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resumo 
 
 

Introdução: A doença pulmonar obstrutiva crónica (DPOC) é um problema de saúde 
pública que causa incapacidade e mortalidade significativa. Pessoas com DPOC sofrem 
frequentemente com fraqueza muscular periférica e redução da capacidade funcional, o 
que afeta o seu bem-estar e aumenta a sua dependência de terceiros. A genética pode 
desempenhar um papel nestas manifestações, mas a sua análise é ainda desafiante. 
Métodos de regressão penalizada, como Lasso e suas derivações, oferecem uma 
abordagem alternativa tanto para a seleção de variáveis quanto para a estimativa de 
parâmetros em dados genómicos (de grande dimensão). 
Objetivo: Este estudo teve como objetivo investigar a possível associação entre 
polimorfismos genéticos (SNPs) e estado funcional em indivíduos com DPOC. Além 
disso, o estudo abordou o desafio da seleção de variáveis em dados de grande 
dimensão. 
Métodos: O teste de sentar e levantar de um minuto e o teste de marcha de seis 
minutos foram utilizados para avaliar a capacidade funcional. A força de preensão 
manual e a contração voluntária máxima do quadricípite foram medidas para determinar 
a força muscular periférica. Os indivíduos foram classificados utilizando análise de 
componentes principais e análise de cluster hierárquico. O resultado da classificação 
obtida por meio do cluster hierárquico foi considerado como fenótipo, assumindo um 
modelo genético aditivo. Foi realizado um estudo de associação genética (GWAS) 
baseado em regressão logística não ajustada (univariada).  Foram aplicados e 
comparados quatro modelos de regressão penalizada: regressão Lasso logística, bem 
como duas versões ponderadas do Lasso, conhecidas como Lasso relaxado e Lasso 
adaptativo, e um modelo elastic net. Métricas de pseudo-R2 foram usadas para avaliar o 
desempenho dos modelos, permitindo a comparação do ajuste do modelo. Todas as 
análises estatísticas foram realizadas utilizando os softwares PLINK 1.9 e R (versão 
4.3.0). 
Resultados: Um total de 211 pessoas com DPOC foram incluídos na análise, sendo 
que dados de genotipagem estavam disponíveis para 167 deles. O Cluster A era 
composto principalmente por indivíduos mais jovens e do sexo masculino, com menos 
sintomas e maior incidência de obesidade. Em contraste, o Cluster B era composto 
principalmente por indivíduos mais velhos, incluindo uma proporção maior de mulheres, 
que referiram maior severidade dos sintomas, menor qualidade de vida relacionada à 
saúde e apresentaram pontuações mais baixas de força muscular e capacidade 
funcional em comparação com o Cluster A. Nenhum polimorfismo alcançou o nível de 
significância na regressão logística GWAS. Os estimadores Lasso e Lasso relaxado 
exibiram resultados idênticos, identificando 8 variáveis (incluindo a constante do 
modelo) com coeficientes diferentes de zero. Em contraste, o modelo elastic net 
resultou num conjunto maior de 52 variáveis com coeficientes diferentes de zero. Por 
fim, a abordagem Lasso adaptativo selecionou um total de 99 variáveis com 
coeficientes diferentes de zero. 
Conclusão: Este estudo destaca a presença de 99 polimorfismos genéticos associados 
à deterioração funcional na DPOC. O conjunto de covariáveis selecionadas constitui 
agora um bom ponto de partida para futuras investigações científicas, incluindo 
validação externa e estudos funcionais, para validar os resultados e elucidar os 
mecanismos biológicos subjacentes. 
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abstract 
 

Introduction: Chronic obstructive pulmonary disease (COPD) is a public health problem 
that causes significant disability and mortality. People with COPD often suffer from 
peripheral muscle weakness and reduced functional capacity, which affects their own 
well-being and increases their dependence on others. It is possible that genetics play a 
role in these manifestations, but analysis remains difficult. Penalised regression 
methods, such as Lasso and its derivatives, offer a promising approach for both feature 
selection and parameter estimation for analysing high-dimensional data. 
Aim: The aim of this study was to investigate the potential association between single 
nucleotide polymorphisms (SNPs) and functional status in individuals with COPD. In 
addition, the study addressed the challenge of feature selection in high-dimensional 
data. 
Methods: Functional capacity was assessed using the one-minute sit-stand test and the 
six-minute walk test. Peripheral muscle strength was measured using handgrip strength 
and quadriceps maximum voluntary contraction. Patients were classified using principal 
component analysis and hierarchical cluster analysis. An unadjusted (univariate) logistic 
regression-based genome-wide association study (GWAS) was performed. Cluster 
membership was considered as the phenotype, assuming an additive genetic model. In 
addition, four penalised regression models were applied and compared: the (ordinary) 
logistic Lasso regression as well as two weighted versions of Lasso, namely relaxed 
Lasso and adaptive Lasso, and finally an elastic net model. Pseudo-R2 metrics were 
used to evaluate the performance of the models, allowing comparison of model fit. All 
statistical analyses were performed using PLINK 1.9 and R statistical software (version 
4.3.0). 
Results: A total of 211 patients with COPD were included in the analysis, with 
genotyping data available for 167 of them. Cluster A consisted mainly of younger, male 
patients who had fewer symptoms and a higher incidence of obesity. Cluster B 
consisted primarily of older individuals, including a higher proportion of women, who 
reported higher symptom severity, lower health-related quality of life, and exhibited 
lower muscle strength and functional capacity scores compared to Cluster A. No SNP 
reached genome-wide significance in the logistic regression GWAS. The Lasso and 
relaxed Lasso estimators showed identical results, identifying 8 variables (including the 
model intercept) with non-zero coefficients. In contrast, the elastic net model yielded a 
larger set of 52 variables with non-zero coefficients. Finally, the adaptive Lasso 
approach selected a total of 99 variables with non-zero coefficients.  
Conclusion: This study highlights the presence of 99 genetic polymorphisms 
associated with functional impairment in COPD. These selected covariates provide a 
starting point for further scientific investigation, including external validation and 
laboratory-based functional studies, to validate the findings and understand the 
underlying biological pathways. 
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Introduction 
 

