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Abstract. We consider the existence of nontrivial solutions of the equation

−∆u−
λ

|x|2
u = |u|2

∗−2u+ µ|x|α−2u+ f(x)|u|γ , x ∈ Ω\{0}, u ∈ H1
0 (Ω),

where 0 ∈ Ω is a smooth bounded domain in RN (N ≥ 3). By variational

methods and Nehari set techniques, we show that this equation has at least
two nontrivial solutions in H1

0 (Ω), under some additional hypotheses on λ > 0,

µ > 0, α > 0, 0 ≤ γ < 1 and f ∈ L∞(Ω), which may be sign-changing. If

f > 0 then the solutions are positive.

1. Introduction. Let 0 ∈ Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth
boundary, and 2∗ =̇ 2N/(N − 2) denote the critical Sobolev exponent. Here, we
study the existence of nontrivial u ∈ H1

0 (Ω) that satisfies the following problem{
−∆u(x)− λ

|x|2 u(x) = |u(x)|2
∗−2u(x) + µ|x|α−2u(x) + f(x)|u(x)|γ in Ω\{0},

u(x) = 0 on ∂Ω,

(1)

and we prove that there are (at least) two solutions both positive for suitable values
of λ, α, µ, γ and hypotheses on the nonlinearity f .

Classes of elliptic equations which include Eq.(1) has a lost of compactness phe-
nomena, since the nonlinearity has a critical growth imposed by the critical exponent
2∗ of the Sobolev embedding H1

0 (Ω) into L2∗(Ω). This means that we could not
use standard variational methods. On the other hand, due to the presence of the
singular term λ

|x|2 , the problem has a strong singularity at 0 ∈ Ω.

Elliptic equations with critical exponent have been studied by many authors (e.g.,
see [9, 2]). For λ = 0, µ = 0, and odd nonlinearity, Li-Zou [10] obtained infinitely
many solutions of Eq.(1). For more related results, we refer the interested readers
to [6, 11, 12].

Elliptic equations containing simultaneously the critical exponent and a singular
term (λ 6= 0), which are particular cases of Eq.(1), were considered in the literature
as Ferrero-Gazzola [7], which established the existence of solutions whenever α = 2,
f ≡ 0, µ belongs to a left neighborhood constant width of any eigenvalue, and
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suitable restrictions on the spatial dimension N exists. Note that in our case,
the presence of suitable unbounded coefficients |x|α will allow us to release the
restriction on the spatial dimension N . Other relevant studies are the works of
He-Zou [8], for µ = 0 and under some conditions on f(x, u), Tarantello [13] and
Chen [3], for α = 2 and f ≡ 0. For α = 2, λ = 0 and γ = 0, Tarantello [14] proved
the Eq.(1) with Neumann condition has three solutions, one of which necessarily
changes sign. When α = 2, γ = 0 and N ≥ 7, Kang-Deng [9] proved the existence
of two nontrivial solutions of Eq.(1) provided f satisfies some additional conditions.
However, to our knowledge, there are no results containing both singular term and
critical Sobolev exponent for the nonlinearity f(x)|u|γ , with µ 6= 0 and α 6= 2.
However, for γ = 0, Chen-Rocha [5] recently showed the existence of four solutions
for Eq.(1), one of which changes sign.

In the present paper, motivated by overcoming the difficulties above, and the
results of Chen-Rocha [5], we will show using variational methods and Nehari set
techniques that Eq.(1) has at least two nontrivial solutions in the Sobolev space
H1

0 (Ω), which are positive when f > 0.

Let us introduce some notation and remarks. Define the best constant in the
Hardy inequality by Λ =̇ (N − 2)2/4, and, for convenience of presentation, define
the functionals

T (u) =̇

∫
Ω

|∇u|2 −
(

λ

|x|2 + µ|x|α−2

)
|u|2 dx, U(u) =̇ ‖u‖2

∗
2∗ , F (u) =̇

∫
Ω

f |u|γu dx.

Since Eq.(1) is variational, mainly because of the Hardy inequality, we say that
u ∈ H1

0 (Ω) is a (weak) solution of Eq.(1) if and only if u is a critical point of the
Euler functional

I(u) =̇
1

2
T (u)− 1

2∗
U(u)− 1

γ + 1
F (u),

i.e. for any v ∈ H1
0 (Ω) there holds∫

Ω

(∇u∇v − λ

|x|2
uv − µ|x|α−2uv − |u|2

∗−2uv − f |u|γv)dx = 0.

