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resumo Assistimos a uma sobrecarga de dados textuais: uma quantidade avas-
saladora de informação é registada em texto de linguagem natural e
armazenada em formato digital. Nas áreas ligadas às ciências da vida,
o número crescente de publicações científicas no domínio da biomedi-
cina e de relatórios clínicos retém uma riqueza de conhecimento que
deve ser descoberto e associado através de métodos automáticos de
extração de informação. Estes são essenciais para auxiliar a curadoria
em bases de dados biológicos e desempenham um papel importante
na descoberta de medicamentos, medicina de precisão, e investigação
clínica.
Esta tese investiga o uso de processamento de linguagem natural,
aprendizagem automática, e métodos baseados em conhecimento para
extrair informação a partir de textos biomédicos em língua inglesa. Es-
pecificamente, estudamos e propomos métodos para desambiguação
de entidades, classificação de documentos, e extração de relações. Em
suma, este trabalho contribui com um estudo exaustivo de avaliação
de várias abordagens para distintas tarefas de extração de informação
biomédica, que são um suporte vital para o avanço do conhecimento
atual.
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abstract We witness an overload of textual data: a vast amount of information
is recorded in natural language text and stored in digital media. In the
life sciences fields, the increasing number of biomedical scientific pub-
lications and of clinical reports retains a wealth of knowledge that must
be unearthed and linked through automatic information extraction meth-
ods. These are imperative to assist curation in biological databases and
play an important role in drug discovery, precision medicine, and phar-
macological and clinical research.
This thesis investigates the use of natural language processing, ma-
chine learning, and knowledge-based methods to extract information
from biomedical text in English language. Specifically, we study and pro-
pose methods for entity disambiguation, document classification, and
relation extraction. Overall, this work contributes with an exhaustive
evaluation study of several approaches for distinct biomedical informa-
tion extraction tasks, which are a vital support for the advancement of
the current knowledge.
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Chapter 1

Introduction

Artificial intelligence (AI) has been widely embraced in our daily lives to help solv-

ing diverse tasks. AI is associated with giving machines the intelligence and ability to

perform tasks or functions that would require human intelligence. Specific examples of

the use of AI include poetry writing, image generation, car driving, medical diagnosis,

and playing strategic games (Russell and Norvig, 2009).

Natural language processing (NLP) is a subfield of AI that is related with making

machines able to ‘understand’ and communicate in human natural language, or simply

perform processing of text (Jurafsky and Martin, 2008; Indurkhya and Damerau, 2010).

It has many applications ranging from more simple tasks, such as sentence boundaries

detection and text classification, to more complex tasks including text summarization,

question answering, andmachine translation. Using computers to automatically process

text eases the analysis of large amounts of textual data.

Text data mining (TDM), or simply text mining (TM), involves the use of NLP meth-

ods to find new information from raw-text sources (Hearst, 1999; Hotho et al., 2005;
Allahyari et al., 2017). Hearst (1999) argues that TDM makes use of text to directly dis-

cover heretofore unknown information. The author refers an example where text can

be used to form hypotheses for causes of rare diseases. Information extraction (IE) is the

process of creating structured information, for example saved in the form of a database,

from unstructured data. As stated by Grishman (2015), NLP researchers commonly refer

to text as unstructured data. However, in fact, natural language text has structure but it

is not explicit—it is the goal of IE to make the text’s semantic structure explicit. More

precisely, in the particular case of textual data, IE encompasses the identification of rela-

tionships and their arguments (Grishman, 1997; Sarawagi, 2008; Grishman, 2019). This

is related with TDM since new knowledge can be unearthed and inferred from automat-

ically extracted relationships between specific concepts mentioned in text. For instance

in the biomedical domain this could mean to find interactions between concepts such as
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genes, diseases, chemical compounds, and food items.

Hearst (1999) also highlights the difference between information retrieval (or infor-

mation access) and TDM. The former aims to help users find relevant documents (full-

text or excerpts) according to their information needs (Baeza-Yates and Ribeiro-Neto,

1999), while the goal of the latter is to derive or discover new information from free text

(for example, finding previously unnoticed patterns across several datasets).

In this work we investigate the use of NLP and machine learning methods for expe-

diting IE in the biomedical domain. Large amounts of biomedical information, found

in the life-sciences scientific literature and clinical narratives from electronic health

records, are recorded in natural language text. Therefore, it is imperative to use auto-

matic IE solutions that can create structured information, from this vast data, for further

use by TDMapproaches to discover new knowledge—it is inconceivable for an individual

to read and interpret all this textual data.

We consider that biomedical IE comprises two major tasks: (1) named entity recog-

nition (NER), which is responsible for identifying biomedical entities in free text (such as

genes and chemicals); and (2) relation extraction (RE) which aims to determine biomed-

ical relations between the previously recognized entities (such as protein–protein inter-

actions). Nevertheless, biomedical IE can benefit from other NLP tasks. For instance,

word sense disambiguation (WSD) aims to identify the proper meaning of an ambigu-

ous termwhich is relevant to accurately define target entities. Another task is document

triage—its goal is to rank or classify documents according to their importance given a

pre-defined criterion. For example, it could be used to find relevant documents for ex-

tracting specific biomedical interactions.

1.1 Motivation

Much of the biological, medical, and clinical knowledge is recorded in natural lan-

guage form. This textual data contains hidden relationships that can be exposed by auto-

matic means, helping researchers to investigate new hypotheses that may contribute to

a better health and well-being (for example, by finding potential treatments for specific

diseases).

In the life sciences field the number of publications is increasingly high and it is

hard for the interested audience—medical researchers, physicians, pharmacologists, and

others—to keep up with the most recent research. Figure 1.1 shows an exponential

growth of the number of publications indexed in MEDLINE, the leading biomedical bib-

liographic database compiled by the National Library of Medicine (NLM) of the United

States. We see that in the last years, more than 800 thousand scientific articles have been
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Figure 1.1: Number of MEDLINE indexed publications by year of publication from 1950

to 2020 (as of January 2022). Data retrieved from https://www.nlm.nih.gov/bsd/medl

ine_cit_counts_yr_pub.html.

published per year. The COVID-19 epidemic (Velavan and Meyer, 2020) is a recent ex-

ample showing that automatic methods are of utmost importance: they help specialists

finding more appropriate resolutions for health problems.

Despite the undeniable value of biomedical free text present in scientific literature

and clinical reports, the automatic processing of this type of text poses additional chal-

lengeswhen compared to text of the general domain. For example, the biomedical vocab-

ulary is regularly updated with new terms from novel discovered concepts, many terms

have distinct meanings within different contexts, and the use of abbreviations further

accentuates this ambiguity. In the case of clinical text, this is even more difficult because

abbreviations and typographical errors are more frequent.

The summarized aim of this work is to investigate the use of computer-based meth-

ods to extract relevant structured information from free text found in biomedical scien-

tific literature and electronic health records.

1.2 Thesis structure

The remainder of this thesis is divided into five chapters. A short description of

each chapter follows. Additionally, the rest of this first chapter contains a list of our

https://www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html
https://www.nlm.nih.gov/bsd/medline_cit_counts_yr_pub.html
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publications, a description of our open-source contributions, and clarifications about

the document design.

Chapter 2 Preliminaries
We present the fundamental notions of biomedical NLP, some biomedical

resources, and the evaluation metrics commonly employed to compare

the performance of NLP systems. We explain in detail how NLP is used

to process text, and how text is represented to be used by mathematical

models. We give emphasis to the biomedical IE task, explaining its com-

ponents, and what methods and paradigms are usually considered.

Chapter 3 Biomedical concept disambiguation
We enunciate related work describing automatic methods for disambigua-

tion and normalization of biomedical terms in raw text. We describe

two different approaches for performing biomedicalWSD: supervisedma-

chine learning and knowledge-based. We use bag-of-words, word embed-

dings, and different weighting schemes for representing the texts, show-

ing how these are effective for this task. In addition, we tackle the problem

of normalization where we present a model based on word embeddings

for linking clinical terms to standard vocabularies.

Chapter 4 Biomedical text classification and similarity measurement
We justify, supported by background work, how text classification is rel-

evant to IE and how measures of text similarity are significant for higher-

level biomedical NLP applications. We investigate the use of traditional

machine learning classifiers, deep neural networks, and rule-based meth-

ods for text classification. Lastly, we explore the application of deep learn-

ing, with word embeddings and sentence embeddings, for measuring se-

mantic textual similarity.

Chapter 5 Biomedical relation extraction
We describe related work on biomedical RE from scientific literature and

explain the task. We present comprehensive experiments with convolu-

tional and recurrent neural networks using word embeddings for iden-

tifying chemical–protein interactions (CPIs) in biomedical scientific text,

showing that neural networks methods perform competitively.

Chapter 6 Conclusions
We discuss the overall work, highlight the main contributions, describe

some limitations of our methods, and present future work directions.
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1.3 Publications

The work described here resulted in several publications. A list of these, with a brief

description, is presented chronologically by topic:

1. Machine learning with word embeddings applied to biomedical concept
disambiguation (Antunes and Matos, 2016).

We apply traditionalmachine learningmethods in a supervised setting for biomed-

ical word sense disambiguation. We combine bag-of-words and word embeddings

to represent the surrounding textual context of ambiguous biomedical terms. We

compare word embedding models created from PubMed and Wikipedia, conclud-

ing that domain-specific biomedical word embeddings consistently provide better

results.

This publication is relevant to Chapter 3.

2. Biomedical word sense disambiguation with word embeddings (Antunes

and Matos, 2017a).

We propose a knowledge-based method for biomedical word sense disambigua-

tion. We use the UMLS (Unified Medical Language System) and the MeSH (Med-

ical Subject Headings) term co-occurrences to extract concept textual definitions

and calculate concept associations, respectively. Each concept is represented by

a vector weighted by the embeddings of the words in the concept definition. We

use word embedding models created from PubMed abstracts. For disambigua-

tion, cosine similarity is used to measure the similarity between the surround-

ing context of the ambiguous term and each possible concept. We compare this

knowledge-basedmethodwithmachine learningmethods using bag-of-words and

word embeddings. Despite being outperformed bymachine learningmethods, our

proposed knowledge-based method achieves a comparable performance, does not

require training data as in a supervised setting, and can be applied to any biomed-

ical ambiguous term that contains a curated textual definition.

This publication is relevant to Chapter 3.

3. Evaluation of word embedding vector averaging functions for biomedical
word sense disambiguation (Antunes and Matos, 2017b).

We evaluate different word distance weighting schemes using our previously pro-

posed knowledge-based method. This weighting scheme is used to give more im-

portance to the words closest to the ambiguous term. We show that different
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weight schemes impact the disambiguation performance, and an adequate weight-

ing can improve it.

This publication is relevant to Chapter 3.

4. Supervised learning and knowledge-based approaches applied to biomed-
ical word sense disambiguation (Antunes and Matos, 2017c).

One limitation of our biomedical WSD approach in past publications (Antunes

and Matos, 2017a,b) was that we did not use the whole dataset for testing our

knowledge-basedmethod, becausewe did not have access to textual definitions for

every concept in the dataset. The main difference in this work is that we fetched

textual definitions from UMLS for all concepts, enabling our results to be directly

compared with other works in the literature. This article presents an exhaus-

tive compilation of experiments with different settings using supervised learning

and knowledge-based systems. We conclude that our knowledge-based method

performs robustly, yet machine learning models provide higher performance but

require labeled training data.

This publication is relevant to Chapter 3.

5. Clinical concept normalization on medical records using word embed-
dings and heuristics (Silva et al., 2020).

We employ sieve-based models (comprised of several steps)1, combined with

heuristics and word embeddings, in clinical entity normalization. This involves

linking clinical named entities—such as drugs, disorders, and procedures—to con-

cepts in established medical terminologies. We show that the sole use of a strategy

based on word embeddings presents competitive results.

This publication is relevant to Chapter 3.

6. Identifying relevant literature for precision medicine using deep neural
networks (Matos and Antunes, 2017a).

We evaluate traditional classifiers against deep learningmodels for document clas-

sification, both using word embeddings, and show that deep neural network ar-

chitectures obtain better results. Our methods performed competitively in a docu-

ment triage task, which aimed to identify relevant PubMed abstracts that mention

protein–protein interactions affected by genetic mutations.

This publication is relevant to Chapter 4.
1 Specifically, I was responsible for the first ‘sieve’ of the model which was based on biomedical word

embeddings for representing clinical terms.
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7. Rule-based and machine learning hybrid system for patient cohort selec-
tion (Antunes et al., 2019).

We propose an automatic system to identify which patients, given their clinical

textual reports, meet or not meet certain criteria (for example, does the patient

uses drugs or speaks English). The system is composed of rule-based methods

with handcrafted text patterns and machine learning classifiers. We show that

some criteria are more easily solved with simple heuristics while others are more

complex, demand specialized clinical knowledge for designing appropriate text

patterns, and benefit from the use of machine learning models.

This publication is relevant to Chapter 4.

8. Evaluating semantic textual similarity in clinical sentences using deep
learning and sentence embeddings (Antunes et al., 2020).

We present a deep neural network model for measuring the semantic similarity

between clinical sentences. In this task, a real value is attributed to each pair of

sentences to specify the degree of the semantic meaning they share. We assess

the impact of using different pre-processing methods and feature representation

methods (word embeddings against sentence embeddings).

This publication is relevant to Chapter 4.

9. Extraction of chemical–protein interactions from the literature using neu-
ral networks and narrow instance representation (Antunes andMatos, 2019).

We propose deep neural network models using word embeddings for extracting

chemical–protein interactions from PubMed abstracts. Our best model was based

on recurrent neural networks and only used information from the shortest depen-

dency path between the target entities. We present an extensive study of experi-

ments and make a detailed error analysis.

This publication is relevant to Chapter 5.

Apart from the works summarized above, I colaborated in other works that are not

discussed in this thesis. These are presented in chronological order:

1. Protein–protein interaction article classification using a convolutional recurrent

neural network with pre-trained word embeddings (Matos and Antunes, 2017b).

2. Overview of the BioCreative VI Precision Medicine Track: mining protein inter-

actions and mutations for precision medicine (Doğan et al., 2019).
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3. Understanding depression from psycholinguistic patterns in social media texts

(Trifan et al., 2020a).

4. Machine learning for depression screening in online communities (Trifan et al.,
2020b).

5. Automatic analysis of artistic paintings using information-based measures (Silva

et al., 2021b).

6. Chemical–protein relation extraction in PubMed abstracts using BERT and neural

networks (Antunes et al., 2021).

7. Chemical detection and indexing in PubMed full text articles using deep learning

and rule-based methods (Almeida et al., 2021).

8. Drug mention recognition in Twitter posts using a deep learning approach (Silva

et al., 2021a).

9. Chemical identification and indexing in PubMed full-text articles using deep learn-

ing and heuristics (Almeida et al., 2022).

10. Chemical identification and indexing in full-text articles: an overview of the NLM-

Chem track at BioCreative VII (Leaman et al., 2023).

1.4 Open-source contributions

Some of the code developed for this thesis was made publicly available. For that

purpose, the following two open-source repositories were created:

• https://github.com/ruiantunes/2018-n2c2-track-1

This repository contains part of the source code developed from our participa-

tion in the 2018 n2c2 Track 1, comprising handcrafted rules and classical machine

learning classifiers for automatic patient cohort selection (Antunes et al., 2019).

• https://github.com/ruiantunes/biocreative-vi-track-5-chemprot

This repository contains the source code of our deep learning–based RE extraction

system for BioCreative VI Track 5 integrating all post-challenge improvements

(Antunes and Matos, 2019). We also share our word embedding models created

from PubMed abstracts, and detailed statistics about the task dataset and our sys-

tem predictions.

https://github.com/ruiantunes/2018-n2c2-track-1
https://github.com/ruiantunes/biocreative-vi-track-5-chemprot
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1.5 Document writing and design

Preparing a thesis document, that readers find comprehensible and compelling, is a

challenging task. As Zobel (2014) clarifies, the writing style must be adequate to commu-

nicate science: the text should be rigorous, readable, and based on logical thinking. The

author also presents a comprehensive discussion of many aspects of scientific writing,

which I frequently consulted for improving the writing of this document. Also relevant

is a suitable design of the document by presenting its basic elements in an organized

way. It makes the message of the author clearer, helping readers understanding it and

keeping them interested (Schriver, 1989; Telg and McLeod-Morin, 2021). It is difficult,

if not impossible, to mention all the works that influenced and inspired me for better

designing and structuring this document. Still, I would like to point the reader to some

major works that, in different ways, helped me to shape this document (Oliveira e Silva,

1994; Campos, 2013; Gal, 2016; Baker, 2017; Amos, 2019; Oleynik, 2020).

The LATEX typesetting system was used to compose this document, and Inkscape was

used for designing the vector images with the exception of Figure 1.1 that was created

using Matplotlib. The source code for generating this thesis document is publicly avail-

able at:

https://github.com/ruiantunes/ua-thesis.

https://github.com/ruiantunes/ua-thesis
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Chapter 2

Preliminaries

In this chapter we present background knowledge that is essential for a clearer un-

derstanding of the work presented in this thesis. We introduce the research field of

natural language processing (NLP) and detail its most common tasks. Next, we clarify

how computational text representation has shifted from simple high-dimensional binary

vectors, that carry information if a specific word is within a text, to advanced represen-

tations based on real-number vectors that aim to represent the lexical meaning of words

in a lower dimensional vector space.

Then, we describe what is information extraction detailing some of its major tasks,

methods, and evaluation techniques commonly employed. Finally, we reveal how

biomedical text mining involves the application of NLP to extract information from text

found in the scientific literature and electronic health records. Related community-wide

challenges and several biomedical resources are highlighted.

Some of the content presented in this chapter is based upon well-established liter-

ature, to which we point the reader for further consulting (Manning et al., 2008; Bird
et al., 2009; Nadkarni et al., 2011; Ingersoll et al., 2013; Jurafsky and Martin, 2018).

2.1 Natural language processing

Natural language processing, a subfield of artificial intelligence, investigates how

a machine may ‘understand’ natural language. It includes a variety of text processing

tasks, ranging from simpler exercises, such as finding the boundaries of sentences within

a text, to more difficult challenges that can make machines answer questions, summarize

or translate documents, or even maintain a human-like conversation. Machines that can

successfully address those more difficult NLP tasks are often referred to as ‘intelligent’

because they show similar language reasoning abilities to those of humans.

To give some context, Turing (1950) defied the computational linguistics community
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by reformulating the question ‘Can machines think?’ so that it could be expressed in a

less ambiguous form. The author further presented the imitation game (also known as

the Turing Test) which, in short, is a simple assessment for evaluating if a machine can

show intelligence similar to humans by communicating, as good as a human, through

natural language (that is, if it is capable of imitating human answers). Since then, a lot of

research has been conducted regarding automatic (computational) processing of natural

language—a very short historical roadmap about the field of NLP follows.

According to Nadkarni et al. (2011), NLP had its beginning around the 1950s with

the intersection of the fields of artificial intelligence and linguistics. Rindflesch (1996)

presents a solid review of early NLP tasks that were solved using statistical techniques,

probabilistic models, and rule-based approaches; and discusses some of the NLP applica-

tions such as information retrieval and question-answering systems. According to Mar-

quez and Salgado (2000), the application of machine learning drawn attention in the NLP

community around the early 1990s addressing mainly natural language disambiguation.

However, in recent years deep learning has shown great promise in several compu-

tational research areas and NLP is no exception. Deep learning–based strategies have

established the state-of-the-art in many tasks achieving sometimes performance almost

as good or better than a human. Computational linguistics and deep learning have a

huge potential that has been explored and there is still plenty room for investigation

and future testing, with still much exciting experiments to offer (Manning, 2015).

One of the most important applications of NLP in the biomedicine field is that these

technologies help biologists, medical researchers, and physicians with tools that provide

automatic annotation of text. These are also fundamental for biocuration and help to

keep biomedical databases and ontologies up-to-date (Singhal et al., 2016a).
In this section we detail the many tasks of NLP which deal with the basic processing

of text. These are required to construct much more complex tasks such as those of

information retrieval or extraction. These tasks are usually addressed using heuristics,

rule-based approaches, or machine learning strategies.

2.1.1 Tasks

The field of natural language processing has many applications and it is in constant

evolutionwith new use cases often emerging. However, themain fundamental NLP tasks

have remained essentially the same throughout the years. Processing natural language

usually consists in employing a variety of methods that solve simpler to more complex

tasks, depending on the problem at hand. The simpler, low-level, tasks constitute the

main processing blocks, which are then used when addressingmore complex, high-level,

tasks. We start by enumerating and briefly explaining some of the key lower-level NLP
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tasks:

• Sentence boundaries detection, also referred to as sentence splitting, is the task of

identifying the boundaries of each sentence, that is, where sentences start and

end. It is relevant for further processing steps that take advantage of processing

one sentence at a time.

• Tokenization consists in splitting an excerpt of text into words, though some spe-

cific tokenizers have a more granular approach and further split words into sub-
word units, also known in the literature as wordpieces (Wu et al., 2016). Each indi-

vidual (sub)word is considered a token. Often this method is performed in a sen-

tence (that is, after sentence splitting), though it can be applied in shorter phrases

or longer excerpts such as a paragraph or a full-text document without sentence

splitting.

• Stop words removal discards words that may be considered noisy or irrelevant for

a specific language understanding task. Usually, pre-compiled lists of stop words,

found in several NLP libraries and databases, are employed; though methods that

dynamically identify the stop words are also used, for instance by finding highly

frequent non-informative words in a collection of text documents (such as ‘the’,

‘and’, ‘or’). This technique is often employed for tasks such as document or topic

classification, where main terms related to a certain topic contribute for a success-

ful prediction. For instance, Saif et al. (2014) studied whether removing stop words

is effective for sentiment analysis of Twitter posts.

• Stemming and lemmatization are two different techniques with the same goal, to

convert or normalize related forms of a word to a common base form. For example,

activate, activates, and activating could be chopped off to activat. This is what

stemming performs, it employs a heuristic process that removes the ends of words

(even if the resulting word form does not exist in the language). One of the most

known stemmers for the English language is the Porter stemmer (Porter, 1980). On

the other hand, lemmatization finds the root form of a word within a vocabulary

corresponding to the base or dictionary form of a word, known as lemma (usually

a verb or a noun). The resulting lemma of the previous example would be activate
(verb) or activation (noun).

• Part-of-speech tagging consists in attributing to each word in a text its part-of-

speech, that is, identifying whether its lexical category is a noun, verb, adjective,

or other. These part-of-speech (PoS) categories, also known as word classes, are
helpful for downstream tasks such as text chunking and named entity tagging.
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Probably, the most well-known and established PoS tagset for English is the one

from the Penn Treebank Project1 (1989–1992) which we point the reader for fur-

ther consultation (Santorini, 1990; Marcus et al., 1993).

• Text chunking or shallow parsing splits a sentence into contiguous and non-

overlapping segments according to the part-of-speech tagged tokens. Consecu-

tive tokens are grouped into major grammatical units such as noun phrases, verb

phrases, adjective phrases, and prepositional phrases. Consult Abney (1991) and

Sang and Veenstra (1999) for further reading.

• Dependency parsing identifies the grammatical relations between words within

a sentence, thus exposing its syntactic structure. The relations are directed and

labeled from a fixed set of grammatical relations or dependencies, forming a struc-

tured tree of relationships known as dependency tree. The Stanford typed de-

pendencies representation provides a standard description of grammatical rela-

tionships (de Marneffe and Manning, 2008, 2016), which was later extended and

improved according to the Universal Dependencies representation (Schuster and

Manning, 2016).

• Passage segmentation is responsible for finding and splitting the constituent sec-

tions of a full-text document. Often a complete document contains several parts,

and each of these sections may require a different text processing. For example, in

clinical reports, one section may have a list of medical prescriptions (with dosages,

route of intake, and other relevant information), other section can contain a table

with clinical analysis results, and other sections may simply have notes in raw

text.

• Semantic role labeling, also known as shallow semantic parsing or slot-filling, iden-
tifies semantic relationships, within a sentence, between noun and verb phrases

with thematic roles such as agent, instrument, or destination (Gildea and Juraf-

sky, 2000, 2002; Jurafsky and Martin, 2018). As Jurafsky and Martin (2018) fur-

ther explain, this task aims to answer how participants relate to events addressing

questions like “who did what to whom” and “when and where”.

We have identified most of the major low-level processing tasks of natural language,

which are commonly employed in the implemententation of higher-level tasks, that solve
specific problems, such as:

• Word sense disambiguation aims to find the correct senses of ambiguous terms

1 https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html

https://www.ling.upenn.edu/courses/Fall_2003/ling001/penn_treebank_pos.html
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given their surrounding contexts. Natural language contains many equivocal ex-

pressions and frequently it is open to interpretation. Therefore, finding the proper

meaning of ambiguous text is relevant for accurate information extraction.

• Named entity linking or concept normalization attributes unique identifiers—from

databases, terminologies, or vocabularies—to terms identified in the text. Often,

this task is tackled jointly with the sense disambiguation task because it requires

linking every ambiguous expression to a unique meaning using a specific identi-

fier.

• Document classification consists in categorizing documents according to pre-

defined criteria. For instance, documents can be classified within several topics

or simply as relevant or not (example of binary classification).

• Named entity recognition detects the spans of text that refer to specific entities

(or concepts). For example in the biomedical domain, this task is used to detect

diseases, adverse effects, chemicals, and others.

• Relation extraction identifies interactions between named entities in the text.

Traditionally, this task started by a trigger recognition step where the term

expression—usually a verb—involving the two entities would be firstly detected.

However, with the recent advance of machine learning, this separate step for trig-

ger recognition was discarded due to more recent NLP models that are able to

perform relation extraction in a single step, usually through the use of distributed

word representations.

• Text summarization is the task of creating a short excerpt of a few sentences or

paragraphs, given a larger input text, containing the most relevant information

presented in the original document.

• Question answering addresses the extraction or generation of textual answers to

questions, which can be based on text data alone or by exploiting external infor-

mation from knowledge sources.

• Machine translation is the task of converting text in one language to another. For

instance, given a clinical narrative in Spanish, transform it to English.

All the aforementioned higher-level tasks are related to the broader concept of mea-

suring the semantic textual similarity between two text excerpts. For instance, sense

disambiguation and concept normalization compare the surrounding context of an am-

biguous term to other contexts of other senses, identifying the closest one and therefore
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the likelymeaning. Similarly, supervised relation extractionmodels identify interactions

between two entities by using and interpreting their surrounding context.

2.2 Text representation

Representing text in a numerical form is what allowsmathematical models to be used

for automatic processing of natural language. Early approaches for text representation

were based on binary vectors that indicated the presence or absence of a specific word

from a determined vocabulary. These evolved to integer vectors that could tell how

many times a word appeared in a text, and then more elaborated formulas appeared for

giving a certain importance to each word. One of the most fundamental NLP tasks is the

splitting of the text into basic units such as words, also commonly referred to as tokens.

This process is known as tokenization and is the basis for representing the text.

2.2.1 One-hot encoding and bag-of-words

A simple way of thinking on how to convert a text document into a numerical rep-

resentation is to simply attribute an integer number to each word in the vocabulary. In

this context, a vocabulary is the set of distinct words found in a collection of documents,

or corpus.

One-hot encoding is a common technique for representing words using binary vec-

tors. First, the vocabulary is built, and the length of the vocabulary is considered the

length of the binary vector. Then, every word is attributed an integer number, cor-

responding to its index in the vocabulary, and a document is represented by a vector

containing mostly zeros with ones indicating the words that are present in the docu-

ment.

The bag-of-words (BoW) technique consists in representing a text by specifying only

its constituent words and their respective occurrence or frequency—their position in the

text are ignored. The most commonly used weighting scheme applied with BoW is the

TF–IDF (term frequency–inverse document frequency).

The TF–IDF mechanism has the goal to give higher importance to most common

words within a document, but reduce importance to words that are frequent across the

corpus. For instance, considering the English language, words such as ‘the’ and ‘of’ are

very frequent in a single document, but also in a set of documents, therefore carrying

little information about a specific subject.

These techniques allow a simple and fast numerical representation of text that can

achieve strong performances in several NLP tasks relevant for information extraction

such as document classification. In this case, each document corresponds to a vector
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where each dimension corresponds to a specific word, and its value can be the frequency

count or the TF–IDF value. Commonly, this provides a solid baseline that can be used as

a starting point for further development and improvement. However, one drawback of

this method is that does not benefit from the sequential order in which the words appear,

that is, the real context and meaning of a structured sentence.

2.2.2 Distributional semantics and word embeddings

Distributed representations of words, also known as word embeddings, are lower-

dimensional vector representations of words. These are estimated from large corpora

with millions or billions of words. Although distributed word representations were pro-

posed before, the first well-known algorithm for efficiently calculating these word em-

beddings is word2vec (Mikolov et al., 2013a,b), and then other models such as GloVe

appeared (Pennington et al., 2014). These methods calculate fixed word vectors using

deep learning models that during training try to predict the surrounding context given

the target word, or try to predict the target word given the surrounding context.

These word vector representations are used frequently with deep neural network

architectures. An alternative type of representation is character embeddings where each

character is represented by a single vector. These have been proven to be useful also

for a variety of NLP tasks since these can encode and carry further information—for

example they can retain information regarding prefixes and suffixes.

2.3 Information extraction

This section gives an overview of the Information Extraction task. It presents back-

ground work, state-of-the-art methods, and summarizes the description of many sub-

tasks. Within the text data mining field, information extraction is the process of using

computerized and automatic methods to discover knowledge from digital media sources

such as textual data. However, in a more broad sense, information extraction is often

related with simply distilling data from document sources, and therefore, in fact, does

not always imply discovering new knowledge.
Arguably, the most addressed tasks for information extraction from free text are

named entity recognition and relation extraction. The former is responsible for identify-

ing terms or concepts in the text, whereas the latter finds relationships between those

concepts. Automatic annotation of entities and their relations is relevant to generate

new hypotheses that help to create new knowledge. For instance, particularly within

the biomedical domain, adverse drug events (ADEs) can be determined, and candidate

drugs or therapies for specific health problems can be detected from clinical reports.
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The implementation of these tasks require the use of NLP methods which are able

to handle and transform textual data. These are usually employed in a first stage of data

preparation for representing the text in a numerical form, which can then be interpreted

by mathematical models such as machine learning methods.

Information extraction can be thought as the task of identifying relevant informa-

tion in the text such as entity mentions and interactions (or relations) between those.

Linking (normalizing) entity mentions to standard terminologies or ontologies, or dis-

ambiguating them is also considered to be part of information extraction. Classifying

documents as pertinent to discover specific knowledge is also considered a relevant task

for information extraction.

We also explain the basics of major NLP tasks including word sense disambiguation,

document classification, entity recognition, and relation extraction. Frequent method-

ologies including rule-based approaches, machine learning models, and deep neural net-

works are briefly introduced. We also clarify different learning paradigms, used in in-

formation extraction, such as supervised, semi-supervised, distant supervision, unsu-

pervised or knowledge-based, and explain how they make use of labeled and unlabeled

data, and external information sources such as (curated) databases. Additionally, we

highlight the differences between pipeline and joint learning methods. Concurrently,

we present a brief overview of the biomedical information extraction research area, and

detail further background work for different tasks in each chapter separately.

2.3.1 Tasks

There are a plethora of information extraction tasks. In this section we highlight the

ones that we considered more relevant according to the work developed for this thesis.

These primarily include the retrieval or classification of documents relevant for text

mining, and further identification of named entities and their relationships. These are

the major steps required to help database curation and potentially find new hypotheses

for testing.

Document classification

Document classification is the task of categorizing documents, for example by label-

ing them relevant or irrelevant regarding predefined criteria. This task can be employed

in an IE pipeline where the first step is to identify potentially relevant documents for

text mining. Document classification is sometimes interwoven with document retrieval,

where a large collection of documents is present, and the most relevant regarding a

specific subject need to be selected; in these case, the advantage is that only a smaller
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subset of documents needs to be processed with further IE tasks, alleviating the need of

computational power.

Earlier approaches for classifying documents included rule-based methods built with

heuristics. Though, with the increasing of hand-labeled data, traditional supervised ma-

chine learning methods started to be applied using bag-of-words features. Most recent

works have been using deep learning architectures with word embeddings for text clas-

sification (Yang et al., 2016; Fergadis et al., 2018). These methods have been applied for a

variety of purposes including finding depressive tendencies in written text (Yates et al.,
2017) and performing sentiment analysis (Cambria et al., 2013).

Classification of documents can expedite next information extraction steps since ir-

relevant, or less relevant, documents can be discarded beforehand. The removal of this

unnecessary texts saves valuable processing time that can be employed for more impor-

tant tasks such as finding relationships between relevant terms. However, the document

classification task may not be necessary when it is the aim—and there is enough compu-

tational power—to analyze all the documents of a collection, or the number of documents

is relatively small.

Named entity recognition

Named entity recognition (NER) is a major task in information extraction from text.

Its aim is to identify named entities such as persons, organizations, locations in the case

of general-domain text; or chemicals, diseases, and adverse drug effects in the case of

biomedical text. This is the most fundamental task for enabling relationship extrac-

tion between the pre-detected named entities. For example, considering biomedical text,

chemical–protein or drug–drug interactions can be found, and verified or added to ex-

ternal databases by expert curators.

Earlier approaches for NER were based on machine-readable dictionaries (MRDs)

that contain lists of entity terms of different types. This strategy constitutes one of the

most simple method for entity recognition, since it is only required to match the entity

terms within the text—for that case, regular expressions can be used. Regular expression

is a method that facilitates the programming of finding text patterns in a concise way,

and it has been used for several years in many text processing related areas.

Afterwards, named entity recognition was addressed as a sequence labeling problem,

where each token is labeled as part of an entity or not. This is the most common way to

solve NER, since it provides a simple way for detecting the entity boundaries (character

offsets), and classify the entity type if it is the case of multiple entity classes. Condi-

tional random fields (CRFs) are statistical models that have been largely used in natural

language processing. These do not predict the label of each token independently, but
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take context (neighboring tokens) into account.

