https://doi.org/10.1109/TASLP.2019.2926125
https://doi.org/10.1002/humu.22841
https://doi.org/10.3233/SW-140134
https://doi.org/10.1093/bioinformatics/btx739
https://doi.org/10.18293/SEKE2018-119
https://doi.org/10.1109/TVCG.2021.3114863
https://doi.org/10.1145/3132218.3132229
https://doi.org/10.1093/nar/gkv279


References

Lima, M. (2011). Visual complexity: mapping patterns of information. URL: http:
//www.visualcomplexity.com/vc/book/. New York: Princeton Architectural
Press.

Lloret-Gazo, J. (2016). “A survey on visual query systems in the web era.” In:
Proceedings of the 27th International Conference on Database and Expert Systems
Applications (DEXA), pp. 343–351. doi: 10.1007/978-3-319-44406-2_28.

Lopes, P. and J. L. Oliveira (2013). “An innovative portal for rare genetic diseases
research: the semantic Diseasecard.” In: Journal of Biomedical Informatics 46.6,
pp. 1108–1115. doi: 10.1016/j.jbi.2013.08.006.

Lopez, V., P. Tommasi, S. Kotoulas, and J. Wu (2016). “QuerioDALI: question
answering over dynamic and linked knowledge graphs.” In: Proceedings of
the 15th International Semantic Web Conference (ISWC), pp. 363–382. doi:
10.1007/978-3-319-46547-0_32.

Lukovnikov, D., A. Fischer, and J. Lehmann (2019). “Pretrained transformers for
simple question answering over knowledge graphs.” In: Proceedings of the 18th
International Semantic Web Conference (ISWC), pp. 470–486. doi: 10.1007/978-
3-030-30793-6_27.

Lukovnikov, D., A. Fischer, J. Lehmann, and S. Auer (2017). “Neural network-based
question answering over knowledge graphs on word and character level.” In:
Proceedings of the 26th International Conference on World Wide Web (WWW),
pp. 1211–1220. doi: 10.1145/3038912.3052675.

Luo, D., J. Su, and S. Yu (2020a). “A BERT-based approach with relation-aware
attention for knowledge base question answering.” In: 2020 International Joint
Conference on Neural Networks (IJCNN), pp. 1–8. doi: 10.1109/IJCNN48605.
2020.9207186.

Luo, K., F. Lin, X. Luo, and K. Zhu (2020b). “Knowledge base question answering
via encoding of complex query graphs.” In: Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Processing, pp. 2185–2194. doi:
10.18653/v1/D18-1242.

136

http://www.visualcomplexity.com/vc/book/
http://www.visualcomplexity.com/vc/book/
https://doi.org/10.1007/978-3-319-44406-2_28
https://doi.org/10.1016/j.jbi.2013.08.006
https://doi.org/10.1007/978-3-319-46547-0_32
https://doi.org/10.1007/978-3-030-30793-6_27
https://doi.org/10.1007/978-3-030-30793-6_27
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1109/IJCNN48605.2020.9207186
https://doi.org/10.1109/IJCNN48605.2020.9207186
https://doi.org/10.18653/v1/D18-1242


References

Maali, F. and J. Erickson (2014). Data Catalog Vocabulary (DCAT). W3C recommen-
dation. URL: https://www.w3.org/TR/vocab-dcat-1/.

Machanavajjhala, A., D. Kifer, J. Gehrke, and M. Venkitasubramaniam (2007).
“L-diversity: privacy beyond k-anonymity.” In: ACM Transactions on Knowledge
Discovery from Data 1.1, pp. 1–52. doi: 10.1145/1217299.1217302.

Maheshwari, G., P. Trivedi, D. Lukovnikov, N. Chakraborty, A. Fischer, and J.
Lehmann (2019). “Learning to rank query graphs for complex question answering
over knowledge graphs.” In: Proceedings of the 18th International Semantic Web
Conference (ISWC), pp. 487–504. doi: 10.1007/978-3-030-30793-6_28.

Mahlmann, P. and C. Schindelhauer (2006). “Distributed random digraph trans-
formations for peer-to-peer networks.” In: Proceedings of the 18th Annual ACM
Symposium on Parallelism in Algorithms and Architectures, pp. 308–317. doi:
10.1145/1148109.1148162.

Marchionini, G. (2006). “Exploratory search: from finding to understanding.” In:
Communications of the ACM 49.4, pp. 41–46. doi: 10.1145/1121949.1121979.

Martens, M., A. Ammar, A. Riutta, A. Waagmeester, D. N. Slenter, K. Hanspers,
R. A. Miller, D. Digles, E. N. Lopes, F. Ehrhart, L. J. Dupuis, L. A. Winckers,
S. L. Coort, E. L. Willighagen, C. T. Evelo, A. R. Pico, and M. Kutmon (2020).
“WikiPathways: connecting communities.” In: Nucleic Acids Research 49.D1,
pp. D613–D621. doi: 10.1093/nar/gkaa1024.

Marx, E., K. Höffner, S. Shekarpour, A.-C. N. Ngomo, J. Lehmann, and S. Auer
(2016). “Exploring term networks for semantic search over RDF knowledge
graphs.” In: Proceedings of the 10th International Conference on Metadata and
Semantics Research (MTSR), pp. 249–261. doi: 10.1007/978-3-319-49157-8_22.

Marx, E., A. Valdestilhas, H. Beck, and T. Soru (2021). “SANTé: A light-weight
end-to-end semantic search framework for RDF data.” In: The Semantic Web:
ESWC 2021 Satellite Events, pp. 93–97. doi: 10.1007/978-3-030-80418-3_17.

McNally, G., H. Rickards, M. Horton, and D. Craufurd (2015). “Exploring the
validity of the short version of the Problem Behaviours Assessment (PBA-s) for

137

https://www.w3.org/TR/vocab-dcat-1/
https://doi.org/10.1145/1217299.1217302
https://doi.org/10.1007/978-3-030-30793-6_28
https://doi.org/10.1145/1148109.1148162
https://doi.org/10.1145/1121949.1121979
https://doi.org/10.1093/nar/gkaa1024
https://doi.org/10.1007/978-3-319-49157-8_22
https://doi.org/10.1007/978-3-030-80418-3_17


References

Huntington’s disease: a rasch analysis.” In: Journal of Huntington’s Disease 4.4,
pp. 347–369. doi: 10.3233/JHD-150164.