We also define the functionals (derivatives of I)

Q(u) =̇ T (u)− U(u)− F (u) and J(u) =̇ 2T (u)− 2∗ U(u)− (γ + 1)F (u).

So, Q and J are well defined C1-functionals on H1
0 (Ω). Define the Nehari set

M =̇ {u ∈ H1
0 (Ω)\{0} : Q(u) = 0}.

and the subsets of M defined by the sign of J (second derivative of I)

M+ =̇ {u ∈M : J(u) > 0}, M0 =̇ {u ∈M : J(u) = 0}, M− =̇ {u ∈M : J(u) < 0}.

From the work of Chaudhuri-Ramaswamy [2], we know that

µ1 =̇ inf

{∫
Ω

(
|∇u|2 − λ

|x|2
|u|2
)
dx :

∫
Ω

|x|α−2|u|2dx = 1

}
> 0.

Define the value

S =̇ inf

{(
T (u)

) 1
2

:

∫
Ω

|u|2
∗
dx = 1

}
.

Remark 1. If 0 ≤ λ < Λ, and 0 < µ < µ1. Note that, using Hardy inequality and
Sobolev embedding, we have S > 0, T (u) > 0 for all u ∈ H1

0 (Ω)\{0} and T (0) = 0.
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For any u ∈ H1
0 (Ω)\{0}, define the positive value

tmax ≡ tmax(u) =̇

(
1− γ

2∗ − γ − 1
T (u)U(u)−1

)N−2
4

and the functional Φ∗ : H1
0 (Ω)\{0} → R by

Φ∗(u) =̇ tmax(u)1−γ T (u)− tmax(u)2∗−γ−1 U(u) = C(γ,N)T (u)
2∗−γ−1

2∗−2 U(u)−
1−γ
2∗−2 ,

where C(γ,N) =̇
(

1−γ
2∗−γ−1

) 1−γ
2∗−2

(
2∗−2

2∗−γ−1

)
. Let Bε =̇

{
w ∈ H1

0 (Ω) : ‖w‖ < ε
}

,

µ̃f =̇ inf
u∈H1

0 (Ω)
{Φ∗(u)− |F (u)|} and the infimum introduced by Tarantello [14]

µf =̇ inf
U(u)=1

{
C(γ,N)T (u)

2∗−γ−1
2∗−2 − F (u)

}
.

Remark 2. If µ̃f > 0 then µf > 0.

In what follows, we state the main result (Theorem 1.1), for such we consider
the following hypotheses:

(H0) 0 ≤ λ < Λ, 0 < µ < µ1, 0 < α <
√

Λ− λ, f ∈ L∞(Ω), and µ̃f > 0;

(H1) N−
√

Λ√
Λ+
√

Λ−λ < γ < 1, f is continuous at 0 ∈ Ω and f(0) > 0;

(H2) 0 ≤ γ < 1 and f > 0.

We say that hypotheses (H) hold if hypotheses (H0) hold and one of the hypotheses
(H1) or (H2) hold.

We will prove the following result:

Theorem 1.1. Suppose hypotheses (H) hold, then Eq.(1) has two nontrivial solu-
tions in H1

0 (Ω). Moreover, if (H2) then both solutions are positive.

Notation. In what follows, we denote the norm in H1
0 (Ω) by ‖ · ‖, the integral∫

Ω
· dx by

∫
·. We use =̇ to emphasize a new definition. Additionally, O(εβ)

means that |O(εβ)ε−β | ≤ K for some constant K > 0, o(εβ) means |o(εβ)ε−β | → 0
as ε → 0, o(1) is just an infinitesimal value, and → (respectively, ⇀) will denote
strongly (respectively, weakly) convergence.

2. Preliminaries results. In this section, we give some preliminaries which play
an important role in the variational methods used to study Eq.(1).

Proposition 1 (see [1]). For 0 < λ < Λ =̇ (N−2
2 )2, the problem

−∆u− λ

|x|2
u = |u|2

∗−2u x ∈ RN\{0}, u(x)→ 0 as |x| → +∞, (2)

has a family of solutions

Uε(x) = [4ε(Λ−λ)N/(N−2)]
N−2

4

[ε|x|γ1/
√

Λ+|x|γ2/
√

Λ]
N−2

2

for ε > 0,

where γ1 =
√

Λ −
√

Λ− λ, γ2 =
√

Λ +
√

Λ− λ. Moreover, Uε is the extremal
function of the minimization problem

Sλ = inf

{∫
RN

(
|∇u|2 − λ

|x|2u
2

)
dx : u ∈ D1,2(RN ),

∫
RN |u|

2∗dx = 1

}
.

