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A B S T R A C T   

Smartphones have become an indispensable part of our everyday life, influencing various aspects 
of our routines, from wake-up alarms to managing daily life activities. Nowadays, almost every 
smartphone has a built-in accelerometer sensor. Motivated by the notable increase in smartphone 
usage in our everyday life, in this research, we focus on harnessing the potential of smartphone 
accelerometers to recognize human daily life activities, aiming to leverage the usability and 
convenience of smartphones. We used smartphone accelerometer data from data collection to 
daily life activity recognition. To accomplish this, we first collected the smartphone’s acceler
ometer data while performing five activities of daily living (ADLs) namely: moving downstairs, 
upstairs, running, standing, and walking, from 25 volunteers through a mobile application. After 
this, we extracted 15 statistical features from the smartphone’s accelerometer data to efficiently 
classify the five referred ADLs. We then applied data pre-processing techniques, i.e., data cleaning 
and feature extraction. Afterward, we trained nine commonly used machine learning models to 
recognize five ADLs. Finally, we evaluated and compared the performance of all nine ML models 
to recognize each activity and analyzed the performance of these trained ML models to identify all 
five ADLs. The evaluated results revealed that the Adaboost (AB) classifier outperformed all other 
ML models with 100% area under the curve (AUC), precision, recall, accuracy, and F1-score for 
recognizing the five ADLs.   
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1. Introduction 

Recognizing human daily living activities has become a significant field of research due to its growing applications in real life. 
Human activities recognition is essential in human health monitoring systems for efficiently measuring human physical activities to 
manage the pathologies like gait disorder, muscle movement disorder, depression, obesity, and others (Anikwe et al., 2022)– (Gjoreski 
et al., 2016). The correct measurement of human physical activities helps physicians to easily infer helpful information and prescribe 
intervention strategies (Ahmed & Ahmed, 2022). Therefore, the automatic recognition of human physical activities is significant for 
health monitoring systems. In addition, it has numerous applications in many other areas like virtual reality applications, surveillance, 
security, entertainment games, sports, and others (Pires et al., 2021)– (Pires, Hussain, et al., 2020). 

With the tremendous advancement in artificial intelligence (AI) and sensor technology, human activities are now recognized by 
applying AI techniques over sensor data collected using various sources, including wearable and non-wearable sensors (Liu et al., 
2021). Wearable sensors are embedded in a wearable device, including inertial sensors like accelerometers, gyroscopes, magnetom
eters, and force (pressure) sensors. They can be worn over different body locations to collect human activity data like wrist, neck, waist, 
foot, and others (Chen et al., 2022), (Kristoffersson et al., 2021). For example, devices like smartphones are also equipped with several 
inertial sensors to collect or monitor human activity data that can be used while keeping them in the pocket, hand, waist belt, and 
others (Chen et al., 2022), (Pires et al., 2018), (Dang et al., 2020), (Usmani et al., 2021). On the other hand, non-wearable sensors that 
can be (or are already) installed in the surrounding environment, like audio sensors, pressure sensors, infrared sensors, floor vibration 
sensors, and others, enable to monitor or collect human activity data (Ranieri et al., 2021), (Hussain et al., 2019). Altogether this can 
be used as human activities recognition (HAR) system, which consists of sets of sensors used to collect or monitor human activities. 

Based on the sensors used for human activities monitoring, sensor based HAR systems are classified into two types, i.e., wearable 
HAR systems and ambient HAR systems. Non-wearable sensors include audio, pressure, infrared, floor vibration, and others installed in 
the surrounding environment to monitor or collect human activity data (Hussain et al., 2019). 

