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For the 2-dimensional anisotropic Sobolev inequality of the form

∫

R2

|u|6 dx dy � α

( ∫

R2

u2
x dx dy

)2 ∫

R2

∣∣D−1
x u y

∣∣2
dx dy,

it is proved that the sharp (smallest) positive constant α is exactly as 3(
∫

R2 φ2
x dx dy)−2,

where φ is a minimal action solution of (uxx + |u|4u)x = D−1
x u yy .

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we use variational methods to study the sharp (smallest) positive constant α in the 2-dimensional
anisotropic Sobolev inequality [2, p. 323] with critical nonlinearity

∫

R2

|u|6 dx dy � α

( ∫

R2

u2
x dx dy

)2 ∫

R2

∣∣D−1
x u y

∣∣2
dx dy, u ∈ Y0, (1.1)

where Y0 is the closure of ∂x(C∞
0 (R2)) := {gx: g ∈ C∞

0 (R2)} under the norm

‖u‖2
Y0

=
∫

R2

(
u2

x + ∣∣D−1
x u y

∣∣2)
dx dy,

where we denote ux = ∂u(x,y)
∂x , u y = ∂u(x,y)

∂ y and define D−1
x by

D−1
x h(x, y) =

x∫
−∞

h(s, y)ds.

Then Y0 is a Hilbert space with an induced inner product defined by 〈u, v〉 = ∫
R2 (ux vx + D−1

x u y D−1
x v y)dx dy. We say (1.1)

is an inequality with critical nonlinearity, because (1.1) is the limit case of the following well-known anisotropic Sobolev
inequality [2, p. 323]: for 0 < p < 4, there is a positive constant C > 0 such that
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∫

R2

|u|p+2 dx dy � C

( ∫

R2

u2
x dx dy

) p
2
( ∫

R2

∣∣D−1
x u y

∣∣2
dx dy

) p
4
( ∫

R2

u2 dx dy

) 4−p
4

(1.2)

holds for all u ∈ Y1, where Y1 is the closure of {gx: g ∈ C∞
0 (R2)} under the norm

‖u‖2
Y1

=
∫

R2

(
u2

x + ∣∣D−1
x u y

∣∣2 + u2)dx dy.

It is known that inequality (1.2) has been used extensively in the study of the generalized Kadomtsev–Petviashvili equa-
tion. For example, de Bouard et al. [4] proved that for 0 < p < 4, there is a nontrivial solitary wave solution of

(
ut + uxxx + (

up+1)
x

)
x = u yy, (x, y) ∈ R

2, t > 0. (1.3)

While for p � 4, de Bouard et al. [4] proved that (1.3) did not possess nontrivial solitary wave solution. Some decaying
properties of solitary wave of (1.3) were obtained in [5]. In [9,10], Liu et al. studied the stability and instability of solitary
waves of (1.3) by using (1.2). The sharp (smallest) value of C in (1.2) and its applications have been obtained in [6,7].
We also refer the interested reader to Weinstein [11], where the best constant for the Gagliardo–Nirenberg inequality was
proved.

Inequality (1.1) is the limit case of the inequality (1.2) and we believe that the study of the sharp constant α in (1.1) is
not without interest. The main results of the present paper are the following Theorems 1.1 and 1.2.

Theorem 1.1. The sharp (smallest) positive constant α in (1.1) is exactly as

α = 3

( ∫

R2

φ2
x dx dy

)−2

, (1.4)

where φ is a minimal action solution of

(
uxx + |u|4u

)
x = D−1

x u yy, u ∈ Y0 and u �= 0. (1.5)

Here and after, by saying φ is a minimal action solution of (1.5) we mean that φ is a solution of (1.5) and a minimizer of

d = inf
{

S(u): u ∈ Γ
}
, (1.6)

where

S(u) =
∫

R2

(
1

2
u2

x + 1

2

∣∣D−1
x ∂yu

∣∣2 − 1

6
|u|6

)
dx dy, Γ = {

u ∈ Y0: u �= 0 and I(u) = 0
}

with

I(u) =
∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2 − |u|6)dx dy.