Clearly, ∫
RN |Uε(x)|2∗dx =

∫
RN

(
|∇Uε|2 − λ

|x|2U
2
ε

)
dx = S

N
2

λ .
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The following integral estimates are also relevant. Define a cut-off function
φ(x) = 1 if |x| ≤ δ, φ(x) = 0 if |x| ≥ 2δ, φ(x) ∈ C1

0 (Ω) and |φ(x)| ≤ 1, |∇φ(x)| ≤ C.
Let vε(x) = φ(x)Uε(x).

Proposition 2 (see [5]). Let 0 ≤ λ < Λ and w ∈ H1
0 (Ω) be a solution of Eq.(1).

Then for ε > 0 small enough we have that

(i)
∫
w2∗−1vε = O(ε

N−2
4 ) and

∫
wv2∗−1

ε dx = O(ε
N−2

4 );

(ii)
∫

(|∇vε|2 − λ
|x|2 v

2
ε) = S

N
2

λ +O(ε
N
2 ) +O(ε

N−2
2 );

(iii)
∫
v2∗

ε = S
N
2

λ −O(ε
N
2 );

(iv)
∫
|x|α−2v2

ε = O(ε
α
√

Λ
2
√

Λ−λ ), when 0 < α < 2
√

Λ− λ.

Note that, for all u ∈ H1
0 (Ω),

F (u) ≤
∣∣∣∣∫ f |u|γu

∣∣∣∣ ≤ ‖f‖∞‖u‖γ+1
γ+1 ≤ (‖f‖∞Kγ+1) ‖u‖γ+1 =̇ KT ‖u‖γ+1, (3)

since f ∈ L∞, using Hölder inequality and the Sobolev embedding of H1
0 (Ω) in

Lγ+1(Ω) with constant Kγ+1 > 0.
For u ∈M , the functionals I and J , can be rewritten as

IM (u) = − 1− γ
2(γ + 1)

T (u) +
2∗ − γ − 1

2∗(γ + 1)
U(u),

JM (u) = (1− γ)T (u)− (2∗ − γ − 1)U(u),

where we have denoted the restrictions of I and J , to the set M , by IM and JM ,
respectively.

Remark 3. (a) IM (u) is bounded from below in M ; (b) For any u ∈ H1
0 (Ω)\{0},

we have I(tu)→ −∞ as |t| → ∞.

The following Lemma is a generalization of Lemma 2.1 of Tarantello [14]:

Lemma 2.1. Suppose the hypotheses (H0) hold and 0 ≤ γ < 1. For any u ∈
H1

0 (Ω)\{0},
define sf ≡ sf (u) =̇ signF (u) ∈ {−1,+1}. Then there exist three unique values
t0 ≡ t0(u), t− ≡ t−(u), t+ ≡ t+(u) ∈ R such that:
(i) sf t+ > 0, t+u ∈M−, sf t+ > tmax and I(t+u) = maxsf t≥−tmax

I(tu);
(ii) sf t− > 0, t−u ∈M+, 0 < sf t− < tmax and I(t−u) = min−tmax≤t≤tmax

I(tu);
(iii) sf t0 < 0, t0u ∈M−, sf t0 < −tmax and I(t0u) = maxsf t≤tmax

I(tu).

Proof. Let t ∈ R. Define φu(t) =̇ |t|−γ 〈I ′(tu), u〉+ F (u), i.e.

φu(t) = t |t|−γ T (u)− t |t|2
∗−γ−2 U(u). (4)

From the definition of φu, we have φu(0) = limt→0± φu(t) = 0,
limt→+∞ φu(t) = −∞, φu(−t) = −φu(t) for all t > 0, and φ′′u(t) < 0 for all t > 0,
so φu (restricted to t > 0) is a concave function which attains its maximum at tmax

and φu(tmax) = Φ∗(u) > 0. For simplicity of presentation, we first assume sf = +1.
(i) Since φu (t > 0) is a concave and continuous function and 0 < F (u) < φu(tmax),
there exists an unique t+ > tmax such that φu(t+) = F (u) > 0. This implies, from
the definition of φu, that |t+|−γ 〈I ′(t+ u), u〉 = 0 so Q(t+ u) = 0 and t+ u ∈ M .
Moreover, from φ′u(t+) < 0 i.e. T (u) < (2∗ − γ − 1)(1 − γ)−1|t+|2