HAR systems are broadly classified into two types: vision-based HAR systems and sensor-based HAR systems. The vision-based HAR 
systems consist of camera sets that collect or monitor human activities by capturing images or videos of a user (Kulsoom et al., 2022), 
(Moshiri et al., 2021). The data acquired from these vision-based or sensor-based HAR systems can be processed to classify the ac
tivities. Typically, the next step is removing or diminishing the raw data’s noise, followed by a segmentation process. Afterward, the 
resultant matrix is used to classify the activities. With the advancement in deep learning models, there is no need to extract the features 
as the deep learning models can manually extract features and patterns from a given image or video themselves (Kulsoom et al., 2022), 
(Moshiri et al., 2021). Therefore, the vision-based HAR systems are easy to use because a user does not need to wear or carry the 
vision-based HAR system. However, the vision based HAR systems can only recognize human activities within a limited area range 
depending on the underlying cameras used in these systems. Furthermore, they can also affect the privacy of a user. Although with the 
usage of RGB depth cameras, the privacy issue has been resolved to a large extent, the disadvantage is that the vision-based HAR 
systems are usually expensive (Poulose et al., 2022). 

The algorithms used for activity recognition are categorized into two types, i.e., analytical methods and machine learning methods. 
In analytical methods, statistical techniques, including thresholding (Poulose et al., 2022), fuzzy logic (Miranda et al., 2022), and 
hidden Markov models (Cheng et al., 2021), are used to classify human activities. On the other hand, machine learning methods are 
artificial intelligence-based methods that make HAR systems learn human activity patterns from given data to recognize human ac
tivities intelligently. Naïve Bayes, decision trees, support vector machines, k-nearest neighbors, random forest, k-means clustering, and 
other methods are the most common machine learning methods widely used for recognizing daily human activities. Fig. 1 shows the 
generic steps to develop machine learning based HAR systems. At first, the data is acquired from wearable or non-wearable sensors like 

Fig. 1. Generic steps for developing machine learning-based smartphones HAR systems.  
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accelerometers, gyroscopes, and cameras. Afterward, the acquired data is pre-processed to remove noise, after which features are 
extracted. Finally, the machine learning algorithms are trained over the resultant feature vector to recognize human activities. 

Motivated by the recent trends of sensor based HAR, in this work, we analyzed the performance of nine classical machine learning 
algorithms for recognizing five daily living human activities using accelerometer data. We intend to establish a baseline to implement a 
framework for identifying ADL based on wearable data sensors acquisition, in particular accelerometers. Furthermore, the authors seek 
to verify the algorithms and evaluate their performance according to accuracy, the F1-score, precision, recall, and area under the curve 
(AUC). The main objective of this work is to improve the current methods of the identification of ADL for the further development of a 
Personal Digital Life Coach personalized for the user and to perform the empowerment of daily life. The key contributions of this work 
are as follows.  

• We proposed 15 statistical features extracted only from a single smartphone’s sensor (accelerometer) data to classify five ADLs 
efficiently.  

• A comparative analysis has been provided among the performances of nine machine learning classifiers for recognizing five ADLs.  
• Finally, after a thorough comparison, we proposed the AB classifier to accurately recognize five ADLs as it outperformed all other 

classifiers and existing state-of-art. 

2. Methods and materials 

This section presents an overview of the methods and materials used in this comparative study. The methodology used in this paper 
consists of using a dataset with 15 features extracted from an accelerometer available in common smartphones. Firstly, the private 
dataset used in this work is analyzed considering the statistic range, minimum, maximum, mean, standard deviation, and variance. 
Furthermore, the features and target variables are represented. Secondly, nine machine learning methods are presented and applied to 
this dataset. The results are evaluated by considering the AUC, the classification accuracy (CA), the F1-Score, the precision, and recall 
metrics. The performance metrics have been analyzed accordingly to the separated classes. After that, a discussion of the overall results 
is presented to recommend the most appropriate method for activities of daily living (ADL) recognition. Fig. 2 represents the meth
odology of this comparative study. 