To the best of our knowledge, Ramshaw and Marcus (1995) proposed the {I, O, B}

chunk tag set when implementing a rule-based tagging system for text chunking. In

their work they used the “I” tag to mark words inside some noun phrase (NP), the words

marked with “O” are outside the NP, and the “B” tag is used to mark the first word of a

NP which immediately follows another NP.

However, different representations for chunking and named entity recognition (NER)

have been proposed and been used as well. For instance, Sang and Veenstra (1999) exam-

ined seven different representations for the problem of recognizing NP chunks, where

they cite thework of Ratnaparkhi (1998) highlighting that in hiswork all the chunk initial

words receive the same start tag differently from the representation used by Ramshaw

and Marcus (1995). Sang and Veenstra (1999) refer to the tagging formats proposed by

Ramshaw and Marcus (1995) and Ratnaparkhi (1998) as “IOB1” and “IOB2” respectively.

They also present the “IO” partial representation in which words inside a NP receive

an “I” tag and others receive an “O” tag. However, this encoding is insufficient since

adjacent NPs or named entities cannot be distinguished.

In the NER task across multiple domains, Ratinov and Roth (2009) found that the

BILOU (also known as IOBES) representation of text chunks significantly outperforms

the widely adopted IOB scheme. In the biomedical domain, Dai et al. (2015) studied the

effect of different tagging schemes showing that the IOBES scheme obtained better re-

sults than the IOB scheme in the recognition of mentions of chemical entities. However,

in another work in NER, Lample et al. (2016) did not observe a significant improvement

of the IOBES tagging scheme over the IOB tagging scheme.

Different names for the same tagging schemes have been used. Table 2.1 presents

an incomplete list of these nomenclature variations and their abbreviations. For more

details, we point the reader to other works reporting investigation of different tagging

schemes (Kudo and Matsumoto, 2001; Cho et al., 2013). An example, adapted from Cho

et al. (2013), with the use of the “IO”, “IOB2” and “IOBES” representations is shown in

Table 2.2.

Named entity linking

Named entity linking, or entity normalization, is the task of attributing unique codes

from standard terminologies to the previously detected entity mentions. This step is

usually performed after the named entity recognition task, where entities are predicted,

but are not linked to a curated ontology or database. This task also addresses word sense

disambiguation (WSD), since it is guaranteed that every entity mention has a specific

meaning because it is connected to a single code.
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Table 2.1: Tagging schemes, their nomenclatures and abbreviations.

Nomenclatures Initials Meanings

IO
I Inside
O Outside

I Inside
IOB, BIO O Outside

B Beginning

I Inside
O Outside

IOBES, BILOU B Beginning
E / L End / Last
S / U Single / Unit-length

Table 2.2: A sample text annotated with different tagging schemes. Adapted from Cho

et al. (2013).

Tokens IO IOB2 IOBES

Gamma I-gene B-gene B-gene
glutamyl I-gene I-gene I-gene
transpeptidase I-gene I-gene E-gene
( O O O
GGTP I-gene B-gene S-gene
) O O O
activity O O O
in O O O
the O O O
... ... ... ...

The task is usually solved using sieve-based approaches, where in each sieve (step)

it is performed a different strategy. It is common that the first sieves are based on string

matching patterns using dictionaries from standard terminologies, followed by more

advanced techniques for example including measuring similarities using word embed-

dings. The resolution of this task is relevant since it helps in the relationship extraction

task, and guarantees exactly which concepts are being referred, which is important for

accurate information extraction.
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Relation extraction

Relation extraction (RE) or relationship extraction aims to identify associations be-

tween specific entities in the text. This task commonly follows the entity recognition

task where named entities are firstly properly identified. The relations detected and

discovered are then relevant to help curators keep their databases well-verified and up-

to-date.

Traditionally this task started with the identification of a trigger for a relation. This

is known as trigger recognition, where for example a verb could identify the relation be-

tween two concepts. Campos et al. (2014) present a machine learningmodel for biomedi-

cal event trigger recognition. They use a CRFwith a comprehensive feature set achieving

an F-score of 0.627 in the BioNLP 2009 shared task corpus.

2.3.2 Pipelined versus joint extraction

Traditionally, extraction of entities and relations have been addressed by solving two

ordered tasks: NER and relation extraction. This is commonly referred in literature as

the pipeline approach, since it combines two separate tasks where the relation extraction

requires beforehand the named entities.

There are two main paradigms for extracting information:

• Pipelined: concept recognition followed by relation extraction.

• Joint extraction where entities and relations are simultaneously extracted.

Pipelined extraction

Pipelined extraction is built with two separate steps: named entity recognition is fol-

lowed by relation extraction. In this approach, these steps require training two different

models. One weakness of this approach is that the NER step can propagate errors into

the last step (Li and Ji, 2014).

Joint extraction

Joint extraction is the task of cooperatively identifying entities and their semantic

relations from free text. Traditional joint methods require complex feature engineering

or heavily rely on other NLP tools. However, the use of external tools might lead to

error propagation where wrongly detected named entities negatively impact the relation

extraction task. In recent years, the use of neural networks (deep learning) has been

investigated for developing end-to-end models dramatically reducing the manual effort

in feature extraction.
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In this section we present works that either apply feature-engineered or deep learn-

ing methods, discussing what are the conveniences over each other.

Handcrafted feature engineering First works on joint extraction were built with

two separate models, where one was responsible for NER and the other performed re-

lation extraction. Afterward, works using only a single joint model were proposed. To

the best of our knowledge, Li and Ji (2014) were the first to present a single joint model

to predict entities mentions and relations. The entity and relation extraction tasks they

addressed were those of the Automatic Content Extraction (ACE) program (Dodding-

ton et al., 2004) presenting results on the ACE04 and ACE05 corpora. In contrast to

previous research where entity mentions are assumed to be given, this work aimed to

investigate an end-to-end model for NER and relation extraction. For comparison, they

developed a baseline pipeline system composed of a CRF for entity mention extraction

and a maximum entropy model for relation extraction. In the ACE04 corpus their joint

model achieved a 0.453 F1-score outperforming previous works and their pipeline base-

line model (0.429). In the ACE05 corpus their proposed joint model achieved a 0.495

F1-score, whereas human annotators obtained an F1-score about 0.70 with an inter-

annotator agreement of 0.519, showing how end-to-end relation is challenging.

Miwa and Sasaki (2014) introduced a flexible table representation of entities and re-

lations from a single sentence. They employed the BILOU tagging scheme assuming that

entities do not overlap. They evaluated their model in the CoNLL04 dataset (Roth and

Yih, 2004). Their F1-score metrics showed improved performance in using joint learning

(0.610) over a pipeline approach (0.577).

Ren et al. (2017) combined joint extraction of entities and relations with distant su-

pervision. They evaluated their model in three datasets from different domains (news

articles, Wikipedia articles, biomedical abstracts).

Deep learning Miwa and Bansal (2016) presented the first neural network based

model for joint extraction of entities and relations. Their end-to-end model represents

word sequence and dependency tree structures by using bidirectional sequential and

tree-structured LSTM (long short-term memory) networks. In the ACE04 and ACE05

datasets they achieved F1-scores of 0.484 and 0.556 respectively.

Katiyar and Cardie (2017) employed an attention-based BiLSTM model for joint en-

tity and relation extraction. They made no use of dependency trees neither PoS tags,

using only the surface form (sequence of tokens) and achieved competitive results com-

pared to the previous work of Miwa and Bansal (2016).

Zheng et al. (2017b) proposed a novel tagging scheme for jointly extracting entities

and relations. Their tagging scheme expands the BILOU scheme. Besides each token’s
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tag having associated information about its position within an entity, it also contains

information about the relation and if it is the first or second entity in a triplet. Their end-

to-end model, based on LSTM networks, achieved the best results for a dataset created

by distant supervision means (Ren et al., 2017). However, their method cannot handle

overlapping relations.

Li et al. (2017) presented another neural joint model. They evaluated their model

in two tasks: the task of extracting ADEs between drug and disease entities, and the

task of extracting resident relations between bacteria and location entities. They used

parameter sharing to join two BiLSTM networks for extracting entities and relations.

They used the BILOU labeling scheme for entity recognition.

Adel and Schütze (2017) applied global normalization of convolutional neural net-

works. Following Miwa and Sasaki (2014), and Gupta et al. (2016) they tackled the prob-

lem as a table filling task and did not require to transform it into a token-labeling prob-

lem.

Zheng et al. (2017a) proposed a hybrid neural network composed of a LSTM for

entity extraction and a CNN (convolutional neural network) for relation classification.

However, the first layer is a BiLSTM encoding layer which is shared for both tasks. They

evaluated their model in the ACE05 dataset surpassing previous works.

Verga et al. (2018) proposed a bi-affine relation attention network that simultane-

ously extract relations at the document-level. They also employed strong distant super-

vision to create a new dataset, from PubMed abstracts and the Comparative Toxicoge-

nomics Database (CTD), for biological relationmining (chemical-disease, chemical-gene,

gene-disease).

Bekoulis et al. (2018a) demonstrated that the use of adversarial training, by adding

noise to the word representations, improves joint extraction of entities and relations

from datasets of different domains. Moreover, their model with adversarial training

achieved high performance in the first epochs during the training process.

Bekoulis et al. (2018b) employed a BiLSTM encoding layer, a CRF for entity recog-

nition, and a sigmoid function for relation extraction. They conducted a large scale

experiment achieving state-of-the-art results in corpora from different domains (news,

biomedical, real estate) and languages (English, Dutch).

More recently, Eberts and Ulges (2019) proposed a span-based joint entity and rela-

tionmodel that uses as its core a pre-trained BERT (bidirectional encoder representations

from transformers) network (Devlin et al., 2019). Their span-based approach considers

that any token subsequence is a potential entity, and that any pair of spans can have a

relation. A full search over all span and relation candidates is performed. They claim

that one advantage of this approach over the use of BIO or BILOU tagging schemes is
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that it can identify overlapping entities (for example, “codeine” within “codeine intoxica-

tion”). In their relation classifier they considered the context between the two entities,

since it showed to be more profitable than using the whole sentence. They reported

state-of-the-art results in three datasets: CoNLL04, SciERC (Luan et al., 2018), and ADE

(Gurulingappa et al., 2012b).
Wadden et al. (2019) followed the work of Luan et al. (2019) additionally performing

event extraction, and building span representations on top of multi-sentence BERT en-

codings. They experimented on four datasets: ACE05, SciERC, GENIA (Kim et al., 2003)
and WLPC (Kulkarni et al., 2018).

Luo et al. (2020a) proposed a new tagging scheme to represent both entities and

relations. Their scheme can represent some overlapped relations, which provides better

performance in comparison to other works. They employ a BiLSTM-CRF model with an

attention mechanism. They also had to define their own extraction rules according to

the proposed scheme.

2.3.3 Methods

There are a variety of methods for extracting information. Earlier methods were

built manually implementing handcrafted rules. Then, rule-based and knowledge-based

methods followed. And during the past years, due to the the much-higher availability

of computational power and also labeled text data, machine learning methods started

to thrive, particularly deep learning models that perform better with large amounts of

data.

Handcrafted rules are usually constructed using if-else statements or using regular

expressions that can find patterns in text. This approach is usually efficient in terms

of computational performance, but requires some expertise in the field for constructing

these rules, and the accuracy results may not be the best.

Traditional machine learning models also have had great success for document clas-

sification, entity recognition, and relation extraction. These models include kernel clas-

sifiers such as support vector machine, k-neighbors classifier, decision tree, and proba-

bilistic methods such as the Naive Bayes classifier.

Due to the access to big data, and increasingly gold-standard labeled data, deep learn-

ing models have been successfully claiming the state-of-the-art for many language pro-

cessing tasks. Deep models include convolutional and recurrent neural networks, atten-

tion mechanisms, generative adversarial networks, and transformers.
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Machine learning

Machine learningmodels are based on statistical and probabilisticmethods thatmake

use of training data to learn a specific task. These are used for building robust predictive

systems in different scenarios and applications including computer vision and speech

recognition, though in here we briefly present only some of the most known or used

methods applied in natural language processing.

Naive Bayes This is known to be a straightforward classifier based on a probabilistic

method, which has worked well in many different data mining tasks including document

classification. These models are much faster compared to more complex methods, and

usually do not require large amounts of training data.

k-nearest neighbors This classifier is often used as a solid baseline classifier in many

different machine learning tasks. It also provides a robust approach for a variety of

NLP problems including document classification. It follows a simple algorithm where a

sample is classified as the majority vote of its neighbors. That is, if the majority of the

nearest points in the space are from a specific class, then the sample will have this class

as prediction. This method is also straightforward and fast to compute, and does not

require much training data for reasonably good results.

Decision tree This classifier is also a simple algorithm yet effective in a variety of

tasks also providing a solid baseline for machine learning problems. It works by build-

ing a flowchart-like, from the root node to low-level nodes, with consecutive binary

decisions according to the values of the features. The more depth the tree, the more

complex, questions become more refined, which may provide better results or overfit to

the training data if there is excess ‘memorization’ on noisy patterns of the data.

Support vector machine This model is one of the most used in traditional machine

learning, and often provides strong results. This classifier tries to separate training ex-

amples from different classes by maximizing their distance in the space. New samples

are then predicted according to which side they belong to. SVMs are efficient when

dealing with high-dimensional feature spaces.

Conditional random field Lafferty et al. (2001) proposed the conditional random

field model which has been used in computer vision and natural language processing for

sequence labeling problems. During the last years, these models combined with LSTMs

have been achieving state-of-the-art results (Lample et al., 2016).
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Deep learning

Deep learning has been an emerging AI research area in the last years, being consid-

ered a subfield of machine learning. It is related with the use of (deep) neural network

models for machine learning tasks. Neural network models, built primarily from simple

math-operation cells (neurons), were inspired from the human brain structure and have

been researched during the last decades (Hinton, 1992). However, in the last years they

have shown greater performance due to improved training methodologies, increased

computational power, and higher availability of labeled data for training.

The most common and standard neural network, also known as multi-layer percep-

tron (MLP), is composed of one input layer and one output layer, and can have multiple

intermediate (hidden) layers. If there is at least one hidden layer then the model is con-

sidered to be a deep neural network—hence the term deep learning. Each layer of the

network can have multiple neurons increasing the model’s complexity.

Other type of neural networks were then proposed and are specialized in different

tasks. Convolutional neural networks containing convolutional layers are mostly used

in image processing, whereas recurrent neural networks that contain a feedback loop

are used for text processing tasks. These different networks can combine the input fea-

tures in different ways and create robust representations of the input data allowing these

models to perform well in supervised learning settings.

Knowledge-based

Knowledge-based methods are similar to unsupervised methods because they do not

rely on gold-standard labeled training data. However, these methods make use of exter-

nal knowledge present in curated databases, terminologies, ontologies, or other types

of information sources. Strategies based on external knowledge have the objective to

infer or predict new information by finding similarities with the currently known asso-

ciations.

2.3.4 Learning paradigms

There are different learning paradigms when implementing automatic methods for

information extraction. Knowledge-based methods rely on external knowledge re-

sources to empower their decision ability. In machine learning it is common to con-

sider three major learning paradigms: supervised, semi-supervised, and unsupervised.

Supervised algorithms require labeled training data to train and teach machine learning

models what is what.

Information extraction frequently aims to extract specific and pre-specified relations
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from homogeneous data, such as for example, extracting adverse drug events from med-

ical records. In contrast, extracting relations from distinct domains is difficult since it

requires to create new handcrafted rules or to annotate new training samples for being

used in a supervised setting. To alleviate this issue by facilitating domain-independent

relation extraction from large and varied corpora as the Web, Banko et al. (2007) intro-
duced a new extraction paradigm, open information extraction (OIE), where the pro-

posed system “makes a single data-driven pass over its corpus and extracts a large set of

relational tuples without requiring any human input.” As stated by Banko et al. (2007):
Standard IE systems can only operate on relations given to it a priori by

the user, and are only practical for a relatively small number of relations.

In contrast, open IE operates without knowing the relations a priori, and
extracts information from all relations at once.

They proposed a system for automatically extracting possible relations of interest.

Their system is composed of three steps: (1) a self-supervised learner that uses a naive

Bayes (NB) classifier and heuristics based on the dependency parsing, (2) a single-pass

extractor that tags each word with its part-of-speech (PoS) and it finds relations between

noun phrases (NPs), and (3) a redundancy-based assessor that creates normalized forms

of the relations which are used to count the number of distinct sentences from which

each relation was found.

Open IE systems have been used in several natural language processing (NLP) tasks

and these are traditionally built using patterns. Some of its applications are question

answering (Fader et al., 2014), relation extraction (Soderland et al., 2010; Fader et al.,
2011) and information retrieval (Etzioni, 2011).

Despite these open IE systems being useful for extracting many generic relations,

this is not the case when finding specific biomedical relations such as ADEs or protein-

protein interactions (PPIs). These type of biomedical relations are harder to extract since

they contain specific vocabulary, and in the special case of using clinical reports there

are usually many abbreviations and misspelling words increasing the level of ambiguity.

Commonly, small datasets with hundreds or thousands of documents are automatically

collected using precise queries and manually annotated with these narrow type of rela-

tions for empowering the evaluation of biomedical text mining systems.

Supervised

Supervised learning is a strategy that uses gold-standard labeled training data to

train machine learning models. These models learn from ground-truth examples and,

after being trained, they can identify and distinguish previously seen patterns on new

different data. This technique is often the one that performs best, but has the limita-
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tion that usually requires large amounts of high-quality training data. And the manual

process of expert annotation of data is very burdensome and expensive.

Unsupervised

Unsupervised learning algorithms have the objective to find patterns from unlabeled

data. The idea is that the model is able to create compact internal representations of the

data, and then differentiate distinct features. Approaches used in unsupervised learning

include probabilistic methods (algorithms such as clustering) and neural networks.

Semi-supervised

Semi-supervised learning lies between the two extremes of learning paradigms, that

use no labeled data (unsupervised) or only use labeled data (supervised). This technique

often consists in using a small set of gold-standard labeled training data, and the remain-

ing training data is usually labeled by an heuristic method or with the help of an existing

knowledge base. The advantage of these strategies is that they require a lesser amount

of curation work for creating ground-truth annotations.

Distant supervision To the best of our knowledge, the first use of learning from

weakly labeled data in the biomedical domain was employed by Craven and Kum-

lien (1999) to construct knowledge bases for molecular biology, where they exploited

databases to automatically label training instances. They present a method to represent

unstructured natural language text, from the MEDLINE biomedical scientific literature,

into a structured form such as a knowledge base or a database. As Craven and Kumlien

(1999) state:

Our approach is motivated by the observation that, for many IE tasks,

there are existing information sources (knowledge bases, databases, or even

simple lists or tables) that can be coupled with documents to provide what

we term “weakly” labeled training examples. We call this form of training

dataweakly labeled because each instance consists not of a preciselymarked

document, but instead it consists of a fact to be extracted along with a doc-

ument that may assert the fact.

2.3.5 Evaluation metrics

In order to measure the performance of an IE system, specific metrics are usually

employed to measure the quality of the predicted annotations (Chinchor and Sundheim,

1993; Fawcett, 2006; Dalianis, 2018). In this calculation, the predicted annotations are
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True positives False positives

False negatives True negatives

Annotations
(curated)

No annotations
(curated)

Predicted
annotations

Figure 2.1: Spatial visualization of true (false) positives and true (false) negatives. Image

adapted from https://en.wikipedia.org/wiki/Precision_and_recall.

compared with the gold-standard annotations commonly made by expert curators. Pre-

dicted annotations are considered true if they strictly match the gold-standard annota-

tions, and false otherwise. Furthermore, system predictions can be positive if the system

provides an annotation (for example, it identifies a chemical entity mention in a text),

or negative if the system does not provide any annotation (for example, no chemical

entity mention is found). Therefore, predictions can take one of distinct four classes

(Figure 2.1):

• True Positive (TP): correct prediction, the annotation exists in the curated corpus;

• False Positive (FP): incorrect prediction, the annotation does not exist in the cu-

rated corpus but the system predicted it;

• TrueNegative (TN): correct prediction, the annotation does not exist in the curated

corpus;

• False Negative (FN): incorrect prediction, the annotation exists in the curated cor-

pus but the system did not predict it.

https://en.wikipedia.org/wiki/Precision_and_recall
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In this scenario, the used metrics to evaluate the classification problem are Precision,

Recall, Accuracy, Specificity, and F1-score. These metrics assume values between zero,

in the worst case, and one, in the best case.

Precision is the ratio between the number of true positives and the number of posi-

tive predictions. In contrast, recall or sensitivity is the ratio between the number of true

positives and the number of positive curated annotations. Accuracy is the ratio between

the correct (positive or negative) predictions and the total number of (positive or nega-

tive) predictions. Specificity is the ratio between the number of true negatives and the

number of negative curated annotations. F1-score, or F1-measure, is the harmonic mean

of precision and recall. These metrics are shown in Equations (2.1) to (2.5).

Precision =
TP

TP+ FP
(2.1)

Recall =
TP

TP+ FN
(2.2)

Accuracy =
TP+TN

TP+TN+ FP+ FN
(2.3)

Specificity =
TN

TN+ FP
(2.4)

F1-score = 2 ⋅
Precision ⋅Recall
Precision+Recall

(2.5)

In diverse information extraction and NLP tasks such as document classification,

named entity recognition, and relation extraction, the most used metrics are precision,

recall, and F1-score. Particularly, in multi-class classification problems that deal with the

prediction of multiple classes—for example, multiple document topics, entity or relation

types—it is common to consider specific different averaging formulas for taking into

account the individual performance for every class. These are known as macro-average
andmicro-average (Yang, 1999; Tsoumakas et al., 2009). Macro-averaging consists in first

calculating the score for every class and then averaging the per-class scores to obtain the

final macro-averaged score. On the other hand, micro-averaging consists in first sum-

ming up the number of true (false) positives (negatives) of every class, and then calculate

the micro-averaged score using these global counts. Curiously, Opitz and Burst (2019)

present two slightly different ways of calculating the macro-averaged F1-score, but con-

clude that the commonly employed formula—average of F1-scores per each class—is the

more robust.
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2.4 Biomedical text mining

In this section we present background material about NLP applied in the biomedical

domain. In the biomedicine research field, new concepts are discovered regularly and

their term expressions are added to the current biomedical vocabulary. Therefore, it is of

utmost importance to keep standard terminologies, vocabularies, and databases updated

with biological and medical curated information. We present (1) several resources, such

as databases and thesauri, that are commonly used in biomedical information extraction

pipelines, and (2) worldwide shared-tasks and challenges aiming to improve biomedical

text mining systems.

Biomedical information extraction is concerned with the understanding of natural

language texts in the biomedical domain, and has the objective of mining information

from these unstructured textual data and represent them in a structured and unambigu-

ous way. Due to the enormous quantity of biomedical information registered in textual

form, such as scientific documents or clinical health records, it is impractical to manu-

ally acquire and link all the existing knowledge (Cases et al., 2013). Therefore, automatic

IE and text mining solutions are helpful for integrating current biomedical information

(Krallinger et al., 2005; Ananiadou et al., 2006).

2.4.1 Resources

Biomedical text mining is achievable due to the large number of resources that are

available (Simpson and Demner-Fushman, 2012; Rebholz-Schuhmann et al., 2012; Zhu et
al., 2013; Przybyła et al., 2016; Rosário-Ferreira et al., 2021). Artificial intelligence–based

techniques, such as machine learning and knowledge-based methods, rely on training

or external data for extracting information from free text. It is due to the manual cu-

ration efforts of biomedical experts that nowadays there is a large amount of standard

datasets for biomedical IE tasks and other well-established sources of information such

as databases and terminologies. Biomedical curated data store biomedical knowledge

that is essential for building text mining systems, and these data resources can be mainly

split into two distinct groups:

• Corpora are collections of annotated documents that are used for assessing and

comparing different IE solutions. For instance, these documents may contain an-

notations about concepts and their relationships that are previously annotated by

expert curators.

• Knowledge bases are repositories that collect informationwith the goal ofmodeling

the behavior and reality about some field. Databases and ontologies are two types
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of knowledge bases. While databases are restrictively a structured collection of

data (tables, schemes), ontologies are more rich since they also interconnect the

data (graphs, tree structures). The type of knowledge base to be used should be

chosen accordingly with the user needs, since ontologies are considered better

than databases for representing domain concepts with higher level of detail, but

databases may be more efficient (Martinez-Cruz et al., 2012).

Aside from these data resources, other materials relevant to the development of

biomedical text mining systems include:

• Toolkits and frameworks enable a fast and easier prototyping of more complex NLP

architectures. Examples include NLTK (Loper and Bird, 2002), cTAKES (Savova et
al., 2010), Gensim (Řehůřek and Sojka, 2010), and Flair (Akbik et al., 2019).

• Annotation tools and applications provide a medium to aid domain experts manu-

ally annotate documents (Neves and Ševa, 2021). Examples include BRAT (Stene-

torp et al., 2012), MyMiner (Salgado et al., 2012), PubTator (Wei et al., 2013), and
LitSuggest (Allot et al., 2021).

• Standard formats for interoperability, such as BioC (Comeau et al., 2013), easen the

processing of distinct annotated datasets by different NLP systems.

• Pre-trained models are usually made publicly available to allow reuse, evaluation,

and reproducibility by other researchers. These include, for example, word and

sentence embeddings such as BioWordVec (Zhang et al., 2019b) and BioSentVec

(Chen et al., 2019b), and contextualized word representation models such as

BioBERT (Lee et al., 2020) and PubMedBERT (Gu et al., 2021).

Table 2.3 presents some publicly available databases, ontologies, and terminologies

that are relevant in the biomedical domain and useful for supporting the construction

of biomedical IE systems. Nowadays there are a considerable number of resources for

biomedical textmining and new databases are frequently published. Therefore, choosing

the most adequate databases for specific biomedical text mining challenges, in spite of

being an arduous task requiring the knowledge and experience of experts, is important

because different external knowledge sources lead to fluctuations in the performance of

IE systems.
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Table 2.3: A list of biomedical databases, ontologies, and terminologies.

Resource Description

BioGRID
(Chatr-aryamontri et al., 2017)

Biological General Repository for InteractionDatasets (BioGRID)
is a database containing protein, genetic, and chemical interac-
tions.
https://thebiogrid.org

CTD
(Davis et al., 2017)

Comparative Toxicogenomics Database (CTD) contains informa-
tion about interactions between chemicals, genes, and diseases.
https://ctdbase.org

DrugBank
(Wishart et al., 2018)

DrugBank is a database containing molecular information about
drugs, their mechanisms, interactions, and targets.
https://www.drugbank.com

MeSH
(Lipscomb, 2000)

Medical Subject Headings (MeSH) is the terminology used for
indexing articles for MEDLINE literature.
https://www.ncbi.nlm.nih.gov/mesh

MIMIC-III
(Johnson et al., 2016)

Medical Information Mart for Intensive Care (MIMIC) is a large
database comprising information, such as medications and clin-
ical notes, about patients admitted to critical care units.
https://mimic.mit.edu

OBO Foundry
(Smith et al., 2007)

The Open Biological and Biomedical Ontologies (OBO) Foundry
is an initiative for maintaining a family of interoperable ontolo-
gies in the biomedical domain.
https://obofoundry.org

PubMed
(Sayers et al., 2021)

PubMed (Public MEDLINE) is a database comprising scientific
abstracts and citations published in life science journals.
https://pubmed.ncbi.nlm.nih.gov

SNOMED
(Cornet and de Keizer, 2008)

Systematized Nomenclature of Medicine (SNOMED) is a global
standard for clinical health terminology.
https://www.snomed.org

UMLS
(McCray, 1989)

Unified Medical Language System (UMLS) integrates biomedical
terminology, coding standards, and other resources such as a se-
mantic network for improving interoperability between biomed-
ical information systems.
https://www.nlm.nih.gov/research/umls/index.html

UniProt
(The UniProt Consortium,
2017)

Universal Protein Resource (UniProt) is a repository containing
information about protein sequences and associated information.
https://www.uniprot.org

https://thebiogrid.org
https://ctdbase.org
https://www.drugbank.com
https://www.ncbi.nlm.nih.gov/mesh
https://mimic.mit.edu
https://obofoundry.org
https://pubmed.ncbi.nlm.nih.gov
https://www.snomed.org
https://www.nlm.nih.gov/research/umls/index.html
https://www.uniprot.org
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2.4.2 Community-wide efforts and shared tasks

Several community-wide efforts have been set up for evaluating the performance of

biomedical text mining and its applicability to real IE problems (Huang and Lu, 2016).

These are relevant to foster biomedical text mining research since several teams around

the world present their state-of-the-art solutions. These efforts and challenges are often

prepared by researchers and organizations. Each of these competitive events is usually

composed by a variety of tasks where participating teams can choose in which task they

want to compete. Some of the most known international challenges for biomedical and

clinical text mining, along with some of their past NLP tasks are presented below.

• BioCreative2 is a community-wide effort organized by several researchers from

different universities and investigation centers, approximately every two or three

years. This challenge aims to evaluate text mining systems applied to the life

science literature. Some of their previous shared tasks are:

– Gene mention recognition—its goal was to identify genes and gene products

mentions in MEDLINE sentences (Smith et al., 2008);

– Protein–protein interactions (PPIs) extraction—the aim was to detect

PubMed abstracts containing PPIs, and then recognize the interations in the

relevant documents (Krallinger et al., 2011);

– Chemical compound and drug name recognition—the objective was to iden-

tify chemical and drug names in PubMed abstracts (Krallinger et al., 2015).

• n2c23 (National NLP Clinical Challenges) continues the legacy of the i2b2 (Infor-

matics for Integrating Biology and the Bedside) NLP shared tasks. Some of their

tasks include:

– De-identification—it consisted in removing automatically protected health

information (PHI) from medical records (Uzuner et al., 2007);

– Obesity disease classification—the goal was to classify obesity and its comor-

bidities from patient discharge summaries (Uzuner, 2009);

– Medication identification—it focused on identifying medication information

such as their dosages, durations, and reasons for administration (Uzuner et
al., 2010).

2 http://www.biocreative.org/
3 https://n2c2.dbmi.hms.harvard.edu/

http://www.biocreative.org/
https://n2c2.dbmi.hms.harvard.edu/
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• BioASQ4 organizes challenges on large-scale biomedical semantic indexing and

question answering:

– Semantic indexing—the goal was to label biomedical-related documents us-

ing the MeSH (Medical Subject Headings) terminology used for indexing

MEDLINE articles (Tsatsaronis et al., 2015);

– Question answering—the objective was to compose correct answers to given

biomedical questions (Tsatsaronis et al., 2015).

2.5 Summary

In this chapter we explained what is natural language processing. We discussed how

representing text evolved in the last years due to deep learning advances, how NLP is

crucial to information extraction, and detail that these tasks can follow a pipeline or joint

extraction paradigm. We detailed the most common methods, evaluation metrics, and

learning paradigms. Finally, we explained how this has been useful for biomedical text

mining and presented some commonly used resources for assessing biomedical infor-

mation extraction and enumerated international competitions that have been boosting

the development of this research field.

In the following chapters we will address different NLP tasks in the context of

biomedical text mining. We will present our methodologies, results, and compare with

related work. Given the preliminaries we detailed here that consisted in explaing the

most fundamental concepts in natural language processing we believe the reader can

now understand in more detail the remaining content of this thesis.

4 http://www.bioasq.org/

http://www.bioasq.org/
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Chapter 3

Biomedical concept disambiguation

In natural language text it is frequent that words or phrases1 are ambiguous, that is,

they can convey different meanings depending on the surrounding context. As stated by

Navigli (2009), identifying the correct sense of an ambiguous word in a specific context

is only apparently simple—while humans generally do not even notice the ambiguities of

language, machines need to process unstructured text and extract structured information

to determine the underlying meaning.

In detail, as Vicente and Falkum (2021) explain, a monosemous term has only one

meaning, and terms with multiple senses can be considered polysemous or homonymous.
Polysemous terms are associated with two or more related senses, whereas in contrast

homonymous terms are associated with two or more unrelated meanings. These phe-

nomena are denominated as monosemy, polysemy and homonymy. In this work, to sim-

plify the task at hand, we make no distinction between polysemous and homonymous
terms, henceforward referring to them as ambiguous terms. However, we stress that

tackling polysemy and homonymy separately has the potential to improve downstream

NLP (natural language processing) tasks. For instance, Krovetz (1997) has demonstrated

its value in information retrieval.

The computational identification of the correct meaning of an ambiguous word (or

term) given a specific context is known as word sense disambiguation (WSD), and it is

considered an AI-complete problem relevant for natural language understanding (Nav-

igli, 2009; Ide and Véronis, 1998). This is an important task for extracting accurate in-

formation from text. Generally, the first major step in information extraction is con-
cept recognition which is responsible for identifying concepts of specific classes, such

as chemicals or diseases, in the text. This task can be articulated as a pipeline of two

subtasks: (1) named entity recognition (NER) followed by (2) disambiguation and nor-

1 In this context, a phrase is considered a group of words that forms a grammatical unit, playing a
specific role within the syntactic structure of a sentence. https://en.wikipedia.org/wiki/Phrase

https://en.wikipedia.org/wiki/Phrase
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Named entity
recognitionText

Disambiguation and
normalization

It can be a sentence, a 
paragraph, an abstract, 
or a full-text document.

Identify, in the text, the 
named entities of interest.

Link the named entities to unique 
identi�ers within controlled 
vocabularies or ontologies.

Figure 3.1: Named entity recognition and normalization pipeline.

Sequence variants in �ve genes of six patients with the heterozygous SP4 Asn306Ser mutation.