McQuilton, P., A. Gonzalez-Beltran, P. Rocca-Serra, M. Thurston, A. Lister, E.
Maguire, and S.-A. Sansone (2016). “BioSharing: curated and crowd-sourced
metadata standards, databases and data policies in the life sciences.” In: Database
2016, pp. 1–8. doi: 10.1093/database/baw075.

Mishra, A. and S. K. Jain (2016). “A survey on question answering systems with
classification.” In: Journal of King Saud University - Computer and Information
Sciences 28.3, pp. 345–361. doi: 10.1016/j.jksuci.2014.10.007.

Moher, D., A. Liberati, J. Tetzlaff, and D. G. Altman (2009). “Preferred reporting
items for systematic reviews and meta-analyses: the PRISMA statement.” In: BMJ
339, pp. 1–8. doi: 10.1136/bmj.b2535.

Mons, B., C. Neylon, J. Velterop, M. Dumontier, L. O. B. d. Silva Santos, and M. D.
Wilkinson (2017). “Cloudy, increasingly FAIR; revisiting the FAIR data guiding
principles for the European Open Science Cloud.” In: Information Services & Use
37.1, pp. 49–56. doi: 10.3233/ISU-170824.

Morales, D. R., M. M. Conover, S. C. You, N. Pratt, K. Kostka, T. Duarte-Salles,
S. Fernández-Bertolín, M. Aragón, S. L. DuVall, K. Lynch, T. Falconer, K. van
Bochove, C. Sung, M. E. Matheny, C. G. Lambert, F. Nyberg, T. M. Alshammari,
A. E. Williams, R. W. Park, J. Weaver, A. G. Sena, M. J. Schuemie, P. R.
Rijnbeek, R. D. Williams, J. C. Lane, A. Prats-Uribe, L. Zhang, C. Areia, H. M.
Krumholz, D. Prieto-Alhambra, P. B. Ryan, G. Hripcsak, and M. A. Suchard
(2021). “Renin–angiotensin system blockers and susceptibility to COVID-19: an
international, open science, cohort analysis.” In: The Lancet Digital Health 3.2,
e98–e114. doi: 10.1016/S2589-7500(20)30289-2.

Mulang, I. O., K. Singh, and F. Orlandi (2017). “Matching natural language re-
lations to knowledge graph properties for question answering.” In: Proceedings
of the 13th International Conference on Semantic Systems, pp. 89–96. doi:
10.1145/3132218.3132229.

138

https://doi.org/10.3233/JHD-150164
https://doi.org/10.1093/database/baw075
https://doi.org/10.1016/j.jksuci.2014.10.007
https://doi.org/10.1136/bmj.b2535
https://doi.org/10.3233/ISU-170824
https://doi.org/10.1016/S2589-7500(20)30289-2
https://doi.org/10.1145/3132218.3132229


References

Nan, Y., J. D. Ser, S. Walsh, C. Schönlieb, M. Roberts, I. Selby, K. Howard, J. Owen, J.
Neville, J. Guiot, B. Ernst, A. Pastor, A. Alberich-Bayarri, M. I. Menzel, S. Walsh,
W. Vos, N. Flerin, J.-P. Charbonnier, E. van Rikxoort, A. Chatterjee, H. Woodruff,
P. Lambin, L. Cerdá-Alberich, L. Martí-Bonmatí, F. Herrera, and G. Yang (2022).
“Data harmonisation for information fusion in digital healthcare: a state-of-the-art
systematic review, meta-analysis and future research directions.” In: Information
Fusion 82, pp. 99–122. doi: https://doi.org/10.1016/j.inffus.2022.01.001.

Noy, N. and A. Rector (2006). Defining n-ary relations on the Semantic Web. W3C
working group note. URL: https://www.w3.org/TR/swbp-n-aryRelations/.

Ojokoh, B. and E. Adebisi (2018). “A review of question answering systems.” In: Jour-
nal of Web Engineering 17.8, pp. 717–758. doi: 10.13052/jwe1540-9589.1785.

Oliveira, J. L., A. Trifan, and L. A. B. Silva (2019). “EMIF Catalogue: a collaborative
platform for sharing and reusing biomedical data.” In: International Journal of
Medical Informatics 126, pp. 35–45. doi: 10.1016/j.ijmedinf.2019.02.006.

Panchbhai, A., T. Soru, and E. Marx (2020). “Exploring sequence-to-sequence models
for SPARQL pattern composition.” In: Proceedings of the 2nd Iberoamerican
Knowledge Graphs and Semantic Web Conference (KGSWC), pp. 158–165. doi:
10.1007/978-3-030-65384-2_12.

Paraiso-Medina, S., D. Perez-Rey, R. Alonso-Calvo, B. Claerhout, K. de Schepper,
P. Hennebert, J. Lhaut, J. Van Leeuwen, and A. Bucur (2013). “Semantic
interoperability solution for multicentric breast cancer trials at the Integrate EU
project.” In: Proceedings of the 6th International Conference on Health Informatics
(HEALTHINF), pp. 34–41. doi: 10.5220/0004223400340041.

Park, S., S. Kown, B. Kim, and G. G. Lee (2015). “ISOFT at QALD-5: hybrid
question answering system over Linked Data and text data.” In: Proceedings
of the 16th Conference and Labs of the Evaluation Forum (CLEF). URL:
http://ceur-ws.org/Vol-1391/127-CR.pdf, pp. 1–11.

Paulheim, H. (2017). “Knowledge graph refinement: a survey of approaches and
evaluation methods.” In: Semantic Web 8.3, pp. 489–508. doi: 10.3233/SW-160218.