Chronic obstructive pulmonary disease 
 
Chronic obstructive pulmonary disease (COPD) is a heterogeneous lung disease 

characterised by chronic respiratory symptoms (dyspnoea, cough, sputum) due to airway 
and/or alveolar abnormalities that result in persistent, often progressive, airflow 

obstruction[1]. COPD is the third leading cause of death worldwide and represents a 

significant individual, social and economic burden[1-4]. In 2019, approximately 212.3 million 
people worldwide had COPD, resulting in 3.3 million deaths and making it the fourth and 

third leading cause of disability-adjusted life years among adults aged 50-74 years and 75 
years and older, respectively[4, 5]. Cigarette smoking, air pollution, occupational exposure 

to (in)organic dusts, chemicals and fumes, and household air pollution are important risk 
factors for the development of COPD[1, 6]. The disease starts in the respiratory system, but 

those affected often suffer debilitating symptoms such as peripheral muscle weakness and 
impaired functional capacity, which affect their quality of life[7, 8], prevent them from 

participating in activities of daily living[9, 10] and lead to dependence on informal 
caregivers[11, 12]. Muscle weakness and reduced functional capacity are present early in 

disease development[13, 14], have been shown to be associated with poorer health 

outcomes and independently predict healthcare utilisation and mortality in COPD[15-20]. 
The annual cost of COPD has been found to be higher in patients with COPD and muscle 

weakness than in patients without this weakness[20]. The aetiology is multifactorial and 
includes extrinsic factors such as smoking, physical inactivity/deconditioning, malnutrition 

and systemic corticosteroid use as well as intrinsic factors such as hypoxia, hypercapnia, 
inflammation and oxidative/nitrosative stress[21]. Recently, there is evidence that single-

nucleotide polymorphisms (SNPs), i.e., base pair variations in the genome that are common 
in the population, may also play a role in the pathological processes underlying functional 

impairment in COPD[21, 22], although the available literature remains limited. 
 

Genome-wide association studies 
 

Genome-wide association studies (GWAS) are commonly used to detect associations 
between genetic variants and common diseases or traits in a population[23, 24]. In a GWAS, 

the phenotype and genotype of 𝑛 subjects are measured, where 𝑦 = (𝑦!, … , 𝑦") is the 
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phenotype of interest, such as height, blood pressure, or disease status, which can be either 

quantitative or dichotomous[23, 24]. Let 𝑥#$ denote the number of minor alleles the 𝑖th 

subject has at the 𝑗th SNP. Suppose two alleles of a SNP are Α and a. A dominant model 
for A translates the genotypes (AA, Aa, aa) into (1, 1, 0) - the presence of the A allele 

increases the risk of disease for the genotypes AA and Aa to the same extent, compared to 
the baseline risk for aa; an additive or codominant model encodes (AA, Aa, aa) as (2, 1, 0) 

- one additional copy of the A allele increases disease risk; a recessive genetic model for A 

encodes (AA, Aa, aa) as (1, 0, 0) - two copies of the A allele are required to express the 
phenotypic traits associated with that allele. The results of a GWAS are usually summarised 

in a Manhattan plot of all individual P-values, and a SNP is considered significant if its P-
value is less than or equal to a predefined significance level 𝛼[23, 24]. A fixed P-value 

threshold of 5	×	10-8 is the standard for reporting genome-wide association at a minor allele 
frequency ≥ 5% for populations of European ancestry; this threshold was derived based on 

the number of independent tests taking into account the linkage disequilibrium of the 
genome[25-27]. This approach is simple and easy to use, and software such as PLINK[28] 

can process and analyse SNP array data from across the genome in a computationally 
efficient manner[29]. Nonetheless, due to their univariate nature, GWAS suffer from 

information losses and are often statistically underpowered due to heavy multiple testing (to 

control for type I errors)[24]. This will be exacerbated in the future due to the increasing 
density of genotype arrays, along with the advancement of imputation methods[30] and the 

expansion of imputation reference panels[31]. Multiple regression, on the other hand, 
includes all relevant predictors and can thus provide a more accurate description of the 

influence of the covariates on the outcome, resulting in less residual variance. However, 
these high-dimensional data pose a challenge for multivariate statistical analyses, including 

conventional regression models, or make them practically unfeasible because there are 
more independent variables than observations/patient samples[32]. 