Asparagine (D001216) Serine (D012694)

Figure 3.2: Example text with chemical entity annotations. Annotations from the PMID

17356515 document in the NLM-Chem dataset (Islamaj et al., 2021b). The outer boxes

contain the associated MeSH heading and unique identifier.

malization (Figure 3.1).

The aim of NER is to identify the text spans mentioning concepts of specific types.

However, the sole utility of NER is limited because detected named entities are not linked

to controlled vocabularies or ontologies, which is required for many end-user tasks (Lea-

man and Lu, 2016). Named entity normalization, or named entity linking, is the process

of associating detected named entities with unique identifiers from standard knowledge

bases. Undoubtedly, this is entwined with disambiguation: often, named entities con-

vey multiple meanings that are associated with several unique identifiers. In this case,

disambiguation methods are applied to each ambiguous named entity for selecting the

correct unique identifier, amongst a set of candidate unique identifiers, according to its

surrounding context. The concept recognition task is considered to be completed after the

entity mentions are identified and linked to established databases. Figure 3.2 provides

an example text with chemical concepts annotated and linked within the MeSH (Medical

Subject Headings) vocabulary.

This chapter is mainly focused on disambiguation, but work on entity normalization

is also discussed. We summarize related work, detail common resources for assessing

these tasks, and describe our solutions. Based on distributed representations of words,

or simply word embeddings, we propose supervised learning and knowledge-based ap-

proaches for biomedical WSD, and a method for normalization of clinical terms.



Chapter 3. Biomedical concept disambiguation 39

3.1 Background

For a long time, word sense disambiguation has been a challenging problem in com-

putational linguistics, and even its definition has been a topic of debate. Kilgarriff (1997)

dicusses the concept of word senses arguing that word senses only exist relative to a spe-

cific task. The author further extends this discussion gathering evidence from lexicogra-

phers and philosophers, stating that word senses are not easy to inventorize (Kilgarriff,

2007).

Ide and Véronis (1998) present an exhaustive review about WSD putting into per-

spective the past work on the topic since around the 1950s. The authors make a survey

of several methods (knowledge-based and corpus-based), discuss several aspects and

issues including the role of context, the disagreement on sense divisions, and the diffi-

culty of evaluation and comparison of systems. Some of the first approaches for sense

disambiguation relied on machine-readable dictionaries (Lesk, 1986; Veronis and Ide,

1990) with particular emphasis for improving information retrieval systems (Krovetz and

Croft, 1989). Sanderson (1994, 1996) also extensively explored the impact of lexical am-

biguity and disambiguation on information retrieval, concluding that very small queries

benefit most from disambiguation than other queries that contain a sufficient number

of words and provide enough context to implicity resolve ambiguities. Yarowsky (1995)

proposed an unsupervised learning algorithm for sense disambiguation that matched

the performance of supervised techniques, arguing that the cost of annotating a large

training corpus may not be necessary to achieve a good WSD performance. Stevenson

and Wilks (2001) showed that combining different knowledge sources can further im-

prove WSD, and proposed a sense tagger that surpassed an accuracy of 94% on their

evaluation corpus.

WordNet (Fellbaum, 1998; Miller, 1995) is a large lexical database of the English

language, created at Princeton University, that has been extensively used for tackling

WSD in the general domain (Banerjee and Pedersen, 2002; Loureiro and Jorge, 2019). It

comprises synonyms that are grouped into unordered sets (synsets), each containing a

brief definition and, in most cases, sample sentences showing its use. Despite its large

coverage for general-domain concepts, other specific-domains—such as the life sciences

field—require specialized thesauri and vocabularies. Presumably, the most used lexical

database in the biomedical sciences is the Unified Medical Language System (UMLS),

comprising many controlled vocabularies, and a comprehensive thesaurus and semantic

network of biomedical concepts (Bodenreider, 2004). For instance, it includes clinical

terminologies such as SNOMED CT (Systematized Nomenclature of Medicine Clinical

Terms), LOINC (Logical Observation Identifiers Names and Codes), and RxNorm (Bo-

denreider et al., 2018). Besides these, many other biomedical ontologies and controlled
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vocabularies exist, but some are specific for a certain class of biomedical concepts such

as drugs or diseases. For example, theMeSH vocabulary is used to index PubMed articles

which facilitates searching for topics of interest (Lipscomb, 2000).

Much of the research work in WSD and entity linking has been developed within

the general-domain, but in this thesis we focus on the extraction of knowledge from

biomedical text and are interested in the application of these tasks in free text from life-

sciences scientific literature and clinical records. Thus, henceforward, we will focus here

on reviewing prior work on biomedical entity disambiguation and normalization, since

they have long been considered fundamental tasks for biomedical text mining (Schuemie

et al., 2005; Krauthammer and Nenadic, 2004).

Traditionally, external sources of information such as UMLS serve to fuel WSD

knowledge-based methods that are employed in an unsupervised fashion and do not

require labeled training data (Jimeno-Yepes and Aronson, 2010; McInnes et al., 2011;
El-Rab et al., 2013; Garla and Brandt, 2013; McInnes and Pedersen, 2013; Duque et al.,
2018). Nonetheless, supervised or semi-supervised methods, based on machine learning,

may not use external knowledge and still perform better due to having access to labeled

training data (McInnes and Stevenson, 2014; Jimeno-Yepes, 2017). The difference be-

tween supervised and semi-supervised methods is in the quality of labeled training data.

Supervised learning makes use of ground-truth or gold-standard training data that is an-

notated by domain experts. Such models produce less realistic results since the creation

of gold-standard training data is very expensive, limited, and may be considered insuf-

ficient for obtaining a well-trained supervised model able to generalize to unseen data.

Due to the problem of limited annotation human power, semi-supervised, and weak or

distant supervision strategies have been investigated (Li et al., 2019). These make use of

silver standard training data that are created (1) through heuristics or handcrafted rules,

or (2) by using existing knowledge from common databases. Recent approaches have

been using external resources to build concept embeddings (Sabbir et al., 2016; Newman-

Griffis et al., 2018). And, as shown by Tsai and Roth (2016) and Siu et al. (2016), the use of
multiple knowledge databases also brings benefits to the problem of biomedical concept

disambiguation.

3.2 Available corpora

In this section, for conciseness, we only present available research corpora—datasets

used for common and standard evaluation—employed for the specific tasks regarding

biomedical word sense disambiguation and entity normalization. However, for more

biomedical NLP resources that are frequently adopted for solving these tasks, we point
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Table 3.1: Datasets for biomedical word sense disambiguation, presented in chronologi-

cal order. MSH: Medical Subject Headings. NLM: National Library of Medicine. UMLS:

Unified Medical Language System. UMN: University of Minnesota. VUH: Vanderbilt

University Hospital. WSD: word sense disambiguation.

Resource Description

NLM WSD test collection
(Weeber et al., 2001)

A collection comprising 50 ambiguous terms with a to-
tal of 5000 disambiguated instances. Abstracts from
the 1998 MEDLINE citations were used. The terms
were mapped to the 1999 version of the UMLS.
https://lhncbc.nlm.nih.gov/ii/areas/WSD/original.html

MSH WSD dataset
(Jimeno-Yepes et al., 2011)

A dataset containing 203 ambiguous terms with a total
of 37 888 ambiguity instances retrieved from the 2010
MEDLINE. The 2009ABUMLS versionwas used tomap
the terms.
https://lhncbc.nlm.nih.gov/ii/areas/WSD/collaboration.html

VUH admission notes
(Wu et al., 2013, 2015)
(Wang et al., 2016b, 2018c)

It contains 25 ambiguous abbreviations, from clinical
admission notes, with up to 200 sentences containing
each abbreviation. These were randomly selected and
manually annotated by experts.

UMN clinical notes
(Moon et al., 2014)
(Wu et al., 2015)
(Wang et al., 2016b)

A dataset containing 75 acronyms and abbreviations
(short forms) with their possible senses (long forms).
Senses of each ambiguous term were manually anno-
tated from 500 random instances andmatched with the
2011AB UMLS version.
https://hdl.handle.net/11299/137703

the reader to Section 2.4 where we present some of themost well-known external knowl-

edge sources, and additionally enumerate NLP competitions or shared tasks that ad-

dressed, and have been fostering, the development of solutions for biomedical concept

disambiguation.

Annotated datasets are required to evaluate automatic systems, but manual cura-

tion by domain experts is an expensive and cumbersome task that is often not enough

(Baumgartner et al., 2007; Howe et al., 2008; Karp, 2016). It is therefore of utmost rele-

vance to publicly share such resources for research purposes to further the development

and improvement of these text mining methods.

Table 3.1 presents some of the most well-known datasets for evaluating biomedi-

cal WSD systems. In our work, we use the MSH WSD dataset since it is one of the

most used, and largest, datasets for evaluating WSD in biomedical scientific literature

https://lhncbc.nlm.nih.gov/ii/areas/WSD/original.html
https://lhncbc.nlm.nih.gov/ii/areas/WSD/collaboration.html
https://hdl.handle.net/11299/137703
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Table 3.2: Datasets for biomedical named entity normalization, presented in chrono-

logical order. CDR: chemical disease relation. CUI: Concept Unique Identifier. MCN:

Medical Concept Normalization. MeSH:Medical Subject Headings. NCBI: National Cen-

ter for Biotechnology Information. NLM: National Library of Medicine. OMIM: Online

Mendelian Inheritance in Man. PMC: PubMed Central. ShARe: Shared Annotated Re-

sources. UMLS: Unified Medical Language System.

Resource Description

NCBI disease corpus
(Doğan and Lu, 2012)
(Leaman et al., 2013)
(Doğan et al., 2014)

A collection of 793 PubMed abstracts containing dis-
ease entity mentions and their corresponding MeSH
or OMIM identifiers, where each abstract was manu-
ally annotated by two experts. A total of 6982 disease
mentions are mapped to 790 unique identifiers.
https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE

ShARe corpus
(Elhadad et al., 2015)
(Pradhan et al., 2015)

The SemEval-2015 ShARe corpus is comprised of 531
de-identified clinical notes (discharge summaries and
radilogy reports) annotated with disorder mentions
along with their normalization to the UMLS terminol-
ogy using CUIs.
http://share.healthnlp.org

BC5CDR corpus
(Li et al., 2015, 2016)

It contains 1500 PubMed abstracts annotated with
biomedical entity mentions linked with MeSH identi-
fiers, with a total of 4409 chemicals and 5818 diseases.
https://biocreative.bioinformatics.udel.edu/tasks/biocre

ative-v/track-3-cdr

MCN corpus
(Luo et al., 2019, 2020b)

A wide-coverage corpus for clinical concept normal-
ization including annotated medical problems, treat-
ments, and tests. It consists of 100 discharge
summaries with a total of 10 919 concept mentions
mapped to 3792 unique identifiers from two controlled
vocabularies—RxNorm (Liu et al., 2005; Nelson et al.,
2011) and SNOMEDCT (Cote, 1986; Stearns et al., 2001;
Cornet and de Keizer, 2008; Bodenreider et al., 2018).
https://n2c2.dbmi.hms.harvard.edu/2019-track-3

NLM-Chem corpus
(Islamaj et al., 2021b,a)

It consists of 150 full-text PMC articles, doubly anno-
tated by ten NLM experts, with a total of 38 942 chem-
ical entity mentions, which correspond to 4867 unique
chemical names and 2064 MeSH identifiers.
https://biocreative.bioinformatics.udel.edu/tasks/biocre

ative-vii/track-2

https://www.ncbi.nlm.nih.gov/CBBresearch/Dogan/DISEASE
http://share.healthnlp.org
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr
https://n2c2.dbmi.hms.harvard.edu/2019-track-3
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-2
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(Jimeno-Yepes et al., 2011). Similarly, Table 3.2 presents some of the standard datasets for

biomedical named entity normalization. For this task, we use theMCN (Medical Concept

Normalization) corpus (Luo et al., 2019) for assessing our knowledge-based normaliza-

tion method in the clinical domain.

3.3 Biomedical word sense disambiguation

In this section we present our studies about biomedical WSD methods. At first,

we describe our research about the impact of using general-domain versus domain-

specific embedding models for disambiguation of ambiguous terms in biomedical sci-

entific abstracts (Antunes and Matos, 2016). Then, we present an exhaustive study of

different methods for tackling biomedical WSD (Antunes and Matos, 2017a,b,c). We

compare the use of traditional text feature engineering (bag-of-words) against the use

of word embeddings using a plethora of machine learning classifiers. We propose a

knowledge-based method based on word embeddings, concept textual definitions, and

concept associations—derived from MeSH term co-occurrences—that achieves competi-

tive results. We also investigate the impact of using different word embeddings averag-

ing functions according to the distance between the ambiguous term and the remaining

words of the surrounding context. In all these works we used the MSH WSD dataset for

evaluation of our methods.

3.3.1 MSHWSD dataset

The MSH WSD dataset is likely the most used resource for evaluating biomedical

WSD systems. It was generated by an automatic method proposed by Jimeno-Yepes et
al. (2011), using the UMLS Metathesaurus and the manual MeSH indexing in MEDLINE

citations. The data consists of PubMed scientific abstracts, each with one ambiguous

term identified and mapped to the correct sense using UMLS Concept Unique Identifiers

(CUIs). It contains 203 ambiguous terms (88 are regular terms, 106 are abbreviations, and

9 are a mix of both) with a total of 423 distinct senses. Most of the terms (189) have only

two different meanings, 12 terms have three different meanings, and the remaining 2

terms have four and five different meanings. For each possible sense there is a maximum

of 100 instances, that is, abstracts where the ambiguous term occurs. There are a total

of 37 888 examples of ambiguity, and each term has on average 187 ambiguity cases.
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3.3.2 General-domain versus domain-specific word embeddings

In this section we present our experiments with traditional machine learning classi-

fiers for evaluating the impact of using general-domain and domain-specific (biomedical)

word embeddings models for biomedical WSD (Antunes and Matos, 2016).

Methodology

In order to get a greater judgment of the performance of the two word embeddings

models, we employed several machine learning classifiers using the scikit-learn frame-

work2 (Pedregosa et al., 2011): decision tree, k-nearest neighbors, passive aggressive

linear model, ridge regression, and two different implementations of support vector ma-

chines. For a fair evaluation, we applied 5-fold cross-validation to split the abstracts set,

of each ambiguous term, in training and test subsets. A list of 313 stop words obtained

from the MEDLINE repository3 was used to filter out less relevant words in the corpus.

Word embeddings Two word embeddings models were created: one for the general-

domain and another specific to the biomedical domain using textual data fromWikipedia

and PubMed, respectively. Wikipedia is range-wide having no specific domain. We used

the full Wikipedia dump, obtained in September 2015, amounting to approximately four

million articles and containing about two million distinct words. On the other hand,

PubMed is specific to the biomedical domain. Around six million abstracts correspond-

ing to the years 2010 to 2015 were used, containing around 400 thousand distinct words.

Both models were trained with the Gensim framework (Řehůřek and Sojka, 2010) using

a window of five words and for a feature vector of size 100. Each abstract was repre-

sented by the weighted average of the vector embeddings of the respective words, with

the TF–IDF value of each word used as weight.

Results and discussion

Table 3.3 presents the macro-accuracy results using several machine learning classi-

fiers and two different word embeddings models (Wikipedia and PubMed). The model

specific to the biomedical domain—created with PubMed abstracts—consistently out-

performed the general model created from Wikipedia articles. Nevertheless, the re-

sults obtained with the latter indicate that even features extracted from general-domain

corpora may contribute to these methods. The highest accuracy result using the

Wikipedia model (support vector classification) exceeds the lowest accuracy result using

2 For details about these classifiers we point the reader to the scikit-learn web page: https://scikit-
learn.org.

3 https://data.lhncbc.nlm.nih.gov/public/ii/information/MBR/WordCounts/2009/wrd_stop

https://scikit-learn.org
https://scikit-learn.org
https://data.lhncbc.nlm.nih.gov/public/ii/information/MBR/WordCounts/2009/wrd_stop
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Table 3.3: Accuracy disambiguation results, in the MSH WSD dataset, using different

machine learning classifiers and word embeddings from the general and biomedical do-

mains (Wikipedia and PubMed). Results shown are the average across five folds. DT:

decision tree; kNN: k-nearest neighbor (k=5); PA: passive aggressive linear model; RR:

ridge regression; SGD: linear support vector machine with stochastic gradient descent;

SVC: support vector classification.

Classifier Model of word embeddings from

Wikipedia PubMed

DT 0.817 0.849

kNN 0.896 0.918

PA 0.893 0.928
RR 0.905 0.910

SGD 0.874 0.916

SVC 0.912 0.924

the PubMed model (decision tree) by around 6 percentage points (0.912 vs 0.849), which

demonstrates that the selection of an appropriate classifier is also important. The high-

est accuracy result obtained was 0.928 corresponding to the use of the word embeddings

model from PubMed and the application of the passive aggressive classifier.

3.3.3 Supervised learning and knowledge-based methods

In this section, we present an exhaustive study of supervised learning and

knowledge-based methods for biomedical WSD (Antunes and Matos, 2017c). We de-

scribe our knowledge-based method and evaluate the impact of using different word

vector embeddings averaging functions for representing the surrounding context of am-

biguous terms (Antunes and Matos, 2017a,b).

Implementation

Supervised learning and knowledge-based methods are applied to the MSH WSD

dataset in order to measure and compare the accuracy results of disambiguation. Bag-

of-words features are used only in the supervised setting whereas word embeddings—

created with unlabeled MEDLINE abstracts—are used in both approaches. From the

UMLS Metathesaurus we extracted CUI textual definitions to be used in the knowledge-
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based approach. The word embeddings are used to calculate vector embeddings for:

(1) the surrounding contexts of the ambiguous terms, henceforward denoted as context

embeddings or context vectors; and (2) CUI textual definitions extracted from UMLS,

henceforward denoted as concept embeddings or concept vectors. The knowledge-based

method finds the most likely sense for a specific ambiguous term by evaluating the sim-

ilarity between its context vector and all the concept vectors weighted by CUI–CUI as-

sociation values. Each step is described in detail in the following paragraphs.

Word embeddings The word embeddings models were generated using PubMed ar-

ticles which are specific to the biomedical domain. MEDLINE abstracts corresponding

to the years 1900 to 2015 were used, containing around 15 million documents with a

total of around 800 thousand unique words. We trained six word embeddings models

using context windows of 5, 20, and 50 words, and vector sizes of 100 and 300. For

generating the word embeddings vectors we used the continuous bag-of-words model

proposed byMikolov et al. (2013a), implemented in the Gensim framework (Řehůřek and

Sojka, 2010). The word embeddings are used to calculate the context embeddings and

the concept embeddings as explained next.

Context embeddings The context embeddings are vectors that represent the sur-

rounding contexts of the ambiguous terms. We consider the surrounding context of an

ambiguous term to be all the words of the respective document excluding the ambiguous

term occurrences. Each context vector is obtained by weighting the vector embeddings

of the respective words using different weighting schemes. In the end, all the context

vectors are normalized (L2 norm equal to 1).

In the supervised learning setting we considered the TF–IDF weighting scheme,

whereas in the knowledge-basedmethodwe additionally tested four averaging functions

which consisted of word distance decay functions multiplied by the IDF value. The ob-

jective of using decay functions, instead of the term frequency component, was to give

greater importance to closest words of the ambiguous term, since we hypothesized that

the nearest words to the ambiguous term may be more relevant for disambiguation. The

absolute word distance 𝑑 between some specific word and the closest occurrence of an

ambiguous term was defined as being the input variable of the decay function. The five

weighting schemes, with the IDF value being used as a multiplicative factor, were:

• Term frequency;

• No decay (constant): f(𝑑) = 1;

• Fractional decay: f(𝑑) = 1/𝑑;
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• Exponential decay: f(𝑑) = exp(−𝑑);

• Logarithmic decay: f(𝑑) = 1/ ln (1 + 𝑑).

Concept embeddings The concept embeddings are only relevant to the knowledge-

based method. We extracted, from UMLS knowledge sources4, textual definitions for

every CUI which were used to create the concepts vector embeddings—the TF–IDF value

was used to weight the word vectors. Alike the context embeddings, all the vectors were

normalized.

CUI–CUI association values We calculated CUI–CUI association values as normal-

ized pointwise mutual information (NPMI)5 from the MeSH co-occurrence counts in

MEDLINE citations6,7. A NPMI value is between -1 and 1, with -1 for never occurring

together, 0 representing independence, and 1 a complete association (a concept in rela-

tion to itself has a value of 1). Since there is a large number of CUIs, and consequently

the number of possible CUI–CUI associations is much higher, we kept only the asso-

ciation values with NPMI values greater or equal than 0.3. These are only used in the

knowledge-based method.

Supervised learning classification We tested five machine learning classifiers from

the scikit-learn framework (Pedregosa et al., 2011): decision tree, k-nearest neighbors,

logistic regression, multi-layer perceptron, and support vector machine. Bag-of-words,

containing unigrams and bigrams weighted by TF–IDF, and context embeddings were

used as input features to train the classifiers. For each ambiguous term, 5-fold cross-

validation was used to split the corresponding abstracts set for training and testing the

classification models.

Knowledge-based method The knowledge-based method does not require training

from the target dataset, being only dependent on knowledge from external sources. Our

method relies on the idea of comparing the surrounding contexts of the ambiguous terms

with the concepts’ textual definitions—the aim is to find the most similar concept (likely

meaning) given a specific context.

As described earlier, each CUI was represented by a concept vector, and the sur-

rounding context of an ambiguous term was represented by a context vector. Therefore,

4 https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html
5 https://en.wikipedia.org/wiki/Pointwise_mutual_information
6 Since the MSH WSD dataset uses CUIs to identify the distinct term senses, we used the MeSH to CUI

mapping in UMLS to translate the MeSH term associations to UMLS concept–concept associations.
7 https://ii.nlm.nih.gov/MRCOC.shtml

https://www.nlm.nih.gov/research/umls/licensedcontent/umlsknowledgesources.html
https://en.wikipedia.org/wiki/Pointwise_mutual_information
https://ii.nlm.nih.gov/MRCOC.shtml
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t

C0684271

C0001948

Figure 3.3: Exemplificative spatial representation of the context vector of an ambiguous

term and the vectors of two candidate CUIs. In this example, one can visualize that the

closest concept vector to the context t is relative to the C0684271 identifier which would

be the one selected as the correct meaning.

it is straightforward to infer the most related sense of an ambiguous term by calculating

the cosine similarity between the context vector and each CUI vector, and selecting the

most similar one. Figure 3.3 illustrates a visual example.

We extended this baseline approach by calculating a score for each candidate CUI

of an ambiguous term, and the CUI with highest score is selected as the correct mean-

ing. The score is obtained using the cosine similarities between the context vector and

every concept vector weighted by CUI–CUI association values (one concept is the can-

didate sense, and the other is the one whose textual definition is being compared with

the context). The intuition behind this idea is that if a distinct concept has a strong as-

sociation with the candidate concept, and its textual definition is similar to the context

in which the ambiguous term is inserted, then the likelihood of the respective candidate

CUI to be the correct sense must be increased (likewise, if the association is weak then

the likelihood must be decreased). The score function is defined in Equation (3.1).

score(CUI) =
1
𝑁
∑
𝑗

NPMI(CUI,CUI𝑗) ⋅ CS(t,CUI𝑗) (3.1)

According to Equation (3.1): the CUI variable represents a candidate meaning; the

CUI𝑗 variable represents any other related concept; the t variable corresponds to the

context vector; and CUI𝑗 is the concept vector of the related concept CUI𝑗. The context

t of a specific candidate is compared to every concept textual definition CUI𝑗 by its co-

sine similarity CS(t,CUI𝑗), which is then weighted by the NPMI(CUI,CUI𝑗) association
value. The 𝑁 variable is the total number of associations considered, corresponding to



Chapter 3. Biomedical concept disambiguation 49

the number of NPMI values, and it is used to normalize the final score. For each candi-

date CUI—from a set of possible concepts, given a specific ambiguous term—a score is

calculated, and the one that obtains the highest score is considered as the correct sense.

Results and discussion

In both approaches, supervised and knowledge-based, the dataset was split into five

folds, and the final results were obtained by averaging the results of each fold. Table 3.4

and Table 3.5 present the disambiguation accuracy results obtained by the supervised

machine learning classifiers and the knowledge-based method respectively.

Regarding the supervised learning setting, the highest accuracy (0.9557) was ob-

tained combining unigrams and word embeddings features using a multi-layer per-

ceptron. However, the best result using only bag-of-words features—unigrams and

bigrams—is very close (0.9552) and was achieved by a support vector machine, showing

that the state-of-the-art results for this problem can be reproduced using simple word-

based features. Similarly, the sole use of word embeddings features with the multi-layer

perceptron attained a close performance (0.9514). We observe that the performance vari-

ations using distinct word embeddings models trained with different vector sizes (100

and 300) and context windows (5, 20, and 50) are not significant8, concluding that any of

these models perform reasonably well. It is also noticeable that the use of bigrams con-

tribute only slightly to the results, and unigram features alone achieve almost as good if

not better results than the combination of unigrams and bigrams. Finally, we note that

the decision tree model obtained the lowest results, below around 2–3 percentage points

overall, in comparison to the other four classifiers. Remarkably, the k-nearest neighbors,

a simple baseline model, achieved consistent and competitive performances with differ-

ent combinations of features—attaining a top accuracy of 0.9475—which indicates that

the features in use provide effective text representations.

Table 3.5 presents the disambiguation results obtained by the knowledge-based

method. Different thresholds for the NPMI values (0.3, 0.5, 0.8, and 1.0) were imposed

to select only a subset of CUI–CUI associations. The threshold 1.0 is the particular case

of the baseline scenario where only the cosine similarity between the context vector

and each candidate CUI vector is computed. We observe that, in all weighting schemes,

the threshold 0.3 (rows 19–24) performed the best showing that the use of additional

CUI–CUI associations, to an extent, is beneficial. Overall, the use of associations allowed

to improve the accuracy by around 2 percentage points when compared to not using any

related concepts (rows 1–6), that is, the casewhen only the similarity between the textual

8 Using different dataset splits or random seeds for initializing model parameters would likely produce
small variations in the results.
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Table 3.4: Supervised learning disambiguation results in the MSH WSD dataset using

bag-of-words and word embeddings features. The evaluation metric is accuracy and the

results were obtained using 5-fold cross-validation. Rows 1–3 present the results us-

ing only bag-of-words features (unigrams, bigrams, and both), rows 4–9 present the re-

sults using only word embeddings (different vector sizes and windows), and rows 10–15

present the results from combining bag-of-words features (unigrams) with word embed-

dings. The highest accuracy, in each of these groups, is highlighted in bold. The overall

highest accuracy is also underlined.

BoW* WE† Classifier‡

Row Features Size Window DT kNN LR MLP SVM

1 U - - 0.9067 0.9324 0.9205 0.9401 0.9511

2 B - - 0.8335 0.8850 0.8704 0.9224 0.9253

3 U+B - - 0.9019 0.9354 0.9101 0.9445 0.9552

4 - 100 5 0.9219 0.9452 0.9500 0.9503 0.9449

5 - 20 0.9185 0.9452 0.9495 0.9498 0.9452

6 - 50 0.9194 0.9447 0.9495 0.9501 0.9431

7 - 300 5 0.9186 0.9449 0.9505 0.9503 0.9452

8 - 20 0.9186 0.9444 0.9508 0.9514 0.9446

9 - 50 0.9166 0.9441 0.9509 0.9508 0.9444

10 U 100 5 0.9244 0.9464 0.9515 0.9557 0.9490

11 20 0.9215 0.9468 0.9514 0.9556 0.9486

12 50 0.9229 0.9467 0.9515 0.9555 0.9481

13 300 5 0.9218 0.9475 0.9519 0.9544 0.9499

14 20 0.9194 0.9473 0.9524 0.9550 0.9496

15 50 0.9191 0.9468 0.9520 0.9545 0.9482

* Bag-of-words features. U: unigrams. B: bigrams.
† Word embeddings model trained with a specific vector size and context window.
‡ Machine learning classifier evaluated. DT: decision tree. kNN: k-nearest neighbors (k=5).
LR: logistic regression. MLP: multi-layer perceptron. SVM: support vector machine.

definition of the candidate CUI and the context of the ambiguous concept is considered.

However, using theNPMI thresholds 0.5 and 0.8 obtained inferior results when compared

to the simplest case (threshold 1.0) demonstrating that a lower NPMI threshold for se-

lectingmore concept associations is required to improve performance—we conclude that

associations with a lower value play a key role. Regarding the weighting schemes, the

fractional decay averaging function consistently obtained the highest results for every

NPMI threshold considered. The word embeddings models trained with higher context
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Table 3.5: Knowledge-based disambiguation results in the MSH WSD dataset using word em-

beddings, CUI textual definitions, and CUI–CUI association values. Different weighting schemes

for averaging the word embeddings in the creation of the context vectors are compared. The

evaluation metric is accuracy and the results are the average across five folds. Rows 1–6 present

the results when only the cosine similarity between the ambiguous term’ context vector and each

candidate concept vector is considered. Rows 7–12, 13–18, and 19–24 additionally consider the

cosine similarities of related concepts that have a NPMI value greater or equal than 0.8, 0.5, and

0.3 respectively. The highest accuracy, in each of these groups, is highlighted in bold. The overall

highest accuracy is also underlined.

CUI–CUI WE† Weighting scheme‡

Row associations* S W TF None Frac. Exp. Log.

1 CS 100 5 0.8144 0.8164 0.8415 0.8259 0.8318
2 20 0.8254 0.8286 0.8473 0.8270 0.8407
3 50 0.8321 0.8341 0.8502 0.8278 0.8468

4 300 5 0.8181 0.8203 0.8457 0.8278 0.8355
5 20 0.8319 0.8352 0.8533 0.8302 0.8477
6 50 0.8337 0.8365 0.8533 0.8276 0.8501

7 NPMI ≥ 0.8 100 5 0.8132 0.8154 0.8395 0.8236 0.8304
8 20 0.8243 0.8277 0.8459 0.8255 0.8395
9 50 0.8314 0.8334 0.8493 0.8264 0.8461

10 300 5 0.8168 0.8193 0.8438 0.8255 0.8340
11 20 0.8312 0.8343 0.8515 0.8283 0.8466
12 50 0.8332 0.8357 0.8518 0.8264 0.8491

13 NPMI ≥ 0.5 100 5 0.8005 0.8019 0.8234 0.8057 0.8155
14 20 0.8152 0.8178 0.8348 0.8137 0.8290
15 50 0.8197 0.8236 0.8376 0.8150 0.8343

16 300 5 0.8030 0.8057 0.8267 0.8092 0.8190
17 20 0.8174 0.8203 0.8377 0.8162 0.8323
18 50 0.8209 0.8245 0.8396 0.8168 0.8352

19 NPMI ≥ 0.3 100 5 0.8430 0.8458 0.8617 0.8378 0.8560
20 20 0.8573 0.8600 0.8720 0.8458 0.8704
21 50 0.8600 0.8635 0.8744 0.8459 0.8730

22 300 5 0.8446 0.8471 0.8622 0.8404 0.8573
23 20 0.8566 0.8598 0.8730 0.8469 0.8705
24 50 0.8582 0.8611 0.8736 0.8478 0.8719

* CS: cosine similarity between the term context vector and each candidate concept vector only.
NPMI ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑: concepts with a NPMI value, with respect to the candidate concept, greater or
equal than the threshold are considered.
† Word embeddings model trained with a specific vector size (S) and context window (W).
‡ Different weighting schemes are used to create the context embeddings. The IDF value is
implicitly considered in all cases. TF: term frequency. None: no decay. Frac.: fractional decay.
Exp.: exponential decay. Log.: logarithmic decay. These word distance decay functions are
described in detail in this section.
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Table 3.6: Performance comparison of WSD systems using supervised and knowledge-

based methods in the MSH WSD dataset. Macro-accuracy is the evaluation metric.

Work* Approach S† KB†

Zhang et al. (2019a) Long short-term memory networks 0.9600 -
Pesaranghader et al. (2019) Long short-term memory networks 0.9682 0.9267
Duque et al. (2018) Co-occurrence graph - 0.7152
Ours (Antunes and Matos, 2017c) Word embeddings, cosine similarity 0.9557 0.8744
Jimeno-Yepes (2017) Support vector machine 0.9597 -
Sabbir et al. (2016) Word embeddings, k-nearest neighbors - 0.9434
Tulkens et al. (2016) Word embeddings, cosine similarity - 0.84
Jimeno-Yepes and Berlanga (2015) Word–concept statistical model 0.930 0.891
McInnes and Stevenson (2014) Semantic similarity measures 0.97 0.78
McInnes and Pedersen (2013) Semantic similarity measures - 0.75
Garla and Brandt (2013) Semantic similarity measures - 0.8071
Jimeno-Yepes et al. (2011) Naive Bayes classifier 0.9386 0.8383

* Works sorted in reverse chronological order.
† S: supervised. KB: knowledge-based. Distinct authors report results with different decimal places.
Also, some results are not directly comparable because different strategies and dataset splits—for
example, different number of folds in cross-validation—have been used for evaluation.

windows performed slightly better, but we did not find the impact of the vector size (100

vs 300) to be notorious. The best accuracy obtained by the knowledge-based method,

0.8744, was achieved using the fractional decay averaging function, the NPMI threshold

set to 0.3, and the word embeddings model trained with a vector size of 100 and a context

window of 50 words.

From our results, we confirm that the supervised learning approach performs rather

better than the knowledge-based method (0.9557 vs 0.8744), but the latter does not re-

quire a training stage using annotated labels.

Comparison with other works Table 3.6 presents a performance comparison of our

approacheswith other works employing supervised and knowledge-based approaches in

the same dataset. However, our results are not absolutely comparable with the ones from

otherworks since different evaluation strategies have been used. For example, we use the

average across five folds and other authors report results from 10-fold cross-validation.

Nevertheless, we consider that this comparison allows us to assess the efficacy of our

methods and perceive how these compare to the state-of-the-art.