2.1. Study design 

The data (Pires & Garcia, 2020), (Pires, Marques, et al., 2020) has been collected using a custom-developed mobile application for 
Android Operating systems. The mobile application was installed in a BQ Aquaris 5.7 smartphone (DeviceSpecifications, 2022). It was 
placed in the front pocket of the users’ pants in a non-intrusive manner, allowing the execution of the different ADLs. The mobile 
application captures the sensors’ data related to ADLs’ performance, and the user must select the ADL performed for labeling the 
dataset. Each activity was performed and captured for 5 s at a frequency rate of 40 Hz. In total, 25 volunteers (15 men and 10 women) 
have the mobile application and collected data in different environments in the city of Covilha, Portugal. The dataset was collected for 
approximately 180 h, consisting of 36 h for each ADL. These individuals have different lifestyles, aged between 16 and 60 years old. 
Regarding the users’ lifestyles, 40% of the individuals practice physical exercise, and 60% have sedentary lifestyles. The ADLs analyzed 
are moving downstairs, upstairs, running, standing, and walking. The Anaconda software has been used as an environment to conduct 
machine learning experiments on a MacBook Pro. The device has a 2.6 GHz 6-core Intel Core i7, a Random Access Memory (RAM) of 
16 GB running at 2400 MHz DDR4, and a Radeon Pro 560 × 4 GB graphics card. Table 1 presents the statistical analysis conducted on 
IBM SPSS v26. The University of Beira Interior Ethics Committee validated the study with the reference CE-UBI-Pj-2020-035:ID1965. 

Fig. 2. Proposed methodology pipeline for recognizing five ADLs.  
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2.2. Data pre-processing 

We performed two significant steps in the pre-processing data stage: data cleaning and feature extraction. 

2.2.1. Data cleaning 
During the data acquisition, two significant issues need to be added values and noise in the data. The raw data was processed in the 

data cleaning stage to handle these issues. While capturing the data, some signal values may be missed due to battery, sensor mis
detection, software issues, etc. Therefore, the samples with missing values were removed to provide refined signals for better training 
machine learning algorithms. 

Table 1 
Dataset statistical analysis.  

Features Range Minimum Maximum Mean Std. Deviation Variance 

Id Names Statistic Statistic Statistic Statistic Std. Error Statistic Statistic 

F1 Distance between peaks 1 4677.00 4.00 4681.00 598.10 3.80 379.93 144349.54 
F2 Distance between peaks 2 1686.00 2.00 1688.00 447.13 2.20 219.65 48246.16 
F3 Distance between peaks 3 1132.00 2.00 1134.00 379.25 1.69 169.37 28684.50 
F4 Distance between peaks 4 934.00 1.00 935.00 331.53 1.46 145.69 21224.35 
F5 Distance between peaks 5 675.00 1.00 676.00 291.80 1.33 133.25 17756.04 
F6 Mean of maximum peaks 17.65 7.31 24.96 13.06 0.04 3.59 12.88 
F7 SD of maximum peaks 8.19 0.00 8.19 1.95 0.01 1.45 2.11 
F8 Variance of maximum peaks 67.10 6.314*10− 6 67.10 5.91 0.07 7.49 56.06 
F9 Median of maximum peaks 18.65 6.78 25.43 13.06 0.03 4.00 15.97 
F10 SD of raw data 8.15 6.227 * 10− 3 8.16 2.54 0.02 2.03 4.13 
F11 Mean of raw data 7.53 7.31 14.84 10.19 0.01 0.86 0.73 
F12 Maximum of raw data 20.49 8.62 29.10 16.25 0.04 4.42 19.57 
F13 Minimum of raw data 10.93 0.09 11.03 5.27 0.03 3.17 10.06 
F14 Variance of raw data 66.56 3.877 * 10− 5 66.56 10.57 0.14 13.62 185.39 
F15 Median of raw data 18.54 6.68 25.22 11.32 0.03 3.22 10.35  

Table 2 
Stratified 10-fold Cross-validation for target class methods specification.  