 

Dimensionality reduction 
 

Currently, the two most commonly used dimensionality reduction techniques are feature 

extraction and feature selection[33]. Feature extraction maps the high-dimensional data to 
a low-dimensional subspace by converting the raw data into numerical features that can be 

processed while retaining as much information as possible from the original dataset. 

Feature selection reduces dimensionality by selecting a subset of the original features 
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according to a specific criterion. This process eliminates irrelevant and redundant data, 

resulting in improved model performance and reduced computation time. Unlike feature 
extraction, where the original data is altered by mathematical transformations, feature 

selection preserves the original meaning of the features in a dataset. 

 

Feature selection: penalised regression 
 

A general model of multiple linear regression is written as follows: 

 
 

𝑦# =	𝛽% +0𝑥#$𝛽$

&

$'!

+ 𝜀# , 
(1) 

 

where 𝑦# ∈ ℝ is the dependent variable, 𝑥# = 4𝑥#!, … , 𝑥#&5 is a 𝑝-dimensional vector of 

independent variables, 𝛽 = 4𝛽!, … , 𝛽&5 	∈ 	ℝ& is a vector of regression coefficients, 𝛽% ∈ 	ℝ 

is the constant or model intercept, and 𝜀# is the random (unobservable) error term. The 

linear model can be fitted using the ordinary least squares (OLS) method and the 

parameters (𝛽%, 𝛽) are estimated by minimising the residual sum of squares (RSS): 
 

 RSS	 = 	 9
1
2𝑛
0(𝑦# − 𝛽% −0𝑥#$𝛽$)(

&

$'!

"

#'!

=. 
(1.1) 

 

Logistic regression is another commonly used model, but this time to estimate the 
probability of a binary response based on the value of multiple predictor variables. The 

logistic regression model represents the class-conditional probabilities by a linear function 

of the predictors: 
 

 
ln A

𝑝#
1 − 𝑝#

B = 𝛽% +0𝑥#$

&

$'!

𝛽$ = 𝛽% + 𝛽)𝑥. 
(2) 

 

Logistic models (2) are fitted by maximising the likelihood (i.e., maximum likelihood 
estimation) or by minimising the negative log likelihood, which can be written as follows: 
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ℒ = −ln(𝐿(𝛽)) = −04𝑦#ln(𝑝#) + (1 − 𝑦#)ln(1 − 𝑝#)5.

"

#'!

 
(2.1) 

 
In the high-dimensional setting, where the number of features 𝑝 is larger than the sample 

size, these models cannot be used without modification; when 𝑝	 > 	𝑛, any linear model is 
overparameterised and regularisation is required to achieve a stable fit[34]. Let us consider 

the standard linear regression framework. It is known that the OLS solution for estimating 
the coefficient vector corresponds to (3). 

 

 𝛽F = G
1
𝑛
0𝑥#𝑥#*
"

#'!

H
+!

⋅
1
𝑛
0𝑥#𝑦# =
"

#'!

(X*X)+!X*𝑦 
(3) 

 

The OLS estimator has some desirable properties, e.g., it is an unbiased and consistent 
estimator (minimum variance). However, if the predictor variables are highly correlated, the 

OLS method often leads to unsatisfactory or even incorrect estimates, which are often 

inflated (in absolute values) and in extreme cases even lead to sign reversals[35]. 
Moreover, the sample covariance matrix is singular (and therefore cannot be inverted) if 

𝑝 > 𝑛, but a valid covariance matrix must be positive-definite[36]. Art Hoerl and Bob 
Kennard introduced ridge regression[37] in 1970, which was later extended to the high-

dimensional setting and can be written as follows: 
 

 
𝛽F, = argmin 9

1
2𝑛
0(𝑦#

"

#'!

− 𝛽% −0𝑥#$𝛽$

&

$'!

)( + 𝜆0𝛽$(
&

$'!

=. 
(4) 

 

In equation (4), the first term represents the RSS, while the second term corresponds to a 
ℓ( penalty on the regression coefficients, and 𝜆 > 0 serves as a tuning parameter that 

controls the amount of shrinkage. Ridge regression goes back to earlier work, in particular 
that of Tikhonov, a Soviet mathematician and geophysicist; Tikhonov, and later Hoerl and 

Kennard, found that adding a single positive constant to the diagonals makes the matrix 
behave more like an orthogonal system[37]. Put simply, adding the regularisation parameter 

lambda (𝜆) to singular or nearly singular matrices leads to a matrix for which an inverse 

exists[37, 38]. Unfortunately, similar to least squares, ridge regression cannot perform 
variable selection, which means that all coefficients are assigned non-zero estimates[37].  
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When dealing with high-dimensional data, one assumes sparsity of the coefficient vector, 
which refers to the phenomenon that an underlying data structure can usually be explained 

by a few features out of many[34]. Least absolute shrinkage and selection (Lasso)[39], 

introduced by Robert Tibshirani in 1996, is an example of an embedded feature selection 
method where feature selection and parameter estimation (shrinkage) are performed 

simultaneously to improve the predictive accuracy and interpretability of the regression 
model. The Lasso for linear regression can be written as follows: 

 
 

𝛽F- = 	argmin 9
1
𝑛
0(𝑦#

"

#'!