Jimeno-Yepes et al. (2011) generated the MSH WSD dataset by automatic means and

tested a supervised naive Bayes classifier and four knowledge-based methods. The su-

pervised approach, using only the words occurring in the text, achieved an accuracy

only about 2 percentage points below our best supervised result (0.9386 vs 0.9557). Their
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best-performing knowledge-based method (Automatic Extracted Corpus) consists in au-

tomatically creating training data using documents from MEDLINE and queries using

English monosemous relatives. A naive Bayes classifier is then trained using the auto-

matically generated data. Our best knowledge-based result is around 3 percentage points

higher than the one they obtained (0.8744 vs 0.8383).
Garla and Brandt (2013), and McInnes and Pedersen (2013) present knowledge-based

methods, that use semantic similarity measures derived from the UMLS Metathesaurus,

achieving accuracies of 0.8071 and 0.75 respectively. Garla and Brandt (2013) processed

the abstracts with biomedical NER systems to capture concepts from UMLS that were

used as feature vectors. Similarly to our knowledge-based method, the system proposed

by McInnes and Pedersen (2013), UMLS::SenseRelate, assigns a score to each possible

concept of an ambiguous term according to a similarity metric between the concept and

the surrounding context. McInnes and Stevenson (2014) continued to explore the use of

semantic similarity measures and proposed supervised and unsupervised (knowledge-

based) methods. Their supervised method combines linguistic and biomedical specific

features (including unigrams, bigrams, part-of-speech tags, and MeSH terms) in binary

feature vectors. The MeSH terms were assigned manually by expert annotators, to each

abstract, for the purpose of indexing. We suspect the inclusion of this information has

a solid contribution in their final performance. However, considering a scenario where

this ground-truth information is not available—for example, in recent publications that

have not yet been annotatedwithMeSH terms—their supervised final performance (0.97)

would likely decrease.

Jimeno-Yepes and Berlanga (2015) used a word–concept statistical model estimated

from knowledge sources surpassing our method by about 2 percentage points (0.891 vs
0.8744). Our knowledge-based method is similar to the one proposed by Tulkens et al.
(2016), which also compared concept representations with the representations of the

context of ambiguous terms, and obtained an accuracy of 0.84. To the best of our knowl-

edge, the highest accuracy achieved without supervised means (0.9434) was obtained

by Sabbir et al. (2016). They used neural word and concept embeddings, and employed

weak supervision—they did not use hand-labeled examples—to build their prediction

model (k-nearest neighbors).

Similarly to our work, Jimeno-Yepes (2017) achieved an accuracy of 0.9597 in a su-

pervised fashion combining unigrams and word embeddings using a support vector ma-

chine. More recent works have been using LSTM networks. Pesaranghader et al. (2019)
use concept textual definitions from UMLS to compute concept embeddings, and employ

a BiLSTM model achieving a state-of-the-art accuracy of 0.9682 in a supervised setting.

Zhang et al. (2019a) also use a BiLSTM model achieving a similar accuracy (0.9600). Li
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et al. (2019) followed a semi-supervised approach, based on label propagation, and used

a BiLSTM attaining an accuracy of 0.9671.

3.4 Clinical named entity normalization

Electronic health records (EHRs) contain medical narratives, such as discharge and

admission reports, that contain valuable information about the clinical history of pa-

tients in the form of free text. However, it is unfeasible to manually analyze large-scale

medical texts, making the process of automatic annotation important to summarize or

extract relevant data from clinical reports. This requires recognizing medical entities in

the text including drugs, disorders, medical procedures, and laboratory measures. For

that, the normalization of the entities is an essential stepwhich consists in linking the en-

tities to established terminologies (grounding). These annotations mitigate the problem

of ambiguous and unspecific terms, helping physicians to more quickly get an overview

of a patient clinical history.

In this section we present a method based on word embeddings for entity normal-

ization in clinical texts (Silva et al., 2020). We evaluate our approach in the MCN corpus

that was developed by Luo et al. (2019) andwas employed in the 2019 n2c2/UMass Lowell

Track 3 challenge (Luo et al., 2020b).

3.4.1 A knowledge-based approach based on word embeddings

The aim of this task is to link detected entities to unique codes within standard medi-

cal vocabularies. It is only focused on the normalization step—named entity recognition

is dispensed—since mention spans are assumed to be given. We present a knowledge-

based method based on word embeddings for representing medical concepts.

Dataset

We used the MCN corpus proposed by Luo et al. (2019), consisting of clinical texts

annotated with entities linked to unique codes from standard databases. It comprises a

wider set of clinical concepts—medical problems, treatments, and tests—in comparison

to other datasets that only considered the normalization of disease mentions (Pradhan

et al., 2013, 2014; Elhadad et al., 2015).
Each annotated clinical entity is associated with a single CUI from the UMLS 2017AB

version. For example, “hypertension” and “HTN”, or “blood pressure” and “BP” are two

examples of expressions that refer to the same concepts and are therefore identified by

the same CUIs (C0020538 and C0005824, respectively). Although UMLS encompasses
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Table 3.7: Detailed MCN dataset statistics. MCN: Medical Concept Normalization. CUI:

Concept Unique Identifier.

Training Test Total

Number of clinical records 50 50 100
Number of annotated entities 6684 6925 13 609
Number of unique CUIs 2331 2579 3792

Table 3.8: Examples of text rewrite rules handcrafted according to the MCN training set.

MCN: Medical Concept Normalization. The left and right columns, in each of the three

groups, contain the original and final text respectively—for example, abbreviations were

replaced by their full-form expressions.

b/l bilateral po oral 10% partial
co2 carbon dioxide trop troponin 1/4 fourth
e. escherichia u/s ultrasound scan x2 double
iv intravenous vit vitamin 2L two liters
mso4 morphine sulphate w/u workup 3 of 6 iii/vi

several vocabularies, only two were used for annotation. RxNorm (Nelson et al., 2011)
was used to annotate clinical drugs and medications, whereas SNOMED CT (Stearns et
al., 2001), an extensive vocabulary of clinical terminology, was used for normalizing the

remaining concepts (disorders, procedures, body structures, and others).

The dataset contains a total of 100 annotated discharge summaries and is split into

two subsets: training and test (Table 3.7). We used the training subset to develop our

model and the test subset for final evaluation.

Method

Our knowledge-based method involves two sequential steps: text pre-processing,

and similarity computation. In the first step, specific text rewrite rules were handcrafted

by inspecting the clinical named entities in the training set with the aim of cleansing the

surface representation of these mentions (Table 3.8). In addition to the text replacements

made, HTML (HypertextMarkup Language) entities and other superfluous symbolswere

also discarded to reduce the noise in the text.

In the second step, we represented (1) the clinical named entities from the train-

ing and test subsets, and (2) the UMLS concept names by using pre-trained biomedical
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word embeddings. We employed the publicly available BioWordVec9 model (Chen et al.,
2019b) that was created using the fastText library (Bojanowski et al., 2017) and was gen-

erated from over 30 million documents from PubMed articles and clinical notes from the

MIMIC-III database (Johnson et al., 2016). Each term (named entity or concept name)

was represented by the vector embeddings average of its constituent words. We created

a mapping between CUIs and term embeddings using (1) the entity mentions and respec-

tive identifiers annotated in the training subset and (2) the concept names and identifiers

from the UMLS within the RxNorm and SNOMED CT vocabularies.

To predict the most likely CUI for a new entity mention, our knowledge-based

method calculates the cosine similarity between the entity vector embedding and ev-

ery pre-calculated term embedding, and the CUI associated with the most similar term
embedding is the predicted identifier for the entity.

Results and discussion

We evaluated our knowledge-based method in the training and test subsets. The

evaluation in the training subset was made by averaging the results from 10 repetitions

of 5-fold cross-validation10, whereas in the test subset only a final one-time prediction

was made. Accuracies of 0.812 and 0.801 were obtained in the training and test subsets,

respectively, demonstrating that our system generalized well to new data since the accu-

racy performace on the test subset only decreased about 1 percentage point. However,

a posterior evaluation without using handcrafted replacements proved that the created

text patterns were biased toward the training set and led to overfitting, since simpler

text pre-processing resulted in a lower training accuracy (0.807) and similar test accu-

racy (0.800).

Table 3.9 shows the official results obtained in the 2019 n2c2/UMass Lowell Track 3

challenge. Our method ranked amongst the top-10 best performing systems11. Our

system obtained about 4 percentage points improvement compared to the baseline sieve-

based model proposed by Luo et al. (2019) that obtained an accuracy of 0.764 in the test

subset.
9 https://github.com/ncbi-nlp/BioSentVec

10 In this scenario, and for each data split, we only used the respective training folds for creating the
mapping between CUIs and term embeddings.

11 In total, 33 teams participated in the 2019 n2c2/UMass Lowell Track 3, consisting of 108 total submis-
sions (Luo et al., 2020b).

https://github.com/ncbi-nlp/BioSentVec
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Table 3.9: Performance of the top-performing teams in the 2019 n2c2/UMass Lowell

Track 3. Accuracy is the evaluation metric. This table is adapted from Luo et al. (2020b).

Rank Team name System brief description Accuracy

1 TTI Cascading dictionary matching, deep learning 0.8526
2 KP Cascading dictionary matching 0.8194
3 UAZ Cascading dictionary matching 0.8166
4 Ali Retrieval, machine learning 0.8105
5 MDQ Retrieval, machine learning 0.8101
6 UWM Cascading dictionary matching 0.8079
7 UAv (ours) Cosine similarity 0.8013
8 ezDI Cascading dictionary matching 0.8006
9 MIT Cascading dictionary matching 0.7961

10 NaCT Cascading dictionary matching 0.7957

Ali: Alibaba; ezDI: ezDI, Inc; KP: Kaiser Permanente; MDQ: Med Data Quest, Inc;
MIT: Massachusetts Institute of Technology; NaCT: National Centre for Text Mining;
TTI: Toyota Technological Institute; UAv: University of Aveiro; UAZ: University of
Arizona; UWM: University of Wisconsin-Milwaukee.

3.5 Summary

Automatic identification of entities in unstructured text is an imperative task for ex-

tracting knowledge from biomedical scientific literature and clinical narratives. It con-

sists not only in detecting the entities’ mention spans, but also in attributing them unique

codes from standard vocabularies. This process, known as entity normalization or link-

ing, faces the problem of ambiguity in the language—it is frequent that terms can have

multiple senses depending on the context in which they are inserted—where word sense

disambiguation mechanisms must be employed.

In this chapter, we proposed supervised learning and knowledge-based methods,

based on distributed representations of words, to disambiguate multiple-meaning terms

from PubMed abstracts. We conclude that simple word-based features provide a strong

baseline for sense disambiguation, and the inclusion of word embeddings is advanta-

geous. We also verify that supervised learning models surpass knowledge-based meth-

ods because they rely on annotated training data. Finally, we present an automatic

method, based on word embeddings and external knowledge from the UMLS Metathe-

saurus, to normalize entities in patient clinical reports using standardized vocabularies,

which performed competitively well.
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Chapter 4

Biomedical text classification and
similarity measurement

Text classification or categorization can represent a different number of tasks. The

most primitive one is to simply identify if a given text is relevant or not according to

some criteria—that is, for example, if a news article is about a specific subject or a clinical

record contains valuable information about a specific disease. This is known as binary

text classification since there are only two possible outcomes—yes or no. On the other

hand, in multi-class classification there are several, three or more, possible classes and

only a single one must be chosen. Another problem is multi-label classification where

none, one, or more topics (classes) can be associated with a document.

The NLP task of sentiment analysis is an example of text categorization where differ-

ent emotion states can be associated with a fragment of text often collected from social

media (Feldman, 2013; Liu and Chen, 2015; Bouazizi and Ohtsuki, 2016; Tao and Fang,

2020). Another common application of text classification is spam filtering in eletronic

mail (e-mail) systems where unsolicited e-mail messages should be detected and dis-

carded (Diao et al., 2000; Zhang et al., 2004; Bhowmick and Hazarika, 2018).

Document triage, document filtering, or document selection is a text classification

task that can be employed to select the most relevant documents for a specific informa-

tion extraction task. Although Hearst (1999) argues that categorizing documents does

not lead to discovering new information, Sarawagi (2008) explains that document clas-

sification is relevant (for information extraction) as a first step to filter out less-relevant

documents especially if the corpus is very large. Similarly, Balog (2018) clarifies how the

task of scoring documents according to how relevant they are to a given target entity is

helpful for information extraction.

Text classification can be thought as grouping and clustering texts that share some

degree of similarity concerning some aspect. For instance, if a text is considered to be
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relevant regarding a specific criterion then it is likely that similar texts may also be of

interest. For that reason, we consider that measuring the semantic textual similarity is a

intertwined task with text classification. Therefore, in this chapter, we also review and

present work on text similarity measurement despite being applicable in distinct NLP

tasks such as word sense disambiguation and relation extraction.

Measuring the semantic similarity between texts is the basis of many text processing

tasks. For example, finding excerpts of text with redundant information can be used for

summarization (Aliguliyev, 2009). Another use case is plagiarism detection where texts

with equivalent semantics are identified (Lukashenko et al., 2007). Semantic similarity

measurement can also be used to find similar textual contexts in which a relationship

holds between specific entities (Panchenko and Morozova, 2012)—if two concepts have

a certain interaction and two other different concepts appear surrounded by a similar

textual context then it is likely they have a similar or the same interaction.

This chapter addresses two analogous NLP tasks: (1) text classification and (2) mea-

surement of semantic textual similarity. We start by giving a brief overview of these

problems applied in the biomedical domain and then present our solutions. First, a study

with supervised machine learning classifiers is conducted for scientific literature triage.

Then, a hybrid system based on rules and machine learning for categorizing clinical text

is presented. Finally, a neural network that quantifies the textual similarity between

clinical sentences is presented.

4.1 Background

The problem of text classification or text categorization is likely one of the oldest and

most addressed tasks of natural language processing and has been relevant for many

years in information retrieval (Lewis, 1995; Manning et al., 2008). Early work on text

categorizationwas focused on selecting different features from syntactic analysis (Lewis,

1992), where the simplest approach would be to treat each word as a feature. Later,

Joachims (1998) proposed the use of support vector machines for text categorization and

argued these are robust models because they eliminate the need for feature selection,

show good performance, and do not require manual parameter tuning.

In the biomedical domain, to the best of our knowledge, Craven and Kumlien (1999)

was one of the pioneer works employing text classification methods to identify rele-

vant textual information, from 2889 abstracts in theMEDLINE database, for constructing

biomedical knowledge bases.

Feldman et al. (2003) review past work on text mining of the biomedical literature.

Particularly, the authors emphasize the importance of text categorization as an early step
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of pre-processing since reducing the set of documents simplifies the follow-up mining

tasks such as entity and relation extraction. Furthermore, they explain that there are

two main approaches for text categorization: (1) the knowledge engineering approach

where expert knowledge is manually encoded using a set of rules, and (2) the machine
learning approach where a text classifier is built automatically by learning from a set

of previously classified documents using a pre-defined set of categories. They also dis-

tinguish two main methods in the machine learning approach: in one method, for each

pair of document and category, a boolean value is attributed—true if the document be-

longs to the category or false otherwise; in the other method, a value between 0 and 1

representing the confidence that the document belongs to the category is assigned, and

afterwards document are ranked according to their confidence value.

Cohen and Hersh (2005) also present an extensive review of past work on biomedical

text mining and text classification. The authors argue that text classification systems are

valuable to biomedical database curators because they may have to review some docu-

ments until finding a particular piece of information for updating the database. Yeh et
al. (2003) conducted a text mining competition in the KDD (Knowledge Discovery and

Data Mining) Challenge Cup1 aimed at identifying which biomedical articles were rel-

evant for curating Drosophila gene expression information. The organizers provided a

training set of 862 journal articles curated in FlyBase (The FlyBase Consortium, 2002)

with genes and gene products, and a test set with 213 new articles. Participating teams

had to develop a system that indicated which articles contained experimental evidence

for gene expression products. The best performing team (Regev et al., 2002)—that ob-

tained 78% F-measure in the document curation sub-task—manually built text rules for

matching common patterns in the title, abstract, and figure captions, and performed

part-of-speech tagging and text chunking. In a different work, Donaldson et al. (2003)
used a support vector machine to find protein–protein interaction data on the PubMed

literature database and estimated that their system spared curators several days of work

because they had to scan a significantly lower number of abstracts. The TREC (Text

Retrieval Conference) 2004 Genomics Track (Voorhees, 2004; Hersh et al., 2004; Hersh,

2005) addressed a triage task of full-text documents, simulating the work of curators in

the Mouse Genome Informatics (MGI) system, where participants had to develop au-

tomatic solutions for detecting articles containing experimental evidence requiring the

assignment of Gene Ontology (GO) codes.

The Computational Medicine Center in Cincinnati, Ohio organized a shared task to

promote the development of automatic systems for assigning ICD-9-CM2 codes to ra-

1 https://kdd.org/kdd-cup/view/kdd-cup-2002/Tasks
2 International Classification of Diseases, Ninth Revision, Clinical Modification. https://www.cdc.go

v/nchs/icd/icd9cm.htm

https://kdd.org/kdd-cup/view/kdd-cup-2002/Tasks
https://www.cdc.gov/nchs/icd/icd9cm.htm
https://www.cdc.gov/nchs/icd/icd9cm.htm
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diology reports (Pestian et al., 2007). The challenge corpus was annotated by coding

staff of CCHMC (Cincinnati Children’s Hospital Medical Center) and two independent

coding companies in order to reduce variation due to human judgment. It was split into

training and testing sets with 978 and 976 documents respectively, and taggedwith forty-

five ICD-9-CM distinct labels. This multi-label classification task allowed each record to

be assigned more than one code. The participating team from the University of Penn-

sylvania (Crammer et al., 2007) employed a cascaded approach combining three coding

systems: (1) a specialized policy that searched for specific keywords complying with

some heuristics, (2) a rule-based system that checked if ICD-9-CM code descriptions ap-

pear in the reports, and (3) a learning system that used several natural language features.

They achieved a micro-averaged F1-score of 0.8760 on the test set ranking 4th out of 44

systems that entered the challenge. Another team, from the University of Manchester

(Sasaki et al., 2007), employed different machine learning algorithms and tested differ-

ent features such as n-grams of words weighted by TF–IDF values. They ranked 5th

in the challenge and their best result, a micro-averaged F1-score of 0.8594 on the test

set, was achieved by a support vector machine. In another work, Farkas and Szarvas

(2008) investigated the feasibility of automatically constructing rule sets—in contrast to

purely handcrafted rule-based systems—by replacing several laborious steps with ma-

chine learning models with the aim to alleviate the manual work from experts. Their

system achieved competitive results with a micro-averaged F1-score of 0.8893 on the test

set, and the authors concluded that hybrid systems preserve the good performance of

rule-based classifiers and that, with the help of machine learning methods, their con-

struction can be accelerated and require less human effort. More recent works explore

the use of deep neural networks for automatic ICD-9 coding in clinical reports (Pereira

et al., 2018; Zeng et al., 2019).
Other international challenges on biomedical text classification have been conducted

in recent years to encourage the creation of text mining solutions and assess the state-

of-the-art. We close this brief roadmap by presenting three competitions offered by the

BioCreative organizers but we alert the reader that additional research work, not men-

tioned here, has been carried out (Huang and Lu, 2016). In the BioCreative III PPI ACT

(article classification task) participants had to implement systems for detecting PubMed

abstracts describing protein–protein interactions (Krallinger et al., 2010, 2011). The or-

ganizers prepared a dataset split into training, development, and test partitions with

2280, 4000, and 6000 abstracts respectively which were manually labeled by domain ex-

perts. BioCreative VI launched a document triage task for precision medicine where

the aim, for participating systems, was to identify PubMed abstracts describing genetic

mutations affecting protein-protein interactions—our contribution on this problem is
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presented in Section 4.2. In BioCreative VII, Chen et al. (2021a, 2022) promoted a chal-

lenge on COVID-19 literature curation since the number of COVID-19 related articles

was growing at a rate about 10 000 articles per month. Their effort tackled a multi-label

topic classification for COVID-19 literature to alleviate the burden of manual topic an-

notation in the LitCovid database (Chen et al., 2021b) which contained tens of thousands

of PubMed articles relevant to COVID-19 that needed to be assigned with up to eight

distinct topics (such as case report, diagnosis, and treatment).
To the best of our knowledge, a great part of the research work on the task of mea-

suring the semantic textual similarity (STS) has been performed for the general-domain

and originated from the SemEval STS task series (Agirre et al., 2012, 2013, 2014, 2015,
2016). On the other hand, regarding STS between biomedical text snippets there has

been less investigation and only a few manually annotated datasets have been made

available (Soğancıoğlu et al., 2017; Wang et al., 2018a, 2020). Wang et al. (2018b, 2020)
organized the first shared tasks on clinical STS and captured the attention of many re-

search teams around the world that proposed their systems—our contribution on this

problem is presented in Section 4.4. For example, Chen et al. (2021c) benchmarked sev-

eral top-ranked deep learning models for measuring the relatedness between sentence

pairs in the clinical domain. They evaluatedword embedding–basedmodels such as con-

volutional neural networks, sentence embedding–based models such as the BioSentVec

pre-trained model (Chen et al., 2019b), and transformer-based models such as BioBERT

(Lee et al., 2020), BlueBERT (Peng et al., 2019), and ClinicalBERT (Alsentzer et al., 2019).
The authors concluded that BioSentVec and BioBERT achieved the highest results but

emphasize that BERT models are much slower than the convolutional neural network

and BioSentVec models.

Lastly, for further reading, we point the reader to other survey works on text classifi-

cation (Aggarwal and Zhai, 2012; Mirończuk and Protasiewicz, 2018; Altınel and Ganiz,

2018; Kowsari et al., 2019; Minaee et al., 2022) and similarity measurement (Wang and

Dong, 2020; Chandrasekaran and Mago, 2022).

4.2 Literature triage for precision medicine

Identifying relevant literature for harvesting particular biomedical knowledge is a

paramount task, but expert curators invest a significant amount of time manually per-

forming this annotation (Fang et al., 2012; Karp, 2016). There are scientific articles

that are more pertinent for extracting specific biomedical information such as protein–

protein interactions or adverse drugs effects; and thus, the development of automatic

solutions for biomedical document triage is essential and helpful to alleviate the manual
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annotation work by professional curators. Also, a reduced number of more appropriate

candidate documents allows automatic IE systems to take more time for making their

predictions—regarding biomedical named entities and their relations—with a superior

performance, and therefore a document classification step is crucial for eliminating noisy

or less-relevant documents.

In this section we present supervised machine learning models for selecting biomed-

ical documents relevant for precision medicine. The aim of precision medicine is to se-

lect the best treatments for different patient groups, considering individual variability

in genes, environment, and lifestyle. Regarding genetic variability, valuable information

about variants and how they affect protein–protein interactions is available in the scien-

tific literature. Extracting and curating this information in an efficient manner requires

the application of text mining algorithms. In this work, we experimented with clas-

sical machine learning and neural network classifiers for predicting which PubMed ab-

stracts contained relevant information for extracting protein–protein interactions (PPIs)

affected by genetic mutations. We also evaluated the impact of including additional

training data from a similar dataset, containing general PPIs, as a semi-supervised or

self-training approach.

The Precision Medicine task, part of the BioCreative VI community challenge in

biomedical text mining, aimed to evaluate text mining approaches and tools for identi-

fying and extracting information regarding the impact of genetic mutations on protein–

protein interactions (Doğan et al., 2017, 2019). The challenge consisted of two subtasks,

namely document triage and relation extraction.

The application of text mining and automatic classification tools for document triage

was evaluated in the BioCreative III PPI article classification task where the aim was to

classify and rank articles relevant for curating protein–protein interactions (Krallinger

et al., 2010, 2011). The best system was based on a large margin classifier with features

derived from gene named entity recognition, MeSH terms, and dependency parsing, and

reached an area under the interpolated Precision/Recall curve (AUC iP/R) of 0.6798 and

an F1-score of 0.6142 (Kim and Wilbur, 2010, 2011).

4.2.1 Materials and methods

We followed a supervised machine learning approach, and evaluated classical classi-

fiers against deep learning models. In both cases, we used word embeddings to represent

the words in the documents.
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Table 4.1: Statistics of the Precision Medicine track dataset.

Partition Abstracts Positive Negative

Training 4082 1729 2353
Test 1427 704 723

Total 5509 2433 3076

Data

The Precision Medicine task organizers provided a dataset split into training and test

subsets consisting of 4082 and 1427 PubMed abstracts respectively, whichweremanually

classified as relevant, that is, containing information regarding the impact of gene mu-

tations on protein–protein interactions, or not relevant. Table 4.1 presents the statistics

of the Precision Medicine track dataset in detail.

Apart from this annotated dataset, we exploited the use of the BioCreative III PPI

ACT corpus as additional data (Krallinger et al., 2010, 2011). This corpus consists of

12 280 MEDLINE abstracts, 2732 of which were annotated as containing PPI informa-

tion. Although this annotation does not consider the impact of genetic mutations, as is

the case of the task considered here, we tried to incorporate this data in a self-training

approach.

Word embeddings

We used the word2vec implementation in the Gensim framework (Řehůřek and So-

jka, 2010) and generated word embeddings from the complete MEDLINE database, cor-

responding to 15 million abstracts in English language. We created six models with

vector sizes of 100 and 300 features and windows of 5, 20, and 50. The models contain

around 775 thousand distinct words. We conducted several preliminary experiments us-

ing cross-validation on training data with these six variants of word embedding models,

and our results demonstrated that the word embeddings model with 300 features and

window size of 50 provided the best result for almost every configuration. Therefore, in

this work, all the classifiers tested and presented here used the model with 300 features

and window size of 50.

Classical classifiers

We compared three classifiers from the scikit-learn library (Pedregosa et al., 2011):
k-nearest neighbors (k-NN), logistic regression (LR), and multi-layer perceptron (MLP).
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For the sake of readability, we denote these as classical classifiers because they are com-

monly employed in text classification and their off-the-shelf implementations, offered

by scikit-learn, can be applied straightforward to this task with little effort. We used

the default hyperparameters defined by scikit-learn with the exception of the following

values: the k-NN used a number of neighbors of 99, and the MLP used a maximum of

2000 iterations for convergence. These classifiers were favorably chosen because their

implementation allows to predict probability estimates which was relevant for this task

since the system had to return a confidence value for the prediction. For example, if the

system predicts that an article is relevant then it is also valuable to know how much

confidence the system has in its prediction. Also, these classifiers were selected because

they provided solid results in previous research on document classification (Kamath et
al., 2018; Kadhim, 2019; Shah et al., 2020).

To obtain the document representation for the classifier, we tokenized the docu-

ment and obtained the sequence of word vectors by simple look-up in the pre-calculated

word2vec embeddings model. However, these classifiers are not directly applicable to

sequences of distinct length and some form of aggregating these sequences is required.

This is commonly addressed by summing or averaging the word vectors, resulting in

a single vector representation of the document. We followed a similar approach, a

weighted average of the word vectors, where each word vector was weighted by its

TF–IDF value pre-calculated from the training data—note that for cross-validation eval-

uation the IDF values were calculated for every subgroup containing only the training

partitions.

Deep learning classifiers

We applied different deep learning strategies based on (1) convolutional and (2) long

short term memory (LSTM) layers. Convolutional neural networks (CNNs) have been

extensively applied in image recognition and classification problems with very good

performance (Rawat and Wang, 2017), and various works also demonstrate their appli-

cation in text classification tasks (Rios and Kavuluru, 2015). On the other hand, LSTM

networks which are a special type of recurrent neural networks (RNNs) can be more

adequate for text-based tasks due to the sequential structure of natural language text,

since these models contain feedback connections and can learn long-term dependencies

in the input sequences (Hochreiter and Schmidhuber, 1997; Graves, 2012).

Overfitting in the training data is a common problem when using deep neural net-

works since they have a strong pattern-memorization ability. In general, the higher the

number of layers and neurons they have the stronger their tendency to memorize and

overfit. For that reason, in our experiments we included different strategies—early stop-
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ping, dropout, and regularization—to avoid overfitting.

Our early stopping technique consisted in being vigilant of the loss value in a valida-

tion subset (for every training epoch) and terminating the training process if the loss did

not decrease after five consecutive epochs. We used 10% of the training data, selected

randomly, as validation set. We applied dropout to the output of the embedding and hid-

den layers so that a random selection of the output tensors is not used for updating the

model weights, with the aim of forcing the model to learn a less biased representation of

the data. Finally, L2 regularization is applied to the final layer to penalize large weights

that could otherwise be assigned to biased input dimensions.

Differently from the classical classifiers that used a weighted average of the word

vectors to represent each document, in the case of these deep neural network classifiers

each document was represented by the concatenated sequence of its word vectors where

a maximum sequence length of 1000 words was considered. This document representa-

tion was then forwarded to a convolutional recurrent neural network.

We empirically tested various network architectures and built three different systems

based on convolutional and LSTM layers for the official evaluation in the task since, in

comparison to the classical classifiers, these deep learning models provided superior re-

sults according to preliminary cross-validation experiments on training data (Table 4.2).

All models were trained using the binary cross-entropy loss function and the RMSProp

algorithm as optimizer (Tieleman and Hinton, 2012). Models were implemented in the

Keras framework (Chollet et al., 2015) with the TensorFlow backend (Abadi et al., 2016)
and executed on a machine with 12 CPU cores and 192 GB of memory.

System 1 The first system consists of a network architecture starting with an em-

bedding layer, that represents each word in a document by its respective word vector,

followed by three convolutional layers with average pooling. Each convolutional layer

uses 128 filters with ReLU (rectified linear unit) activation and a kernel size of 3. The

output is then connected to a bidirectional LSTM layer with 128 units, and to a final

densely connected layer with sigmoid activation and L2 regularization with a penalty

factor of 0.01. A dropout of 0.1 was included after the embedding layer and of 0.2 within

the LSTM units.

This model was trained using 90% of the training data from the Precision Medicine

dataset (10% left for validation), with a batch size of 32 samples and for a maximum of

100 epochs.

System 2 In the second system we followed a self-training approach to incorporate

the BioCreative III PPI corpus as additional data. Since this corpus is annotated follow-

ing different guidelines, we first applied the trained model from System 1 to infer the
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Table 4.2: Five-fold cross-validation results on the Precision Medicine training set with

classical and deep learning classifiers. The highest F1-score is highlighted in bold. k-NN:

k-nearest neighbors. LR: logistic regression. MLP: multi-layer perceptron.

Precision Recall F1-score

Classical classifiers
k-NN (k=99) 0.618 0.553 0.582
LR 0.674 0.546 0.603
MLP 0.606 0.578 0.592

Deep learning classifiers
System 1 0.637 0.681 0.651
System 2 0.640 0.692 0.664
System 3 0.698 0.735 0.715

relevance of these documents and selected the ones that were classified with a confi-

dence value higher than 0.90. This equated to adding 9673 documents, all pseudo-labeled
as not relevant, to the training data. The same network was then re-trained from scratch

with the combined dataset, and a validation subset containing 10% of the training data

from the Precision Medicine dataset was used to monitor the model performance during

training.

System 3 The third system is similar to the System 1 but consists of a deeper network

composed of three convolutional layers and three LSTM layers. The first layer of the

network is the embedding layer as in Systems 1 and 2, but a dropout of 0.2 is applied to

the embedding vectors. This layer is followed by three convolutional layers with average

pooling, and each convolutional layer uses 64 filters with ReLU activation and a kernel

size of 5. A dropout of 0.4 is applied after each pooling stage. This is then followed by

a bidirectional LSTM layer and two unidirectional LSTM layers. All LSTM layers are

composed of 128 units and use a dropout of 0.2. Finally, a dense layer is applied with

sigmoid activation and L2 regularization with a penalty factor of 0.01.

4.2.2 Results and discussion

Table 4.2 shows the cross-validation results obtained on the PrecisionMedicine train-

ing set with the different classifiers. The best cross-validation result was obtained by the

deeper network (System 3) which outperformed all classical classifiers by more than 11

percentage points in F1-score. Comparing to the classical classifiers tested, the deep

learning systems obtained considerably better results in terms of recall and F1-score.
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Table 4.3: Official results of the Precision Medicine track retrieved from the overview

paper prepared by the challenge organizers (Doğan et al., 2019). Results are evaluated

on the Precision Medicine test set.

R* Work Average precision Precision Recall F1-score

1 Fergadis et al. (2017) 0.7158 0.6289 0.7656 0.6906
2 Luo et al. (2017) 0.7253 0.6073 0.7997 0.6904
3 Matos and Antunes (2017a) System 2 0.6677 0.5700 0.8736 0.6898

(ours) System 1 0.6616 0.5864 0.8338 0.6886
System 3 0.6929 0.6070 0.7898 0.6864

4 Chen et al. (2017a) 0.5797 0.5713 0.8253 0.6752
5 Qu et al. (2017) 0.6632 0.5413 0.8835 0.6713
6 Tran and Kavuluru (2017) 0.6439 0.5438 0.8736 0.6703
7 Chen et al. (2017b) 0.6744 0.5361 0.8849 0.6677
8 Altınel et al. (2017) 0.5077 0.5022 0.9801 0.6641
9 Team 405 0.5871 0.5484 0.5710 0.5595

10 Wang et al. (2017c) 0.4904 0.4649 0.3480 0.3981

* R: rank. Teams ranked according to the F1-score evaluation.

The use of additional training data (System 2) helped to improve the results of the

first deep network, although only by a small margin. Nevertheless, this result indicates

that careful inclusion of related datasets, when available, can lead to better classification

performance.