139

https://doi.org/https://doi.org/10.1016/j.inffus.2022.01.001
https://www.w3.org/TR/swbp-n-aryRelations/
https://doi.org/10.13052/jwe1540-9589.1785
https://doi.org/10.1016/j.ijmedinf.2019.02.006
https://doi.org/10.1007/978-3-030-65384-2_12
https://doi.org/10.5220/0004223400340041
http://ceur-ws.org/Vol-1391/127-CR.pdf
https://doi.org/10.3233/SW-160218


References

Peffers, K., T. Tuunanen, M. A. Rothenberger, and S. Chatterjee (2007). “A design
science research methodology for information systems research.” In: Journal of
Management Information Systems 24.3, pp. 45–77. doi: 10 . 2753 / MIS0742 -
1222240302.

Penev, L., D. Koureas, Q. Groom, J. Lanfear, D. Agosti, A. Casino, J. Miller,
C. Arvanitidis, G. Cochrane, B. Barov, D. Hobern, O. Banki, W. Addink, U.
Kõljalg, P. Ruch, K. Copas, P. Mergen, A. Güntsch, L. Benichou, and J. B. G.
Lopez (2021). “Towards interlinked FAIR biodiversity knowledge: the BiCIKL
perspective.” In: Biodiversity Information Science and Standards 5, pp. 1–3. doi:
10.3897/biss.5.74233.

Pereira, A., R. P. Lopes, and J. L. Oliveira (2020). “SCALEUS-FD: a FAIR data tool
for biomedical applications.” In: BioMed Research International 2020, pp. 1–8.
doi: 10.1155/2020/3041498.

Pereira, A., A. Trifan, R. P. Lopes, and J. L. Oliveira (2022). “Systematic review of
question answering over knowledge bases.” In: IET Software 16.1, pp. 1–13. doi:
10.1049/sfw2.12028.

Perez-Riverol, Y., M. Bai, F. Leprevost, S. Squizzato, Y. Park, K. Haug, A. Carroll, D.
Spalding, J. Paschall, M. Wang, N. Del Toro Ayllón, T. Ternent, P. Zhang, N. Buso,
N. Bandeira, E. Deutsch, D. Campbell, R. Beavis, R. Salek, and H. Hermjakob
(2017). “Discovering and linking public omics data sets using the Omics Dis-
covery Index.” In: Nature Biotechnology 35.5, pp. 406–409. doi: 10.1038/nbt.3790.

Prud’hommeaux, E. and C. Buil-Aranda (2013). SPARQL 1.1 federated query. W3C
recommendation. URL: https://www.w3.org/TR/sparql11-federated-query/.

Reps, J., P. Ryan, P. Rijnbeek, and M. Schuemie (2021). “Design matters in patient-
level prediction: evaluation of a cohort vs. case-control design when developing
predictive models in observational healthcare datasets.” In: Journal of Big Data 8,
pp. 1–18. doi: 10.1186/s40537-021-00501-2.

Reps, J. M., M. J. Schuemie, M. A. Suchard, P. B. Ryan, and P. R. Rijnbeek
(2018). “Design and implementation of a standardized framework to generate and
evaluate patient-level prediction models using observational healthcare data.” In:

140

https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.2753/MIS0742-1222240302
https://doi.org/10.3897/biss.5.74233
https://doi.org/10.1155/2020/3041498
https://doi.org/10.1049/sfw2.12028
https://doi.org/10.1038/nbt.3790
https://www.w3.org/TR/sparql11-federated-query/
https://doi.org/10.1186/s40537-021-00501-2


References

Journal of the American Medical Informatics Association 25.8, pp. 969–975. doi:
10.1093/jamia/ocy032.

Rietveld, L. and R. Hoekstra (2013). “YASGUI: not just another SPARQL client.” In:
Proceedings of the ESWC2013 Workshop on Services and Applications over Linked
APIs and Data, pp. 78–86. doi: 10.1007/978-3-642-41242-4_7.

Robinson, I., J. Webber, and E. Eifrem (2015). Graph databases, 2nd edition. URL:
https://neo4j.com/lp/book-graph-databases/. O’Reilly Media, Inc.

Rodriguez, M. A. (2015). “The Gremlin graph traversal machine and language (invited
talk).” In: Proceedings of the 15th Symposium on Database Programming Languages
(DBPL), pp. 1–10. doi: 10.1145/2815072.2815073.

Rodríguez-Iglesias, A., A. Rodríguez-González, A. G. Irvine, A. Sesma, M. Urban,
K. E. Hammond-Kosack, and M. D. Wilkinson (2016). “Publishing FAIR data:
an exemplar methodology utilizing PHI-base.” In: Frontiers in Plant Science 7,
pp. 1–22. doi: 10.3389/fpls.2016.00641.

Rosenbaum, L. (2017). “Bridging the data-sharing divide - seeing the devil in the
details, not the other camp.” In: New England Journal of Medicine 376.23,
pp. 2201–2203. doi: 10.1056/NEJMp1704482.

Rücknagel, J., P. Vierkant, R. Ulrich, G. Kloska, E. Schnepf, D. Fichtmüller, E.
Reuter, A. Semrau, M. Kindling, H. Pampel, M. Witt, F. Fritze, S. van de Sandt,
J. Klump, H.-J. Goebelbecker, M. Skarupianski, R. Bertelmann, P. Schirmbacher,
F. Scholze, C. Kramer, C. Fuchs, S. Spier, and A. Kirchhoff (2015). Metadata
schema for the description of research data repositories: version 3.0. URL:
https://gfzpublic.gfz-potsdam.de/pubman/item/item_1397899.

Ruseti, S., A. Mirea, T. Rebedea, and S. Trausan-Matu (2015). “QAnswer -
enhanced entity matching for question answering over Linked Data.” In: Pro-
ceedings of the Conference and Labs of the Evaluation Forum (CLEF). URL:
http://ceur-ws.org/Vol-1391/99-CR.pdf, pp. 1–12.