− 𝛽% −0𝑥#$𝛽$

&

$'!

)( + 𝜆0S𝛽$S
&

$'!

=. 
(5) 

 

In equation (5), the first term represents the RSS, while the second term corresponds to a 
ℓ! penalty on the regression coefficients, and 𝜆 > 0 serves as a tuning parameter that 

controls both the number of variables selected and the extent to which their estimated 
coefficients are shrunk to zero[38, 39]. The set of predictor variables selected by the Lasso 

estimator is denoted by 𝛭. 	= U1 ≤ 𝑘 ≤ 𝑝|𝛽/- ≠ 0Z; some coefficients are set to zero and 

thus excluded from the selected model, while all variables in the selected model are shrunk 

towards zero compared to the least squares solution. 
 
Hyperparameter tuning cross-validation 
 
High-dimensional data contains many noisy and redundant features that not only 

significantly increase the learning and inference time of the algorithm, but also greatly 
reduce the performance of the model. An appropriate selection of 𝜆  is required to achieve 

a good balance between simplicity and selection accuracy[40]. Small values of 𝜆 allow the 
model to fine-tune to the noise in each data set, resulting in a large variance. Conversely, 

a large value of lambda causes the weighting parameters to approach zero, resulting in a 
large bias (bias-variance trade-off). Lambda is data dependent and can be calculated using 

a cross-validation method (CV) or a generalised information criterion (i.e., Akaike and/or 
Bayesian information criteria). Often, the optimal hyperparameter 𝜆 is determined to 

minimise the mean square error with 5 or 10-fold CV in the training data set[34]. In 𝐾-fold 

CV, the data are first divided into 𝐾 equally sized (or nearly equally sized) segments or 
folds. Then 𝐾 iterations of training and validation are performed, such that in each iteration 
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a different fold of the data is held out for validation, while the remaining 𝐾 − 1 folds are used 

for learning (i.e., we apply the Lasso to the training data using different lambda values, using 
each fitted model to predict the outcome in the test set and record the mean square error). 

We can also achieve smaller, simpler models with comparable predictive performance by 

applying a simple rule called the "one standard error rule"[34]. Instead of choosing the value 
of the tuning parameter that minimises the CV error curve, the one-standard-error rule 

chooses the value of the tuning hyperparameter corresponding to the simplest model whose 
CV error is within one standard error of the minimum.  
 
Ordinary lasso: drawbacks and inconveniences 
 

The Lasso also has some disadvantages that need to be addressed. Lasso shrinkage 
reduces estimates of large coefficients, leading to an asymptotic bias that could negatively 

affect risk estimates[41]. A two-step procedure is usually used to correct for bias: Lasso 
regression is used to select variables, and then a least squares estimator is obtained over 

the selected variables. Other options are weighted versions of the Lasso method based on 
iterative schemes[42]. Another pitfall of Lasso relates to how it handles correlated data: if 

there is a group of variables between which the pairwise correlations are very high, Lasso 
tends to (randomly) select only one variable from the group, which can lead to confounding 

and loss of information[41, 43, 44]. 
 

From now on we will focus on the relaxed Lasso, the adaptive Lasso and the elastic net and 

briefly describe each model. For simplicity, the models will be presented as in linear 
regression. However, to extend it to generalised linear models, e.g., logistic regression, the 

RSS term in the objective function must be replaced by a negative log-likelihood term (2.1). 
 

Lasso derivatives 
 

Relaxed Lasso 
 

Relaxed Lasso[45] performs model selection and shrinkage estimation with the two 
hyperparameters 𝜆 and 𝜙: 
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𝛽F,- = argmin 9

1
𝑛
0(
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where 𝜆 > 0, 𝜙 ∈ (0, 1], 𝛭. is the set of predictor variables selected by the Lasso 

estimator	and 10 is the indicator function on the set of variables	𝛽$ ⋅ 10 = ^
0, 𝑗 ∉ 𝛭.
𝛽$ , 𝑗 ∈ 𝛭.	

, for 

𝑗 ∈ {1,… , 𝑝}.  
 

The hyperparameter 𝜆 controls the number of predictors with non-zero coefficients in the 
model, while the hyperparameter 𝜙 determines the degree of shrinkage of the selected 

predictors. If 𝜙	 = 	1, the Lasso and relaxed Lasso estimators are identical.  For 𝜙 < 1 the 

shrinkage of the coefficients in the selected model is reduced compared to the ordinary 
Lasso estimator. Relaxed Lasso produces a sparse model that avoids excessive shrinkage 

for non-zero coefficients and outperforms Lasso when the number of predictors is large 
relative to the sample size[45]. Moreover, the number of selected coefficients in relaxed 

Lasso is generally much smaller than in ordinary Lasso without affecting the prediction 
accuracy, since in Lasso the number of selected variables is often large and contains many 

noise variables, especially when the signal-to-noise ratio is high (i.e., given estimated 
regression coefficients and residual variance, the signal-to-noise ratio is defined as the ratio 

of estimated signal variance to estimated noise variance)[45]. 
 