∗−2 U(u), we
have JM (t+u) < 0; thus t+u ∈ M− and I(t+u) ≥ I(tu) for all t ≥ tmax. The last
statement is true because, if we set r(t) = I(t u), then r′(t) = t−1Q(t u) so r′(t+) =
0, and from r′(t) = |t|γ(φu(t)−φu(t+)) we have r′(t) > 0, when tmax ≤ t < t+, and
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r′(t) < 0, when t > t+.
(ii) By similar arguments to the ones used in (i), there exists an unique t− > 0
such that −tmax < 0 < t− < tmax and φu(t−) = F (u) > 0 so t−u ∈ M and,
from φ′u(t−) > 0, t−u ∈ M+. From r′(t) = tγ(φu(t) − φu(t−)), we have r′(t) > 0,
when t− < t ≤ tmax, and r′(t) < 0, when −tmax ≤ t < t−. Therefore, at least,
I(t−u) ≤ I(tu) for all −tmax ≤ t ≤ tmax.
(iii) Note that limt→−∞ φu(t) = +∞, φu(−tmax) = −Φ∗(u) < 0, φ′u(t) < 0 for all
t < −tmax, and φ′′u(t) > 0 for all t < 0, hence there exists an unique t0 < −tmax < 0
such that φu(t0) = F (u) > 0 so t0u ∈ M and, from φ′u(t0) < 0, t0u ∈ M−. From
r′(t) = tγ(φu(t) − φu(t0)), we have r′(t) > 0, when t < t0, and r′(t) < 0, when
t0 < t < −tmax. Therefore, I(t0u) ≥ I(tu) for all t < −tmax.
For the general situation sf ∈ {−1,+1}, it is enough to observe that (sf )−1 = sf ,
(sf )2 = 1, φu(sf t) = sf φu(t) for t ∈ R, F (sf u) = sf F (u), JM (sf u) = JM (u),
and r′(sf t) = sf r

′(t) for t ∈ R.

Remark 4. The above Lemma can be further improved. In fact, φ′u(±tmax) = 0,
φ′u(t) > 0 when −tmax < t < tmax and φ′u(t) < 0 otherwise. So, at least, we
can say that: (i) I(t+u) = maxsf t≥t− I(tu); (ii) I(t−u) = mint0≤sf t≤t+ I(tu); (iii)
I(t0u) = maxsf t≤t− I(tu).

3. Proof of Theorem 1.1. We now introduce some auxiliar results which are
relevant to proof the main result of this work. Set

c+ =̇ inf
u∈M+

I(u) and c− =̇ inf
u∈M−

I(u).

Recall M 6= ∅ (since M− 6= ∅; see Lemma 2.1), M is a manifold, and I is continuous
and bounded from below on M . Ekeland’s variational principle applied to the
optimization problem

c0 =̇ inf
u∈M

I(u) (5)

gives a bounded minimizing sequence (un)n∈N ⊂M satisfying:

(Ea) c0 ≤ I(un) < c0 + 1
n ;

(Eb) I(u) ≥ I(un)− 1
n‖u− un‖ for all u ∈M .

The following result will be used below, in a contradiction argument, to show
that the minimizing sequence converges strongly in H1

0 (Ω).

Proposition 3. Assume hypotheses (H0) hold and 0 ≤ γ < 1. Let u ∈ H1
0 (Ω),

(un)n∈N ⊂ M− be such that un ⇀ u weakly in H1
0 (Ω) and I(un) → c ∈ R but

un does not converge strongly to u in H1
0 (Ω). Recall the definitions of sf ≡ sf (u),

t+ ≡ t+(u) and t− ≡ t−(u) in Lemma 2.1. Then the following holds:
(1) If u 6= 0 and sf t+ ≤ 1, then c > I(sf t+u);

(2) If u 6= 0 and sf t+ > 1, then c ≥ I(sf t−u) + 1
N S

N
2

λ ;

(3) If u ≡ 0, then c ≥ 1
N S

N
2

λ .

Proof. Note that un ⇀ u (see Chen-Li-Li [4], Lemma 2.6), and∫
|x|α−2|un − u|2 → 0 as n→∞. We may assume that exist a, b ≥ 0 such that

T (un − u) =
∫

(|∇un −∇u|2 − λ
|x|2 |un − u|

2) + o(1) → a2, and
∫
|un − u|2

∗ → b2
∗
.