Remark. The uniqueness of the minimal action solution φ of (1.5) is still an open problem. But the following theorem
implies that α is independent of the choice of the minimal action solution φ.

Theorem 1.2. Let d be defined as in (1.6). Then α = 3
4d2 .

In order to prove Theorems 1.1 and 1.2, we use variational methods. Our strategy is as follows. In the first place, we
solve the minimization problem (1.6) and prove that there is φ ∈ Γ such that d = S(φ) and φ is a minimal action solution
of (1.5). In the second place, we determine the minimum of the following minimizing problem

C0 = inf
{

J (u): u �= 0 and u ∈ Y0
}
, (1.7)

where

J (u) =
( ∫

R2

u2
x dx dy

)2 ∫

R2

∣∣D−1
x u y

∣∣2
dx dy

( ∫

R2

|u|6 dx dy

)−1

.

Then α = C−1
0 is the sharp constant such that (1.1) holds. In the third place, we use the properties of the minimal action

solution φ to prove Theorem 1.2.
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Remark. In [11], Weinstein studied the best constant CG in the Gagliardo–Nirenberg inequality

∫

RN

|u|q+1 � CG

( ∫

RN

|∇u|2
) N(q−1)

4
( ∫

RN

|u|2
) 2(q+1)−N(q−1)

4

, u ∈ W 1,2(
R

N)
.

This CG was determined directly from solving the following minimization problem

C−1
G = inf

{
(
∫

RN |∇u|2) N(q−1)
4 (

∫
RN |u|2) 2(q+1)−N(q−1)

4∫
RN |u|q+1

, u �= 0, u ∈ W 1,2(
R

N)}
,

due to the compactness embedding of W 1,2
radial(R

N ) into Lq+1(RN ) for 1 < q < 2∗ − 1, where

W 1,2
radial

(
R

N) = {
u ∈ W 1,2(

R
N)

: u(x) = u
(|x|)},

2∗ = 2N/(N − 2) for N � 3 and 2∗ = +∞ for N = 2. However, for the minimization problem considered here, we are facing
an anisotropic Sobolev space Y0 and we cannot use the above compact embedding to study the minimization problem (1.7).
We believe that the method presented here may have independent interests and can be used to study the best constant of
other kind of inequalities.

The rest of the paper is organized as follows. In Section 2, we study the minimization problem (1.6) and give some
properties of the minimal action solution φ of (1.5). Section 3 is devoted to the study of the minimum C0 in (1.7) and the
proofs of Theorem 1.1 and Theorem 1.2.

2. Minimal action solution of (1.5)

In this section, we study the minimal action solutions of (1.5) and its properties. Firstly, we need the following lemmas.

Lemma 2.1. For any u ∈ Y0 and u �= 0, there is a unique θu > 0 such that θuu ∈ Γ . Moreover, if I(u) < 0 then 0 < θu < 1.

Proof. For u �= 0 and any θ > 0, we have that

S(θu) =
∫

R2

(
θ2

2
u2

x + θ2

2

∣∣D−1
x ∂yu

∣∣2 − θ6

6
|u|6

)
dx dy.

Direct computations arrive at

θu =
( ∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2)
dx dy

) 1
4
( ∫

R2

|u|6 dx dy

)− 1
4

.

From the expression of I(u), one deduces that if I(u) < 0, i.e.,∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2)
dx dy <

∫

R2

|u|6 dx dy,

then 0 < θu < 1. �
Lemma 2.2. Γ �= ∅ and Γ is a manifold. Moreover there exists ρ > 0 such that for any u ∈ Γ , ‖u‖Y0 � ρ > 0.

Proof. Γ �= ∅ follows from the previous lemma. For any u ∈ Γ ,

〈
I ′(u), u

〉 = 2
∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2)
dx dy − 6

∫

R2

|u|6 dx dy = −4
∫

R2

|u|6 dx dy < 0,

which implies that Γ is a manifold. Next, for any u ∈ Γ using inequality (1.1) and Young inequality, we know that there is
a positive constant C such that

∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2)
dx dy =

∫

R2

|u|6 dx dy � C

( ∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2)
dx dy

)3

.