Classifier Model Parameters 

DT Pruning: at least two instances in leaves, at least five instances in internal nodes, maximum depth 100 
Splitting: Stop splitting when the majority reaches 95% (classification only) 
Binary trees: Yes 

RF Number of trees: 10 
Replicable training: No 
Maximal tree depth: default 
Stop splitting nodes with maximum instances: 5 

NB Priors: None 
Variance smoothing: 1e-9 

kNN Number of neighbors: 5 
Metric: Euclidean 
Weight: Uniform 

SVM SVM type: SVM, C = 1.0, ε = 0.1 
Kernel: RBF, exp(-auto|x-y|2) 
Numerical tolerance: 0.001 
Iteration limit: 100 

LR Ridge (L2), C = 1 
NN Hidden layers: 100 

Activation: Logistic 
Solver: SGD 
Alpha: 0.0001 
Max iterations: 200 
Replicable training: True 

SGD Classification loss function: Hinge 
Regularization: Ridge (L2) 
Regularization strength (α): 1e-05 
Learning rate: Constant 
Initial learning rate (η0): 0.01 
Shuffle data after each iteration: Yes 

AB Base estimator: tree 
Number of estimators: 50 
Algorithm (classification): Samme.r 
Loss (regression): Linear  
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Besides missing values, the sensors can also capture the environmental noise while recording the activity data. Therefore, a low- 
pass filter was applied to process a refined signal and reduce noise from sensor values. This low-pass filter on each activity signal 
reduces the noise induced in the accelerometer signals while performing the ADLs. Moreover, the low-pass filter also minimizes the 
effect of different constraints caused by the signal. 

2.2.2. Feature extraction 
After the primary pre-processing stage, the cleaned data yields a refined and noise-free signal for further processing. However, this 

data is still raw for different stages, providing limited information to machine learning algorithms. The machine learning algorithms 
exhibit trivial performance for recognizing the activities (Maharana et al., 2022). 

There was a need to extract more features based on the existing raw signal values to provide more helpful information for better 
activity recognition. Based on the current literature, 15 statistical features were extracted from each accelerometer data sample along 
three axes (x-axis, y-axis, and z-axis) to better train the machine learning algorithms to recognize human activities efficiently. Table 1 
displays the features extracted from each sample for identifying the five human daily living activities. We calculated the distance 
among the six most enormous peaks in the first five features, i.e., F1 to F5. The following four features, i.e., F6 to F9, are extracted by 
calculating the mean, standard deviation (SD), variance, and median value of the maximum peaks detected previously.Similarly, the 
last six features, i.e., F10 to F15, are extracted by calculating the SD, mean, maximum, minimum, variance, and median value of the 
whole raw accelerometer data detected, respectively. The statistical analysis was also performed to observe the overall data distri
bution of all 15 features on the entire dataset. The results are enlisted in Table 1. 

2.3. Models configuration and training 

After the data pre-processing, the next step is to train the machine learning algorithms for recognizing five daily human activities. 
However, before training started, the pre-processed dataset was split into train and test sets. The train set was passed to the machine 
learning algorithms to train them for the five human daily living activities recognition. On the other hand, the test set was kept hidden 
during the training stage to evaluate the performance of machine learning algorithms after the training. 

The 10-fold cross-validation was applied to split the pre-processed data into train and test sets. Once the train and test sets were 
generated, the next step was to train the machine learning models. However, before starting the training, there is a need to configure 
the machine learning models. Table 2 shows the model’s parameters used while training these models in a 10-fold cross-validation 
manner. We used nine commonly used machine learning algorithms, including AdaBoost (AB), Random Forest (RF), k-Nearest 
Neighbors (kNN), Decision Tree (DT), Logistic Regression (LR), Stochastic Gradient Decent (SGD), Naïve Bayes (NB), Neural Network 
(NN) and Support Vector Machine (SVM) algorithms to recognize the chosen five human daily living activities. 