Salzberg, B. and V. J. Tsotras (1999). “Comparison of access methods for
time-evolving data.” In: ACM Computing Surveys 31.2, pp. 158–221. doi:

141

https://doi.org/10.1093/jamia/ocy032
https://doi.org/10.1007/978-3-642-41242-4_7
https://neo4j.com/lp/book-graph-databases/
https://doi.org/10.1145/2815072.2815073
https://doi.org/10.3389/fpls.2016.00641
https://doi.org/10.1056/NEJMp1704482
https://gfzpublic.gfz-potsdam.de/pubman/item/item_1397899
http://ceur-ws.org/Vol-1391/99-CR.pdf


References

10.1145/319806.319816.

Sansone, S.-A., A. Gonzalez-Beltran, P. Rocca-Serra, G. Alter, J. S. Grethe, H.
Xu, I. M. Fore, J. Lyle, A. E. Gururaj, X. Chen, H.-e. Kim, N. Zong, Y. Li,
R. Liu, I. B. Ozyurt, and L. Ohno-Machado (2017). “DATS, the data tag suite
to enable discoverability of datasets.” In: Scientific Data 4.1, pp. 1–8. doi:
10.1038/sdata.2017.59.

Sansone, S.-A., P. McQuilton, P. Rocca-Serra, A. González-Beltrán, M. Izzo, A.
Lister, and M. Thurston (2019). “FAIRsharing as a community approach to
standards, repositories and policies.” In: Nature Biotechnology 37, pp. 358–367.
doi: 10.1038/s41587-019-0080-8.

Savenkov, D. and E. Agichtein (2016). “When a knowledge base is not enough:
question answering over knowledge bases with external text data.” In: Proceedings
of the 39th International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 235–244. doi: 10.1145/2911451.2911536.

Sayers, E. W., E. E. Bolton, J. R. Brister, K. Canese, J. Chan, D. C. Comeau, R.
Connor, K. Funk, C. Kelly, S. Kim, T. Madej, A. Marchler-Bauer, C. Lanczycki,
S. Lathrop, Z. Lu, F. Thibaud-Nissen, T. Murphy, L. Phan, Y. Skripchenko,
T. Tse, J. Wang, R. Williams, B. W. Trawick, K. D. Pruitt, and S. T. Sherry
(2021). “Database resources of the national center for biotechnology information.”
In: Nucleic Acids Research 50.D1, pp. D20–D26. doi: 10.1093/nar/gkab1112.

Schaaf, J., D. Kadioglu, J. Goebel, C.-A. Behrendt, M. Roos, D. van Enckevort,
F. Ückert, F. Sadiku, T. O. F. Wagner, and H. Storf (2018). “OSSE goes FAIR -
implementation of the FAIR data principles for an open-source registry for rare
diseases.” In: Studies in health technology and informatics 253, pp. 209–213. doi:
10.3233/978-1-61499-896-9-209.

Scheider, S., A. Degbelo, R. Lemmens, C. van Elzakker, P. Zimmerhof, N. Kostic,
J. Jones, and G. Banhatti (2017). “Exploratory querying of SPARQL endpoints in
space and time.” In: Semantic Web 8.1, pp. 65–86. doi: 10.3233/SW-150211.

Schmachtenberg, M., C. Bizer, and H. Paulheim (2014). “Adoption of the Linked
Data best practices in different topical domains.” In: Proceedings of the 13th

142

https://doi.org/10.1145/319806.319816
https://doi.org/10.1038/sdata.2017.59
https://doi.org/10.1038/s41587-019-0080-8
https://doi.org/10.1145/2911451.2911536
https://doi.org/10.1093/nar/gkab1112
https://doi.org/10.3233/978-1-61499-896-9-209
https://doi.org/10.3233/SW-150211


References

International Semantic Web Conference (ISWC), pp. 245–260. doi: 10.1007/978-
3-319-11964-9_16.

Schneeweiss, S. and J. Avorn (2005). “A review of uses of health care utilization
databases for epidemiologic research on therapeutics.” In: Journal of Clinical
Epidemiology 58.4, pp. 323–337. doi: 10.1016/j.jclinepi.2004.10.012.

Schreiber, G. and Y. Raimond (2014). RDF 1.1 primer. W3C Working Group note.
URL: https://www.w3.org/TR/rdf11-primer/.

Schweiger, D., Z. Trajanoski, and S. Pabinger (2014). “SPARQLGraph: a web-based
platform for graphically querying biological Semantic Web databases.” In: BMC
Bioinformatics 15.1, pp. 1–5. doi: 10.1186/1471-2105-15-279.

Sequeira, M., J. R. Almeida, and J. L. Oliveira (2021). “A comparative analysis
of data platforms for rare diseases.” In: Proceedings of the 34th International
Symposium on Computer-Based Medical Systems (CBMS), pp. 366–371. doi:
10.1109/CBMS52027.2021.00041.

Sernadela, P., L. González-Castro, C. Carta, E. v. d. Horst, P. Lopes, R. Kaliyaperu-
mal, M. Thompson, R. Thompson, N. Queralt-Rosinach, E. Lopez, L. Wood, A.
Robertson, C. Lamanna, M. Gilling, M. Orth, R. Merino-Martinez, M. Posada, D.
Taruscio, H. Lochmüller, P. Robinson, M. Roos, and J. L. Oliveira (2017a). “Linked
registries: connecting rare diseases patient registries through a Semantic Web layer.”
In: BioMed Research International 2017, pp. 1–13. doi: 10.1155/2017/8327980.

Sernadela, P., L. González-Castro, and J. L. Oliveira (2017b). “SCALEUS: Semantic
Web services integration for biomedical applications.” In: Journal of Medical
Systems 41.4, pp. 1–11. doi: 10.1007/s10916-017-0705-8.

Shekarpour, S., E. Marx, A.-C. Ngonga Ngomo, and S. Auer (2015). “SINA: semantic
interpretation of user queries for question answering on interlinked data.” In:
Journal of Web Semantics 30, pp. 39–51. doi: https://doi.org/10.1016/j.
websem.2014.06.002.