Note that, since un does not converge strongly to u, we have a 6= 0. On the
other hand, from f ∈ L∞ and the compactness of the Sobolev embedding, we have∫
f |un−u|γ(un−u)→ 0. For t ∈ R, we set r(t) = I(tu), β(t) = a2

2 t
2− b2

∗

2∗ |t|
2∗ and

θ(t) = r(t) + β(t). We have r′(t) = 〈I ′(tu), u〉 = |t|γ (φu(t)− φu(t+)) . From
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|I(tun)− θ(t)| ≤
∣∣∣ 12 t2T (un − u)− |t|

2∗

2∗ ‖un − u‖
2∗

2∗ − β(t)
∣∣∣

we see that I(tun) → θ(t) as n → +∞. Now the proof of the three statements
follow the scheme of the proof of Proposition 3.3 in [5].

Lemma 3.1. Suppose hypotheses (H0) hold and 0 ≤ γ < 1, then
(i) For every u ∈M , JM (u) =̇ (1− γ)T (u)− (2∗− γ − 1)U(u) 6= 0, i.e. M0 = ∅;
(ii) For any sequence (un)n∈N ⊂M , we have

lim
n→+∞

JM (un) = 0 ⇒ lim inf
n→+∞

‖un‖ = 0;

(iii) Given u ∈M , there exist ε > 0 and a differentiable function t : H1
0 (Ω)→ R,

satisfying t(w) > 0 for all w ∈ Bε, t(0) = 1, t(w)(u− w) ∈M for all w ∈ Bε and

〈
t′(0), w

〉
=

∫ (
2∇u∇w − 2 λ

|x|2 uw − 2µ|x|α−2uw − 2∗|u|2
∗−2uw − (1 + γ)f |u|γw

)
JM (u)

.

(6)

Proof. (i) Assume, by contradiction, that (1 − γ)T (ū) − (2∗ − γ − 1)U(ū) = 0 for

some ū ∈ M , then we have sū =̇ U(ū)
1

2∗ ≥
(

1−γ
2∗−γ−1C

) 1
2∗−2

> 0 for some constant

C > 0, by using the Gagliardo-Nirenberg-Sobolev inequality. On the other hand,
since ū ∈M , we have F (ū) = 2∗−2

1−γ U(ū). Recall the definition of Φ∗ in Lemma 2.1,

and define Ψ∗(u) =̇ Φ∗(u) − F (u) for all u ∈ M . Hence, Ψ∗(su) = s1+γΨ∗(u), for
any s > 0 and u ∈M , and

Ψ∗(ū) ≥ inf
U(u)1/2∗=sū

Ψ∗(u) = s1+γ
ū

(
inf

U(v)1/2∗=1
Ψ∗(v)

)
≥ s1+γ

ū µf .

Let K =̇ 2∗−γ−1
1−γ . Thus, from µf > 0, we have

0 < s1+γ
ū µf ≤ Ψ∗(ū) ≤

[
K−

1−γ
2∗−2 (1−K)K

2∗−γ−1
2∗−2 − (K − 1)

]
U(ū) < 0.

This is a contradiction. Therefore (1−γ)T (u)− (2∗−γ−1)U(u) 6= 0 for all u ∈M .
(ii) Arguing by contradiction again, assume there exists a subsequence (un)n∈N ⊂

M such that (1− γ)T (un)− (2∗ − γ − 1)U(un) = o(1) and ‖un‖ > s for all n ∈ N
and some s > 0. Hence, sun =̇ U(un)

1
2∗ > 0 for all n ∈ N. Since un ∈M , we get

F (un) = T (un)− U(un) = [(2∗ − 2)/(1− γ)]U(un) + o(1).

These together with µf > 0 and Ψ∗(un) ≥ inf
U(u)1/2∗=sun

Ψ∗(u) ≥ s1+γ
un µf implies

0 < s1+γ
un µf ≤ Ψ∗(un) ≤

(
1−K2

)
U(un) + o(1) < 0

which is a contradiction, so (1−γ)T (un)−(2∗−γ−1)U(un) = o(1) and ‖un‖ = o(1).
(iii) Let u ∈M and φ : R×H1

0 (Ω)→ R be defined by

φ(t, w) =̇ t|t|−γT (u− w)− t|t|2
∗−γ−2U(u− w)− F (u− w).