Adaptive Lasso 
 

In the case of the ordinary Lasso and the relaxed Lasso, the shrinkage is constant, 
irrespective of the size of the parameter to be estimated, which leads to undesirable 

properties regarding the prediction of the resulting estimator. In adaptive Lasso, each 

covariate is weighted differently when penalised and readjusted at each iteration step until 
convergence[42]. First, a weight vector 𝑤d is estimated from the ridge regression, given by 

𝑤d = 1 S𝛽F,S
1⁄ , 𝛾 > 0. Second, for this weight vector 𝑤	 = 	 4𝑤!, … , 𝑤&5

) the adaptive Lasso is 

formulated: 

 
 

𝛽F2- 	= 	argmin 9
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𝑛
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"
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Elastic net 
 

The elastic net[44] was introduced by Zou and Hastie in 2005 to extend the ordinary Lasso 
and improve some of its limitations. It minimises the RSS and a regularisation term that is 

a mixture of ℓ! and ℓ( penalties: 
 

 
𝛽F34 = 	argmin 9

1
2𝑛
0(
"

#'!

𝑦# − 𝛽% −0𝑥#$𝛽$

&

$'!

)( + 	𝜆0A
1
2
(1 − 𝛼)𝛽$( + 𝛼S𝛽$SB

&

#'!

= 
(5.3) 

 
where 𝜆 > 0 is a tuning parameter and 𝛼 ∈ [0,1] is a higher level hyperparameter. The 

elastic net is particularly useful when 𝑝 > 𝑛 or in a situation where there are many correlated 
predictor variables[44, 46]. When 𝛼 increases from 0 to 1, for a given 𝜆, the sparsity of the 

solution of the above formula increases monotonically from 0 to the Lasso solution. 
 

The aim of this work was, therefore, to find out whether there are polymorphisms associated 

with functional limitations in COPD, while addressing the problem of feature selection in 
high-dimensional data. 

 

Methodology 
 
A cross-sectional secondary analysis was conducted on data collected in “GENetic and 

clinIcAL markers in COPD trajectory” – GENIAL (PTDC/DTP-PIC/2284/2014), “Pulmonary 
Rehabilitation Innovation and Microbiota in Exacerbations of COPD” – PRIME (PTDC/SAU-

SER/28806/2017; POCI-01-0145-FEDER-028806), “Revitalizing Respiratory 
Rehabilitation” – 3R (SAICT-POL/23926/2016; POCI-01-0145-FEDER-016701), and 

CENTR(AR) (POISE-03-4639-FSE-000597). Ethical approval was obtained from the ethics 

committees of the Administração Regional de Saúde do Centro, I.P. (3NOV'2016:64/2016), 
Centro Hospitalar do Baixo Vouga (22MAR'2017:777638), Unidade Local de Saúde de 

Matosinhos (17FEB'2017:10/CE/JAS), Centro Hospitalar do Médio Ave (27AUG'2018), 
Hospital Distrital da Figueira da Foz (18JUL'2017) and from the Portuguese Data Protection 

Authority (8828/2016). Each participant signed a written informed consent form prior to data 
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and sample collection. This work is reported according to the Strengthening the Reporting 

of Observational Studies in Epidemiology (STROBE) statement[47]. 
 

Participants 
 

The analysis included individuals aged ≥ 18 years diagnosed with COPD according to the 
Global Initiative for Obstructive Lung Disease (GOLD) criteria (FEV1/FVC < 0.7 after 

bronchodilation) and clinically stable (i.e., no exacerbations or change in medication) in the 

previous month. Those with other respiratory conditions or a clinical condition that may have 
affected test performance were excluded. Eligible participants were identified by their 

physicians in hospitals or primary healthcare centres during routine outpatient visits. 
 

Data collection 
 

Data collection was carried out by trained physiotherapists and assessments took place in 
the Respiratory Research and Rehabilitation Laboratory (Lab3R), School of Health 

(ESSUA), University of Aveiro, or in partner institutions. At baseline, sociodemographic, 
anthropometric and clinical data as well as saliva samples were collected from the 

participants. Lung function was either measured with a portable spirometer (Micro-Lab 
3535, CareFusion, Kent, United Kingdom) or gathered from the respective medical records. 

The quadriceps muscle strength on the dominant side was assessed using a handheld 
dynamometer (microFET®2 Digital Handheld Dynamometer, Hoggan Scientific LLC, Salt 

Lake City, Utah); the patient, in a seated position, was instructed to extend their knee 

against resistance applied to the anterior tibia for a period of 6 seconds[48]. The isometric 
strength of the lower limbs determined with the handheld dynamometer proved to be valid 

compared to the Biodex™ dynamometer (ICC: 0.79-0.94; Pearson's r = 0.73-0.90) and 
showed excellent intra- and inter-rater reliability (ICC: 0.97-0.98; 0.83-0.95)[49]. Handgrip 

strength was measured with a hydraulic dynamometer on the dominant hand (Baseline® 12-
0241 LiTE Hydraulic Hand Dynamometer, Fabrication Enterprises Inc., White Plains, New 

York) with the patient seated, the elbow flexed at 90°, the forearm in a neutral position, and 
the wrist between 0 and 30° of dorsiflexion, according to the American Society of Hand 

Therapists[50, 51]. Three repetitions were performed for both muscle strength tests to 

ensure less than 10% variability between measurements. The highest value was recorded 
and used for analysis. Functional capacity was measured using the six-minute walk test 
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and the 1-minute sit to stand test according to the technical standards established by the 