Table 4.3 presents our results obtained in the Precision Medicine test set, which

demonstrates the suitability of our proposed systems based on convolutional recurrent

neural networks. Our best F1-score result (0.6898) was obtained by System 2 evidencing

that external training data was in fact beneficial, though not by a significant margin. We

also emphasize that our three systems achieved competitive performance being close to

the top teams—our highest F1-score result differs less than 1 percentage point from the

best result. Finally, when comparing these results with the ones from cross-validation

(Table 4.2) we observe that System 3 suffered from overfitting since its F1-score perfor-

mance was deteriorated, in contrast to Systems 1 and 2 that improved their performance

about 3 percentage points in F1-score when applied to unseen test data. However, we

notice that System 3 obtained the highest average precision (0.6929) amongst our sys-

tems which indicates its superior adequacy for sorting documents according to their

relevance.
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4.3 Patient cohort selection for clinical trials

Clinical trials play a critical role in medical studies. However, identifying and select-

ing cohorts for such trials can be a troublesome task since patients must match a set of

complex pre-determined criteria. Patient selection requires a manual analysis of clinical

narratives in patients’ records, which is a time-consuming task for medical researchers.

To simplify this selection process, attempts have been sought to automate cohort

selection by performing patient phenotyping with informatics techniques, and this has

in fact been demonstrated to be possible for some studies by the eMERGE (Electronic

Medical Records and Genomics) consortium, which showed that algorithms can be used

with effectiveness for phenotyping purposes (Pathak et al., 2013).
While automating cohort selection is certainly of great interest, it faces major chal-

lenges namely how to define inclusion and exclusion criteria such that an algorithm

can automatically and efficiently select patients in a dataset, or even how to integrate

data from various sources (Pathak et al., 2013), such as omics and EHR (electronic health

record) data. EHR data is of particular interest as it can contain textual information

stored in a structured form (data inserted in strict form fields), or in clinical narratives

where text data is stored in an unstructured format (for example, free text report in a

discharge record). Unstructured data has been getting increased attention since fusing

information extracted from structured and unstructured data, instead of only resorting

to the structured variant, can lead to significant performance improvements in a system

(Ludvigsson et al., 2013).
Extracting proper information from unstructured data such that it can be represented

in a structured counterpart is a very difficult task. However, the capability to efficiently

perform such extraction is of paramount importance, as automatic patient cohort se-

lection systems can greatly benefit from it (Shivade et al., 2014). It is due to this widely

recognized potential that much research has focused on levering unstructured data from

EHRs, using for that purpose natural language processing techniques to process unstruc-

tured text and extract meaningful content (Pathak et al., 2013).
In this section we present an automatic classification system, based on handcrafted

rules and machine learning models, that analyzes clinical reports and identifies which

documents meet or do not meet specific medical criteria. The approach herein presented

was developed and tested on the 2018 n2c2 (National NLP Clinical Challenges) Track 1

shared task3 dataset where each patient record is annotated with 13 selection criteria

(Stubbs et al., 2019). The resulting hybrid approach attained a micro-average and macro-

average F1-score of 0.8844 and 0.7271, respectively, in the n2c2 test set. In the remaining

3 https://portal.dbmi.hms.harvard.edu/projects/n2c2-2018-t1/

https://portal.dbmi.hms.harvard.edu/projects/n2c2-2018-t1/
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of this section we describe the data resources used, explain the methodology developed,

and present and discuss the obtained results. Part of the source code resultant from this

work is available at:

https://github.com/ruiantunes/2018-n2c2-track-1.

4.3.1 Materials and methods

The objective of this work was to explore NLP techniques to solve the problem of

automatic patient cohort selection. The problem consists in classifying 13 binary criteria

for each patient given their clinical textual records. Classifying each criterion as ‘met’

or ‘not met’ was considered a single binary problem, where machine learning models

were tested separately and rule-based methods were developed individually for each

criterion. Our final system was a combination of both, where some criteria were better

solved using heuristics and others using machine learning algorithms.

In this work, we used five classical machine learning classifiers from the scikit-learn

and XGBoost libraries (Pedregosa et al., 2011; Chen and Guestrin, 2016), and built two

deep learning models using the Keras library (Chollet et al., 2015). These are presented

in detail in the next sections.

Data

The dataset used for this work was provided by the 2018 n2c2 (Track 1 shared task)

organization, and is split into training and test sets containing 202 and 86 samples, re-

spectively. Each sample comprises between 2 to 5 dated records of a single patient where

the records are de-identified and the dates are modified to protect the identities of the

participants. Nevertheless, the relative time intervals between patient records are kept

to allow a timeline interpretation of these.

Each sample of the dataset has a list of 13 binary selection criteria that weremanually

annotated by medical professionals with a value of ‘met’ or ‘not met’ indicating whether

or not a patient meets the pre-defined requirements of the criterion. Table 4.4 is based on

the guidelines provided by the n2c2 organizers and shows a summary of the 13 selection

criteria where each criterion was attributed a unique tag for identification purposes.

From here on, for simplicity, we refer to the selection criteria as tags where each tag

corresponds to a criterion representing a single binary classification problem.

Table 4.5 shows the dataset distributionwhere one can see that certain tags are highly

imbalanced. There are tags, such as ASP-FOR-MI or MAKES-DECISIONS, where the

‘met’ class is much more frequent, but the opposite is also verified with the ‘not met’

class prevailing in tags such asDRUG-ABUSE orMI-6MOS. It is also relevant to note that

https://github.com/ruiantunes/2018-n2c2-track-1
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Table 4.4: Patient selection criteria of the 2018 n2c2 Track 1 dataset. Based on the anno-

tation guidelines provided by the task organizers (Stubbs et al., 2019).

Tag Criteria

ABDOMINAL Intra abdominal surgery, intestine resection, bowel
obstruction

ADVANCED-CAD Having at least two conditions about cardiovascular
diseases (taking medications, myocardial infarction,
angina, ischemia)

ALCOHOL-ABUSE Current alcohol abuse
ASP-FOR-MI Use of aspirin to prevent myocardial infarction
CREATININE Serum creatinine larger than the limit of normal
DIETSUPP-2MOS Taken a dietary supplement in the past 2 months
DRUG-ABUSE Drug abuse
ENGLISH Patient must speak English
HBA1C HbA1c value between 6.5% and 9.5%
KETO-1YR Diagnosis of ketoacidosis in the past year
MAJOR-DIABETES Major diabetes-related complication
MAKES-DECISIONS Patient must make their own medical decisions
MI-6MOS Myocardial infarction in the past 6 months

the tag KETO-1YR only contains ‘not met’ labels, making supervised machine learning

models unable to learn this criterion.

External resources

In order to expand the training data for some criteria, we used as external resource,

the MIMIC-III critical care database (Johnson et al., 2016), which is a large and freely-

available database containing medications, laboratory measurements, imaging reports,

and other clinical data from around 40 thousand adult patients. In this work, we used

around 2 million clinical reports (1) to create word embeddings to be used in deep learn-

ing algorithms, (2) to be selected beforehand, pseudo-labeled, and used as additional

training data in a semi-supervised setting, and (3) to find text patterns to help in the

development of handcrafted rules.

Since the clinical reports in the MIMIC-III database possess ICD-9 diagnosis and pro-

cedure codes4, we decided to explore those ICD-9 codes for the selection of relevant clin-

ical reports from the MIMIC-III database. To do that, we manually mapped seven tags

4 The ICD-9 codes are generated during patient admission for billing purposes. http://www.icd9data
.com

http://www.icd9data.com
http://www.icd9data.com
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Table 4.5: Class distribution of the 2018 n2c2 Track 1 dataset.

Training set Test set

Tag Met Not met Met Not met

ABDOMINAL 76 126 30 56
ADVANCED-CAD 125 77 45 41
ALCOHOL-ABUSE 7 195 3 83
ASP-FOR-MI 163 39 68 18
CREATININE 82 120 24 62
DIETSUPP-2MOS 106 96 44 42
DRUG-ABUSE 10 192 3 83
ENGLISH 192 10 73 13
HBA1C 67 135 35 51
KETO-1YR 0 202 0 86
MAJOR-DIABETES 113 89 43 43
MAKES-DECISIONS 194 8 83 3
MI-6MOS 18 184 8 78

into a list of possible ICD-9 codes—the resulting mapping is presented in Table 4.6—and

used the mapped codes to select relevant records from the database. The filtered list of

clinical reports was then classified following a machine learning approach and reports

with higher confidence were selected to be used as additional positive (‘met’) training

samples.

Timeline restrictions

For the majority of tags, all the clinical records of each patient were concatenated

resulting in a unique textual document per patient and, for simplicity, we ignored date

information in clinical records. However, for tags KETO-1YR and MI-6MOS only the

records from the past year and past six months, respectively, were considered since these

criteria have time restrictions. Despite the criterion DIETSUPP-2MOS restricting intake

of dietary supplements in the past two months, older records were also considered since

these could indicate past supplements still being ingested.

Rule-based methods

From inspecting the training dataset, its statistics and understanding the selection

criteria, we perceived that developing handcrafted rules to find text patterns would be
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Table 4.6: ICD-9medical codes relatedwith some of the selection criteria of the 2018 n2c2

Track 1 dataset. These codes were manually selected. ICD: International Classification

of Diseases.

Tag ICD-9 diagnosis and procedure codes

ABDOMINAL 536.3, 536.4, 537.2, 537.3, 537.5, 539, 555.0, 555.2, 560, 564.4,
569.6, 751.1, 863, 864, 865, 866, 868, 996.81, 996.82, 996.86,
996.87, E879.5, 42, 43, 44, 45, 45.4, 45.7, 47, 50, 51, 52

ALCOHOL-ABUSE 303, 305.0, 980, V11.3
ASP-FOR-MI E935.3
DIETSUPP-2MOS V65.3, 280, 264, 265, 266, 267, 269
DRUG-ABUSE 304, 305.2, 305.3, 305.4, 305.5, 305.6, 305.7, 305.8, 305.9
MAJOR-DIABETES 249, 249.4, 249.5, 249.6, 249.7, 249.8, 250, 250.4, 250.5, 250.6,

250.7, 337.1, 357.2, 362.0, 588.1, 997.6, E878.5, 84.0, 84.1, 84.3,
84.91

MI-6MOS 410, 412

the most effective solution for certain tags. For instance, these applied to tags CREATI-

NINE and HBA1C where float values had to be found in the text near “creatinine” and

“HbA1c” mentions, being an information that is not considered in the supervised learn-

ing approach (only in heuristics). Moreover, certain tags had one of the classes with very

small support, and in those cases we expected that machine learning classifiers could not

correctly learn due to the lack of training samples, whereas rule-based methods were ex-

pected to have better prediction capability. With this in mind, rules were implemented

for every tag with the exception of the ABDOMINAL and MAJOR-DIABETES tags.

We developed two rule-based classifiers: one for submitting the results to the n2c2

shared task, and a second one after the challenge by improving some of the first rules by

doing a more exhaustive error analysis on the training set (referred to as modified rule-
based classifier ). However, we were aware that this manual modification of the rules

being evaluated in the training set could lead to overfitting. The rules were altered for

the following nine tags: ADVANCED-CAD, ALCOHOL-ABUSE, ASP-FOR-MI, CREATI-

NINE, DRUG-ABUSE, ENGLISH, HBA1C, MAKES-DECISIONS, and MI-6MOS.

Both of the developed rule-based classifiers receive as input the raw text of the con-

catenated dated records. The rules implemented in both classifiers not only try to iden-

tify keywords specific to the criterion of interest using regular expressions, but alsomake

complex decisions using if-else conditions. Rules for catching negation cases were also

taken into account. Reports from the MIMIC-III database were also consulted to ex-

pand the rules, namely for the criteria ALCOHOL-ABUSE, DRUG-ABUSE, ENGLISH,
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Table 4.7: The architecture of the deep learning models used in the patient cohort selec-

tion task. ReLU: rectified linear unit.

Model Structure (top–bottom)

Fully connected neural network (FCNN) Embedding layer
Flatten layer
Dense layer with 128 units
ReLU activation
Dense layer with 128 units
ReLU activation
Dropout with rate 0.2
Single unit with sigmoid activation

Convolutional neural network (CNN) Embedding layer
Convolutional layer with 128 filters
ReLU activation
Global max pooling operation
Dense layer with 128 units
ReLU activation
Dropout with rate 0.2
Single unit with sigmoid activation

and MAKES-DECISIONS. Additionally, the DrugBank database (Wishart et al., 2018)
was used for compiling a list of supplements for the criteria DIETSUPP-2MOS.

Classical machine learning

To feed the classical machine learning classifiers, documents were firstly vectorized

using a bag-of-words (BoW) approach. In the tokenization step, words were converted to

lowercase, except for those with all uppercase letters as they could represent acronyms,

and stop words were discarded. Preliminary results showed that feeding the classifiers

with bigrams and trigrams in addition to unigrams did not result in significant improve-

ments, thus in this work we only considered the use of unigrams.

The scikit-learn and XGBoost libraries were used to explore the following classical

machine learning classifiers: AdaBoostClassifier, BaggingClassifier, DecisionTreeClas-

sifier, GradientBoostingClassifier, and XGBClassifier. All classifiers were used with

their respective default hyperparameter settings.

Deep learning

In this workwe tested two deep learning classifiers: a fully connected neural network

and a convolutional neural network. Both models were implemented with the Keras
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Figure 4.1: Overall system architecture used in the patient cohort selection task.

library and Table 4.7 presents the structure of each model.

Each document was represented by the concatenation of its words using word em-

beddings, with a fixed length of 5000 words. The word embeddings were created from

around 2 million MIMIC-III clinical reports using the word2vec architecture (Mikolov

et al., 2013a) from the Gensim library (Řehůřek and Sojka, 2010). The final word embed-

dings model contained around 100 thousand distinct words.

From preliminary experiments we decided to use word embeddings generated with

the skip-gram architecture, a feature size of 50, a window of 5, and all the words con-

verted to lowercase. Furthermore, the models were trained with a batch size of 256

samples for a period of 30 epochs.

Overall system

The system herein described is composed of heuristics andmachine learning models.

Our approach consisted in selecting the methods which achieved the best results in the

training set and applying them to the test set. The rule-based methods take as input raw

text, while the classical machine learning classifiers use BoW unigrams, and the deep

learning models use word embeddings.

In the supervised learning approaches, a fewMIMIC-III clinical reports were first se-

lected using the ICD-9 codes and then classified considering the probability output by an

ensemble classifier pre-trainedwith the training set in a self-training setting. The ensem-

ble calculates the average of the probabilities obtained from the five different classical

machine learning classifiers. We tested this setup in the seven tags that were mapped to

ICD-9 codes (Table 4.6).

Additionally, an optional pre-processing step was developed for the removal of tab-



Chapter 4. Biomedical text classification and similarity measurement 77

Table 4.8: Detailed results with a baseline classifier applied to the 2018 n2c2 Track 1

test set. TP: true positive. TN: true negative. FP: false positive. FN: false negative.

P: precision. R: recall. F1: F1-score. MI: micro-averaged. MA: macro-averaged.

Tag* Met Not met O. F1†

TP TN FP FN P R F1 TP TN FP FN P R F1

ABD 0 56 0 30 0.0000 0.0000 0.0000 56 0 30 0 0.6512 1.0000 0.7887 0.3944
ADV 45 0 41 0 0.5233 1.0000 0.6870 0 45 0 41 0.0000 0.0000 0.0000 0.3435
ALC 0 83 0 3 0.0000 0.0000 0.0000 83 0 3 0 0.9651 1.0000 0.9822 0.4911
ASP 68 0 18 0 0.7907 1.0000 0.8831 0 68 0 18 0.0000 0.0000 0.0000 0.4416
CRE 0 62 0 24 0.0000 0.0000 0.0000 62 0 24 0 0.7209 1.0000 0.8378 0.4189
DIE 0 42 0 44 0.0000 0.0000 0.0000 42 0 44 0 0.4884 1.0000 0.6562 0.3281
DRU 0 83 0 3 0.0000 0.0000 0.0000 83 0 3 0 0.9651 1.0000 0.9822 0.4911
ENG 73 0 13 0 0.8488 1.0000 0.9182 0 73 0 13 0.0000 0.0000 0.0000 0.4591
HBA 0 51 0 35 0.0000 0.0000 0.0000 51 0 35 0 0.5930 1.0000 0.7445 0.3723
KET 0 86 0 0 0.0000 0.0000 0.0000 86 0 0 0 1.0000 1.0000 1.0000 0.5000
MAJ 43 0 43 0 0.5000 1.0000 0.6667 0 43 0 43 0.0000 0.0000 0.0000 0.3333
MAK 83 0 3 0 0.9651 1.0000 0.9822 0 83 0 3 0.0000 0.0000 0.0000 0.4911
MI6 0 78 0 8 0.0000 0.0000 0.0000 78 0 8 0 0.9070 1.0000 0.9512 0.4756

MI 312 541 118 147 0.7256 0.6797 0.7019 541 312 147 118 0.7863 0.8209 0.8033 0.7526
MA 0.2791 0.3846 0.3183 0.4839 0.6154 0.5341 0.4262

* The names of the tags were abbreviated for conciseness of the table. Please refer to Table 4.4 for consulting
the full name forms.
† The overall F1-score is the average between the F1-scores from the ‘met’ and ‘not met’ classes.

ular information from text with the aim of limiting document content to natural text.

At the final stage of the pipeline, the pre-processing style, the classifier (heuristics or

machine learning), and the training data (with or without additional MIMIC-III reports)

are chosen so that the best combination is applied to the test set. Figure 4.1 shows the

final overall system architecture.

Note that for the tag KETO-1YR, the machine learning models were not trained, due

to the lack of training samples, being the output pre-defined to always be ‘not met’ in

this case.

4.3.2 Results and discussion

In this section, we present several results obtained by applying different methods in

the training and test sets. Performance in the training set was evaluated using 3-fold

cross-validation in the case of supervised learning algorithms, whereas the rule-based

classifiers were applied directly to the complete training set because they did not need

to learn from labeled training samples.

We used two evaluation metrics proposed by the n2c2 organizers which take into ac-
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Table 4.9: Overall averaged F1-scores in the 2018 n2c2 Track 1 training and test sets. The highest

value in each row is highlighted in bold. Ada: AdaBoostClassifier. Bag: BaggingClassifier.

DT: DecisionTreeClassifier. GB: GradientBoostingClassifier. XGB: XGBClassifier. FCNN: fully

connected neural network. CNN: convolutional neural network. RB: rule-based classifier. MRB:

modified rule-based classifier.

(a) Evaluation on the training set.

Tag Classical machine learning Deep learning Rule-based

Ada Bag DT GB XGB FCNN CNN RB MRB
ABDOMINAL 0.6071 0.5024 0.5281 0.5868 0.5654 0.5717 0.4257
ADVANCED-CAD 0.6780 0.6525 0.6034 0.7208 0.7611 0.4951 0.4977 0.8251 0.8251
ALCOHOL-ABUSE 0.4899 0.4912 0.4807 0.4847 0.4912 0.4912 0.4912 0.8598 1.0000
ASP-FOR-MI 0.5144 0.4843 0.4946 0.5025 0.4603 0.4466 0.4466 0.7916 0.8625
CREATININE 0.7760 0.7959 0.7258 0.7723 0.8042 0.4189 0.5846 0.8895 0.9118
DIETSUPP-2MOS 0.6526 0.6432 0.5937 0.6926 0.7126 0.6539 0.5308 0.7975
DRUG-ABUSE 0.7123 0.5795 0.6802 0.7370 0.4873 0.4873 0.4873 0.7020 1.0000
ENGLISH 0.7780 0.7780 0.8837 0.8837 0.5795 0.4873 0.4873 0.9172 1.0000
HBA1C 0.5429 0.5139 0.5588 0.5279 0.5702 0.4568 0.4006 0.9374 0.9601
KETO-1YR 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
MAJOR-DIABETES 0.7375 0.6929 0.6554 0.7483 0.7429 0.5656 0.5473
MAKES-DECISIONS 0.4873 0.4899 0.6192 0.5706 0.4899 0.4899 0.4899 0.8256 1.0000
MI-6MOS 0.4753 0.5306 0.5936 0.5097 0.5730 0.4767 0.4767 0.8026 0.8778

Micro-averaged 0.8198 0.8108 0.7682 0.8222 0.8355 0.7813 0.7858
Macro-averaged 0.6117 0.5888 0.6090 0.6336 0.5952 0.5031 0.4897

(b) Evaluation on the test set.

Tag Classical machine learning Deep learning Rule-based

Ada Bag DT GB XGB FCNN CNN RB MRB
ABDOMINAL 0.7574 0.5590 0.7079 0.7807 0.6334 0.4658 0.3944
ADVANCED-CAD 0.7977 0.7889 0.6178 0.8227 0.8114 0.4113 0.6673 0.7832 0.8089
ALCOHOL-ABUSE 0.5896 0.4911 0.4850 0.5896 0.4911 0.4911 0.4911 0.4850 0.4850
ASP-FOR-MI 0.4847 0.4401 0.5271 0.5469 0.4908 0.4416 0.4416 0.7095 0.7426
CREATININE 0.7329 0.7219 0.5933 0.7219 0.7110 0.4948 0.5411 0.8295 0.7862
DIETSUPP-2MOS 0.6728 0.5597 0.5930 0.6510 0.6162 0.5390 0.5083 0.7943
DRUG-ABUSE 0.4850 0.4911 0.6815 0.6601 0.4911 0.4911 0.4911 0.7312 0.9255
ENGLISH 0.7559 0.7929 0.7915 0.7929 0.5983 0.4591 0.4591 0.6554 0.6554
HBA1C 0.6098 0.6048 0.6210 0.5773 0.5773 0.3676 0.3723 0.9382 0.8439
KETO-1YR 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.4971
MAJOR-DIABETES 0.7902 0.8023 0.6975 0.8721 0.8023 0.6044 0.5966
MAKES-DECISIONS 0.4911 0.4881 0.6277 0.4850 0.7440 0.4911 0.4911 0.6067 0.4911
MI-6MOS 0.4724 0.4756 0.4625 0.4724 0.4756 0.4756 0.4756 0.7281 0.8102

Micro-averaged 0.8331 0.8134 0.7775 0.8356 0.8258 0.7566 0.7676
Macro-averaged 0.6261 0.5935 0.6081 0.6517 0.6110 0.4794 0.4946
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Table 4.10: Overall averaged F1-scores in the 2018 n2c2 Track 1 dataset with classifiers

trained with 100 additional ‘met’ training MIMIC-III reports. The highest value for each

tag and subset is highlighted in bold. Ada: AdaBoostClassifier. Bag: BaggingClassifier.

DT: DecisionTreeClassifier. GB: GradientBoostingClassifier. XGB: XGBClassifier.

Tag Evaluation on the training set Evaluation on the test set

Ada Bag DT GB XGB Ada Bag DT GB XGB
ABDOMINAL 0.6669 0.5890 0.6075 0.6655 0.6581 0.7511 0.7617 0.6595 0.7352 0.7507
ALCOHOL-ABUSE 0.6729 0.7949 0.7040 0.7040 0.7159 0.5753 0.4911 0.4819 0.4911 0.4911
ASP-FOR-MI 0.5848 0.5365 0.4976 0.4951 0.4873 0.4673 0.5232 0.5784 0.4788 0.4379
DIETSUPP-2MOS 0.6977 0.6781 0.6219 0.7335 0.7106 0.6012 0.6007 0.5697 0.6510 0.6977
DRUG-ABUSE 0.7228 0.7093 0.6456 0.6962 0.7093 0.7440 0.6910 0.6601 0.6815 0.7440
MAJOR-DIABETES 0.7335 0.7214 0.6231 0.7537 0.7489 0.7790 0.6512 0.7089 0.8372 0.8140
MI-6MOS 0.6930 0.7023 0.7020 0.6842 0.6842 0.4724 0.4724 0.4625 0.4724 0.4724

count the dataset imbalance: overall micro- and macro-averaged F1-scores. This overall

score is the average of the two F1-scores of the ‘met’ and ‘not met’ classes. The evalu-

ation metrics were calculated for each tag, thus enabling the analysis of each criterion

separately.

For a clear understanding and detailed exposition of all the calculated metrics, Ta-

ble 4.8 presents the results from a baseline classifier which simply attributed the most

frequent label in the training set to all test samples. This baseline classifier attained a

micro-F1 of 0.7526 and a macro-F1 of 0.4262 on the test set. To simplify the presentation

of the results, we only present the overall F1-scores in the next experiments. However,

detailed results containing true positive, true negative, false positive, and false negative

counts as presented in Table 4.8, were examined during the refinement of our approach.

Table 4.9 shows the results of machine learning and rule-based methods evaluated

on the (a) training and (b) test sets. Looking only at the evaluation in the training set,

one can see that for each tag where rules were implemented, the rule-based method was

the best performing classifier. On the other hand, deep learning models produced the

worst results.

The AdaBoostClassifier and the GradientBoostingClassifier achieved the two high-

est macro-average F1-scores both in training and test sets. For the tags where the mod-

ified rule-based classifier was implemented, this classifier achieved the best results in

the training set, but the same was not verified for the test set which shows that certain

rules were overfit to the training set. For the tags ABDOMINAL, ADVANCED-CAD, and

MAJOR-DIABETES, the results obtained with classical machine learning significantly

improved in the test set proving that training with more data helped to increase their

generalization ability.
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Table 4.11: Overall averaged F1-scores in the 2018 n2c2 Track 1 dataset with tabulated

information removed from the raw texts. The highest value for each row and subset is

highlighted in bold. Ada: AdaBoostClassifier. Bag: BaggingClassifier. DT: Decision-

TreeClassifier. GB: GradientBoostingClassifier. XGB: XGBClassifier.

Tag Evaluation on the training set Evaluation on the test set

Ada Bag DT GB XGB Ada Bag DT GB XGB
ABDOMINAL 0.6325 0.5466 0.5676 0.5957 0.5733 0.7399 0.5419 0.6765 0.8294 0.6052
ADVANCED-CAD 0.6668 0.6952 0.5761 0.7405 0.7405 0.8089 0.7531 0.6549 0.8350 0.8350
ALCOHOL-ABUSE 0.4899 0.4912 0.4794 0.4847 0.4912 0.5753 0.4911 0.5753 0.5753 0.4911
ASP-FOR-MI 0.5064 0.5076 0.5190 0.5084 0.4603 0.4908 0.4454 0.5947 0.5086 0.4342
CREATININE 0.7726 0.7726 0.6966 0.7864 0.7978 0.6718 0.6946 0.6142 0.7141 0.7329
DIETSUPP-2MOS 0.6261 0.6574 0.6081 0.6631 0.6830 0.7089 0.6073 0.5216 0.6158 0.6728
DRUG-ABUSE 0.7123 0.4873 0.5825 0.7093 0.4873 0.4819 0.4911 0.6601 0.6601 0.4911
ENGLISH 0.7780 0.9079 0.8422 0.8837 0.5795 0.7559 0.7929 0.7737 0.7929 0.5983
HBA1C 0.6087 0.5568 0.5462 0.5216 0.5816 0.5951 0.4574 0.5232 0.5681 0.5577
KETO-1YR 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000
MAJOR-DIABETES 0.7637 0.6859 0.6354 0.7725 0.7094 0.7906 0.7673 0.6510 0.8604 0.8136
MAKES-DECISIONS 0.4873 0.4899 0.5629 0.4886 0.4899 0.4881 0.4911 0.6546 0.4850 0.7440
MI-6MOS 0.4753 0.5306 0.5601 0.5097 0.5730 0.4724 0.4756 0.4658 0.4724 0.4756

Micro-averaged 0.8270 0.8185 0.7657 0.8263 0.8306 0.8298 0.8031 0.7675 0.8336 0.8304
Macro-averaged 0.6169 0.6022 0.5905 0.6280 0.5897 0.6215 0.5776 0.6051 0.6475 0.6117

Table 4.10 shows the results when 100 additional ‘met’ MIMIC-III reports are used

for training. Because these additional reports were classified with pre-trained models

on the full training dataset, these results are indirectly biased. This explains the fact

that the results in the training set have more noticeable improvements, whereas the

improvements in the test set are less significant, in comparison to the original results

from Table 4.9.

Table 4.11 presents the results obtained when applying classical machine learning

with tabulated information removed from the raw texts. Significant differences were

not found when compared to the results presented in Table 4.9.

Finally, Table 4.12 shows the final results when the best combination was selected

by inspecting the results in the training set. The best combination in the training set

achieved a micro-F1 of 0.9143 and a macro-F1 of 0.8596 whereas in the test set it attained

a micro-F1 of 0.8844 and a macro-F1 of 0.7271. These results show that there is a clear

overfitting to the training set because the macro-F1 on the test set is around 13 percent-

age points lower. We highlight that, in this optimal configuration, rule-based methods

were mostly selected.

Our system contains rule-based methods and machine learning algorithms that are

accordingly selected to better classify each criterion. We developed handcrafted rules
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Table 4.12: Overall averaged F1-scores in the 2018 n2c2 Track 1 dataset with the best

combination of methods selected by inspecting the evaluation in the training set. The

methods that provided the best results in the training set were applied. The highest

value for each tag is highlighted in bold.

Selected method Tag Training Test

AdaBoostClassifier with 100 additional training MIMIC reports ABDOMINAL 0.6669 0.7511
Rule-based classifier ADVANCED-CAD 0.8251 0.8089
Modified rule-based classifier ALCOHOL-ABUSE 1.0000 0.4850
Modified rule-based classifier ASP-FOR-MI 0.8625 0.7426
Modified rule-based classifier CREATININE 0.9118 0.7862
Rule-based classifier DIETSUPP-2MOS 0.7975 0.7943
Modified rule-based classifier DRUG-ABUSE 1.0000 0.9255
Modified rule-based classifier ENGLISH 1.0000 0.6554
Modified rule-based classifier HBA1C 0.9601 0.8439
Rule-based classifier KETO-1YR 0.5000 0.4971
GradientBoostingClassifier with tabulated information discarded MAJOR-DIABETES 0.7725 0.8604
Modified rule-based classifier MAKES-DECISIONS 1.0000 0.4911
Modified rule-based classifier MI-6MOS 0.8778 0.8102

Micro-averaged 0.9143 0.8844
Macro-averaged 0.8596 0.7271

for almost all the criteria. However, the process of creating adequate rules is hard and

cumbersome since it requires an analysis of the data, not excluding the medical expertise

that is oftentimes required. Moreover, while rule-based methods achieved good results,

these require the development of a distinct algorithm for each criterion while machine

learning classifiers do not face this problem, being easier to re-use.

In this task, classical machine learning classifiers worked much better when com-

pared to deep learning classifiers. In most cases, deep learning models predicted the

same label for every sample, behaving similarly to a baseline classifier and demonstrat-

ing that the dataset had a reduced size. Our results also show that machine learning

classifiers provided better results for criteria with balanced labels, evidencing that other

criteria lack in training data.

4.4 Measuring clinical semantic textual similarity

For years, technology advancements have been applied in health care with the goal

of preventing, diagnosing and treating diseases, as well as improving the quality of life of

the general population. These technological breakthroughs have brought new tools and

information sources to physicians, aiding them in clinical workflows like patient follow-
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up and clinical decision making, whilst also playing an important role in the transition

into the personalized medicine paradigm.

Electronic health records are an example of such widely adopted technologies in

medicine, providing an electronic infrastructure that can aggregate a multitude of medi-

cal information and support the medical act. EHRs provide a longitudinal view of patient

trajectory comprehending the past and present of a patient’s health condition, and can

also comprehend a future component of the patient trajectory if future treatments and

appointments are considered. Despite these containing rich contextual information in

structured data that could for instance be explored for prediction modelling purposes

(Wu et al., 2010; Ferrão et al., 2013; Ferrão et al., 2016), large amounts of valuable patient

information are stored in unstructured notes, commonly referred to as free text, which

are often underexplored due to difficulties in processing this type of text (Neustein et al.,
2014).

Due to the large extent of information contained in an EHR, physicians are provided

with the key aspect of context when reasoning on their medical decisions, making EHR

a key component of the patient-centered notion of health care. However, even though

its wide adoption has enabled an improvement on healthcare quality, certain challenges

also arose with it. An example of such issue is the facilitated process of replicating infor-

mation in medical text reports through copy-paste actions or by using pseudo-templates.

This has impacted on EHR data quality since it can lead to less concise documentation,

and an increased chance of introducing erroneous information, that can consequently

compromise the quality of the medical act (Cohen et al., 2013; Singh et al., 2013).
Due to the importance of reducing the dimension and redundancy in EHR data, solu-

tions for annotating relevant data and summarizing clinical text (Pivovarov and Elhadad,

2015) have been the focus of much research, mostly targeting clinical natural language

processing. A possible recently explored approach to reduce clinical text redundancy

is by assessing the semantic textual similarity between different text excerpts from an

EHR. Investigation on semantic textual similarity has attracted particular attention in

past years. SemEval, an ongoing series of evaluations of computational semantic analy-

sis systems, started a pilot STS challenge track in 2012 which attracted the attention of

the research community (Agirre et al., 2012) and, due to its success, progressively orga-

nized a series of STS challenge tracks from 2012 through 2017 (Agirre et al., 2013, 2014,
2015, 2016; Cer et al., 2017). However, these shared tasks had the major drawback of

being centered in general-domain text, whereas clinical text is inherently different in its

characteristics. Therefore, an additional effort for the clinical domain was required.

The increasing interest in exploring and pushing forward existing researchwith clin-

ical data, to further improve healthcare quality, led to the creation of dedicated resources



Chapter 4. Biomedical text classification and similarity measurement 83

and challenges. To that extent, in recent years, text corpora specifically focused on clin-

ical text were created along with shared tasks on clinical STS that leverage from those

corpora.

In this section we present an approach to measure the semantic textual similarity

between clinical sentences. We explore neural networks and different types of text pre-

processing pipelines, and evaluate the impact of using word embeddings or sentence

embeddings. We present our results on the 2019 n2c2/OHNLP Track 1 shared task5

dataset, perform an error analysis, and discuss obtained results along with possible fu-

ture improvements.