Hence ‖u‖Y0 � C− 1
4 := ρ > 0. The proof is complete. �
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Lemma 2.3. If v ∈ Γ and S(v) = d, then v is a critical point of S on Y0 , i.e. S ′(v) = 0.

Proof. By Lagrangian multiplier rule, we know there is μ ∈ R such that

S ′(v) = μI ′(v).

According to 〈S ′(v), v〉 = I(v) = 0 and

〈
I ′(v), v

〉 = −4
∫

R2

|u|6 dx dy < 0,

we have that μ = 0. Therefore S ′(v) = 0. The proof is complete. �
Theorem 2.4. We have d > 0 and there is a φ ∈ Γ such that d = S(φ). Moreover φ is a minimal action solution of (1.5).

Proof. The fact d > 0 follows from Lemma 2.2. We start with proving that there is φ ∈ Γ such that d = S(φ). Let {un}n∈N ⊂ Γ

be a minimizing sequence of the minimization problem (1.6), i.e.

un �= 0, I(un) = 0 and d + o(1) = S(un).

We obtain from Lemma 2.2 that there is a positive constant C such that ‖un‖Y0 � C and

lim inf
n→∞

∫

R2

|un|6 dx dy > 0.

Note that for any (x, y) ∈ R
2,

S
(
u(· + x, · + y)

) = S(u) and I
(
u(· + x, · + y)

) = I(u);
and for any λ > 0,

S
(
λu

(
λ2x, λ4 y

)) = S(u) and I
(
λu

(
λ2x, λ4 y

)) = I(u),

we obtain from concentration compactness lemma of Lions [8] (see also [1]) that there are λn > 0 and (xn, yn) ∈ R
2 such

that

ϕn(x, y) := λnun
(
λ2

n(x + xn), λ
4
n(y + yn)

)
satisfies ‖ϕn‖Y0 = ‖un‖Y0 � C ,

∫
R2 |ϕn|6 dx dy = ∫

R2 |un|6 dx dy,

I(ϕn) = I(un) and S(ϕn) = S(un).

Moreover ϕn ⇀ φ �= 0 weakly in Y0 and ϕn → φ a.e. in R
2.

If I(φ) < 0, then by Lemma 2.1 there is a 0 < θφ < 1 such that θφφ ∈ Γ . Therefore using Fatou lemma and I(ϕn) = 0, we
obtain that

d + o(1) = S(ϕn) =
(

1

2
− 1

6

)∫

R2

|ϕn|6 dx dy � 1

3

∫

R2

|φ|6 dx dy + o(1)

= 1

3
θ−6
φ

∫

R2

|θφφ|6 dx dy + o(1) = θ−6
φ S(θφφ) + o(1).

It is deduced from 0 < θφ < 1 that d > S(θφφ) which is a contradiction because θφφ ∈ Γ .
If I(φ) > 0, then using Brezis–Lieb lemma [3] one has

0 = I(ϕn) = I(φ) + I(vn) + o(1),

where vn = ϕn − φ. I(φ) > 0 implies that

lim sup
n→∞

I(vn) < 0. (2.1)

From Lemma 2.1 we know that there are tn := θvn such that tn vn ∈ Γ . Moreover we claim that lim supn→∞ tn ∈ (0,1).
Indeed if lim supn→∞ tn = 1, then there is a subsequence {tnk } such that limk→∞ tnk = 1. Therefore from tnk vnk ∈ Γ one has
that