2.4. Model performance assessment and validation 

After training the machine learning models with different configurations, the evaluation of their performances for recognizing 
human daily living activities was performed. First, five commonly used parameters were calculated to analyze the performance of the 
nine machine learning models. The five performance parameters include area under the curve (AUC), classification accuracy (CA), F1- 
score, precision, and recall. 

Some values are derived from the basic cardinalities of the confusion matrix to obtain these measures, namely the true positives 
(TP), the false positives (FP), the true negatives (TN), and the false negatives (FN) (Taha & Hanbury, 2015). TP represents the true 
positive, where the model correctly predicts the positive class. The TN represents the true negative, where the model correctly predicts 
the negative class. The FP stands for false positive, meaning the model incorrectly predicts the positive class. Finally, the FN stands for 
false negative, an outcome where the model incorrectly predicts the negative class. The positive class is the class that contains all the 
target classes for this subject (prediction of ADL), and the negative class is all the other possibilities. 

2.4.1. Classification accuracy (CA) 
It is defined as the proportion of accurate predictions (i.e., TP and TN) concerning all predictions. Mathematically, it is calculated as 

follows: 

CA=
TP + TN

TP + FN + TN + FP
× 100 (1)  

2.4.2. Precision 
It tells about the percentage of actual true positives concerning all positive predictions, i.e., TP and FP. The precision also provides 

information about Type-I errors, i.e., FP. A Type-I error occurs when a classifier wrongly predicts an ADL and rejects a null Hypothesis 
(Ho). Mathematically, it is calculated as follows: 

Precision=
TP

TP + FP
× 100 (2)  

2.4.3. Recall 
It presents the proportion of the truly predicted ADL concerning actual true positive data in the ground truth. It is also called 
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sensitivity. Mathematically, it is given as: 

Recall=
TP

TP + FN
× 100 (3)  

2.4.4. F1-score 
It is the harmonic mean of recall and precision. It refers to the percentage of correctly classified events. Mathematically, it is 

expressed as: 

F1 − Score=
2 × Precision × Recall

Precision + Recall
(4) 

The parameters defined above are used for the binary classification problem. While performing the multi-class classification, the 
one-vs-all (OVA) method was followed, i.e., it was calculated the performance parameters for each class concerning all other classes by 
considering one class at a time. Finally, the overall results by averaging the values of each parameter for all classes were calculated. 

3. Results 

As discussed earlier, based on the performance parameters defined in Section 2, it was evaluated the performance of all trained 
classifiers. Therefore, this section presents the performance of all classifiers for each ADL detection. Afterward, the average perfor
mance, calculated using the earlier OVA method, is represented. 

Table 3 shows the performance of nine machine learning classifiers for recognizing a person’s activity while moving downstairs 
over all the test set samples. It can be observed that AB and RF have 100% AUC, CA, F1-Score, Precision, and Recall. Thus, AB and RF 
outperformed all other classifiers for recognizing the Class-1 activity, i.e., moving downstairs. On the other hand, despite having 
99.06% AUC, SVM performed worst for identifying the Class-1 activity since it has the lowest F1-Score, Precision (i.e., highest FP or 
Type-I error), and Recall (i.e., highest FN or Type-II error) results, i.e., 78.66%, 82.14%, 75.45% respectively. 

Similarly, Table 4 presents the performance of the machine learning classifiers for recognizing a person’s activity while moving 
upstairs over all the test set samples. Again, the AB classifier has the highest scores, i.e., 100% AUC, 100% CA, 100% F1-Score, 100% 
Precision, and 100% Recall. So, AB outperformed all other classifiers for recognizing the Class-2 activity, i.e., moving upstairs. On the 
other hand, despite having 91.28% AUC, SVM performed worst for identifying the Class-2 activity since it has the lowest F1-Score, 
Precision, and Recall results, i.e., 56.36%, 50.93%, and 63.10%, respectively. 