Biomedical and clinical STS resources

Recent years have shown efforts to bring STS to the clinical domain. Motivated by

the rapidly increasing availability of textual data in the biomedical domain, by the need

to facilitate the retrieval and analysis of this data, and also by the lack of suitable datasets

for the development of appropriate systems, Soğancıoğlu et al. (2017) created BIOSSES—

a benchmark dataset containing 100 sentence pairs from biomedical literature where

each sentence pair was scored in a scale from 0 to 4 regarding its semantic similarity.

Despite being an interesting initial effort, as the type of text found in biomedical liter-

ature significantly differs from that of medical narratives, an additional effort was still

required.

With the goal of exploring STS to reduce clinical text redundancy, Wang et al. (2018a)
assembled the MedSTS dataset containing 174 629 pairs of clinical sentences extracted

from a clinical corpus atMayo Clinic. From this pool of clinical sentence pairs, 1068 pairs

were annotated by two medical experts regarding their semantic similarity, who classi-

fied each pair with a value within 0 (dissimilar) and 5 (equivalent), resulting in the cre-

ation of the MedSTS_ann dataset. The authors used MedSTS_ann to compare the per-

formance of existing STS approaches on general and clinical domain STS datasets, and

as expected they observed that performances obtained on MedSTS_ann were in general

lower, demonstrating the higher complexity of clinical text.

Clinical STS shared tasks

Driven by the interest of motivating the research community to solve real world

clinical problems, Wang et al. (2018b) organized a shared task on clinical STS where

they released MedSTS_ann, hence making it the first available resource for the study

of clinical STS. The pioneering shared task was titled BioCreative/OHNLP Challenge

5 https://portal.dbmi.hms.harvard.edu/projects/n2c2-2019-t1/

https://portal.dbmi.hms.harvard.edu/projects/n2c2-2019-t1/
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2018 Task 2: Clinical Semantic Textual Similarity6 and attracted the participation of four

teams who developed automatic systems to measure the semantic relation of sentence

pairs from MedSTS_ann.

Submitted solutions explored various techniques ranging from conventional ma-

chine learning to deep learning models. The winning system (Chen et al., 2018) used
a regression model that evaluates the scores obtained by eight trained models based on

traditional machine learning and neural networks using sentence encoders. This system

attained the highest Pearson correlation of 0.8328. The second placing team (Xiong et al.,
2018) obtained its best correlation result (0.8143) with an ensemble that combined the

predictions from an attention-based CNN and a bidirectional LSTM models. The third

team (Liu et al., 2018b) used sentence embeddings by performing a weighted average of

word vectors and obtained a Pearson correlation of 0.7789. The final team attained a

best Pearson correlation of 0.7090 and did not disclose a detailed approach.

On a more recent note, building upon the experience from the BioCreative/OHNLP

shared task on clinical STS, a collaboration between n2c2 and OHNLP resulted in the

2019 n2c2/OHNLP Track 1 on clinical semantic textual similarity (Wang et al., 2020)
with the objective of expanding previous work by providing novel annotated data, thus

allowing further development and evaluation of systems on previously unseen data.

Sentence representation: BioWordVec versus BioSentVec

Posterior to the BioCreative/OHNLP shared task, members from the winning team

proceeded their work by exploring the field of sentence representation, focusing onword

and sentence embeddings. Due to the limitations of traditional word embeddings, which

are computed at the word-level and trained for general-domain text, Zhang et al. (2019b)
decided to develop a set of biomedical word embeddings that combined subword in-

formation from biomedical text with the biomedical vocabulary MeSH. The resulting

biomedical word embeddings, named BioWordVec, performed better than word2vec em-

beddings in medical word pair similarity benchmarks, and were made publicly available

to the community. The authors further improved these embeddings by training them on

a new corpus containing over 30 million documents from PubMed articles and clinical

notes from the MIMIC-III clinical database.

Word embeddings capture representations at word-level, thus to represent a sen-

tence it is necessary to decompose it in words and combine the representations from

each word. However, it is also possible to represent sentence text in a more straightfor-

ward approach, using instead sentence embeddings. Similarly to the word embeddings

scenario, despite the existence of pre-trained sentence encoders for the general-domain,

6 https://sites.google.com/view/ohnlp2018/home

https://sites.google.com/view/ohnlp2018/home
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biomedical and clinical text remained an unexplored field, thus Chen et al. (2019b) trained
a sentence embeddings model on the same dataset, combining PubMed and MIMIC-III

text data, used for BioWordVec. The result was BioSentVec7, a publicly available sen-

tence embeddings model suitable for biomedical and clinical text applications.

To assess the adequacy and effectiveness of these sentence embeddings, Chen et al.
(2019b) tested BioSentVec with BIOSSES and MedSTS_ann. Whilst using a much sim-

pler 5-layer deep learning model that only received two sentence vectors generated by

BioSentVec as input, the authors managed to obtain a Pearson correlation of 0.836 in

MedSTS_ann, slightly improving the previous state-of-the-art. This demonstrated that

BioSentVec embeddings can effectively capture sentence semantics in clinical text. The

authors performed a further comparative evaluation in MedSTS_ann using various sen-

tence similarity models, including the latest bidirectional transformers in the clinical

domain, such as BioBERT (Lee et al., 2020), and observed that (1) their simpler approach

still obtained the best performance, and (2) embeddings trained on large corpora are the

best solution to capture sentence semantics in small datasets (Chen et al., 2019a).

4.4.1 Materials and methods

In this work we evaluate a machine learning system in a supervised setting for pre-

dicting the semantic relatedness between clinical sentences. For this task, a real value in

the interval [0, 5] is attributed to each pair of sentences: if two sentences are completely

unrelated they have a similarity score of 0 (minimum); otherwise if they share the same

semantic meaning their similarity value is 5 (maximum). Alike previous challenges on

STS (Wang et al., 2018b; Cer et al., 2017) the evaluation metric is the Pearson correlation

coefficient, where two lists of similarity values—system predictions and ground-truth—

are compared.

In the following sections we describe the dataset used in this work, the different

approaches used to pre-processing clinical text, the process of feature representation,

and finally the deep learning models employed in our simulations.

Dataset

The dataset contained a total of 2054 sentence pairs, and it was beforehand split by

the n2c2 organizers into training and test subsets. The training data allowed for model

development, whereas the test data was used solely for official evaluation in the chal-

lenge. Only afterwards, the ground-truth scores of the test set weremade available to the

participating teams. Table 4.13 presents some statistics about the dataset. Surprisingly,

7 https://github.com/ncbi-nlp/BioSentVec

https://github.com/ncbi-nlp/BioSentVec
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Table 4.13: Statistics of the 2019 n2c2/OHNLP Track 1 dataset detailing the number of

pairs for different levels of similarity. N: number of sentence pairs.

Set N Similarity scores

[0, 1] ]1, 2] ]2, 3] ]3, 4] ]4, 5]
Training 1642 312 154 394 509 273
Test 412 238 46 32 62 34

Total 2054 550 200 426 571 307

the distribution of the similarity scores between the two subsets (training and test) are

somewhat discrepant since the test data contains a higher number of pairs with scores

in the interval [0, 1].

A list of example clinical sentence pairs is provided in Table 4.14, containing the

sentence pairs, their respective similarity score, and an explanation of the criteria used

to assign the score.

Clinical text pre-processing

Before converting sentences into embedding representations, it was necessary to

apply a pre-processing step to the clinical sentence pairs. In this work, three different

pipelines were tested.

Base pre-processing The baseline pre-processing pipeline was simple, consisting

only of two steps: (1) lowercase conversion of the text, and (2) tokenization using the

NLTK tokenizer8.

Advanced pre-processing with full stop word removal This pipeline was inspired

on the pre-processing used by Chen et al. (2018) in the BioCreative/OHNLP 2018 Task on

Clinical Semantic Textual Similarity, and had the objective of retaining asmuch semantic

information as possible in pre-processed sentences.

The pipeline startedwith the separation of number ranges (0.3-1.8→ 0.3 to 1.8) which

are frequent in lab analysis data. The second step was to extend numbers into their

textual counterpart (78→ seventy-eight; 0.9 → zero point nine). Next, words connected

with slashes, dashes and dots where separated with spaces (yes/no → yes / no; point-

of-care → point - of - care). Then starting white spaces are removed, and consecutive

spaces are converted to single spaces.

8 https://www.nltk.org/

https://www.nltk.org/


Chapter 4. Biomedical text classification and similarity measurement 87

Table 4.14: Examples of clinical sentence pairs and respective similarity scores with

explanations from Wang et al. (2018a).

Score Examples

5 The two sentences are completely equivalent, as they mean the same thing.
S1: Albuterol [PROVENTIL/VENTOLIN] 90 mcg/Act HFA Aerosol 2 puffs by inhalation

every 4 h as needed
S2: Albuterol [PROVENTIL/VENTOLIN] 90 mcg/Act HFA Aerosol 1-2 puffs by inhalation

every 4 h as needed #1 each

4 The two sentences are mostly equivalent, but some unimportant details differ.
S1: Discussed goals, risks, alternatives, advanced directives, and the necessity of other

members of the surgical team participating in the procedure with the patient
S2: Discussed risks, goals, alternatives, advance directives, and the necessity of other

members of the healthcare team participating in the procedure with the patient and
his mother

3 The two sentences are roughly equivalent, but some important information differs or is
missing.
S1: Cardiovascular assessment findings include heart rate normal, Heart rhythm, atrial

fibrillation with controlled ventricular response
S2: Cardiovascular assessment findings include heart rate, bradycardic, Heart rhythm,

first degree AV Block

2 The two sentences are not equivalent, but share some details.
S1: Discussed risks, goals, alternatives, advance directives, and the necessity of other

members of the healthcare team participating in the procedure with (patient) (legal
representative and others present during the discussion)

S2: We discussed the low likelihood that a blood transfusion would be required during
the postoperative period and the necessity of other members of the surgical team
participating in the procedure

1 The two sentences are not equivalent, but are on the same topic.
S1: No: typical ‘cold’ symptoms; fever present (greater than or equal to 100.4 ºF or 38 ºC)

or suspected fever; rash; white patches on lips, tongue or mouth (other than throat);
blisters in the mouth; swollen or ‘bull’ neck; hoarseness or lost voice or ear pain

S2: New wheezing or chest tightness, runny or blocked nose, or discharge down the back
of the throat, hoarseness or lost voice

0 The two sentences are completely dissimilar.
S1: The risks and benefits of the procedure were discussed, and the patient consented to

this procedure
S2: The content of this note has been reproduced, signed by an authorized physician in

the space above, and mailed to the patient’s parents, the patient’s home care company

The resulting text is converted to lowercase and tokenized with the NLTK tokenizer.

Finally, a stop word removal is performed using a complete stop word list for biomedical

literature9, punctuation is removed from the tokens, and tokens composed of a single

character are discarded.
9 https://www.ncbi.nlm.nih.gov/IRET/DATASET

https://www.ncbi.nlm.nih.gov/IRET/DATASET


88 Chapter 4. Biomedical text classification and similarity measurement

Advanced pre-processing with partial stop word removal This approach is sim-

ilar to the previous processing pipeline, differing only in the stop word removal part.

Since the list of stop words for biomedical text contains terms that can be important for

retaining the semantics in clinical text, a smaller stop word list from Luo et al. (2019)
was used instead, being composed of the following terms: ’s, a, an, any, her, his, patient,

that, the, these, this, those, your.

Feature representation

A crucial step in machine learning is feature representation, which aims to transform

any kind of data (text, image, and others) into a numeric representation. For this clinical

STS task we evaluated, separately, the use of word embeddings and sentence embed-

dings. We employed the publicly available BioWordVec and BioSentVec models created

by Chen et al. (2019b). To encode the sentences using word embeddings we normalized

the sum of the embedding vectors of their constituent words.

Deep learning model

TheKeras library (Chollet et al., 2015)was used to implement and test different neural

network models. Our proposed model was derived from other state-of-the-art works

(Chen et al., 2019b, 2018) that use word and sentence embeddings. We tested various

types and configurations of deep learning models, yet simpler models yielded better

results, similarly to what was observed by Chen et al. (2019b).
We present a neural network whose inputs are the embedding representations of the

respective two sentences encoded by (1) word embeddings or (2) sentence embeddings.

In both cases we also included its multiplication (element-wise) and dot product. How-

ever, in the latter case we additionally included the cosine similarity since the sentence

embedding vectors were not normalized, and the cosine similarity provided valuable

information (preliminary results were higher).

The neural network contained a first layer with 512 units and ReLU activation.

Also, we used Xavier normal initialization, a bias constant of 0.01, and L2 regularization

of 0.001. Afterwards, a dropout rate of 0.4 was set, and a final unit with sigmoid activa-

tion performed the predictions. The stochastic gradient descent optimizer was employed

with a learning rate of 1.0, and the mean squared error as loss function. A simplified

scheme of the neural network with sentence embeddings is presented in Figure 4.2.

For fine-tuning the hyperparameters and adapting the model architecture we used

repeated K-fold cross-validation where for each repetition we applied cross-validation

with the training data being split into three subsets: training, validation, and test. These

allowed for consistent model development without biasing in regard to the test set. We
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Sentence 1 Sentence 2

Multiply
(element-wise)

Dot
product

Cosine
similarity

Input embedding vectors

Concatenate

Dense layer with ReLU activation

Dropout

Sigmoid activation

Figure 4.2: Neural network architecture using sentence embeddings for measuring se-

mantic textual similarity. ReLU: rectified linear unit.

used the training subset to update the network weights, the validation subset to evaluate

the model performance in each epoch, and finally the test subset was used for unbiased

evaluation. The model that obtained the highest result in the validation subset was

chosen to evaluate model performance in the test subset. Model training was halted

when the performance in the validation subset did not improve for a period of 20 epochs.

After this intensive model refinement with thorough evaluation on training data, the

configuration model was left unmodified to be applied on unseen test data. In the next

section we evaluate the impact of using different pre-processing approaches, as well as

using word embeddings or sentence embeddings as input vectors in the proposed neural

network model.

4.4.2 Results and discussion

For gathering results we applied different text pre-processing pipelines and sentence

representations: word embeddings versus sentence embeddings. We evaluated perfor-

mance on (1) training data using repeated cross-validation and on (2) test data from

predictions of a single evaluation. Results presented in the training set were obtained by

averaging 30 separate scores, whereas evaluation on test data was slightly different: we
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Table 4.15: Pearson correlation results obtained in the training and test sets of the 2019

n2c2/OHNLP Track 1 dataset by averaging, respectively, the results and the predictions

of 30 individual models (number of folds × number of repetitions). For each distinct K-

fold evaluation, the results of the configuration that obtained the highest performance in

the training set, together with the corresponding results in the test set, are highlighted

in bold. WE: word embeddings normalized sum. SE: sentence embeddings.

Set Features Text pre-processing 10-fold 5-fold 3-fold

(3 repetitions) (6 repetitions) (10 repetitions)

Training WE Base 0.716 0.735 0.672

Full 0.795 0.794 0.770

Partial 0.771 0.773 0.728

SE Base 0.811 0.810 0.792
Full 0.750 0.771 0.692

Partial 0.809 0.812 0.791

Test WE Base 0.804 0.786 0.802

Full 0.823 0.826 0.824

Partial 0.819 0.818 0.819

SE Base 0.837 0.831 0.836
Full 0.808 0.780 0.802

Partial 0.818 0.819 0.826

averaged the predictions of 30 individual models. The idea behind this was to increase

model robustness against the test data, because the final model is able to ‘see’, and learn

from, the whole training data by using diverse folds for training and validation.

During model development on training data, a compromise between the sizes of

training, validation, and test subsets sizes was necessary. Because of that, we explored

the use of different K-fold split values to assess the impact of using less data for training

and more for validation, and vice versa. We hypothesized that an optimal threshold

considering enough training data and a solid evaluation on validation data could reflect

an improvement on unseen data.

Table 4.15 presents detailed results from all these experiments. In general, the use

of sentence embeddings provided superior results especially when using the base text

pre-processing. Surprisingly, the full text pre-processing provided better results when

using word embeddings, proving the benefit of stop words removal. To assess the effect

of using different K-fold splits, we highlight the top scores according to the evaluation

in the training set: for 10, 5, and 3-folds these were, respectively, 0.811, 0.812, and 0.792
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in training data, and 0.837, 0.819, and 0.836 in test data. Therefore, we conclude that the

use of different splits for training and validation did not affect significantly the results,

and thus any of the number of folds we used would be acceptable.

The highest scoring model in training data (0.812), which consisted in using sentence

embeddings with partial text pre-processing (5-fold setting), produced a correlation of

0.819 in test data. However, better results on test data were achieved when using sen-

tence embeddings with the base text pre-processing (0.837, 0.831, and 0.836 for 10, 5, and

3-folds respectively). Furthermore, it is interesting to notice that word embeddings with

full text pre-processing also attained good test results (0.823, 0.826, and 0.824 for 10, 5,

and 3-folds respectively) similarly to those with sentence embeddings. Based on this,

we believe that a careful combination of word and sentence embeddings may provide

further improvement.

Overall, when analyzing training and test performances it is noteworthy that sys-

tems obtained higher scores on test data by a margin of approximately 0.02. We suspect

that one of the reasons for this is the fact that evaluation on test data was performed by

averaging several models (where each model was trained and validated on distinct data

subsets) whilst the results reported on training data are the average of several simula-

tions made by an individual model.

Finally, we compare our highest test result (0.837) with those achieved during the

2019 n2c2/OHNLP clinical STS task (Wang et al., 2020) where a total of 87 valid system

predictions were submitted: final aggregated results (Pearson correlation) presented a

mean correlation of 0.712, a median of 0.829, and a maximum of 0.901. We consider that

our model attained a positive performance given its simplicity, being slightly above the

median score, but also that there still exists largemargin for progress given themaximum

result achieved.

Error analysis

A detailed error analysis was performed to better understand model behaviour—

that is, which similarity levels the model predicted more correctly—and to perceive if

this could be another reason that made results on the test set higher than those on the

training set (due to the dataset imbalance). As such, we used the same similarity intervals

as expressed in the dataset statistics (Table 4.13): [0, 1], ..., ]4, 5].

To perform this evaluation, we started by computing the number of true positives,

false positives, and false negatives to calculate precision, recall, and F1-score. A pre-

diction was considered a true positive if the ground-truth was in the same similarity

interval. Otherwise, the prediction was assigned as false positive and false negative in

the corresponding intervals. To demonstrate this procedure, assume the model predic-
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Table 4.16: Error analysis of predictions on the 2019 n2c2/OHNLP Track 1 dataset. Per-

formance evaluation for different similarity levels using the following model from Ta-

ble 4.15: sentence embeddings, base text pre-processing, and 10-fold evaluation. The

three highest F1-scores in each set are highlighted in bold.

Metric Training Test

[0, 1] ]1, 2] ]2, 3] ]3, 4] ]4, 5] [0, 1] ]1, 2] ]2, 3] ]3, 4] ]4, 5]

Precision 0.826 0.206 0.361 0.488 0.491 0.853 0.115 0.097 0.365 0.318

Recall 0.416 0.362 0.244 0.625 0.532 0.269 0.391 0.188 0.307 0.618

F1-score 0.553 0.263 0.291 0.548 0.511 0.409 0.177 0.128 0.333 0.420

tion is 3.7 whereas the ground-truth is 4.1. In such case, a false positive and a false

negative would be added in the similarity intervals ]3, 4] and ]4, 5], respectively.

Table 4.16 presents this detailed error analysis in training and test data for a

model with the following configuration: sentence embeddings, base text pre-processing

pipeline, and 10-fold evaluation. Overall, it is noticeable that the system had more diffi-

culty in correctly predicting sentence pairs with scores in the interval ]1, 3].

It is interesting to note that the highest precision (around 0.8) was observed in the

interval [0, 1] showing the model’s ability to correctly detect completely dissimilar sen-

tences. Since the majority of samples (around 58%) in test data were in this interval,

this also supports our assumption that test results were higher because of their scores

imbalance. Additionally, one can observe that F1-scores were higher in extreme simi-

larity intervals, corroborating the assumption from Wang et al. (2018b) that machines

can succeed at distinguishing completely similar or dissimilar sentence pairs but, alike

humans, they struggle in distinguishing less clear relations of semantic similarity.

Finally, despite the fact that F1-scores on test data are somewhat smaller to those on

training, we emphasize this type of error analysis does not elucidate directly the model

performance, since (1) the test set is highly imbalanced and (2) near-correct scores can be

misinterpreted as complete failures as they fall in a different interval by a slight margin

(for example the model predicts a score of 0.9 whereas the ground-truth is 1.1).

4.5 Summary

In this chapter we presentedmethods for text classification and semantic textual sim-

ilarity measurement. Regarding text classification, we described two different systems:

one for identifying biomedical scientific abstracts that describe genetic mutations affect-

ing protein–protein interactions; and a second one to classify certain criteria according
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to patients’ clinical records. For text similarity measurement we proposed a system that

calculates the semantic agreement between clinical sentences.

We obtained competitive results with deep learning models in text classification

when there was enough training data. However, in the case of classifying clinical nar-

ratives the dataset was relatively small and our results with deep learning were sig-

nificantly lower which emphasizes the need of having sufficient labeled data. In that

case, we had to create handcrafted rules or use traditional machine learning. For text

similarity measurement, deep learning performed relatively well with the use of word

embeddings or sentence embeddings.

Text classification and measurement of semantic textual similarity were studied in

this same chapter since it is our understanding that these tasks partly overlap. For in-

stance, documents with disparate semantic similarity may correspond to different topics

in a text classification task. However, we also recognize that text similarity measurement

has use beyond text classification and can be applied in other tasks such as sense disam-

biguation in which contexts of ambiguous terms are compared.

We stress that pre-selecting appropriate documents for mining a particular type of

biomedical knowledge is a crucial step oftentimes performed manually by domain ex-

perts and that text classification algorithms may assist, or even surpass, human anno-

tation requiring reduced manual effort. Thereby, techniques for improving biomedical

text classification must continue to be investigated.
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Chapter 5

Biomedical relation extraction

A vast amount of information is recorded electronically in natural language text

containing knowledge about many concepts and their relationships. However, from a

computational point of view, this text is considered unstructured because its information

is not organized in strucured forms such as databases (McCallum, 2005). The human

manual action of reading and interpreting the text to populate and enrich databases,

with information in a computer readable form, is time consuming and burdensome. Be-

sides, the abundant number of text documents1 makes the manual extraction process,

for knowledge base population (KBP), an impractical task—KBP consists in augmenting

a knowledge base with discovered new facts about entities from a large text corpus (Ba-

log, 2018). Therefore, it is mandatory to develop automatic methods to efficiently and

accurately identify relationships in unstructured text, that can improve the quality and

coverage of the databases, and match the continued growth of text knowledge sources

(Ohta et al., 1997; Temkin and Gilder, 2003). The computational task to address this prob-

lem is known as relation extraction (RE) and it is a fundamental piece in text data mining

pipelines, that consists in identifying relationships between entities recorded in unstruc-
tured text (Bach and Badaskar, 2007; Pawar et al., 2017; Liu, 2020). Relation extraction

is relevant to KBP since discovered relationships can be used to complete missing infor-

mation in a knowledge base. A reference example is the Stanford KBP system2 which

uses a relation extraction system as its workhorse (Surdeanu et al., 2012; Angeli et al.,
2014).

Traditionally, the information to be extracted is usually limited to a particular do-

main with specific and pre-defined types of entities and relations—as Balog (2018) men-

tions, this paradigm may be referred to as closed information extraction. On the other

hand, open information extraction operates in a domain-independent manner and does

1 In the recent years, almost onemillion scientific publications have been indexed per year inMEDLINE,
as illustrated in Figure 1.1.

2 https://nlp.stanford.edu/projects/kbp/

https://nlp.stanford.edu/projects/kbp/
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Named entity recognition
and normalization

Text
Relation

extraction

Unstructured text.
A sentence, a paragraph,
or a longer excerpt.

Recognize, in the text, the entities of 
interest and, optionally, link them
to established databases.

Identify, from the text, 
interactions between 
the entities of interest.

Figure 5.1: Entity and relation extraction pipeline.

not assume beforehand a particular set of entity and relation types (Banko et al., 2007;
Soderland et al., 2010; Balog, 2018). In this chapter, we are interested in the former sce-

nario, where a set of entity and relation classes, from a specialized domain, is known

in advance. Specifically, our work is focused on studying RE methodologies to identify

interactions between biomedical terms, such as chemicals and genes, in the life-sciences

scientific literature. The automatic extraction of this information assists expert curators,

inmaitaining biological databases updated, and alleviates the demand for their work (Yeh

et al., 2003; Cotton et al., 2007; Singhal et al., 2016b). These databases foster knowledge

discovery, helping researchers to test different hypotheses and deduce new facts. As an

example, the extraction of relationships within the biomedical domain helps to gather

evidence about diseases and adverse drug reactions (Gonzalez-Hernandez et al., 2022).
For instance, studies have shown that patients with diabetes have an increased risk of

developing Alzheimer disease, but the underlying biological mechanisms responsible for

that correlation are not well understood (Sims-Robinson et al., 2010), and text mining–

based tools can deliver key insights (Saik and Klimontov, 2021).

Relation extraction can also boost applications such as question answering (Wang et
al., 2012) and information retrieval (McDonald et al., 2005). Generally, it follows a named
entity recognition step where entity mentions are identified in the text and grounded

to standardized ontologies or vocabularies if a normalization method is employed. Al-

though the normalization task is often disregarded, considering a joint resolution for

all the three tasks—entity recognition, entity normalization, and relation extraction—is

more useful in a real-world scenario (Yaseen et al., 2019) since researchers benefit from

these systems for their text mining tasks (Kim et al., 2019). Figure 5.1 illustrates the

classical RE pipeline.

This chapter is focused on biomedical relation extraction from the scientific liter-

ature. We first give a brief overview of the development of the RE task enumerating

biomedical NLP worldwide challenges and shared-tasks, and describe commonly used

datasets. Then, we introduce a deep neural network model for identifying chemical–

protein interactions in PubMed scientific abstracts. Extensive experiments were per-
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formed to train the neural network under different configurations including model ar-

chitecture, hyper-parameters, and training data. Finally, we discuss the limitations of our

method, perform a detailed error analysis, and offer viable future research directions.

5.1 Background

A major research effort that tackled the relation extraction task was the ACE (Au-

tomatic Content Extration)3 program conducted by the National Institute of Standards

and Technology (NIST) of the United States, and the Linguistic Data Consortium (LDC)

at the University of Pennsylvania (Doddington et al., 2004). This challenge included the

recognition of entities (such as persons, organizations, or geographical locations) and

relations (such as employment or affiliation between a person and an organization, or

a location relationship) in English, Chinese, and Arabic texts. The LDC’s ACE anno-

tators tagged broadcast transcripts, newswire, and newspaper data producing training

and test sets for common research task evaluations. The ACE program succeeded the

Message Understanding Conferences (MUCs), that similarly addressed the extraction of

information related to person and organization entities (Sundheim, 1996; Grishman and

Sundheim, 1996). Initiated in 2008, the Text Analysis Conference (TAC)4 followed the

ACE research program consisting in a series of workshops for large-scale evaluation of

NLP systems. The first TAC cycle addressed tasks such as question answering and sum-

marization, but knowledge base population was the main task in later editions (Ji et al.,
2010, 2011; Ji and Grishman, 2011; Ellis et al., 2012; Surdeanu, 2013). The aforemen-

tioned challenges focused on the development of NLP systems for the general-domain,

although in recent years TAC has also been targeting biomedical information extraction

tasks. In 2017, TAC organized a task for identifying adverse drug reactions (ADRs) found

in drug labels (Roberts et al., 2017). Following up, in the 2018 and 2019 editions, chal-

lenges for extracting drug–drug interactions (DDIs) from drug labels were conducted

(Demner-Fushman et al., 2018; Goodwin et al., 2019).
Likewise, other biomedical text mining efforts, particularly for relation extraction,

took place during the past years. The LLL05 (Learning Language in Logic 2005 work-

shop) challenge focused on extracting gene–protein interactions in biology abstracts

from the MEDLINE bibliographic database (Nédellec, 2005).

BioCreative II introduced the protein–protein interaction (PPI) extraction task where

protein interaction pairs had to be predicted from PubMed records (Krallinger et al., 2007,
2008). BioCreative V proposed a challenge task for automatic extraction of chemical–

3 https://www.ldc.upenn.edu/collaborations/past-projects/ace
4 https://tac.nist.gov

https://www.ldc.upenn.edu/collaborations/past-projects/ace
https://tac.nist.gov
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disease relations (CDRs), from PubMed abstracts, which aimed to support biocuration,

new drug discovery, and drug safety surveillance (Wei et al., 2015, 2016). BioCreative VI

addressed two relation extraction tasks, relevant for precision medicine, both using

PubMed abstracts: (1) the aim of track 4 was to identify experimentally verified PPIs

affected by genetic mutations (Doğan et al., 2017, 2019); and (2) track 5 promoted the de-

velopment of systems for detecting relations between chemicals and GPROs (gene and

protein related objects) (Krallinger et al., 2017a). Similarly, built with experience from

the past edition, BioCreative VII prepared a challenge task for text mining chemical–

protein interactions (CPIs) but used a higher number of PubMed records for training

and evaluation, and considered the identification of more interaction types (Miranda et
al., 2021).

In 2010, i2b25 partneredwith VA (VeteransAffairs) Salt Lake CityHealth Care System

to promote a task for detecting relations betweenmedical problems, tests, and treatments

in patient clinical reports (Uzuner et al., 2011). Similar work had also focused on the

extraction of disease–treatment semantic relations (cure, prevent, or side effect) but using
biomedical abstracts from the MEDLINE bibliographic database (Rosario and Hearst,

2004; Frunza and Inkpen, 2010). The 2012 i2b2 challenge focused on temporal relations

between clinical events (problems, tests, or treatments) and temporal expressions (dates,

times, or durations) documented in clinical discharge summaries (Sun et al., 2013). The
2018 n2c2 shared task focused on the extraction of adverse drug events (ADEs) from

clinical records (Henry et al., 2021).
The BioNLP Shared Task (BioNLP-ST) series started in 2009 toward fine-grained in-

formation extraction in the biomedical domain. The first edition, based on the GENIA

corpus (Ohta et al., 2002; Kim et al., 2003; Kim et al., 2008), was focused on the extraction

ofmolecular events involving proteins and genes (Kim et al., 2009, 2011a). This task, then
renamed Genia event extraction, was hosted again in the second, third, and fourth edi-

tions of the BioNLP-ST. The 2011 edition aimed to evaluate generalization of the systems

to full-text papers (Kim et al., 2011c), whereas in the 2013 and 2016 editions the task was

extended toward knowledge base construction (Kim et al., 2013a, 2015, 2016). The Bac-
teria Biotopes task introduced in the BioNLP-ST 2011 consisted in extracting bacteria lo-

calization events, identifying the habitats of bacteria, from textbook documents (Bossy et
al., 2011, 2012). Later editions refined this task by (1) considering a more comprehensive

and fine-grained categorization (normalization) of the entity mentions and respective

events to domain knowledge sources such as the NCBI (National Center for Biotechnol-

ogy Information) taxonomy (Federhen, 2012) and the OntoBiotope ontology (Nédellec

5 The i2b2 (Informatics for Integrating Biology and the Bedside) NLP challenges for clinical data are
now housed in the Department of Biomedical Informatics at Harvard Medical School as n2c2 (National
NLP Clinical Challenges).
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et al., 2018), and (2) using scientific literature such as abstracts and full-text articles from

the PubMed database (Bossy et al., 2013b; Deléger et al., 2016; Bossy et al., 2019). Also,

the BioNLP-ST 2011 (Kim et al., 2011b; Pyysalo et al., 2012) organized other information

extraction challenges including (1) the Epigenetics and Post-translational Modifications
task which focused on events of epigenetics interest (Ohta et al., 2011), (2) the Infectious
Diseases task targeting biomolecular mechanisms of infectious diseases (Pyysalo et al.,
2011a), and (3) the Entity Relations task concerning part-of relations between a gene or

protein and an associated entity (Pyysalo et al., 2011b). Likewise, the BioNLP-ST 2013

(Nédellec et al., 2013; Pyysalo et al., 2015; Bossy et al., 2015) addressed other challenges

including (1) the Cancer Genetics task that focused on the extraction of events relevant to

cancer (Pyysalo et al., 2013), (2) the Pathway Curation task concerning the extraction of

biomolecular reactions for supporting the development of biomolecular pathwaymodels

(Ohta et al., 2013), and (3) the Gene Regulation Ontology and Genic Regulation Network
tasks which addressed the identification of events and relations relevant to gene regula-

tion (Kim et al., 2013b; Bossy et al., 2013a). The BioNLP-OST (Open Shared Task)6 2019

also organized an extraction task addressing mutation–disease relationships to support

knowledge discovery for drug repurposing (Wang et al., 2019).
The SemEval-2013 Task 9, DDIExtraction 2013, evaluated the extraction of drug–

drug interactions from biomedical texts (Segura-Bedmar et al., 2013) which followed the

DDIExtraction-2011 challenge task (Segura-Bedmar et al., 2011).
Much of the past work on biomedical information extraction relied on hand-labeled

data to enable automatic training of machine learning models in a supervised fashion,

but the manual annotation of ground-truth information, such as entity mentions and

their interactions, in text documents is a labored and expensive task requiring expert

professionals (Baumgartner et al., 2007; Howe et al., 2008; Winnenburg et al., 2008; Karp,
2016). Knowledge-based, unsupervised, and semi-supervised approaches aim to coun-

teract the need of gold-standard data in developing competitive relation extraction sys-

tems. These type of techniques have also been addressed in past work. For instance,

Craven and Kumlien (1999) present a distant supervision approach to extract informa-

tion from text using knowledge bases, where they train classifiers using weakly labeled
training data. The authors observed that for many information extraction tasks there

are external knowledge sources that could be coupled with documents to create what

they called weakly labeled training examples. They coined the term “weak” because

each training instance does not consist of a precise annotated document, but rather it

consists of a known fact—from a knowlege base—that may be asserted in a particular

6 In 2019, the BioNLP-OSTwas organized as a reformulation of the previous efforts around the BioNLP-
ST.
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document.