Note that ∂
∂tφ(1, 0) = JM (u) 6= 0 (by (i)) and φ(1, 0) = Q(u) = 0. Hence applying

the implicit function theorem at the point (1, 0), we have that there exists a function

t ≡ t(w) with t(0) = 1 and 〈t′(0), w〉 = − ∂
∂wφ(1, 0)

(
∂
∂tφ(1, 0)

)−1
.

Proposition 4. Suppose hypotheses (H0) hold and 0 ≤ γ < 1. We have c0 < 0,
there is a critical point w0 ∈ M+ of I such that I(w0) = c0, and w0 is a local
minimizer for I. Moreover, w0 > 0 whenever hypotheses (H2) hold.
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Proof. Let u ∈ M+ 6= ∅ (see Lemma 2.1). From J(u) > 0, we have U(u) <
1−γ

2∗−γ−1T (u) thus IM (u) < 0 and c+ < 0. So, c0 =̇ infu∈M I(u) ≤ infu∈M+ I(u) < 0.

From Ekeland’s variational principle there exists a bounded minimization sequence
(un)n∈N ⊂M . We need to show that ‖Í (un)‖ → 0 as n→∞.

Choosing n where Í (un) 6= 0 and applying Lemma 3.1(iii), for δ > 0 sufficiently

small and setting u ≡ un and w ≡ δ Í(un)
‖Í(un)‖ , we have that exists tn (δ) =̇ t

(
δ Í(un)
‖Í(un)‖

)
such that wδ =̇ tn (δ)

(
un − δ Í(un)

‖Í(un)‖

)
∈ M . On the other hand, by (Eb) and the

Taylor expansion of I, we have

1

n
‖wδ − un‖ ≥ 〈Í (wδ) , un − wδ〉+ o (‖un − wδ‖)

= 〈Í (wδ) , un (1− tn (δ))〉+

〈
Í (wδ) , tn (δ) δ

Í (un)

‖Í (un)‖

〉
+ o

(∥∥∥∥un − tn (δ)un + δ
Í (un)

‖Í (un)‖
un

∥∥∥∥) .
Hence

1

n
‖wδ − un‖ ≥ (1− tn (δ)) 〈Í (wδ) , un〉+ δtn (δ)

〈
Í (wδ) ,

Í (un)

‖Í (un)‖

〉
+ o (δ) . (7)

Dividing (7) by δ > 0 and passing to the limit as δ → 0, we have

1

n
(1 + ‖un‖ ‖t́n (0)‖) ≥

〈
Í (un) ,

Í (un)

‖Í (un)‖

〉
= ‖Í (un)‖ .

Since (un) is a bounded sequence, ‖Í (un)‖ ≤ 1
n (1 + ‖un‖ ‖t́n (0)‖) ≤ C

n (1+

‖t́n (0)‖) for a suitable positive constant C > 0. Note that t́n (0) =
〈
t́ (0) , Í(un)

‖Í(un)‖

〉
.

Then by (6), since (un) is bounded sequence and ‖w‖ = δ, we have that

|t́n (0)| ≤ C1

|(1− γ)T (un)− (2∗ − γ − 1)U(un)|
for a suitable positive constant C1. From Lemma 3.1, we have

lim inf
n→+∞

[(1− γ)T (un)− (2∗ − γ − 1)U(un)] > 0.

Thus |t́n (0)| ≤ K1, for a suitable constant K1 > 0 and therefore ‖Í (un)‖H0
1 (Ω) → 0

as n→∞.
Let w0 be the weak limit in H1

0 (Ω) of (a subsequence of) the minimizing sequence
un. Then w0 ∈ M+. Indeed, suppose that w0 ∈ M− (since M0 = ∅), from
Lemma 2.1 there exists t+ ≡ t+(w0) such that sf t+ > 0 and t+w0 ∈M−. But w0 ∈
M− implies t+ = 1. If sf = −1 then t+ = 1 and sf t+ > 0 are a contradiction (we
are done). So, suppose sf = 1. In this case, there exists t− ≡ t− (w0) > 0 such that

t− < t+ = 1. Thus, we have d
dtI (tw0)

∣∣
t=t−

= 〈Í (t−w0) , w0〉 = (t−)−1Q (t−w0) =

0, and

d2

dt2
I (tw0)

∣∣∣∣
t=t−

=
d

dt
(tγ [φu(t)− F (u)])

∣∣∣∣
t=t−

=
d

dt
(tγ [φu(t)− φu(t−)])

∣∣∣∣
t=t−

= γ tγ−1
− [φu(t−)− φu(t−)] + tγ−φ

′
u(t−) = tγ−φ

′
u(t−) > 0.