European Respiratory Society/American Thoracic Society[52, 53]. In the six-minute walk 
test, the patient is asked to walk as far as possible along a 30-metre, low-traffic, straight, 

flat corridor over a 6-minute period[54]. Two tests are performed to account for a possible 

learning effect, and the longer distance covered in metres is recorded and used for further 
analysis. A recent meta-analysis found a moderate to strong correlation (Pearson's r = 0.65) 

between 6MWT distance and peak oxygen uptake in patients with COPD during 
cardiopulmonary exercise testing[55]. The 1-minute sit-to-stand test is a quick and simple 

assessment conducted on a standard-height chair (46 cm) without armrests[56]. 
Participants were asked to stand up and sit down as many times as possible within one 

minute at their own pace, without using their arms for support. The number of complete 
repetitions was recorded. It has demonstrated high reliability (ICC: 0.90-0.99) and validity 

(Pearson's r = 0.716) as a tool for evaluating functional capacity in patients with COPD[57, 
58]. Other assessments included the Medical Research Council Dyspnoea Score 

(mMRC)[59], the COPD Assessment Test (CAT™)[60], and the Saint George’s Respiratory 

Questionnaire (SGRQ)[61]. The SGRQ is an important tool for assessing health-related 
quality of life in patients with respiratory diseases. It consists of three main parts: a symptom 

questionnaire, an activity limitation questionnaire and a daily life impact questionnaire. The 
score ranges from 0 to 100, with higher scores indicating more limitations. The CAT™ is a 

multidimensional questionnaire with 8 items to assess the impact of COPD on health status. 
Scores range from 0 to 40, with higher scores indicating greater symptom burden. The 

GOLD 2023 report[1] suggests a CAT cut-off score of ≥ 10 points for classifying patients as 
highly symptomatic, but a more recent cut-off score of ≥ 18 points is now recommended[62, 

63]. The mMRC dyspnoea score is a simple and reliable measure used to assess the 

severity of activity-related breathlessness in individuals with chronic lung disease. It ranges 
from 0 (no breathlessness) to 4 (very severe breathlessness), and a cut-off score of ≥ 2 is 

used to classify patients into those with low or high symptom burden[1]. 
 

Statistical analysis 
 

Hierarchical cluster analysis 
 

Hierarchical cluster analysis (using Ward's method) was performed to classify the 
patients[64]. A principal component analysis was conducted to reduce the correlation 
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between the independent variables (such as the six-minute walk test, one-minute sit-to-

stand test, and muscle strength measurements). This is particularly important for 
hierarchical clustering using Euclidean distance as the distance measure, as it is sensitive 

to the level of correlation between variables compared to other distance measures. Principal 

components were retained until the cumulative percentage of the total variance reached at 
least 70%[65]. Multivariate outliers were identified by comparing the Mahalanobis distance 

to a chi-square distribution with a critical value of 0.99. Any multivariate outliers detected 
were excluded from the analysis. Differences between the clusters were examined using t-

tests for independent samples, with the homogeneity of variance assessed using Bartlett's 
test. If the variances between groups were unequal, the Welch test was employed. The 

Shapiro-Wilk test was used to assess the normality assumption, and if violated, the Mann-
Whitney U test was used instead. For categorical variables, differences in distribution 

between groups were evaluated using the Chi-square test/Fisher's Exact test or the two-
sample proportion Z-test. All statistical analyses were conducted using R statistical software 

(version 4.3.0), with a significance level set at P < 0.05. 

 

Genomic data pre-processing and imputation 
 

Genotyping was performed using the Infinitum Global Screening Array-24 v1.0 and 

according to the Illumina Infinitum HTS assay protocol. Sample and SNP quality control was 
performed with GenomeStudio 2.0 and PLINK 1.9 software using standard protocols[28, 

66, 67]. Samples with a genotyping rate of less than 95%, sex discrepancies, a divergent 
ancestry from the study cohort, a higher heterozygosity rate than expected or an unreported 

relatedness to another study participant were excluded[66, 67]. SNPs with a missing 
genotype rate of more than 5%, a deviation from Hardy-Weinberg equilibrium or a minor 

allele frequency below 5% were also excluded[66, 67]. Imputation was performed on the 
Michigan Imputation Server[68]. After imputation, a quality control of the SNPs was carried 

out again. A total of 167 samples and 7,035,690 SNPs passed quality control. Despite 

having high call rates, the genotype data still had 2.9% missing values after undergoing 
quality control. To address this, the bigstatsr R package[69] was employed to impute the 

genotype matrix using a simple imputation method (mean). The imputed matrix, which 
contained numerous zero values, was then converted into a sparse matrix format to 

optimize storage usage and enhance computational efficiency. 
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Regression analysis 
 

An unadjusted (univariate) logistic regression-based GWAS was conducted in PLINK 1.9, 

using cluster membership as the phenotype and assuming an additive genetic model. The 
Lasso regression was performed using the glmnet R package[46], and the optimal 

hyperparameter 𝜆 was determined by minimising the binomial deviance through a 3-fold CV 
on the training dataset. It is important to add that the solutions are computed in a descending 

sequence of values for 𝜆, starting with the smallest value 𝜆max for which the entire vector 