Another example is the work of Mintz et al. (2009) that continued to investigate the

distant supervision mechanism to create weakly labeled data of any size. The authors re-

lied on Freebase, a large semantic database, containing thousands of relationships (Bol-

lacker et al., 2008). For every pair of entities present in the database, the authors found

all sentences that contained those entities in an unlabeled corpus, and used these to train

a relation classifier. Distant supervision is now a mature technique and has been widely

used in relation extraction systems that can benefit from knowledge bases as a source of

training data (Smirnova and Cudré-Mauroux, 2019).

Early work on biomedical relation extraction focused on protein–protein interac-

tions (Blaschke et al., 1999) and relationships betweens genes and drugs relevant to can-

cer (Rindflesch et al., 1999). Temkin and Gilder (2003) proposed a system for extracting

protein interaction information from unstructured text. Their approach is based on an

external database containing ditictionaries that are then used by a lexical analyzer fol-

lowed by a parser, constructed around a context-free grammar (Chomsky, 1956; Aho et
al., 2007), that identifies interactions based on the rules of the grammar. The rules of the

context-free grammar were manually derived from 500 PubMed abstracts, whereas their

final system was evaluated using a test corpus of 100 PubMed abstracts.

Airola et al. (2008) propose a graph kernel–based approach for PPI extraction. They

assessed their method on five PPI annotated datasets, which as the authors state, pro-

vided the most comprehensive evaluation for a machine learning–based PPI-extraction

system, and achieved a 0.564 F-score. The authors performed cross-corpus evaluation

for understanding how a trained model on a specific dataset with its own characteris-

tics generalizes to a different dataset. They also emphasize that the comparison of RE

systems must be done carefully because the use of different evaluation strategies and

resources make results incomparable.

Previous research on biomedical relation extraction have been focusing on protein–

protein interactions (Krallinger et al., 2011) and relations between drugs, genes and dis-

eases (Frijters et al., 2010; Krallinger et al., 2017b). Machine learning methods combined

with kernel functions to calculate similarities between instances given some represen-

tation, were shown to achieve good results in textual relation extraction.

As opposed to the traditional machine learning methods employed in initial works,

deep learning techniques eliminate the need for feature engineering, instead usingmulti-

ple data transformation layers that apply simple non-linear functions to obtain different

levels of representation of the input data, intrinsically learning complex classification

functions (LeCun et al., 2015). These strengths have brought much attention with sig-

nificant successes in NLP tasks, including word sense disambiguation (Jimeno-Yepes,
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2017), text classification (Kim, 2014; Kowsari et al., 2017), and named entity recognition

(Habibi et al., 2017; Lyu et al., 2017).
Several works have demonstrated the use of deep neural networks for biomedical

relation extraction and classification. For example, Nguyen and Grishman (2015) used a

CNN (convolutional neural network) with pre-trained word embeddings, outperforming

previous state-of-the-art systems for relation classification. Nonetheless, the sequential

nature of natural texts can be better modeled by recurrent networks, which contain a

feedback loop that allows the network to use information regarding the previous state.

LSTM (long short-term memory) networks are a special type of recurrent neural net-

works (RNNs) in which a set of information gates is introduced in the processing unit

that allow these networks to memorize long-term dependencies while avoiding the van-

ishing gradient problem. Wang et al. (2017b) used BiLSTM (bidirectional LSTM) net-

works and features from the dependency structure of the sentences obtaining an F1-score

of 0.720 in the DDIExtraction 2013 corpus. Zhang et al. (2017) also used BiLSTM mod-

els for extracting drug–drug interactions (DDIs) achieving a state-of-the-art F1-score of

0.729 in the same dataset. They integrated the shortest dependency path (SDP) and sen-

tence sequences, and concatenated word, part-of-speech and position embeddings into

a unique embedding, and an attention mechanism was employed to give more weight to

more relevant words.

Methods for extracting chemical-disease relations were evaluated in the BioCre-

ative V CDR task, in which participants were required to identify disease and chemical

entities and relations between them (Wei et al., 2016). Using the provided gold-standard

entities, Zhou et al. (2016) achieved an F1-score of 0.560 with a hybrid system consist-

ing of a feature-based SVM (support vector machine) model, a tree kernel-based model

using dependency features and a LSTM network to generate semantic representations.

This result was improved to 0.613 by inclusion of post-processing rules. The same re-

sult was achieved by Gu et al. (2017), also with an hybrid system combining a maximum

entropy model with linguistic features, a CNN using dependency parsing information,

and heuristic rules.

Regarding chemical–protein relation extraction, the state-of-the-art results were

achieved by teams participating in the BioCreative VI ChemProt challenge (Krallinger

et al., 2017a), with some improvements described in follow-up works. The best partici-

pating team achieved an F1-score of 0.641 using a stacking ensemble combining a SVM,

a CNN, and a BiLSTM (Peng et al., 2017, 2018). Lemmatization, PoS (part-of-speech),

and chunk labels from the surrounding entity mentions and from the shortest depen-

dency path were used as features for the SVM classifier. For the CNN and BiLSTM,

the sentence and shortest path sequences were used, where each word was represented
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by a concatenation of several embeddings (PoS tags, dependencies, named entities, and

others). Corbett and Boyle (2017b) achieved an F1-score of 0.614 using pre-trained word

embeddings and a networkmodel withmultiple LSTM layers, with the ChemListemNER

system used for tokenization (Corbett and Boyle, 2017a). This result was improved to

an F1-score of 0.626 in post-challenge experiments (Corbett and Boyle, 2018). Mehryary

et al. (2017) proposed two different systems: a SVM classifier and an ensemble of neural

networks that use LSTM layers. Both systems took features from the dependency pars-

ing graph, although the SVM required more feature engineering. They combined the

predictions of the two systems, yet the SVM alone produced the best F1-score (0.610).

After the challenge they achieved an F1-score of 0.631 by using their improved artificial

neural network (ANN) (Mehryary et al., 2018). Lim and Kang (2017) used ensembles of

tree-LSTM networks, achieving an F-score of 0.585 during the challenge. They later im-

proved this result to 0.637 with a revised pre-processing and by using more members in

the ensemble, and equaled the best challenge F1-score (0.641) using a shift-reduce parser

based network architecture (Lim and Kang, 2018). Lung et al. (2017, 2019) achieved an

F1-score of 0.567 using traditional machine learning. Neural networks with attention

mechanisms were also followed by Liu et al. (2017, 2018a) and Verga and McCallum

(2017), but achieved lower results. However, the use of attention layers (Bahdanau et al.,
2014; Vaswani et al., 2017) has been shown to be effective in different information ex-

traction tasks such as document classification (Yang et al., 2016) and relation extraction

(Shen and Huang, 2016), being an interesting direction to explore.

Zhang and Lu (2019) present a semi-supervised approach based on a variational

autoencoder for biomedical relation extraction. They evaluated their method in the

ChemProt dataset experimenting with different number of labeled samples, showing

that adding unlabeled data improves the relation extraction mainly when there are only

a few hundred training samples. Using 4000 (from a total of 25 071) labeled training in-

stances together with unlabeled data taken from the remaining training instances (with

true labels removed), their semi-supervised method achieved an F-score of 0.509.

Lastly, a recent work by Zhang et al. (2019c) achieved the state-of-the-art F-score of

0.659 using BiLSTM models with deep context representation (providing superior sen-

tence representation compared to traditional word embeddings) and multi-head atten-

tion.

Huang et al. (2017) used a support vector machine and LSTM networks to identify

drug–drug interactions, but most recent works often solely use neural networks. For

example, Asada et al. (2021) used SciBERT—a tranformer model trained on biomedical

text (Beltagy et al., 2019)—and external database information to boost DDI extraction

performance.
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For more information on related works and challenges about extracting relations

from the biomedical literature we point the reader to major review works (Hirschman

et al., 2002; Krallinger et al., 2005; Ananiadou et al., 2006; Huang and Lu, 2016; Zhang

et al., 2019d; Zhao et al., 2021). Zhang et al. (2019d) present an extensive review of

neural network–based approaches for biomedical RE classification. They discuss works

identifying PPIs and DDIs in the biomedical literature, and methods including CNNs

and RNNs. They present several corpora, and discuss different word embeddingsmodels.

Finally, they detail current challenges and present potential directions to further improve

the performance of the biomedical RE task.

Regarding the availability of high-quality datasets for assessing the performance of

biomedical relation extraction systems many corpora have been manually annotated

over the past years (Table 5.1). Some of these were developed for worldwide challenges

and shared-tasks whereas others were published by particular research groups which

allowed other researchers to assess and compare their methods with previous results.

Table 5.1: Datasets for biomedical relation extraction, presented in chronological order.

ADE: adverse drug effect. CDR: chemical–disease relation. DDI: drug–drug interaction.

IPS: interaction pair subtask. PPI: protein–protein interaction.

Resource Description

BioText
(Rosario and Hearst, 2004)

This dataset concentrates on disease–treatment se-
mantic relations (cure, prevent, or side effect) using
biomedical text found in the titles and abstracts from
the MEDLINE 2001 database. An annotator with a bi-
ological background performed the labeling.
https://biotext.berkeley.edu/data/dis_treat_data.html

AIMed
(Bunescu et al., 2005)
(Bunescu and Mooney, 2005b)
(Bunescu, 2007)

The corpus is annotated with human protein names
(genes and proteins are interchangeable) and their in-
teractions. It consists of 225 MEDLINE abstracts, con-
taining 4084 protein mentions and around 1000 inter-
actions.
https://www.cs.utexas.edu/ftp/mooney/bio-data/

BioInfer
(Pyysalo et al., 2007)

The resource contains 1100 sentences from abstracts of
biomedical research articles. These are annotated with
named entities of the protein, gene, and RNA types,
their relationships, and syntactic dependencies. The
corpus contains a total of 6349 entities and 2662 rela-
tionships.

https://biotext.berkeley.edu/data/dis_treat_data.html
https://www.cs.utexas.edu/ftp/mooney/bio-data/
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Resource Description

BioCreative II PPI IPS
(Krallinger et al., 2007)
(Krallinger et al., 2008)

A corpus of full-text articles annotated with binary
protein–protein interaction pairs. It is split into two
sets: a training collection of 740 articles and a smaller
test set of 358 articles.
http://biocreative.sourceforge.net/bc2_ppi_ips.html

2010 i2b2/VA Challenge
(Uzuner et al., 2011)

A corpus of patient reports focused onmedical concept
extraction and relation classification between medical
problems, tests, and treatments. It contains a total of
394 training reports and 477 test reports manually an-
notated.
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

ADE corpus
(Gurulingappa et al., 2012b)
(Gurulingappa et al., 2012a)

A corpus containing 2972 MEDLINE case reports an-
notated with two types of relations: drug-related ad-
verse events (signs, symptoms, diseases, disorders, and
others) and drug–dosage information (such as quanti-
tative measurements or frequency mentions).
https://sites.google.com/site/adecorpus/

DDI corpus
(Herrero-Zazo et al., 2013)
(Segura-Bedmar et al., 2013)
(Segura-Bedmar et al., 2014)

A corpus containing 792 texts from the DrugBank
database and other 233 PubMed abstracts. These are
annotated with 18 502 pharmacological substances and
5028 drug–drug interactions.
https://github.com/isegura/DDICorpus

CDR corpus
(Li et al., 2016)

A collection of 1500 PubMed abstracts manually anno-
tated with 3116 chemical–disease relations and the re-
spective named entities (4409 chemicals and 5818 dis-
eases). The entity annotations also contain normalized
MeSH concept identifiers.
https://biocreative.bioinformatics.udel.edu/tasks/biocre

ative-v/track-3-cdr/

ChemProt
(Krallinger et al., 2017a)

It contains a total of 2432 PubMed abstracts split into
training, development, and test subsets. With 31 831
chemical and 30 316 protein annotations, there are a
total of 15 739 chemical–protein interactions. Five dif-
ferent relation types are annotated: activation, inhibi-
tion, agonist, antagonist, and substrate.
https://biocreative.bioinformatics.udel.edu/tasks/biocre

ative-vi/track-5/

http://biocreative.sourceforge.net/bc2_ppi_ips.html
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
https://sites.google.com/site/adecorpus/
https://github.com/isegura/DDICorpus
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-v/track-3-cdr/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vi/track-5/
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Resource Description

2018 n2c2 Track 2
(Henry et al., 2021)

A collection of 505 narrative discharge summaries
from the MIMIC-III clinical care database. These
are annotated with concepts related to medications
(strengths and dosages, duration and frequency of ad-
ministration, route of administration, reason for ad-
ministration, and adverse drug effects), and interac-
tions between them. There are a total of 83 869 named
entities and 59 810 relations.
https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/

DrugProt
(Miranda et al., 2021)

Built from the existing ChemProt corpus, it includes
more PubMed abstracts and is also split into three sub-
sets (training, development, and test). A total of 3500
documents with over 100 thousand annotated entities
and interactions. Moreover, it contains more relation
types—a total of 13 distinct chemical–protein interac-
tions.
https://biocreative.bioinformatics.udel.edu/tasks/biocre

ative-vii/track-1/

BioRED
(Luo et al., 2022)

This corpus contains a set of 600 PubMed abstracts
annotated with multiple entity types (genes, diseases,
chemicals) and relation pairs (such as gene–disease
and chemical–chemical). Each relation is further la-
beled as describing either a novel finding or back-
ground knowledge. It contains a total of 20 419 entity
mentions and 6503 relations.
https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/

ChemDisGene
(Zhang et al., 2022a)

A distant supervision corpus for extracting multi-
class multi-label relations between chemicals, diseases,
and genes. The dataset contains around 80 thousand
PubMed abstracts and is split into two portions: (1)
one curated by human experts intended for evaluation
containing 523 documents, and (2) another intended
for training which was distantly labeleled via the Com-
parative Toxicogenomics Database (CTD). The dataset
is annotated with 18 relation types.
https://github.com/chanzuckerberg/ChemDisGene

https://portal.dbmi.hms.harvard.edu/projects/n2c2-nlp/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/
https://biocreative.bioinformatics.udel.edu/tasks/biocreative-vii/track-1/
https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/
https://github.com/chanzuckerberg/ChemDisGene
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5.2 Text mining chemical–protein interactions

The scientific literature contains large amounts of information on genes, proteins,

chemicals, and their interactions. Extraction and integration of this information in cu-

rated knowledge bases helps researchers support their experimental results, leading to

new hypotheses and discoveries. This is especially relevant for precision medicine,

which aims to understand the individual variability across patient groups in order to

select the most appropriate treatments. Methods for improved retrieval and automatic

relation extraction from biomedical literature are therefore required for collecting struc-

tured information from the growing number of published works.

As the knowledge of how biological systemswork at different structural levels grows,

more possibilities arise for applying it in diagnosing and treating common and complex

diseases. Furthermore, exploiting the large amounts of biomolecular data from -omics

studies and patient-level information recorded in electronic health records (EHRs) offers

prospects for precision and personalized medicine (Wu et al., 2017). Nonetheless, rele-

vant fine-grained information is constantly being communicated in the form of natural

language through scientific publications. To exploit this source of updated knowledge,

several methods have been proposed for retrieving relevant articles for database curation

(Wang et al., 2016a), and for extracting from the unstructured texts information such as

entity mentions (Campos et al., 2013; Nunes et al., 2013), biomolecular interactions and

events (Ananiadou et al., 2015; Krallinger et al., 2011), or the clinical and pharmacological

impact of genetic mutations (Singhal et al., 2016b). These methods have proven essen-

tial for collecting the most recent research results and for expediting database curation

(Krallinger et al., 2017b).
The BioCreative VI ChemProt challenge stimulated the development of systems for

extracting interactions between chemical compounds (drugs) and GPROs (gene and pro-

tein related objects) from running text, given their importance for precision medicine,

drug discovery and basic biomedical research (Krallinger et al., 2017a). An example il-

lustrating various relations that can be extracted from a single sentence in a publication

is shown in Figure 5.2. The development of systems able to automatically extract such

relations may expedite curation work and contribute to the amount of information avail-

able in structured annotation databases, in a form that is easily searched and retrieved

by researchers.

Data for the ChemProt task was composed of PubMed abstracts in which gold-

standard entities were provided, and the aim was to detect chemical–protein pairs that

expressed a certain interaction. Therefore, the biomedical named entity recognition step

was out of the scope of this task. The organizers defined ten groups of chemical–protein

relations (CPRs) that shared some underlying biological properties, in which only five
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Chemical Protein

Indomethacin   abolished   the   inhibitory   e�ect   of   acetazolamide   on   CA   I   and   CA   II   .

Activation

Activation

Inhibition

Inhibition

Figure 5.2: Example sentence illustrating biochemical entities and their relations from

the ChemProt training dataset (PMID 8667211).

of them (up-regulation, down-regulation, agonist, antagonist, and substrate) were used

for evaluation purposes. More detail about the data is presented in Section 5.2.1.

In this section, we present a deep learning approach for extracting mentions of

chemical–protein interactions from biomedical articles, based on various enhancements

following our participation in the BioCreative VI ChemProt task. A significant aspect of

our best method is the use of a simple deep learning model together with a very narrow

representation of the relation instances, using only up to ten words from the shortest

dependency path and the respective dependency edges. BiLSTM recurrent networks or

CNNs are used to build the deep learning models.

We report the results of several experiments and show that our best model is com-

petitive with more complex sentence representations or network structures, achieving

an F1-score of 0.6306 on the test set. The source code of our work, along with detailed

statistics, is publicly available at:

https://github.com/ruiantunes/biocreative-vi-track-5-chemprot.

5.2.1 Materials and methods

This section describes the resources used, the evaluation metric employed, and the

methods implemented.

Dataset

The ChemProt corpus was created by the BioCreative VI organizers (Krallinger et al.,
2017a), being composed of three distinct sets: training, development, and test (Table 5.2).

During the challenge, to hinder manual corrections and to ensure that systems could

annotate larger datasets, the organizers included 2599 extra documents in the test set,

which were not used for evaluation.

https://github.com/ruiantunes/biocreative-vi-track-5-chemprot
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Table 5.2: ChemProt dataset statistics.

Training Development Test

Abstracts Total 1020 612 800
With any relation 767 443 620
With evaluated relations 635 376 514

Entities Chemical 13 017 8004 10 810
Protein 12 735 7563 10 018
Total 25 752 15 567 20 828

Relations Activation (CPR:3) 768 550 665
Inhibition (CPR:4) 2254 1094 1661
Agonist (CPR:5) 173 116 195
Antagonist (CPR:6) 235 199 293
Substrate (CPR:9) 727 457 644
Total 6437 3558 5744

Each document, containing the title and the abstract of a PubMed article, was anno-

tated by expert curators with chemical and protein entity mentions, and their relations.

The annotation guidelines considered ten groups of biological interactions, which were

designated as chemical–protein relation groups. However, for this task, only five classes

were considered for evaluation purposes: activation (CPR:3), inhibition (CPR:4), agonist

(CPR:5), antagonist (CPR:6), and substrate (CPR:9). Table 5.2 presents detailed dataset

statistics.

One can see from Table 5.2 that not all abstracts contain annotated relations, al-

though all abstracts were annotated with entity mentions. Nevertheless, abstracts with-

out evaluated relations are useful as they can be used to create negative instances for

training the system. Only 1525 documents of 2432 (63%) are annotated with evaluated

relations. This suggests that it could be a reasonable idea to first apply a document triage

step to ignore documents that probably are not relevant for extracting chemical–protein

interactions, reducing the number of false positive relations, while still considering them

for generating negative instances to feed the deep learning model. Though, we did not

follow this possibility leaving it as possible future work. Similar binary approaches were

followed by Lung et al. (2017, 2019) and Warikoo et al. (2018) who start by predicting if

a CPR pair is positive.

A more scrupulous analysis of the corpus shows that there are some relations be-

tween overlapped entities (for example, a protein entity containing a chemical entity),

as well as some cross-sentence relations. However, cross-sentence relations appear in a
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very small number and were deliberately discarded. Also, despite some ChemProt rela-

tions were classified with more than one CPR group we considered only one label, since

these are rare, simplifying the task as a multi-class problem.

Performance evaluation

The BioCreative VI ChemProt organizers considered the micro-averaged precision,

recall, and balanced micro F1-score for evaluation purposes (Krallinger et al., 2017a).
Micro F1-score was the official metric used to evaluate and compare the teams’ submis-

sions. This metric was integrated in our pipeline, for measuring the neural network

performance at each training epoch, allowing to develop and select the best model dy-

namically for this specific task.

Pre-processing

Wepre-processed the entire ChemProt dataset using the Turku Event Extraction Sys-

tem (TEES) (Björne and Salakoski, 2015) applying a pipeline composed with the GENIA

sentence splitter (Sætre et al., 2007), the BLLIP parser (Charniak and Johnson, 2005) using

theMcClosky and Charniak (McCC) biomedical parsingmodel (McClosky and Charniak,

2008), and the Stanford dependency parser (Chen and Manning, 2014) (version 3.8.0, re-

leased on 2017-06-09). This pre-processing performs sentence splitting, tokenization,

part-of-speech tagging, and dependency parsing. Sentence splitting is required to obtain

all the chemical–protein pair candidates in the same sentence, since these are the only

ones we considered. The yielded tokens, PoS tags, and dependency labels are encoded

using embedding vectors (more detail in the next sections). The dependency parsing

structure is also used to find the shortest dependency path between the two entities,

since previous work had already proven its value for relation extraction (Bunescu and

Mooney, 2005a).

For every chemical–protein pair in each sentence, we obtain five sequences using the

TEES output: the SDP and the sequences containing the left text and the right text of the

chemical and protein entities (Figure 5.3). Like the work of Mehryary et al. (2017, 2018),
our system traverses the shortest dependency path always from the chemical entity to

the protein entity. For entities spanning more than one word, we obtain the shortest

path starting from the head word, as indicated by the TEES result. For each chemical–

protein pair candidate instance, the chemical and protein entities (in cause) are replaced

respectively by the placeholders ‘#chemical’ and ‘#gene’, except when the chemical–

protein pair comes only from a single token (overlapped entities) which in this case is

replaced by ‘#chemical#gene’. While in the SDP the dependency features were obtained

traversing the path, in the four left and right sequences the incoming edge of each token
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Le� context Middle context Right context

NN VBD DT JJ NN IN NN IN NN NN CC NN NN .

nsubj amod

det

nn nn

dobj

conj_and

Indomethacin abolished the inhibitory e�ect of acetazolamide on CA I and CA II .

prep_on

punct

prep_of

prep_on

Figure 5.3: Example illustrating the dependency parsing structure of a sentence from

the ChemProt training dataset (PMID 8667211). In this example, we considered the rela-

tion between the ‘acetazolamide’ chemical mention and the ‘CA I’ protein mention. The

shortest dependency path is highlighted in bold. Penn Treebank part-of-speech tags

(Marcus et al., 1993) used in this example: coordinating conjunction (CC); determiner

(DT); preposition or subordinating conjunction (IN); adjective (JJ); noun, singular or

mass (NN); verb, past tense (VBD); sentence final punctuation (.). Stanford dependencies

(de Marneffe and Manning, 2016) used in this example: adjectival modifier (amod); con-

junction and (conj_and); determiner (det); direct object (dobj); noun compound modifier

(nn); nominal subject (nsubj); prepositional modifier of (prep_of); prepositional modifier

on (prep_on); punctuation (punct).

was used as dependency features. If a token did not have an incoming edge or it was the

last token in the SDP then the dependency feature was set to ‘#none’. Each one of the five

sequences is therefore represented by a sequence of tokens, PoS tags, and dependency

edge labels.

Taking the sentence in Figure 5.3 as example, and considering the chemical–protein

pair [‘acetazolamide’, ‘CA I’], the five extracted sequences (containing the tokens, PoS

tags, and dependency edges) are:

1. Shortest dependency path: #chemical / NN / prep_of — effect / NN / prep_on

— #gene / NN / #none;

2. Chemical left text: Indomethacin / NN / nsubj — abolished / VBD / #none — the

/ DT / det — inhibitory / JJ / amod — effect / NN / dobj — of / IN / #none;

3. Chemical right text: on / IN / #none;

4. Protein left text: in this case, it is the same as the chemical right text;
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5. Protein right text: and / CC / #none — CA / NN / nn — II / NN / prep_on — . / .

/ punct.

The SDP together with the left and right sequences are fed to the neural network

through embedding layers, as explained in the following sections.

Word embeddings

For text based tasks, it is necessary to encode the input data in a way that it can

be used by the deep network classifier. This can be achieved by representing words as

embedding vectors of a relatively small dimension, rather than using the large feature

space resulting from the traditional one-hot encoding. Word embeddings is a technique

that consists in deriving vector representations of words, such that words with similar

semantics are represented by vectors that are close to one another in the vector space

(Bengio et al., 2003). This way, each document is represented by a sequence of word

vectors which are fed directly to the network. Efficient calculation of word embeddings,

such as provided by word2vec (Mikolov et al., 2013a), allow inferring word representa-

tions from large unannotated corpora.

We applied the word2vec implementation from the Gensim framework (Řehůřek and

Sojka, 2010) to obtain word embeddings from 15 million PubMed abstracts in English

language from the years 1900 to 2015. In previous research we created six models, with

vector sizes of 100 and 300 features and windows of 5, 20, and 50. The models contain

around 775 thousand distinct words (stop words were removed). These pre-trained word

embeddings models showed their value achieving favorable results both in biomedical

document triage (Matos and Antunes, 2017b) and biomedical word sense disambiguation

(Antunes and Matos, 2017c). In this work we use the word embeddings models with a

window size of 50, which are available in our online repository.

Another successor technique for creating word embeddings, from large unlabeled

corpora, with subword information was proposed by Bojanowski et al. (2017). Their

library, fastText, was used by Chen et al. (2019b) to create biomedical word embeddings

(vector size of 200, and window of 20) from PubMed articles and MIMIC-III clinical notes

(Johnson et al., 2016). We included these publicly available word embeddings in our

simulations to compare to our own models.

Furthermore, we created PoS and dependency embeddings from the ChemProt

dataset applying different vector sizes (20, 50, 100) and windows (3, 5, 10). The train-

ing, development, and test sets are used, with 1020, 612, and 800 documents respectively

(Table 5.2). However, we acknowledge the inclusion of the test set adds a slight bias. (A

lapse that we do not find it worth for repeating all our simulations.) This could be over-
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come, possibly improving the overall results, by including: (1) PubMed abstracts outside

the ChemProt dataset or (2) the remaining 2599 abstracts that initially existed, in the test

set, to avoid manual annotations. Based on preliminary experiments on the training and

development sets, we decide to use the pre-trained embedding vectors, with a window

size of 3, which are kept fixed during training. We tested using randomly initialized PoS

and dependency embeddings being adapted during training, but the results were similar

and the runtime was higher.

Different tools—Gensim (Řehůřek and Sojka, 2010), fastText (Bojanowski et al., 2017)
and TEES (Björne and Salakoski, 2015)—were used for tokenization in the word embed-

dings creation and in the ChemProt dataset. Therefore, we created a mapping between

the dataset vocabulary and its embedding vectors: each word of the ChemProt vocabu-

lary was tokenized according to the word embeddings vocabulary, and its word vector

was calculated using the L2-normalized sum of the constituent words. With this ap-

proach, the dataset vocabulary was strongly reduced (the respective PoS tags and de-

pendency edges were also removed) because some uninformative tokens are not present

in the word embeddings model. Preliminarily, this showed to be profitable since stop

words or out-of-vocabulary words were discarded from start.

We chose a fixed maximum length of 10 tokens (or 9 hops) for the shortest depen-

dency path, and a maximum length of 20 tokens for each of the left and right sequences.

These values were manually chosen according to the distribution of maximum lengths

in the training set. We had tested using the length of the longer sequence, but this did

not show to be advantageous since results were not better and implied a much higher

training time. In the few cases in which the distance between the two entities is too

long causing the extracted sequences to have more tokens than the pre-defined maxi-

mum, the sequences are truncated (the remaining tokens are discarded). In the opposite

case, when there are less tokens than the maximum length allowed, the input vectors

are padded with zeros to keep the same input vector size.

Deep neural network

Figure 5.4 shows the general structure of the neural network used in this work. Simi-

larly to other works in relation extraction (Zhang et al., 2017; Peng et al., 2018; Mehryary

et al., 2018), the different representations of a relation instance, namely the linear and

SDP representations, are handled by two separate sub-networks, the results of which are

concatenated at later stages.

Initially, each token in each one of the five extracted sequences (SDP, left and right

texts) is represented by the concatenation of the embedding vectors from the word, PoS,

and dependency embedding matrices. Furthermore, the four left and right sequences
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Figure 5.4: Neural network structure for the ChemProt relation extraction task. The

inner model can be a BiLSTM or CNN.

corresponding to the linear representation are concatenated into a single input. For each

of these two inputs (SDP and linear), Gaussian noise is added up, followed by a BiLSTM

model or a CNN model (several convolution layers with multiple window sizes followed

by global max pooling). Then, the two obtained outputs are concatenated and dropout

is applied. At the final stage, a fully connected layer with softmax activation outputs the

prediction probabilities. As can be seen in Figure 5.4, the neural network model only

differs in an intermediate step (BiLSTM or CNN). We implemented these deep learning

models in the Keras framework (Chollet et al., 2015) and the TensorFlow backend (Abadi

et al., 2016) using the Python programming language (Chollet, 2017).

An important consideration when defining and training deep network models is re-

lated to overfitting, which means that the network learns the “best” data representation

but is not able to generalize to new data. Various strategies have been proposed and

are commonly employed to address this problem. In our experiments, we applied com-

mon strategies to avoid overfitting, namely random data augmentation (Gaussian noise

addition), dropout, and early stopping. Early stopping looks at the value of a specific

evaluation metric in a validation subset and stops the training process when this value

stops improving for a pre-specified number of training epochs (patience value). Also,

early stopping brings a gain in total training time since the “best” model is usually se-

lected after a few epochs instead of training for a fixed, usually larger, number of epochs.
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Table 5.3: System parameters for the ChemProt relation extraction task.

Gaussian noise standard deviation 0.01
LSTM units 128
LSTM recurrent dropout 0.4
LSTM dropout 0.4
Convolution filters 64
Convolution window sizes [3, 4, 5]
Dropout rate 0.4

Optimizer RMSprop (Tieleman and Hinton, 2012)
Loss Categorical cross entropy

Batch size 128
Maximum number of epochs 500
Early stopping patience 30
Early stopping monitor Validation micro F1-score
Validation split 0.3

This is an important aspect especially when running several simulations to test different

network structures and parameters. According to preliminary results, we decided to fix

30% of the training data as validation subset, and calculated the F1-score at each epoch

for monitoring the quality of the model. Similarly, when creating the final model to ap-

ply to the test data, we merged the training and development sets and used respectively

70% for training and 30% for validation and early stopping.

Table 5.3 shows the network hyper-parameters and other variables used in our sys-

tem (default values were used in unmentioned parameters). Despite that we did not

perform an exhaustive grid-search for the best parameters, these were iteratively ad-

justed according to several experiments using the training and development sets. Class

weights inversely proportional to their frequency in the training set were used to weight

the input instances.

Additional methods

To improve the generalization ability of our system and to reduce the fluctuation of

the results due to the random initialization, all the results were obtained by averaging

the prediction probabilities of three simulations using different random states. The use

of a different random state means that a different random initialization was made in the

neural network weights, and that distinct subsets of the training data were effectively

used for training and validation.
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Another crucial method in our system is the balancing between precision and re-

call to maximize the F1-score, achieved by adjusting the classification threshold at each

training epoch. The training data is used in this process to avoid biasing the test results.

A similar experiment was performed by Corbett and Boyle (2018) where they also used

a threshold value to maximize the F1-score on the development set.

Additionally, we pre-processed an external dataset from the BioGRID database con-

taining chemical–protein interactions (Chatr-aryamontri et al., 2017). This dataset sup-
plied further 1102 PubMed abstracts for training, annotated with 2155 chemicals, 2190

proteins, and 2277 relations between them.

In the next section we present and discuss the obtained results using the methods

mentioned in this section.

5.2.2 Results and discussion

As noted in the previous section, the use of different random states generates dif-

ferent training and validation subsets which in turn results in different trained models

(network weights and optimal classification threshold). This approach allows using a

large amount of data for early stopping, which in our preliminary experiments proved

important for improving generalization, while still using most of the available data for

training. Thereby, the results presented in this section are obtained by averaging the

probabilities from three simulations.

Table 5.4 presents a detailed gathering of results obtained on the development set by

the BiLSTM and CNN models combining different inputs: sequences (SDP, left and right

sequences), features (words, PoS, dependencies), and embedding models. The three best

results on the development set (F1-scores: 0.6496, 0.6473, and 0.6385) were obtained by

the BiLSTM model using only the shortest dependency path with word and dependency

features where different embedding models are used, being the highest result achieved

with the biomedical word embeddings created by Chen et al. (2019b).
The results show that, in general, the left and right sequences generated much lower

results, and when combining them with the SDP, the results were worst than using only

the SDP.We believe this may be due to the way the left and right sequences are combined

and encoded into the neural network, and also because the larger number of tokens (80

versus 10 in the SDP) may contribute with more noise bymeans of uninformative tokens.

It is possible that different approaches for incorporating the linear sequence information

could improve the final results.

As expected, words were the more informative type of feature, while the PoS tags

were the less informative being worthless in some configurations. For example, in the

majority of the cases, combining the PoS tags with words and dependencies worsened
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Table 5.4: F1-score results on the ChemProt development set using the BiLSTM and

CNN models. WS: word embeddings size. PS: part-of-speech embeddings size. DS:

dependency embeddings size. SDP: shortest dependency path sequence. LR: left and

right sequences. NN: neural network. BiLSTM: bidirectional long short-term memory.