I(vn ) = I(tn vn ) + o(1) = o(1).
k k k
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This contradicts (2.1). Hence lim supn→∞ tn ∈ (0,1). Since

d + o(1) = 1

3

∫

R2

|ϕnk |6 dx dy � 1

3

∫

R2

|vnk |6 dx dy + o(1) � 1

3
t−6
nk

∫

R2

|tnk vn|6 dx dy + o(1),

one has d > S(tnk vnk ), which is a contradiction.
Thus I(φ) = 0. Using Brezis–Lieb lemma again, one gets ‖vn‖Y0 → 0, i.e. ϕn → φ in Y0. Indeed, if ‖vn‖Y0 �→ 0 then we

have two cases: (i) For
∫ |vn|6 dx dy �→ 0, we have

d + o(1) = S(ϕn) = S(φ) + S(vn) + o(1) � d + d + o(1),

which it is a contradiction; (ii) For
∫ |vn|6 dx dy → 0, we have

d + o(1) = S(ϕn) = S(φ) + 1

2
‖vn‖2

Y0
+ o(1) > d,

which it is also a contradiction. Therefore, ‖vn‖Y0 → 0 and we conclude that S(ϕn) → S(φ) and d = S(φ).
Next, by Lemma 2.3, we know φ is a minimal action solution of (1.5). The proof is complete. �
Now we give some properties of the minimal action solution φ.

Lemma 2.5. Let φ be a minimal action solution of (1.5). Then∫

R2

(
φ2

x − 2

3
|φ|6

)
dx dy = 0. (2.2)

Proof. The proof is similar to [6, Lemma 2.2]. We omit the details here. �
Lemma 2.6. Let φ be a minimal action solution of (1.5). Then∫

R2

|φ|6 dx dy = 3

2

∫

R2

φ2
x dx dy,

∫

R2

∣∣D−1
x ∂yφ

∣∣2
dx dy = 1

2

∫

R2

φ2
x dx dy.

Proof. Since φ is a minimal action solution of (1.5), one has I(φ) = 0. Combining this with (2.2), one easily get the conclu-
sion. �

We conclude this section with another characterization of the minimal action solution φ of (1.5). Define

T (u) =
∫

R2

(
u2

x + ∣∣D−1
x ∂yu

∣∣2)
dx dy

and, for r > 0, set

Tr = inf

{
T (u): u ∈ Y0 and

∫

R2

|u|6 dx dy = r

}
.

Then we have:

Proposition 2.7. Let φ be a minimal action solution of (1.5). Then φ is a minimizer of Tr with r = ∫
R2 |φ|6 dx dy.

Proof. Since φ is a minimal action solution of (1.5), one has

S(φ) � S(u)

for any u ∈ Y0, u �= 0 and I(u) = 0. Denote

Tr0 = inf

{
T (u): u ∈ Y0 and

∫

R2

|u|6 dx dy =
∫

R2

|φ|6 dx dy

}
.

One has T (φ) � Tr0 . Next, we will prove that for any u ∈ Y0 satisfying
∫

R2 |u|6 dx dy = ∫
R2 |φ|6 dx dy, there holds

T (φ) � T (u).



690 J. Chen, E.M. Rocha / J. Math. Anal. Appl. 367 (2010) 685–692
In the first place, for any μ > 0,

I(μu) = μ2T (u) − μ6
∫

R2

|u|6 dx dy.

Hence

μ0 = (
T (u)

) 1
4

( ∫

R2

|u|6 dx dy

)− 1
4

is such that I(μ0u) = 0. In the second place, μ0u �= 0 implies that

S(φ) � S(μ0u) = 1

2
μ2

0T (u) − 1

6
μ6

0

∫

R2

|u|6 dx dy

= 1

3

(
T (u)

) 3
2

( ∫

R2

|u|6 dx dy

)− 1
2

= 1

3

(
T (u)

) 3
2

( ∫

R2

|φ|6 dx dy

)− 1
2

.

Since
∫

R2 |φ|6 dx dy = T (φ) and S(φ) = 1
3 T (φ), one has

(
T (φ)

) 3
2 �

(
T (u)

) 3
2 ,

i.e., T (φ) � T (u). Since u is arbitrary, one obtains T (φ) � Tr0 .
Therefore T (φ) = Tr0 and hence φ is a minimizer of Tr with r = ∫

R2 |φ|6 dx dy. The proof is complete. �
3. Sharp constant α

After studying the minimal action solution φ of (1.5), we are now in a position to determine the exact value of the sharp
constant α. The key step is to determine the exact value C0.