Shen, W., J. Wang, and J. Han (2015). “Entity linking with a knowledge base:
issues, techniques, and solutions.” In: IEEE Transactions on Knowledge and Data

143

https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.1007/978-3-319-11964-9_16
https://doi.org/10.1016/j.jclinepi.2004.10.012
https://www.w3.org/TR/rdf11-primer/
https://doi.org/10.1186/1471-2105-15-279
https://doi.org/10.1109/CBMS52027.2021.00041
https://doi.org/10.1155/2017/8327980
https://doi.org/10.1007/s10916-017-0705-8
https://doi.org/https://doi.org/10.1016/j.websem.2014.06.002
https://doi.org/https://doi.org/10.1016/j.websem.2014.06.002


References

Engineering 27.2, pp. 443–460. doi: 10.1109/TKDE.2014.2327028.

Siciliani, L., D. Diefenbach, P. Maret, P. Basile, and P. Lops (2019). “Handling
modifiers in question answering over knowledge graphs.” In: Proceedings of the
18th International Conference of the Italian Association for Artificial Intelligence
(AIIA), pp. 210–222. doi: 10.1007/978-3-030-35166-3_15.

Siegler, E. L. (2010). “The evolving medical record.” In: Annals of Internal Medicine
153.10, pp. 671–677. doi: 10.7326/0003-4819-153-10-201011160-00012.

Silva, L. B., A. Trifan, and J. L. Oliveira (2018). “MONTRA: an agile architecture
for data publishing and discovery.” In: Computer Methods and Programs in
Biomedicine 160, pp. 33–42. doi: 10.1016/j.cmpb.2018.03.024.

Singh, K., A. Both, A. Sethupat, and S. Shekarpour (2018a). “Frankenstein: a
platform enabling reuse of question answering components.” In: Proceedings
of the 15th European Semantic Web Conference (ESWC), pp. 624–638. doi:
10.1007/978-3-319-93417-4_40.

Singh, K., I. Lytra, M.-E. Vidal, D. Punjani, H. Thakkar, C. Lange, and S. Auer
(2017). “QAestro - semantic-based composition of question answering pipelines.”
In: Proceedings of the 28th International Conference on Database and Expert
Systems Applications (DEXA), pp. 19–34. doi: 10.1007/978-3-319-64468-4_2.

Singh, K., A. S. Radhakrishna, A. Both, S. Shekarpour, I. Lytra, R. Usbeck, A. Vyas,
A. Khikmatullaev, D. Punjani, C. Lange, M. E. Vidal, J. Lehmann, and S. Auer
(2018b). “Why reinvent the wheel: let’s build question answering systems together.”
In: Proceedings of the 27th International World Wide Web Conference (WWW),
pp. 1247–1256. doi: 10.1145/3178876.3186023.

Song, D., F. Schilder, C. Smiley, C. Brew, T. Zielund, H. Bretz, R. Martin, C.
Dale, J. Duprey, T. Miller, and J. Harrison (2015). “TR Discover: a natural
language interface for querying and analyzing interlinked datasets.” In: Proceedings
of the 14th International Semantic Web Conference (ISWC), pp. 21–37. doi:
10.1007/978-3-319-25010-6_2.

144

https://doi.org/10.1109/TKDE.2014.2327028
https://doi.org/10.1007/978-3-030-35166-3_15
https://doi.org/10.7326/0003-4819-153-10-201011160-00012
https://doi.org/10.1016/j.cmpb.2018.03.024
https://doi.org/10.1007/978-3-319-93417-4_40
https://doi.org/10.1007/978-3-319-64468-4_2
https://doi.org/10.1145/3178876.3186023
https://doi.org/10.1007/978-3-319-25010-6_2


References

Sorokin, D. and I. Gurevych (2017). “End-to-end representation learning for question
answering with weak supervision.” In: Proceedings of the 4th Semantic Web Eval-
uation Challenge (SemWebEval), pp. 70–83. doi: 10.1007/978-3-319-69146-6_7.

Speicher, S., J. Arwe, and A. Malhotra (2015). Linked Data Platform 1.0. W3C
recommendation. URL: https://www.w3.org/TR/ldp/.

Stang, P. E., P. B. Ryan, J. A. Racoosin, J. M. Overhage, A. G. Hartzema, C.
Reich, E. Welebob, T. Scarnecchia, and J. Woodcock (2010). “Advancing the
science for active surveillance: rationale and design for the observational medical
outcomes partnership.” In: Annals of Internal Medicine 153.9, pp. 600–606. doi:
10.7326/0003-4819-153-9-201011020-00010.

Stearns, M., C. Price, K. Spackman, and A. Y. Wang (2001). “SNOMED clinical
terms: overview of the development process and project status.” In: Proceedings
of the AMIA Annual Symposium. URL: https://www.ncbi.nlm.nih.gov/pmc/
articles/PMC2243297/, pp. 662–666.

Suchanek, F. M., G. Kasneci, and G. Weikum (2007). “YAGO: a core of seman-
tic knowledge unifying WordNet and Wikipedia.” In: Proceedings of the 16th
International Conference on World Wide Web (WWW), pp. 697–706. doi:
10.1145/1242572.1242667.

Sweeney, L. (2002). “k-anonymity: a model for protecting privacy.” In: International
Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10.5, pp. 557–570.
doi: 10.1142/S0218488502001648.

Tagare, H. D., C. C. Jaffe, and J. Duncan (1997). “Medical image databases: a
content-based retrieval approach.” In: Journal of the American Medical Informatics
Association 4.3, pp. 184–198. doi: 10.1136/jamia.1997.0040184.

Tanon, T. P., D. Vrandečić, S. Schaffert, T. Steiner, and L. Pintscher (2016).
“From Freebase to Wikidata: the great migration.” In: Proceedings of the 25th
International Conference on World Wide Web (WWW), pp. 1419–1428. doi:
10.1145/2872427.2874809.

145

https://doi.org/10.1007/978-3-319-69146-6_7
https://www.w3.org/TR/ldp/
https://doi.org/10.7326/0003-4819-153-9-201011020-00010
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243297/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2243297/
https://doi.org/10.1145/1242572.1242667
https://doi.org/10.1142/S0218488502001648
https://doi.org/10.1136/jamia.1997.0040184
https://doi.org/10.1145/2872427.2874809


References

Thabane, L., T. Thomas, C. Ye, and J. Paul (2009). “Posing the research question:
not so simple.” In: Canadian Journal of Anesthesia - Journal canadien d’anesthésie
56.1, pp. 71–79. doi: 10.1007/s12630-008-9007-4.