CNN: convolutional neural network. W: words. P: part-of-speech tags. D: dependency

edges. The highest value in each row is highlighted in bold; the best overall value is

underlined.

(WS, PS, DS) Features NN W P D W+P W+D P+D W+P+D

(100, 20, 20)* SDP BiLSTM 0.6007 0.1695 0.2609 0.5971 0.6385 0.2991 0.6351
CNN 0.5594 0.1628 0.2832 0.5622 0.5978 0.3102 0.6010

LR BiLSTM 0.4967 0.2003 0.2059 0.4906 0.5149 0.2106 0.5043
CNN 0.4371 0.1902 0.1635 0.4131 0.4193 0.1683 0.3984

SDP+LR BiLSTM 0.5857 0.2271 0.3044 0.5776 0.6000 0.2807 0.5979
CNN 0.5243 0.2332 0.2594 0.5268 0.5381 0.2361 0.5403

(300, 100, 100)* SDP BiLSTM 0.6161 0.1601 0.2920 0.6002 0.6473 0.3228 0.6310
CNN 0.5642 0.1595 0.3019 0.5782 0.6141 0.2991 0.6092

LR BiLSTM 0.5135 0.2093 0.1910 0.5133 0.5209 0.1847 0.5227
CNN 0.4293 0.1962 0.1550 0.4576 0.4321 0.1448 0.4216

SDP+LR BiLSTM 0.5914 0.2176 0.2873 0.5812 0.6036 0.2692 0.6015
CNN 0.5572 0.2152 0.2519 0.5618 0.5672 0.2340 0.5819

(200, 50, 50)† SDP BiLSTM 0.6229 0.1530 0.2806 0.6192 0.6496 0.3087 0.6453
CNN 0.5804 0.1555 0.2867 0.5841 0.6259 0.3182 0.6205

LR BiLSTM 0.5030 0.2353 0.2096 0.5158 0.5060 0.2166 0.4849
CNN 0.4813 0.1827 0.1681 0.4504 0.4201 0.2130 0.4291

SDP+LR BiLSTM 0.5943 0.2428 0.2918 0.5993 0.6126 0.2715 0.5824
CNN 0.5690 0.1966 0.2413 0.5440 0.5760 0.2645 0.5605

* Our PubMed-based word embeddings.
† Pre-trained word embeddings by Chen et al. (2019b).

results. Interestingly, the dependency edge labels showed to be much more informative

than the PoS tags, effectively improving performance in several configurations. Essen-

tially, the highest results were achieved by combining words and dependency features.

Different embedding models were also explored (Table 5.4). We used larger embed-

ding sizes for words, giving greater importance to word semantics, and smaller em-

bedding sizes for PoS tags and dependency labels. The results show, in the case of

our PubMed-based word2vec embeddings, that using larger encoding vectors—(300, 100,

100) versus (100, 20, 20)—leads to slightly improved results. Nonetheless, the best over-

all results were obtained with the fastText embeddings by Chen et al. (2019b), although
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Table 5.5: Detailed results on the ChemProt development and test sets using distinct

approaches. The best configuration from the results in the development set (Table 5.4)

was employed. WS: word embeddings size. PS: part-of-speech embeddings size. DS:

dependency embeddings size. P: precision. R: recall. F: F1-score. The highest value in

each column is highlighted in bold.

Development Test

(WS, PS, DS) P R F P R F

(300, 200, 300)*,† Best official run 0.4999 0.6074 0.5470 0.5738 0.4722 0.5181

(300, 100, 100)† Baseline§ BiLSTM 0.6737 0.6229 0.6473 0.7089 0.5480 0.6182
CNN 0.7059 0.5435 0.6141 0.7423 0.4939 0.5932

(200, 50, 50)‡ Baseline§ BiLSTM 0.6908 0.6130 0.6496 0.6812 0.5870 0.6306
CNN 0.7252 0.5505 0.6259 0.7182 0.5093 0.5959

BioGRID¶ BiLSTM 0.5337 0.6523 0.5871 0.5881 0.6050 0.5964
CNN 0.5913 0.5642 0.5774 0.6323 0.5191 0.5701

No validation‖ BiLSTM 0.6867 0.6068 0.6443 0.6791 0.5980 0.6360
CNN 0.6247 0.4988 0.5547 0.6091 0.5160 0.5586

* Our official evaluated run (Krallinger et al., 2017a; Matos, 2017).
† Our PubMed-based word embeddings.
‡ Word embeddings by Chen et al. (2019b).
§ Results on the development set are the same as reported in Table 5.4.
¶ 30% of the training data (BioGRID excluded) used for validation.
‖ Model trained during 500 epochs (without monitoring).

these use a smaller vector size. This result highlights that the incorporation of subword

information in the embedding vectors is beneficial for biomedical information extrac-

tion.

For collecting the final results (on the test set) we applied our described approach,

but with two additional arrangements: (1) adding BioGRID external training data, and

(2) using no validation data (the validation split was set to 0.0). Table 5.5 presents these

results using the best configuration based on the results obtained on the development

set (Table 5.4), which consisted in using the shortest dependency path with word em-

beddings of size 200 (fastText model by Chen et al. (2019b)) and dependency features

encoded by embedding vectors of size 50. For better comparison we also include in Ta-

ble 5.5 the results of our best official run (during the challenge) and the baseline results

using our PubMed-based word embeddings.

Inclusion of the dataset from BioGRID as additional training data deteriorated F1-

score results when compared to not using it, in both BiLSTM (development: 0.5871 versus
0.6496, test: 0.5964 versus 0.6306) and CNN models (development: 0.5774 versus 0.6259,
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test: 0.5701 versus 0.5959). This suggests that these data diverge from the ChemProt

guidelines and that some kind of heuristics would be required to decide which instances

to include. Other approaches such as multi-instance (Surdeanu et al., 2012; Lamurias

et al., 2017; Eberts and Ulges, 2021) or adversarial learning (Qin et al., 2018) could also

be applied.

Inspection of the training and validation F1-score for each epoch indicated that the

BiLSTM model suffered less from overfitting than the CNN model. Therefore we per-

formed an experiment wheremodels were trained for 500 epochswithout early stopping,

since this has the advantage of training each model (in the three simulations) using all

of the available training data. Overall, the highest F1-score on the test set was achieved

following this approach (0.6360 versus 0.6306 in the baseline) showing that the BiLSTM

model was in fact very resistant to overfitting. Conversely, the CNN performed much

worst when early stopping, and therefore validation data, was not used (0.5586 versus
0.5959). Even when trained with the external dataset from BioGRID, where validation

data was used, the CNNmodel obtained better results compared to those obtained with-

out validation monitoring (0.5701 versus 0.5586). Despite 0.6360 being the highest F1-

score in the test set, we consider our best F-score is 0.6306 since it was selected according

to the best method in the development set (Table 5.5), which represents an improvement

of 11 percentage points compared to our best official F1-score (0.5181).

From the results in Tables 5.4 and 5.5, we conclude that a solid benefit of our ap-

proach is that the best method uses at most 10 tokens from the SDP to classify the

chemical–protein relation, using a small representation vector and therefore reducing

training time. For instance, on a Intel i3-4160T (dual-core, 3.10 GHz) CPU, training the

BiLSTM and CNN models for one epoch with 70% of the training set (word and depen-

dency embeddings with sizes 100 and 20), takes respectively around 5 and 2 seconds

(the additional cost of balancing precision and recall is excluded). Also, another positive

remark is that our BiLSTM model is resistant to overfitting, since the results obtained in

the baseline approach are similar to those reported without using validation data, and

the results in the development and test sets are similar. On the other hand, overfitting is

evident when using the CNNmodel, since training it for 500 epochs grossly declined the

results (development: 0.6259 versus 0.5547, test: 0.5959 versus 0.5586). This overfitting

also helps to explain the higher precision seen for the CNN model as compared to the

BiLSTM model, since the network is better capable of identifying with high confidence

those test instances that are very similar to instances seen during training.
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Table 5.6: Comparison between participating teams in the ChemProt challenge (F1-score

results on the test set). CNN: convolutional neural network. ML: machine learning.

RNN: recurrent neural network. SVM: support vector machine.

R* Work Classifiers Challenge PC†

1 Peng et al. (2017, 2018) SVM, CNN and RNN 0.6410
2 Corbett and Boyle (2017a, 2018) RNN and CNN 0.6141 0.6258
3 Mehryary et al. (2017, 2018) SVM and RNN 0.6099 0.6310
4 Lim and Kang (2017, 2018) Tree-structured RNN 0.5853 0.6410
5 Lung et al. (2017, 2019) Traditional ML 0.5671
6 Ours (Matos, 2017; Antunes and Matos, 2019) RNN and CNN 0.5181 0.6306
7 Liu et al. (2017, 2018a) CNN and attention-based RNN 0.4948 0.5270
8 Verga and McCallum (2017) Bi-affine attention network 0.4582
9 Wang et al. (2017a) RNN 0.3839

10 Tripodi et al. (2017) Traditional ML and neural networks 0.3700
11 Warikoo et al. (2017, 2018) Tree kernel 0.3092 0.3654
12 Sun (Krallinger et al., 2017a) - 0.2195
13 Yüksel et al. (2017) CNN 0.1864

* R: rank. Teams ranked according to the official evaluation.
† PC: post-challenge. Improved results due to post-challenge enhancements.

Comparison with other participating teams

Table 5.6 compares our results with other works presented during the ChemProt

challenge as well as post-challenge improvements. All the top performing teams used

recurrent neural networks showing their strength in this chemical–protein relation ex-

traction task. Also, SVMs and CNNs are amongst some of the classifiers used by other

works.

Similarly to our work, Corbett and Boyle (2017b, 2018) used LSTM and CNN layers.

They achieved a best F1-score of 0.6258 on the test set, which is in line with our result

(0.6306). However, their network structure is larger being composed of more layers.

Mehryary et al. (2017) applied a similar pre-processing pipeline as described in this work,

using the TEES tool to perform tokenization, part-of-speech tagging, and dependency

parsing. They achieved a top F1-score of 0.6099 with a combination of SVMs and LSTM

networks. This result was improved to 0.6310 following the challenge (Mehryary et al.,
2018). Using the ANN alone, with whole sentence tokens and features from the SDP,

they achieved an F1-score of 0.6001 in the test set, while our BiLSTM model achieves an

F1-score of 0.6306 by only using features from the SDP. Lim and Kang (2017, 2018) used

a tree-structured RNN exploiting syntactic parse information and obtained an F1-score

of 0.6410, equalling the best official result.

Differently from the works cited above, Lung et al. (2019) used traditional machine

learning algorithms with handcrafted features, achieving an F1-score of 0.5671. As part
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Table 5.7: Confusion matrix in the ChemProt test set (F1-score 0.6306) obtained by

the BiLSTM model that achieved the highest F1-score in the development set, as re-

ported in Table 5.5. The light-gray cells show correct classifications (true positives);

mid-gray cells show false negatives (first row) and misclassifications between classes;

and dark-gray cells show false positives.

Predicted Gold-standard

Negative CPR:3 CPR:4 CPR:5 CPR:6 CPR:9 Sum
Activation Inhibition Agonist Antagonist Substrate

Negative 238 524 97 124 341 1324

Activation 263 382 19 5 0 0 669

Inhibition 401 45 1107 14 2 2 1571

Agonist 45 0 2 79 6 0 132

Antagonist 56 0 1 0 161 0 218

Substrate 185 0 8 0 0 301 494

Sum 950 665 1661 195 293 644

True positives 2030

False negatives 1428

False positives 950

of their approach, the authors manually built a dictionary with 1155 interaction words,

which where mapped to the corresponding CPR type, to create chemical–protein inter-

action (CPI) triplets.

Error analysis

In this section we evaluate, making a detailed error analysis, the predictions obtained

in the test set using the baseline approach with the fastText word embeddings and the

BiLSTMmodel (Tables 5.7 to 5.10). The confusion matrix, presented in Table 5.7, follows

the official evaluation script and reflects the same results reported in Table 5.5. We ob-

serve that the “activation” and “inhibition” relation classes were the onesmost difficult to

discriminate, with 19 “inhibition” relations predicted as “activation” and 45 “activation”

relations predicted as “inhibition”.

Tables 5.8 and 5.9 show, respectively, heatmaps of the precision and recall values in

function of the numbers of gold-standard entities per sentence and gold-standard rela-

tions per sentence. Numbers in the cells show the amount of correct classifications (true

positives) and incorrect (false positives) or missed classifications (false negatives). This

representation makes it easier to understand which type of sentences are more difficult
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Table 5.8: Heatmap representing the precision values obtained by the BiLSTM model

(the best in the development set) applied to the ChemProt test set. True positives (TP)

and false positives (FP) are displayed as TP/FP. X-axis: number of gold-standard entities

per sentence. Y-axis: number of gold-standard evaluated relations per sentence. Axes

are truncated for conciseness.

Y X

2 3 4 5 6 7 8 9 10

1 148/10 88/19 62/35 20/15 13/21 4/ 1 1/ 0 4/10 0/ 0

2 182/14 121/18 86/31 33/12 29/18 6/ 5 8/21 1/ 3

3 89/ 9 60/ 9 36/15 15/14 14/15 11/ 3 10/13

4 58/ 4 96/ 4 62/11 40/14 17/ 6 21/18 8/ 8

5 5/ 0 41/ 7 52/ 9 6/ 7 9/ 3 8/ 1

6 50/ 0 26/ 3 50/ 9 39/17 9/ 1 2/ 5

7 2/ 2 6/ 0 14/ 0 21/ 1 0/ 0

8 32/ 9 14/ 3 5/ 0 26/ 4 14/ 0

9 17/ 0 14/ 0 0/ 0 18/10 9/ 6

10 6/ 0 10/ 5 0/ 0 10/ 0

for our model to ‘interpret’. In Table 5.8 we see a clear and somewhat expected trend

with lower precision when the number of entities in a sentence is high but the number of

existing relations in that sentence is low. This is intuitive since many chemical–protein

pair candidates are generated, potentially leading to several false positive relations. From

Table 5.9 we verify that the majority of the sentences in the corpus have only a few num-

ber of entities and relations. Sentences with many entities are rare, and these may have

few or many relations. Interestingly, the results in Table 5.9 indicate that, although the

worst results in terms of recall are obtained for sentences containingmany entities, there

is a considerable number of unidentified relations from sentences containing up to four

entities.

We present a detailed error analysis showing concrete cases where the model failed
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Table 5.9: Heatmap representing the recall values obtained by the BiLSTM model (the

best in the development set) applied to the ChemProt test set. True positives (TP) and

false negatives (FN) are displayed as TP/FN. X-axis: number of gold-standard entities

per sentence. Y-axis: number of gold-standard evaluated relations per sentence. Axes

are truncated for conciseness.

Y X

2 3 4 5 6 7 8 9 10

1 148/98 88/ 70 62/42 20/19 13/10 4/ 7 1/ 1 4/ 4 0/ 1

2 182/132 121/83 86/50 33/25 29/ 7 6/ 8 8/10 1/ 3

3 89/76 60/58 36/12 15/ 6 14/28 11/ 4 10/ 5

4 58/50 96/48 62/42 40/20 17/19 21/11 8/ 0

5 5/ 5 41/19 52/13 6/ 4 9/ 6 8/ 2

6 50/16 26/ 4 50/16 39/27 9/ 3 2/10

7 2/ 5 6/ 1 14/14 21/ 0 0/ 7

8 32/24 14/18 5/11 26/22 14/ 2

9 17/ 1 14/13 0/ 0 18/ 9 9/ 9

10 6/ 4 10/ 0 0/ 0 10/ 0

to predict (Table 5.10). A comprehensive list with all the predictions can be found in the

online repository. We enumerate different causes for the analyzed frequent errors:

• Limited or incorrect instance representation. Information obtained exclusively

from the SDP is, often, insufficient or faulty since essential words may be missing

or misleading words may be present. Examples 1, 2, and 3 in Table 5.10 show cases

where crucial terms such as “agonistic” and “antagonist” are not included in the

SDP. On the other hand, examples 4, 5, 6 include words, such as “downregulation”,

“activation”, and “inhibition”, that are frequently relatedwith other relation classes

and caused incorrect classification in these cases.

• Misinterpretation of negation. In some cases, there is a term giving the opposite
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Table 5.10: Error analysis: examples of incorrect predictions in the ChemProt test set

obtained by the BiLSTM model (the best in the development set). The chemical–protein

pairs are presented with information from the sentence and the shortest dependency

path (SDP). The chemical and protein named entities are annotated in dark-gray and

light-gray colored boxes, respectively. For simplicity, the chemical and gene placehold-

ers were omitted in the list of words from the SDP. Sentences are from PMIDs 23265901,

17082235, 10611634, 10909982, 10701840, and 12897749.

Example Correct Predicted Full sentence Words in the SDP

1 Agonist Activation The introduction of the amino group resulted in
not only improved water solubility but also
enhanced TLR7 agonistic activity.

group
introduction
resulted activity

2 Agonist Inhibition Our work shows that sulfonylureas and glinides
additionally bind to PPARgamma and exhibit
PPARgamma agonistic activity.

exhibit activity

3 Antagonist Agonist In guinea pigs, antagonist actions of yohimbine
at 5-HT(1B) receptors are revealed by blockade
of hypothermia evoked by the 5-HT(1B) agonist,
GR46,611.

receptors

4 Activation Inhibition Impaired expression of the uncoupling protein-3
gene in skeletal muscle during lactation: fibrates
and troglitazone reverse lactation-induced
downregulation of the uncoupling protein-3
gene.

reverse
downregulation
gene

5 Inhibition Activation Geldanamycin also disrupts the T-cell
receptor-mediated activation of
nuclear factor of activated T-cells (NF-AT).

disrupts
activation

6 Substrate Inhibition Blockade of LTC4 synthesis caused by additive
inhibition of gIV-PLA2 phosphorylation: Effect
of salmeterol and PDE4 inhibition in human
eosinophils.

synthesis caused
inhibition
phosphorylation

meaning to the textual sequence. However, these terms are not correctly handled

by ourmodel. For example, cases 4 and 5 have, in the SDP, the expressions “reverse

downregulation” and “disrupts activation” which should direct to the true relation

classes, namely activation and inhibition.

• Complex sentences, requiring expert interpretation. Some cases, as in example 6,

are not easily interpreted without domain knowledge or more context.

To counteract these errors, we hypothesize that improved feature representations

and more training data may alleviate these issues. Also, we suspect that building a

system for multi-label classification would improve recall, and could improve the fi-

nal results, since there are failed predicted relations that count simultaneously as a false
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positive and a false negative.

Another limitation of our model is that for each chemical–protein pair only informa-

tion from the respective sentence is being used. We suspect more context would prove

helpful, and could facilitate the extraction of cross-sentence relations.

5.3 Summary

In this chapter we introduced background work on biomedical relation extraction,

enumerated several common evaluation datasets, and presented a deep learning model

for identifying chemical–protein interactions, in PubMed abstracts, based on recurrent

or convolutional neural networks. We mapped chemical–protein interactions from the

BioGRID database to add as additional training data, but inclusion of these data did not

improve results and we believe that a more accurate handling of these data could prove

effective.

We recognize that the relation extraction task is far from being solved, and there is

plenty room for improvement. The recent transformer models such as BERT (Devlin

et al., 2019) have been dictating the state-of-the-art performance not only in relation

extraction but in various biomedical NLP tasks (Peng et al., 2019; Gu et al., 2021). Com-

petitions and shared-task venues often launch to thrive the development of informa-

tion extraction solutions, and these have been targeted with heavy neural network and

transformer–based models which are only possible to train due to the improvement and

advance of computer hardware resources.
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Chapter 6

Conclusions

In this thesis we presented a plethora of biomedical information extraction systems

composed of machine learning models, knowledge-based methods, or rule-based ap-

proaches built with handcrafted heuristics. These were applied and evaluated in textual

data from biomedical literature and clinical reports. Particularly, we investigated solu-

tions for the NLP tasks of word sense disambiguation, entity linking, document classi-

fication, text similarity measurement, and relation extraction. The application of these

techniques contributes to improved information extraction from the unstructured text

found in biomedical literature which is relevant for molecular biology, biomedicine, and

chemistry (Krallinger et al., 2005, 2017b). For example, finding biological entities such as

gene and protein names, and their relationships, in the millions of articles that exist in

the literature helps to unveil hidden information and provide hints for new discoveries.

In this last chapter, we highlight the key contributions of our thesis work, show

limitations of our proposed methods, and point the reader to future research directions.

6.1 Key contributions

The main contributions of this thesis are supported by extensive and detailed ex-

periments that we performed in the different levels, or tasks, of a complete pipelined

information extraction system. These contributions, in many biomedical text mining

tasks, are summarized below:

• We proposed a new method based on external knowledge captured from standard

medical terminologies to improve biomedical word sense disambiguation in sci-

entific articles. Moreover, we compared this approach with supervised learning

classifiers and verified that the use of ground-truth training instances allows to

achieve higher accuracies, but knowledge-based systems have the ability to adapt
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(generalize) to different ambiguous concepts without the need of training samples.

• We developed a knowledge-based method for medical concept normalization

where entity mentions in clinical text such as medications, disorders, and medical

treatments are linked to unique codes from standard medical terminologies. The

system, based on pre-trained biomedical word embeddings, consists in a straight-

forward yet effective computation: the cosine similarity between (1) the vector

embedding of the target entity mention and (2) every pre-calculated concept em-

bedding from the training subset (of the corpus being used) and the UMLS database

(considering only the RxNorm and SNOMED CT vocabularies in the specific work

that was conducted).

• We investigated the use of classical machine learning and convolutional recurrent

neural networks for document triage. Our deep learning models showed com-

petitive performance in selecting PubMed abstracts that contain protein–protein

interactions affected by genetic mutations.

• Regarding clinical text classification, we created a hybrid system for automatic

patient cohort selection where clinical records were used to find if the patients

met certain selection criteria for clinical trials. We concluded that, due to the small

size of the dataset and its high imbalance in labels, handcrafted rules performed

overall better, while for some, more balanced criteria, machine learning models

proved effective.

• We studied the use of word and sentence embeddings with neural network mod-

els to quantify the semantic textual similarity between clinical sentences. Re-

sults with sentence embeddings achieved better performance in comparison to

word embeddings, which made us conclude that sentence vectors generated by

BioSentVec (Chen et al., 2019b) provided a superior semantic representation. Also,

we observed that pre-processing the sentences with different levels of granularity,

such as stop words removal or converting the numbers to their textual form, had

a considerable impact with word embeddings but deteriorated performance when

using sentence embeddings. Therefore we established that sentence embeddings

not only provide a preferable representation but also they require less effort in

‘fine-tuning’ the input textual data.

• Regarding the task of relation extraction we investigated and evaluated the use of

recurrent and convolutional neural networks for identifying interactions between

chemicals and proteins in PubMed abstracts. Our best method uses a small feature

vector (narrow instance representation), from up to only 10 words per each candi-
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date pair. Our BiLSTM network showed improved performance and comparable

results to other works. Finally, we performed an extensive error analysis.

In short, in this thesis we proposed different methods for various information ex-

traction tasks applied within the biomedical domain. The majority of them were ma-

chine learning–based (some being deep neural networks), and the remaining consisted

of knowledge-based systems or approaches with heuristics. We conclude that machine

learningmethods are in general ‘easier to teach’—require less feature engineering, model

handcrafting and fine-tuning—and can obtain better results but at the cost of sufficient

and high-quality labeled data frequently annotated in advance by domain experts.

The existence of annotated datasets and lexical resources is in fact a primary require-

ment for information extraction. Without access to the free text found in biomedical

literature or eletronic health records this work would be impractical. A related requi-

site is the existence of ground-truth or high-quality data, relevant for biomedical text

mining, such as (1) annotated datasets, and (2) curated vocabularies, terminologies, and

databases. These resources are fundamental because they endow the researchers with

the data needed for creating their information extraction systems.

Annotated datasets by domain experts, such as documents with biomedical entities

and their interactions identified, are important for assessing and comparing the devel-

oped methods, and help to find out what approaches work best. Since these corpora

are associated with gold-standard labels (annotations) they are favored for supervised

machine learning models that learn from training data. However, a dataset may be con-

sidered small and not provide enough training samples for a machine learning model to

achieve an acceptable performance; in these cases other approaches based on heuristics

or external knowledge should be explored.

Fortunately, corpora for biomedical text mining is becoming less scarce due to the

increasing interest for automatic solutions that can extract information from the text

(Rosário-Ferreira et al., 2021). Creation of these datasets is often performed manually by

domain expert curators, such as biologists, chemists, or pharmacologists, with the help

of software tools for text annotation (Neves and Leser, 2014; Neves and Ševa, 2021)—this

is especially the case when entity mentions and relations need to be marked in a doc-

ument. On the other hand, some researchers already proposed (semi-)automatic proce-

dures to alleviate the manual efforts of curation. For instance, Jimeno-Yepes et al. (2011)
present an automatic method to create a dataset for biomedical WSD, though they took

benefit from the manual MeSH indexing that is routinely made by NLM experts. In an-

other work, Pérez-Pérez et al. (2022) proposed a semi-automatic workflow for supporting

a biomedical relation extraction curation task: they implement a deep learning model

that learns from the decisions of the curators in iterative annotation rounds and show
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potential relevant relations in next rounds.

In this thesis, despite of our broad use of gold-standard datasets for biomedical in-

formation extraction we did not investigate the creation of these since it was not one of

the goals of this work—furthermore it would require interdisciplinary cooperation and

qualified manpower for expert curation. Nevertheless we affirm that a straightforward

approach for improving the performance of our methods would be the production and

availability of more high-quality annotated data; since, in machine learning, a higher

number of training samples usually leads to better performance and better generaliza-

tion to unseen data. However, this forms an unrealistic or difficult scenario because data

itself is limited and further manual annotation is a long, arduous, and costly task. Also,

the use of larger datasets for trainingmachine learningmodels (such as neural networks)

would imply an increase in the training time and likely require more potent computer

resources.

6.2 Limitations

As any developed solution for biomedical text mining our proposed methods have

shortcomings or requirements that may restrict their suitability or reduce their perfor-

mance in real-world applications. In this section we present specific limitations or draw-

backs of our methods:

• Regarding the biomedical WSD task, the MSH WSD dataset contains PubMed ab-

stracts in which the ambiguous terms appear. However, we presume that in some

cases access to the full-text article could prove relevant for finding the correct

sense of an ambiguous term. We did not explore this, yet both our approaches—

supervised learning and knowledge-based—could be adapted to be applied to the

full-text.

Similarly, our word embedding models were generated using only the text from

PubMed abstracts; and we did not investigate if adding full-text articles from

PubMed Central (PMC) would be beneficial.

Also, our knowledge-based method relies on textual definitions, extracted from

UMLS knowledge sources, for every CUI (Concept Unique Identifier) to create

concepts embeddings. During our preliminary experiments we inspected some of

these descriptions and found that some were short (containing only a few words),

and therefore we hypothesize that the embedding representations, and the overall

method, would improve with more complete and correct definitions.

• In themedical concept normalization task our proposed system only uses themen-
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tion text of the target entity to be normalized, which in some cases is not self-

explanatory. We hypothesize that the context around the entities would provide

more information and improve the normalization accuracy. Luo et al. (2019), the
authors of the MCN corpus, also clarified that contextual information affects the

results of normalization because annotators may interpret the context differently.

They further explained that they only required the annotators to use contextual

information when the mention itself did not provide enough information.

In clinical text, our model directly uses the vector embeddings of abbreviated

terms, considering their (lowercased) surface form. This may not provide suffi-

cient information, and a hybrid approach combining (1) word embeddings and

(2) external dictionaries of abbreviations with their respective long forms could

be helpful for disambiguation and normalization.

• We proposed the use of supervised learning methods for biomedical document

triage. The aim was to detect if PubMed abstracts were relevant, or not, for ex-

tracting protein–protein interactions affected by genetic mutations. We experi-

mented with adding more training data employing the BioCreative III PPI corpus

(Krallinger et al., 2011) in a self-training approach, but the results only improved

by a tiny margin (0.12% F1-score in the official test set). We believe that including

external corpora for training can be more beneficial but further investigation is

required.

• In the task of patient cohort selection for clinical trials, we found that rule-based

methods were more adequate given the relatively small size of the dataset. How-

ever, the results show that our heuristics were severely overfit to the training set

and could be improved with unbiased and specialized knowledge from physicians

or clinical experts.

Additionally, we tested removing tabular information from the clinical documents

to restrict their content to free text, butwe did not find significant differences in the

results. Extracting the tabular information and customizing its analysis, instead

of discarding it, could be a more viable approach for some criteria because tables

may contain clinical tests’ measurements, or dosages of medications, relevant for

inferring the patient health status.

• When measuring the semantic textual similarity between clinical sentences, we

observed that our model could more easily identify pairs of highly similar or

dissimilar sentences, but struggled with sentences that were not equivalent but

shared identical portions or were about the same subject.
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• For our chemical–protein relation extraction system, we pre-processed the

BioGRID database (Chatr-aryamontri et al., 2017) for extracting additional

chemical–protein interactions for training the model but the results deteriorated

and we believe that a more rigorous treatment of the data would be necessary.

Also, we note that our model is limited to extracting relations within sentences

and requires that chemical and protein entities are previously identified, since

performing named entity recognition was out of scope in this task.

6.3 Future research

As highlighted in the previous section, our proposed methods have some limitations

and unexplored details that can be further studied or addressed in upcoming research.

We now point out other aspects that can be investigated for improving biomedical text

mining according to state-of-the-art research.

The use of word embeddings was investigated in every biomedical NLP task pre-

sented in this thesis. In our initial experiments, we pre-trained our word embedding

models employing the word2vec algorithm from the Gensim library (Řehůřek and So-

jka, 2010), using the continuous bag-of-words and skip-gram architectures proposed by

Mikolov et al. (2013a). Then, we tested the BioWordVec model (Chen et al., 2019b) that
consists of word vectors trained on biomedical and clinical text and is based on the fast-

Text algorithm that takes into account subword information (Bojanowski et al., 2017).
From our experiments we concluded that BioWordVec provided superior representa-

tions, also having the advantage of computing out-of-vocabulary words since fastText

exploits subword information.

Word embeddings pre-trained using the word2vec and fastText approaches return

fixed vectors—aword has the same vector regardless of the context inwhich it is inserted.

This is a known limitation of these models because they attribute the same vector to a

word that may have different meanings depending on which context appears. Lately, to

counteract this issue, more advanced word representations have been proposed. These

are known as contextualized word representations where the calculation of word vectors

is made on-the-fly to take into account the context in which the words are inserted.

ELMo (Embeddings from Language Models) proposed by Peters et al. (2018) and

BERT (Bidirectional Encoder Representations from Transformers) proposed by Devlin

et al. (2019) are arguably the two most used contextualized representations and have

improved results considerably for a variety of NLP tasks. Since the publication of BERT,

many variants have been pre-trained on biomedical and clinical textual data including

BioBERT (Lee et al., 2020), PubMedBERT (Gu et al., 2021), and ClinicalBERT (Alsentzer
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et al., 2019; Huang et al., 2019). The exploration of these models is in our opinion a vi-

able research direction. For instance, Peng et al. (2019) made an extensive evaluation of

BERT and ELMo on ten datasets for biomedical NLP presenting several improvements

over the state-of-the-art.

Another interesting idea is to explore token-free models that do not require the tok-

enization step and operate directly at the byte- or character-level. A recent example of

such models is the ByT5 architecture (Xue et al., 2022) where the authors use a standard

transformer architecture to process byte sequences. These models have the advantage

of easily process text in any language and remove errors from the text pre-processing

pipeline.

Our studies in biomedical information extraction were restricted to the English lan-

guage because research is commonly most updated for the English idiom and there is

a lag in developing resources such as annotated corpora, curated databases, and word

embeddings models in other languages. We consider that the resolution of biomedical

NLP tasks in other languages is an under-researched area. To the best of our knowl-

edge, Ferreira (2011) presents the first information extraction system to process clinical

records written in European Portuguese. Schneider et al. (2020) transfer-learned infor-

mation from amultilingual BERT to a corpora of clinical and biomedical text in Brazilian

Portuguese releasing the BioBERTpt model. Silva e Oliveira et al. (2022) present the first

available Brazilian Portuguese corpus for clinical NLP tasks (SemClinBr). And more

recently, Miranda-Escalada et al. (2022) organized a shared task to promote the develop-

ment of automatic methods for the recognition and normalization of disease mentions in

Spanish clinical narratives. Therefore we consider that targeting biomedical NLP tasks

in other languages is a relevant future research direction.

Another emerging research area is the study of information extraction from text

found on social media platforms such as Twitter and Reddit. Although social media

content might be about any topic, some of the users’ posts may contain relevant clini-

cal information such as adverse drug effects. Users may share and discuss their current

health status after taking a medicine or have undergone a medical procedure. How-

ever, the processing of social media text poses particular challenges because text may be

clumsy and contain misspellings, abbreviations, slang terms, and emojis. One example

of recent research on mining social media text is the detection of medication mentions

from tweets (Weissenbacher et al., 2019, 2021; Zhang et al., 2022b). Hence we argue that

analysis of social media textual data is also relevant for biomedical discoveries and has

potential for future research.

Finally, we believe that a robust idea that could improve our information extraction

systems would be the use of neural network–based joint learning approaches, where
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multiple NLP tasks are trained and learned simultaneously, which minimizes error prop-

agation from initial steps. For example, the tasks of named entity recognition and rela-

tion extraction could be addressed together through joint learning as shown in previous

research (Bekoulis et al., 2018b; Luo et al., 2020a).
This thesis presented several ideas and methods for a wide range of NLP problems

involving information extraction in the biomedical domain. We believe that there is still

much room for improvement and that biomedical text mining will continue to benefit

greatly from deep learning breakthroughs and more curated resources.
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