Hence, there exists t > 0 such that t+ > t > t− > tmax and I
(
tw0

)
> I (t−w0).

From Lemma 2.1, I (t−w0) < I
(
tw0

)
< I (t+w0) = I (w0) = c0. This is a contra-

diction. Therefore w0 ∈M+. This implies that F (w0) > 2∗−2
1−γ U (w0) > 0.
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We have that w0 is a weak solution of problem, since Í(un) → 0 as n → ∞, we
have that 〈Í(w0), w〉 = 0, for all w ∈ H1

0 (Ω). Therefore c0 ≤ I(w0) ≤ lim
n→∞

I (un) =

c0. Then un → w0 (converges strongly) em H1
0 (Ω) and I(w0) = c0 = infu∈M I(u).

We now show that w0 is a local minimum for I. From Lemma 2.1, we have that

I (t−u) ≤ I(gu), for all 0 < g < h (u) =̇
[
(1− γ)T (u)(2∗ − γ − 1)

−1
U(u)

−1
] 1

2∗−2

.

From w0 ∈M+, we have −(2∗ − γ − 1)
∫
|w0|2

∗
+ (1− γ)T (w0) > 0 and

h (w0) > t−1. (8)

Notice again that, for all u ∈M , there exist t− = t−(u) > 0 such that t−(u)u ∈M+.
Thus if w0 ∈M+, then t−1 = 1.

Let ε > 0 sufficiently small such that 1 < h (w0) for ‖w‖ < ε and set t(w) > 0
a function such that t(0) = 1 and t(w)(w0 − w) ∈ M for all ‖w‖ < ε, (see item
(iii) of Lemma 3.1). Since t(w) → 1 as ‖w‖ → 0, we can always assume that
t(w) < h (w0) , for all w with ‖w‖ < ε.

Note that t(w)(w0 − w) ∈M+ and for 0 < g < h (w0) we have,
I(g(w0−w)) ≥ I(t(w)(w0−w)) ≥ I(w0). From (8) we can take g = 1 and conclude
that I(w0 − w) ≥ I(w0), for all w ∈ H1

0 (Ω) with ‖w‖ < ε.
Therefore w0 is a local minimum for I.

From Lemma 2.1, there exist t−(u) ∈ R, such that sf t− (|w0|) > 0,
t− (|w0|) |w0| ∈M+, sf t− (|w0|) < tmax (|w0|) = tmax (w0) and
I(t− (|w0|) |w0|) = min−tmax≤t≤tmax

I(t (|w0|) |w0|). Since w0 ∈M+, then t−(w0) =
1. Thus c0 ≤ I(t− (w0)w0) = min−tmax≤t≤tmax

I(tw0) ≤ I(t− (|w0|)w0).
Note that, since f > 0, we have that I(t− (|w0|) |w0|) ≤ I(t− (|w0|)w0) ≤ c0.
Therefore I(t− (w0)w0) = c0 and we can always take w0 > 0.

Lemma 3.2. If hypotheses (H) hold, then c− < c0 + 1
N S

N
2

λ .

Proof. We know that there is s0 > 0 and ε > 0 sufficiently small such that w0 +
s0vε ∈ M−, by using the arguments in [14, Proposition 2.2]. To prove c− <

c0 + 1
N S

N
2

λ , we only need to prove that sups>0 I(w0 + svε) < c0 + 1
N S

N
2

λ , since
c− = infu∈M− I(u) ≤ I(w0 + s0vε) ≤ sups>0 I(w0 + svε). Moreover, we only need
to consider bounded values for s, since, I(w0 +svε)→ −∞ as s→ +∞ implies that
there is s0 > 0 such that

sup
s>0

I(w0 + svε) ≤ sup
0<s<s0

I(w0 + svε).

Firstly, since w0 is a solution of Eq.(1), we get from direct computations that

I(w0 + svε) =
1

2
T (w0 + svε)−

1

2∗
U (w0 + svε)−

1

γ + 1
F (w0 + svε)

= I(w0) + I(svε) +

∫
|w0|2

∗−2w0(svε) +

∫
f(x)|w0|γ(svε)

− 1

2∗
[U (w0 + svε)− U (w0)− U (svε)]

− 1

γ + 1
[F (w0 + svε)− F (w0)− F (svε)] .