Thompson, R., L. Johnston, D. Taruscio, L. Monaco, C. Béroud, I. G. Gut,
M. G. Hansson, P.-B. A. ‘t. Hoen, G. P. Patrinos, H. Dawkins, M. Ensini, K.
Zatloukal, D. Koubi, E. Heslop, J. E. Paschall, M. Posada, P. N. Robinson,
K. Bushby, and H. Lochmüller (2014). “RD-Connect: an integrated platform
connecting databases, registries, biobanks and clinical bioinformatics for rare
disease research.” In: Journal of General Internal Medicine 29.3, pp. 780–787. doi:
10.1007/s11606-014-2908-8.

Trifan, A. and J. L. Oliveira (2018). “A FAIR marketplace for biomedical data
custodians and clinical researchers.” In: Proceedings of the 31st International
Symposium on Computer-Based Medical Systems (CBMS), pp. 188–193. doi:
10.1109/CBMS.2018.00040.

Tsatsaronis, G., G. Balikas, P. Malakasiotis, I. Partalas, M. Zschunke, M. Alvers,
D. Weißenborn, A. Krithara, S. Petridis, D. Polychronopoulos, Y. Almirantis,
J. Pavlopoulos, N. Baskiotis, P. Gallinari, T. Artieres, A.-C. Ngonga Ngomo, N.
Heino, E. Gaussier, L. Barrio-Alvers, and G. Paliouras (2015). “An overview of the
BIOASQ large-scale biomedical semantic indexing and question answering compe-
tition.” In: BMC Bioinformatics 16, pp. 1–28. doi: 10.1186/s12859-015-0564-6.

UniProt Consortium (2020). “UniProt: the universal protein knowledgebase in 2021.”
In: Nucleic Acids Research 49.D1, pp. D480–D489. doi: 10.1093/nar/gkaa1100.

Usbeck, R., R. Gusmita, M. Saleem, and A.-C. Ngonga Ngomo (2018). “9th challenge
on question answering over linked data (QALD-9).” In: Joint Proceedings of ISWC
2018 Workshops SemDeep-4 and NLIWOD-4. URL: http://ceur-ws.org/Vol-
2241/paper-06.pdf, pp. 58–64.

Usbeck, R., A.-C. Ngonga Ngomo, L. Bühmann, and C. Unger (2015). “HAWK -
hybrid question answering using Linked Data.” In: Proceedings of the 12th European
Semantic Web Conference (ESWC), pp. 353–368. doi: 10.1007/978- 3- 319-
18818-8_22.

146

https://doi.org/10.1007/s12630-008-9007-4
https://doi.org/10.1007/s11606-014-2908-8
https://doi.org/10.1109/CBMS.2018.00040
https://doi.org/10.1186/s12859-015-0564-6
https://doi.org/10.1093/nar/gkaa1100
http://ceur-ws.org/Vol-2241/paper-06.pdf
http://ceur-ws.org/Vol-2241/paper-06.pdf
https://doi.org/10.1007/978-3-319-18818-8_22
https://doi.org/10.1007/978-3-319-18818-8_22


References

Vakulenko, S., J. D. Fernandez Garcia, A. Polleres, M. de Rijke, and M. Cochez
(2019). “Message passing for complex question answering over knowledge graphs.”
In: Proceedings of the 28th ACM International Conference on Information and
Knowledge Management, pp. 1431–1440. doi: 10.1145/3357384.3358026.

Vandenbussche, P.-Y., J. Umbrich, L. Matteis, A. Hogan, and C. Buil-Aranda (2017).
“SPARQLES: monitoring public SPARQL endpoints.” In: Semantic Web 8.6,
pp. 1049–1065. doi: 10.3233/SW-170254.

Villanueva, A. G., R. Cook-Deegan, B. A. Koenig, P. A. Deverka, E. Versalovic,
A. L. McGuire, and M. A. Majumder (2019). “Characterizing the biomedical
data-sharing landscape.” In: Journal of Law, Medicine & Ethics 47.1, pp. 21–30.
doi: 10.1177/1073110519840481.

Vrandečić, D. and M. Krötzsch (2014). “Wikidata: a free collaborative knowledgebase.”
In: Communications of the ACM 57.10, pp. 78–85. doi: 10.1145/2629489.

W3C SPARQL Working Group (2013). SPARQL 1.1 overview. W3C recommendation.
URL: https://www.w3.org/TR/sparql11-overview/.

Wade, T. D. (2014). “Traits and types of health data repositories.” In: Health Infor-
mation Science and Systems 2.1, pp. 1–8. doi: 10.1186/2047-2501-2-4.

Wallis, J. C., E. Rolando, and C. L. Borgman (2013). “If we share data, will anyone
use them? Data sharing and reuse in the long tail of science and technology.” In:
PLOS ONE 8.7, pp. 1–17. doi: 10.1371/journal.pone.0067332.

Wang, R.-Z., Z.-H. Ling, and Y. Hu (2019). “Knowledge base question answering with
attentive pooling for question representation.” In: IEEE Access 7, pp. 46773–46784.
doi: 10.1109/ACCESS.2019.2909826.

Weinreich, S., R. Mangon, J. Sikkens, M. Teeuw, and M. Cornel (2008). “Orphanet: a
european database for rare diseases.” In: Nederlands Tijdschrift voor Geneeskunde
152.9. URL: https://pubmed.ncbi.nlm.nih.gov/18389888/, pp. 518–519.