𝛽F 	= 	0; the aim is to select the minimum value 𝜆min = 𝜖𝜆max 	> 0, and construct a sequence 
of K values of 𝜆 decreasing from 𝜆max to 𝜆min on the logarithmic scale. The default options 

of the glmnet R package were used, i.e., K = 100 and 𝜖 = 0.001. For the elastic net model, 
the hyperparameter 𝛼 was selected via CV from a range of 0 to 1 with 0.05 increments, 

choosing the 𝛼 value that resulted in the smallest binomial deviance. Similarly, the gamma 
value for the relaxed Lasso was determined by CV using a standard grid with the values 0, 

0.25, 0.5, 0.75 and 1, and the model with the optimal pair (𝜆, 𝛾) was selected. In the adaptive 
Lasso, weights were constructed using ridge regression and then multiplied by lambda for 

differential shrinkage. The goodness of fit of the penalised regression models was tested 
using the McFadden pseudo-R2 measure[70]. In contrast to the least squares R2, the log-

likelihood-based pseudo-R2 value does not represent the proportion of variance explained, 

but the improvement in model likelihood over a null model (intercept only)[70]. 
 

Results 
 

The dataset included 1087 records of people who had participated in all of the above 
projects, of which 946 were deemed eligible according to the projects' eligibility criteria, but 

only 727 were adults with a primary diagnosis of COPD. Of the 727 people, 293 participants 
remained in the study after excluding those who did not have complete data for the 6-minute 

walk test, 1-minute sit-to-stand test, and quadriceps and handgrip muscle strength. Of 
these, 49 were duplicates of the same individuals, 30 had an FEV1/FVC > 0.7 after 

bronchodilation, and 3 were considered multivariate outliers and therefore excluded. 

Ultimately, 211 patients with COPD were included in the analysis, of whom 167 had 
genotyping data.  
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Two principal components were extracted, which together accounted for 74.5% of the total 

variance; the NbClust R package[71] was used to determine the optimal data partition, 
which was 2 based on a majority rule (Figure 1). Cluster A consisted mainly of younger 

male patients with fewer symptoms and a higher prevalence of obesity. Cluster B, on the 

other hand, consisted mainly of older people who reported more severe symptoms and 
lower health-related quality of life, as well as a higher prevalence of women compared to 

cluster A. In addition, compared to cluster A, cluster B was characterised by individuals with 
lower muscle strength and functional capacity scores. Detailed characteristics of the total 

sample and the subgroups in clusters A and B can be found in Table 1. Of the 167 
individuals for whom genotyping data were available, 110 belonged to cluster A and 57 to 

cluster B. 
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Figure 1. Hierarchical clustering dendrogram of principal component analysis-transformed data based on the 
6-minute walk test, the 1-minute sit-to-stand test, and quadriceps and handgrip muscle strength in patients with 
chronic obstructive pulmonary disease. 
 
Table 1. Descriptive statistics for the total sample and for each cluster of patients with chronic obstructive 
pulmonary disease. 
 

 Total sample 
(n = 211) 

Cluster A 
(n = 139) 

Cluster B 
(n = 72) 

P-
value 

Age, years 67.88 (7.98) 66.38 (7.33) 70.78 (8.43) <0.001 
Female, % 44 (20.9) 15 (10.8) 29 (40.3) <0.001 
BMI, kg/m2 26.26 [23.40 – 

30.30] 
26.6 [23.7 – 30.8] 26.2 [22.8 – 28.7] 0.1157 

BMI > 30 kg/m2, % 56 (26.5) 44 (31.7) 12 (16.7) 0.0298 
BMI < 21.75 kg/m2, 

% 
28 (13.3) 19 (13.7) 9 (12.5) 0.9814 

FEV1, % of predicted 53.0 [40.5 – 67.0] 53.0 [42.0 – 68.0] 53.5 [38.0 – 66.0] 0.3667 
FEV1/FVC 0.54 [0.44 – 0.62] 0.54 [0.44 – 0.62] 0.56 [0.43 – 0.62] 0.7464 
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FVC, % of predicted 80.0 [66.2 – 95.0] 82.03 (22.54) 79.22 (21.86) 0.383 
Smoking status     

Current smoker, % 36 (17.1) 22 (15.8) 14 (19.4) 0.2375 
Former smoker, % 136 (64.5) 95 (68.3) 41 (56.9) 
Never smoker, % 39 (18.5) 22 (15.8) 17 (23.6) 

Pack-years 43.5 [21.6 – 74.8] 45.0 [27.0 – 80.0] 40.0 [17.1 – 61.5] 0.1392 
GOLD grade     

GOLD 1, % 27 (12.8) 21 (15.1) 6 (8.3) 0.5437 
GOLD 2, % 91 (43.1) 57 (41.0) 34 (47.2) 
GOLD 3, % 75 (35.5) 49 (35.3) 26 (36.1) 
GOLD 4, % 18 (8.53) 12 (8.6) 6 (8.3) 