Table 5 also exhibits the performance of previously mentioned machine learning classifiers for recognizing a person’s activity while 
running. It can be observed that AB and RF classifiers have the highest scores, i.e., 100% AUC, 100% CA, 100% F1-Score, 100% 
Precision, and 100% Recall. Thus, both AB and RF classifiers outperformed all other classifiers for recognizing the Class-3 activity, i.e., 
running. On the other hand, SVM has the lowest scores for identifying the Class-3 activity, i.e., 97.20% for F1-Score, 96.45% for 
Precision, and 97.95% for Recall results. Although SVM scores are the lowest for recognizing Class-3 activity, it still shows a better 
performance score than for identifying the Class-1 and Class-2 activities. 

Table 6 displays the classifiers’ performance in recognizing a person’s activity while standing. It can be observed that AB, RF, and 
kNN classifiers have the highest scores, i.e., 100% AUC, 100% CA, 100% F1-Score, 100% Precision, and 100% Recall. Thus, AB, RF, 
and kNN classifiers outperformed all other classifiers for recognizing the Class-4 activity, i.e., standing. On the other hand, SVM has the 
lowest scores for identifying the Class-4 activity, i.e., 97.16% F1-Score, 96.92% Precision, and 97.40% Recall results. Although SVM 
scores are the weakest for recognizing Class-4 activity, it still shows a better performance score than for identifying the Class-1 and 
Class-2 activities. 

Finally, Table 7 depicts the performance of nine machine learning classifiers for recognizing a person’s walking activity. The AB 
classifier has the highest scores, i.e., 100% AUC, 100% CA, 100% F1-Score, 100% Precision, and 100% Recall, outperforming all other 
classifiers for recognizing the Class-5 activity, i.e., walking. On the opposite side, despite having 94.86% AUC, SVM performed worst 
for identifying the Class-5 activity since it has the lowest F1-Score, Precision, and Recall results, i.e., 57.58%, 64.26%, and 52.15%, 
respectively. 

Table 3 
Stratified 10-fold Cross-validation for target Class-1 (i.e., Moving Downstairs).  

Model AUC CA F1 Precision Recall 

AB 100.00% 100.00% 100.00% 100.00% 100.00% 
RF 100.00% 100.00% 100.00% 100.00% 100.00% 
kNN 100.00% 99.56% 98.91% 97.85% 100.00% 
DT 99.43% 98.87% 97.18% 97.10% 97.25% 
LR 98.89% 95.86% 89.36% 91.91% 86.95% 
SGD 91.93% 95.55% 88.53% 91.33% 85.90% 
NB 96.43% 94.17% 84.42% 90.70% 78.95% 
NN 96.52% 93.97% 84.53% 86.82% 82.35% 
SVM 99.06% 91.81% 78.66% 82.14% 75.45%  
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4. Discussion 

The average AUC scores of all trained ML classifiers over the test data for recognizing the five ADLs are shown in Fig. 3. The AB and 
RF classifiers outperformed the other, resulting in a 100% average AUC score for recognizing five ADLs. At the same time, the SGD 
classifier showed poor performance, i.e., 94.79% average AUC score for recognizing the five ADLs. 

Similarly, the average CA scores of all trained ML classifiers over the test data are displayed in Fig. 4. Again, the AB classifier 
outperformed all other classifiers by resulting 100% average CA score for recognizing the five ADLs. On the other hand, the SVM 
classifier showed poor performance, i.e., a 90.93% average CA score for recognizing the five ADLs. 

Table 4 
Stratified 10-fold Cross-validation for target Class-2 (i.e., Moving Upstairs).  