Whetzel, P. L., N. F. Noy, N. H. Shah, P. R. Alexander, C. Nyulas, T. Tudorache,
and M. A. Musen (2011). “BioPortal: enhanced functionality via new web services

147

https://doi.org/10.1145/3357384.3358026
https://doi.org/10.3233/SW-170254
https://doi.org/10.1177/1073110519840481
https://doi.org/10.1145/2629489
https://www.w3.org/TR/sparql11-overview/
https://doi.org/10.1186/2047-2501-2-4
https://doi.org/10.1371/journal.pone.0067332
https://doi.org/10.1109/ACCESS.2019.2909826
https://pubmed.ncbi.nlm.nih.gov/18389888/


References

from the National Center for Biomedical Ontology to access and use ontologies in
software applications.” In: Nucleic Acids Research 39.suppl_2, W541–W545. doi:
10.1093/nar/gkr469.

Wilkinson, M. D., M. Dumontier, I. J. Aalbersberg, G. Appleton, M. Axton, A.
Baak, N. Blomberg, J.-W. Boiten, L. O. Bonino da Silva Santos, P. E. Bourne,
J. Bouwman, A. J. Brookes, T. Clark, M. Crosas, I. Dillo, O. Dumon, S. Edmunds,
C. T. Evelo, R. Finkers, A. Gonzalez-Beltran, A. J. G. Gray, P. Groth, C. Goble,
J. S. Grethe, J. Heringa, P. A. C. ’t Hoen, R. Hooft, T. Kuhn, R. Kok, J. Kok,
S. J. Lusher, M. E. Martone, A. Mons, A. L. Packer, B. Persson, P. Rocca-Serra,
M. Roos, R. van Schaik, S.-A. Sansone, E. Schultes, T. Sengstag, T. Slater, G.
Strawn, M. A. Swertz, M. Thompson, J. van der Lei, E. van Mulligen, J. Velterop,
A. Waagmeester, P. Wittenburg, K. Wolstencroft, J. Zhao, and B. Mons (2016).
“The FAIR Guiding Principles for scientific data management and stewardship.”
In: Scientific Data 3, pp. 1–9. doi: 10.1038/sdata.2016.18.

Wilkinson, M. D., S.-A. Sansone, E. Schultes, P. Doorn, L. O. Bonino da Silva Santos,
and M. Dumontier (2018). “A design framework and exemplar metrics for FAIR-
ness.” In: Scientific Data 5.1, pp. 1–4. doi: 10.1038/sdata.2018.118.

Wilkinson, M. D., R. Verborgh, L. O. Bonino da Silva Santos, T. Clark, M. A.
Swertz, F. D. L. Kelpin, A. J. Gray, E. A. Schultes, E. M. van Mulligen, P.
Ciccarese, A. Kuzniar, A. Gavai, M. Thompson, R. Kaliyaperumal, J. T. Bolleman,
and M. Dumontier (2017). “Interoperability and FAIRness through a novel
combination of web technologies.” In: PeerJ Computer Science, pp. 1–34. doi:
10.7717/peerj-cs.110.

Wylot, M., M. Hauswirth, P. Cudré-Mauroux, and S. Sakr (2018). “RDF data storage
and query processing schemes: a survey.” In: ACM Computing Surveys 51.4. doi:
10.1145/3177850.

Xie, Z., Z. Zeng, G. Zhou, and T. He (2016). “Knowledge base question answering
based on deep learning models.” In: Proceedings of the 5th CCF Conference on
Natural Language Processing and Chinese Computing (NLPCC) and 24th Inter-
national Conference on Computer Processing of Oriental Languages (ICCPOL),
pp. 300–311. doi: 10.1007/978-3-319-50496-4_25.

148

https://doi.org/10.1093/nar/gkr469
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2018.118
https://doi.org/10.7717/peerj-cs.110
https://doi.org/10.1145/3177850
https://doi.org/10.1007/978-3-319-50496-4_25


References

Xiong, W., M. Yu, S. Chang, X. Guo, and W. Y. Wang (2019). “Improving question
answering over incomplete KBs with knowledge-aware reader.” In: Proceedings
of the 57th Annual Meeting of the Association for Computational Linguistics,
pp. 4258–4264. doi: 10.18653/v1/P19-1417.

Xu, K., Y. Feng, S. Huang, and D. Zhao (2014). “Question answering via phrasal
semantic parsing.” In: Proceedings of the 6th Conference and Labs of the Evaluation
Forum (CLEF), pp. 414–426. doi: 10.1007/978-3-319-24027-5_43.

Xu, K., Y. Feng, S. Huang, and D. Zhao (2016a). “Hybrid question answering
over knowledge base and free text.” In: Proceedings of the 26th Interna-
tional Conference on Computational Linguistics (COLING). URL: https :
//aclanthology.org/C16-1226, pp. 2397–2407.

Xu, K., S. Reddy, Y. Feng, S. Huang, and D. Zhao (2016b). “Question answering on
Freebase via relation extraction and textual evidence.” In: Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pp. 2326–2336. doi: 10.18653/v1/P16-1220.

Yamamoto, Y., A. Yamaguchi, and A. Splendiani (2018). “YummyData: provid-
ing high-quality open life science data.” In: Database 2018, pp. 1–12. doi:
10.1093/database/bay022.

Yi, J. S., Y. Kang, J. Stasko, and J. Jacko (2007). “Toward a deeper under-
standing of the role of interaction in information visualization.” In: IEEE
Transactions on Visualization and Computer Graphics 13.6, pp. 1224–1231. doi:
10.1109/TVCG.2007.70515.

Yih, W.-t., M.-W. Chang, X. He, and J. Gao (2015). “Semantic parsing via staged
query graph generation: question answering with knowledge base.” In: Proceedings
of the 53rd Annual Meeting of the Association for Computational Linguistics and
the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pp. 1321–1331. doi: 10.3115/v1/P15-1128.

Yih, W.-t., M. Richardson, C. Meek, M.-W. Chang, and J. Suh (2016). “The value of
semantic parse labeling for knowledge base question answering.” In: Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume

149

https://doi.org/10.18653/v1/P19-1417
https://doi.org/10.1007/978-3-319-24027-5_43
https://aclanthology.org/C16-1226
https://aclanthology.org/C16-1226
https://doi.org/10.18653/v1/P16-1220
https://doi.org/10.1093/database/bay022
https://doi.org/10.1109/TVCG.2007.70515
https://doi.org/10.3115/v1/P15-1128


References

2: Short Papers), pp. 201–206. doi: 10.18653/v1/P16-2033.