Proof of Theorem 1.1. The proof is divided into two steps. In the first step, we prove that

C0 � 1

3

( ∫

R2

φ2
x dx dy

)2

. (3.1)

For any u ∈ Y0 and u �= 0, we define w(x, y) = λu(μx, ξ y). Then one gets from direct computations that∫

R2

w2
x dx dy = λ2μξ−1

∫

R2

u2
x dx dy,

∫

R2

∣∣D−1
x ∂y w

∣∣2
dx dy = λ2μ−3ξ

∫

R2

∣∣D−1
x ∂yu

∣∣2
dx dy and

∫

R2

|w|6 dx dy = λ6μ−1ξ−1
∫

R2

|u|6 dx dy.

Define

λ2μ−3ξ

∫

R2

∣∣D−1
x ∂yu

∣∣2
dx dy = 1

2

∫

R2

φ2
x dx dy (3.2)

and

λ6μ−1ξ−1
∫

R2

|u|6 dx dy = 3

2

∫

R2

φ2
x dx dy. (3.3)

Then (3.2) and (3.3) implies that

λ4μ2ξ−2
∫

2

|u|6 dx dy = 3
∫

2

∣∣D−1
x ∂yu

∣∣2
dx dy. (3.4)
R R
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Therefore

∫

R2

w2
x dx dy =

(
3
∫

R2

∣∣D−1
x ∂yu

∣∣2
dx dy

( ∫

R2

|u|6 dx dy

)−1) 1
2
∫

R2

u2
x dx dy. (3.5)

The definition of w and (3.2)–(3.3) imply that

T (w) � T (φ),

and from the expression of T (w), it is deduced that∫

R2

w2
x dx dy �

∫

R2

φ2
x dx dy.

Combining this with (3.5) and the definition of J we get that

J (u) � 1

3

( ∫

R2

φ2
x dx dy

)2

.

Since u �= 0 is arbitrary, one has C0 � 1
3 (

∫
R2 φ2

x dx dy)2.

In the second step, we prove that C0 � 1
3 (

∫
R2 φ2

x dx dy)2. Indeed, from φ �= 0 and

J (φ) =
( ∫

R2

φ2
x dx dy

)2 ∫

R2

∣∣D−1
x ∂yφ

∣∣2
dx dy

(∫

R2

|φ|6 dx dy

)−1

=
( ∫

R2

φ2
x dx dy

)2(1

2

∫

R2

φ2
x dx dy

)(
3

2

∫

R2

φ2
x dx dy

)−1

= 1

3

( ∫

R2

φ2
x dx dy

)2

,

we immediately have C0 � 1
3 (

∫
R2 φ2

x dx dy)2. Thus

α = C−1
0 = 3

( ∫

R2

φ2
x dx dy

)−2

.

The proof is complete. �
Remark. Observing the proof, we know that to get (3.1), it is essential to solve λ, μ and ξ from (3.2) and (3.3) (usually one
cannot solve three variables only from two equations).

Proof of Theorem 1.2. Since d = S(φ) and φ is a minimal action solution of (1.5), we obtain from Lemma 2.6 that

d = 1

2

∫

R2

φ2
x dx dy + 1

2

∫

R2

∣∣D−1
x ∂yφ

∣∣2
dx dy − 1

6

∫

R2

|φ|6 dx dy =
(

1

2
+ 1

4
− 1

4

)∫

R2

φ2
x dx dy = 1

2

∫

R2

φ2
x dx dy.

Therefore α = C−1
0 = 3(

∫
R2 φ2

x dx dy)−2 = 3/(4d2). �
Remark. There are anisotropic Sobolev inequalities like (1.1) in higher dimensions R

N with N � 3, e.g. see [2], for which the
sharp constant of the related inequality is still unknown. However, since here we use the special structure of the problem in
2-dimensional case, it should be further investigated if the proposed method can be extended to such kind of inequalities
on higher dimensions.
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