Model AUC CA F1 Precision Recall 

AB 100.00% 100.00% 100.00% 100.00% 100.00% 
RF 100.00% 99.97% 99.93% 99.85% 100.00% 
kNN 99.47% 98.94% 97.37% 96.56% 98.20% 
DT 99.95% 98.78% 97.04% 94.25% 100.00% 
LR 96.56% 93.24% 83.66% 80.96% 86.55% 
SGD 90.53% 92.95% 83.07% 79.91% 86.50% 
NB 95.84% 92.36% 81.35% 79.48% 83.30% 
NN 94.85% 90.87% 78.04% 75.20% 81.10% 
SVM 91.28% 80.46% 56.36% 50.93% 63.10%  

Table 5 
Stratified 10-fold Cross-validation for target Class-3 (i.e., Running).  

Model AUC CA F1 Precision Recall 

AB 100.00% 100.00% 100.00% 100.00% 100.00% 
RF 100.00% 100.00% 100.00% 100.00% 100.00% 
kNN 98.76% 99.45% 98.61% 99.64% 97.60% 
DT 99.46% 99.35% 98.37% 98.89% 97.85% 
LR 99.97% 99.26% 98.15% 98.05% 98.25% 
SGD 99.00% 99.17% 97.92% 98.09% 97.75% 
NB 99.47% 99.07% 97.71% 96.09% 99.40% 
NN 99.73% 98.98% 97.47% 96.61% 98.35% 
SVM 99.37% 98.87% 97.20% 96.45% 97.95%  

Table 6 
Stratified 10-fold Cross-validation for target Class-4 (i.e., Standing).  

Model AUC CA F1 Precision Recall 

AB 100.00% 100.00% 100.00% 100.00% 100.00% 
RF 100.00% 100.00% 100.00% 100.00% 100.00% 
kNN 100.00% 100.00% 100.00% 100.00% 100.00% 
DT 99.76% 99.67% 99.18% 98.47% 99.90% 
LR 100.00% 99.64% 99.11% 98.47% 99.75% 
SGD 99.95% 99.64% 99.11% 98.47% 99.75% 
NB 99.98% 99.49% 98.74% 97.51% 100.00% 
NN 99.82% 99.35% 98.40% 96.85% 100.00% 
SVM 99.90% 98.86% 97.16% 96.92% 97.40%  

Table 7 
Stratified 10-fold Cross-validation for target Class-5 (i.e., Walking).  

Model AUC CA F1 Precision Recall 

AB 100.00% 100.00% 100.00% 100.00% 100.00% 
RF 100.00% 99.97% 99.92% 100.00% 99.85% 
kNN 98.28% 98.16% 95.27% 97.94% 92.75% 
DT 99.75% 97.60% 93.72% 98.35% 89.50% 
LR 96.64% 95.71% 89.18% 89.97% 88.40% 
SGD 92.53% 95.42% 88.45% 89.22% 87.70% 
NB 96.18% 94.37% 85.79% 86.60% 85.00% 
NN 95.83% 92.32% 80.83% 80.71% 80.95% 
SVM 94.86% 84.63% 57.58% 64.26% 52.15%  
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Likewise, the average F1 scores of all trained ML classifiers over the test data are shown in Fig. 5. Again, the AB classifier surpassed 
all other classifiers by resulting 100% average F1- score for recognizing the five ADLs. The SVM classifier performs less, with a 77.39% 
average F1-score for recognizing the five ADLs. 

The average precision scores of all trained ML classifiers over the test data are displayed in Fig. 6. The AB classifier outperformed all 
other classifiers by resulting 100% average precision score for recognizing the five ADLs. However, the SVM classifier also showed poor 
performance, i.e., a 78.14% average precision score for recognizing the five ADLs. 

Similarly, the average recall scores of all trained ML classifiers over the test data are shown in Fig. 7. Again, the AB classifier 
outperformed all other classifiers by resulting 100% average recall score for recognizing the five ADLs, and the performance of the SVM 
classifier is lower than others, i.e., 77.21% average recall for recognizing the five ADLs. 