Yin, J., X. Jiang, Z. Lu, L. Shang, H. Li, and X. Li (2016). “Neural generative question
answering.” In: Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 36–42. doi: 10.18653/v1/W16-0106.

Yin, P., N. Duan, B. Kao, J. Bao, and M. Zhou (2015). “Answering questions with
complex semantic constraints on open knowledge bases.” In: Proceedings of the
24th ACM International Conference on Information and Knowledge Management,
pp. 1301–1310. doi: 10.1145/2806416.2806542.

Yu, M., W. Yin, K. S. Hasan, C. dos Santos, B. Xiang, and B. Zhou (2017). “Improved
neural relation detection for knowledge base question answering.” In: Proceedings of
the 55th Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 571–581. doi: 10.18653/v1/P17-1053.

Zafar, H., G. Napolitano, and J. Lehmann (2018). “Formal query generation for
question answering over knowledge bases.” In: Proceedings of the 15th European
Semantic Web Conference (ESWC), pp. 714–728. doi: 10.1007/978- 3- 319-
93417-4_46.

Zafar, H., G. Napolitano, and J. Lehmann (2019). “Deep query ranking for question
answering over knowledge bases.” In: Proceedings of the 18th Joint European
Conference on Machine Learning and Knowledge Discovery in Databases (ECML
PKDD), pp. 635–638. doi: 10.1007/978-3-030-10997-4_41.

Zeshan, F., R. Mohamad, M. N. Ahmad, S. A. Hussain, A. Ahmad, I. Raza, A.
Mehmood, I. Ulhaq, A. Abdulgader, and I. Babar (2017). “Ontology-based service
discovery framework for dynamic environments.” In: IET Software 11.2, pp. 64–74.
doi: 10.1049/iet-sen.2016.0048.

Zhang, H., G. Xu, X. Liang, G. Xu, F. Li, K. Fu, L. Wang, and T. Huang (2018). “An
attention-based word-level interaction model for knowledge base relation detec-
tion.” In: IEEE Access 6, pp. 75429–75441. doi: 10.1109/ACCESS.2018.2883304.

Zheng, H.-T., Z.-Y. Fu, J.-Y. Chen, A. K. Sangaiah, Y. Jiang, and C.-Z. Zhao
(2018a). “Novel knowledge-based system with relation detection and textual

150

https://doi.org/10.18653/v1/P16-2033
https://doi.org/10.18653/v1/W16-0106
https://doi.org/10.1145/2806416.2806542
https://doi.org/10.18653/v1/P17-1053
https://doi.org/10.1007/978-3-319-93417-4_46
https://doi.org/10.1007/978-3-319-93417-4_46
https://doi.org/10.1007/978-3-030-10997-4_41
https://doi.org/10.1049/iet-sen.2016.0048
https://doi.org/10.1109/ACCESS.2018.2883304


References

evidence for question answering research.” In: PLOS ONE 13.10, pp. 1–21. doi:
10.1371/journal.pone.0205097.

Zheng, W., J. X. Yu, L. Zou, and H. Cheng (2018b). “Question answering over knowl-
edge graphs: question understanding via template decomposition.” In: Proceedings
of the 44th International Conference on Very Large Data Bases (VLDB) 11.11,
pp. 1373–1386. doi: 10.14778/3236187.3236192.

Zheng, W., L. Zou, X. Lian, J. X. Yu, S. Song, and D. Zhao (2015). “How to
build templates for RDF question/answering: an uncertain graph similarity join
approach.” In: Proceedings of the 2015 ACM SIGMOD International Conference
on Management of Data, pp. 1809–1824. doi: 10.1145/2723372.2747648.

151

https://doi.org/10.1371/journal.pone.0205097
https://doi.org/10.14778/3236187.3236192
https://doi.org/10.1145/2723372.2747648



	List of figures
	List of tables
	List of listings
	List of abbreviations
	Introduction
	Objectives
	Research Methodology
	Outcomes
	Organisation of the Dissertation

	Semantic Data
	The Basics of Semantic Data
	Knowledge Representation
	Querying Semantic Data
	Summary

	Question-Answering over Knowledge Bases
	The Basics of KBQA
	State-of-the-art of KBQA
	Semantic Parsing Pipelines
	KBQA Based on Information Extraction

	Challenges and Future Research Directions
	Summary

	SCALEUS-FD: A FAIR Data Tool
	FAIR Data Principles
	Requirements and Building Blocks
	System Requirements
	SCALEUS
	Data and Metadata FAIRness

	SCALEUS-FD
	Architecture of SCALEUS-FD
	Metadata Hierarchy
	Implementation
	Web Services API

	Validation
	FAIR Maturity Assessment
	Huntington's Disease Use Case

	Summary

	Querying Semantic Data
	Contextualisation
	Background
	Discovery of Biomedical Databases
	Managing Biomedical Data with Semantic Web Technologies

	Materials
	MONTRA Framework
	SCALEUS-FD

	Methods
	Natural Language Queries over Knowledge Bases
	System Integration

	Results
	Use Case Overview
	Ontology
	Use Case Examples
	Validation and Error Analysis

	Discussion
	Future Directions

	Summary

	Visualisation of Semantic Data
	Contextualisation
	Background
	Querying and Visualisation of Semantic Data
	Interacting with Semantic Data Visualisations
	Time-evolving Semantic Data

	Databases for Observational Health
	The EMIF Catalogue Use Case
	Searching and Visualisation Features
	Steps for Improved Biomedical Metadata Visualisation
	Measuring User Behaviour

	Ontology-driven Visualisations Scenarios
	Temporal Knowledge Bases
	Database-level Visualisations
	Network-level Visualisations
	View Refinements

	Discussion
	Impact of Data Visualisations and Interactive Filtering
	Open Challenges and Future Directions

	Summary

	Conclusions and Future Work
	Outcomes
	Future Work

	Systematic Review Publications
	KBQA Benchmark Datasets Data Samples
	References