Suppose hypotheses (H1) hold. Using the elementary inequality

||a+ b|q − |a|q − |b|q| ≤ d1

[
|a|q−1 |b|+ |a| |b|q−1

]
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for a, b ∈ R and q > 1, we obtain that

I(w0 + svε) ≤ I(w0) + I(svε) +

∫
|w0|2

∗−1(svε) + |f |L∞(Ω)

∫
|w0|γ(svε)

+d2

∫
|w0|2

∗−1|svε|+ d3

∫
|w0| |svε|2

∗−1

+d4

∫
|w0|γ |svε|+ d5

∫
|w0| |svε|γ ,

where, here and below, dj for j ∈ N denote positive constants.
Secondly, since f is continuous at 0 and f(0) > 0, there exist d6 > 0 and δ0 > 0

such that f(x) ≥ d6 for any x ∈ Bδ0(0), the ball with center at 0 and radius δ0.
Hence, we have

sup
s>0

I(w0 + svε) ≤ I(w0) + sup
s>0

[
1

2
T (svε)−

1

2∗
U (svε)

]
+ d9

∫
|w0|2

∗−1vε

+d10

∫
|w0| |vε|2

∗−1
+ d11

∫
|w0|γvε + d12

∫
|w0|vγε

−d7

∫
Bδ0 (0)

vγ+1
ε + d8

∫
Ω\Bδ0 (0)

vγ+1
ε .

Note that for ε small enough,
∫
|w0|γvε = O(ε

N−2
4 ),

∫
Ω\Bδ0 (0)

vγ+1
ε = O(ε

N−2
4 (γ+1)),∫

|w0|vγε = O(ε
N−2

4 γ) and
∫
Bδ0 (0)

vγ+1
ε = O

(
ε

[N−(γ+1)
√

Λ]
√

Λ

2
√

Λ−λ

)
. We obtain from the

assumption N−
√

Λ√
Λ+
√

Λ−λ < γ < 1 and Proposition 2 that

sup
s>0

I(w0 + svε) < I(w0) +
1

N
S
N
2

λ = c0 +
1

N
S
N
2

λ .

When hypotheses (H2) hold, instead of (H1), the proof is similar so we omit the
details.

Proposition 5. If hypotheses (H) hold, then there is a critical point w1 ∈ M− of
I such that I(w1) = c−. Moreover, if hypotheses (H2) hold then w1 > 0.

Proof. First for to show that there is w1 ∈ M− such that I(w1) = c− and w1 is a
solution of Eq.(1), we use the item (1) and (2) of Proposition 3, and the same idea
of the proof the Proposition 3.7 in Chen-Rocha [5]. We omit the details here.
Next we will show that w1 > 0, if f > 0. From Lemma 2.1, there exist t+(u) ∈
R, such that sf t+ (|w1|) > 0, t+ (|w1|) |w1| ∈ M−, sf t+ (|w1|) > tmax (|w1|) =
tmax (w1) and I(t+ (|w1|) |w1|) = maxsf t≥0 I(t (|w1|) |w1|). Since w1 ∈ M−, then
t+(w1) = 1. Thus I(t+ (w1)w1) = I(w1) = maxsf t≥0 I(tw1) ≥ I(t+ (|w1|)w1).
Note that, since f > 0, we have that I(t+ (|w1|)w1) ≥ I(t+ (|w1|) |w1|) ≥ c−.
Therefore I(t+ (w1)w1) = c− and we can always take w1 > 0.
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[14] G. Tarantello, Multiplicity results for an inhomogeneous Neumann problem with critical ex-

ponent, Manuscripta Math. 81 (1993), 51–78.

Received August 2010; revised March 2011.

E-mail address: jchen@ua.pt

E-mail address: kellymurillo@ua.pt

E-mail address: eugenio@ua.pt

http://www.ams.org/mathscinet-getitem?mr=MR1794994&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1869636&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2326058&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2142934&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2548708&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1306583&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1876652&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2475883&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR2109156&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1612134&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1970040&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1306687&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1168304&return=pdf
http://www.ams.org/mathscinet-getitem?mr=MR1247588&return=pdf

	1. Introduction
	2. Preliminaries results
	3. Proof of Theorem 1.1
	Acknowledgments
	REFERENCES