In summary, the analysis of the performance of all nine trained ML classifiers for recognizing the five ADLs over the test data shows 
that the AB and RF classifiers resulted in the highest scores compared to all other classifiers’ performance. Further, the performance of 
AB and RF classifiers is quite similar. However, if a deep comparison is made, the AB classifier outperformed all other classifiers, 
including RF classifiers, for recognizing the five ADLs. On the other hand, the general performance of the SVM classifier is the lowest 
when compared to all different classifiers. Henceforth, from the analysis of experimental results, it is concluded that the SVM classifier 
underperforms when compared to its performance in the AB and RF classifiers. 

In contrast, the AB classifier outperformed all other classifiers for recognizing the five ADLs, i.e., moving downstairs, moving 
upstairs, running, standing, and walking. The key reason behind the outstanding results of the AB classifier is that it leverages ensemble 
learning in which multiple weak classifiers are combined to form a robust classifier. This approach allows the AB classifier to effec
tively handle the complex patterns and outliers in the accelerometer data, leading to efficient results in activity recognition. Addi
tionally, the iterative nature of the AB classifier enables it to assign higher weights to misclassified instances, improving its overall 
performance. 

The proposed AB classifier results have also been compared with an existing state-of-the-art in Table 8. Furthermore, the key 
difference between the performance of both methods can be significantly visualized as you look at Fig. 8. The proposed method 
outperformed the existing state-of-the-art by yielding 14.78% higher average CA score, 14.87% higher average F1 score, 14.92% 

Fig. 3. Average AUC scores of all classifiers for recognizing five ADLs.  

Fig. 4. Average CA scores of all classifiers for recognizing five ADLs.  
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Fig. 5. Average F1-scores of all classifiers for recognizing five ADLs.  

Fig. 6. Average Precision scores of all classifiers for recognizing five ADLs.  

Fig. 7. Average Recall scores of all classifiers for recognizing five ADLs.  

Table 8 
Performance comparison of the proposed methodology with the existing state-of-the-art for recognizing five ADLs.  

Model AUC CA F1 Precision Recall 

AB (Proposed) 100.00% 100.00% 100.00% 100.00% 100.00% 
DT (Pires, Marques, et al., 2020) N/A 85.22% 85.13% 85.08% 85.22%  
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higher average precision score, and 14.78% higher average recall score compared to the existing state-of-the-art. Overall, the proposed 
methodology achieved 14.78% higher average results as compared to the state-of-the-art. Hence, it can be concluded that the proposed 
methodology is significantly efficient for recognizing five ADLs. 

5. Conclusion 

Motivated by the notable increase in the usage of smartphones in our daily life, in this work, we used smartphone accelerometer 
data to recognize five everyday human activities. We first applied data-cleaning techniques to remove missing values and noise 
removal. We then extracted fifteen features over the smartphone accelerometer data to better train nine commonly used machine 
learning (ML) classifiers. Afterward, we trained nine commonly used ML models to recognize five activities of daily living (ADLs): 
moving downstairs, moving upstairs, running, standing, and walking. Lastly, we evaluated the performance of nine trained ML models 
over the test dataset and compared their performance for recognizing daily life activity. 

Furthermore, we also analyzed the overall performance of these trained ML models to identify all five ADLs. The experimental 
results showed that the AdaBoost (AB) classifier outperformed all other ML models with 100% area under the curve (AUC), precision, 
recall, accuracy, and F1-score for recognizing the five ADLs. On the other hand, the support vector machine (SVM) classifier under
performed all different classifiers. 

In the current work, five ADLs are included and only statistical features are extracted. In future work, we aim to have more ADLs to 
further explore the smartphone accelerometer data applicability in recognizing other day-to-day activities for human well-being. 
Similarly, we can incorporate some non-statistical features and other sensor modalities to improve activity recognition accuracy 
while broadening the range of activities. Moreover, we can investigate real-time activity recognition and system optimization for 
energy efficiency to enhance the practicality of smartphone-based activity recognition systems. 
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