CAT, points 13.0 [8.0 – 20.0] 12.0 [7.0 – 17.0] 18.0 [11.0 – 22.2] <0.001 
CAT ≥ 10, % 146 (69.2) 88 (63.3) 58 (80.6) 0.0157 
CAT ≥ 18, % 68 (32.2) 31 (22.3) 37 (51.4) <0.001 

mMRC     
mMRC ≥ 2, % 116 (55.0) 63 (45.3) 53 (73.6) <0.001 

SGRQ Activities 60.26 [42.97 – 
73.80] 

55.10 [41.21 – 
67.69] 

72.44 [53.62 – 
85.87] 

<0.001 

SGRQ Symptoms 44.57 [31.53 – 
62.74] 

42.48 [29.50 – 
56.73] 

53.95 [37.38 – 
69.16] 

0.0096 

SGRQ Impact 29.15 [14.90 – 
47.11] 

23.97 [12.07 – 
42.37] 

39.06 [24.48 – 
56.63] 

<0.001 

SGRQ Total 42.83 [27.08 – 
57.43] 

37.47 [23.83 – 
53.27] 

52.11 [38.51 – 
63.51] 

<0.001 

6MWT, m 420.0 [344.5 – 
492.0] 

462.0 [401.5 – 
508.0] 

313.0 [225.5 – 
408.5] 

<0.001 

1-minute STS, reps 23.0 [19.0 – 28.0] 26.0 [22.0 – 31.0] 18.0 [13.75 – 
21.25] 

<0.001 

QMS, kgF 31.10 [26.0 – 
36.2] 

33.50 [30.80 – 
38.20] 

25.0 [20.23 – 
28.45] 

<0.001 

Handgrip muscle 
strength, kg 

34.11 (9.48) 38.28 (7.36) 26.07 (7.83) <0.001 

Notes: Data presented as mean (standard deviation) or median [1st quartile; 3rd quartile] for continuous variables and number 
(percentage) for categorical variables. Abbreviations: 1-minute STS, one-minute sit-to-stand test; 6MWT, six-minute walk 
test; BMI, body mass index; CAT, COPD Assessment Test; FEV1, forced expiratory volume in the first second; FVC, forced 
vital capacity; GOLD, Global Initiative for Obstructive Lung Disease; mMRC, Medical Research Council modified dyspnoea 
score; QMS, quadriceps muscle strength; SGRQ, Saint George’s Respiratory Questionnaire. 
 
In the logistic regression GWAS, no single nucleotide polymorphism (SNP) reached the 

level required for genome-wide significance (Figure 2). 
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Figure 2. Manhattan plot. The P values were obtained by unadjusted logistic regression analysis assuming an 
additive genetic model. The x-axis shows the genomic coordinates of the tested SNPs and the y-axis shows the 
–log10 P value of their association. 
 
For the Lasso, the optimal hyperparameter lambda was 0.1116, resulting in a binomial 
deviance of 1.29. The model returned 8 variables (including the model intercept) with non-

zero coefficients (Figure 3). As with the relaxed Lasso, the optimal pair of hyperparameters 

that minimised model deviance was gamma = 1 and lambda = 0.1116, yielding identical 
results to the Lasso estimator (Figure 3). 
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Figure 3. The right panel shows the profiles or regularisation paths of the coefficients for Lasso (top) and relaxed 
Lasso (bottom) when the tuning parameter lambda varies. The upper left panel shows the cross-validation 
deviance for each lambda value for Lasso; the dashed vertical lines correspond to the minimum lambda value, 
and the right line corresponds to the rightmost point of the curve within a standard error of the minimum. The 
lower left panel shows the cross-validation deviance for the relaxed Lasso for different gamma values. The 
number of non-zero coefficients is shown at the top of each graph. 
 

For the elastic net model, 0.55 was determined as the alpha value that minimises the 
deviance (1.26), resulting in a lambda value of 0.1609 and the selection of 52 variables with 

non-zero coefficients (Figure 4). 
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Figure 4. The right panel shows the profiles or regularisation paths of the coefficients for the elastic net when 
the tuning parameter lambda varies. The left panel shows the cross-validation deviance for each lambda value 
for the elastic net; the dashed vertical lines correspond to the minimum lambda value, and the right line 
corresponds to the rightmost point of the curve within a standard error of the minimum. The number of non-zero 
coefficients is shown at the top of each graph. 
 

A lambda value of 2.32622 was chosen for the adaptive Lasso, resulting in a model deviance 

of 0.5675 and the selection of 99 variables with non-zero coefficients (Figure 5). Pseudo-R2 
metrics were calculated for each of the penalised regression models: 0.0558 for Lasso and 

relaxed Lasso, 0.1969 for elastic net and 0.9920 for adaptive Lasso. These results show 
that adaptive Lasso has the best model fit among all the models tested. 

 
Figure 5. The right panel shows the profiles or regularisation paths of the coefficients for the adaptive Lasso 
when the tuning parameter lambda varies. The left panel shows the cross-validation deviance for each lambda 
value for the adaptive Lasso; the dashed vertical lines correspond to the minimum lambda value, and the right 
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line corresponds to the rightmost point of the curve within a standard error of the minimum. The number of non-
zero coefficients is shown at the top of each graph. 

Discussion 
 

This study investigated whether common genetic variants are associated with an increased 
risk of functional impairment, for which 99 SNPs with non-zero coefficients  were found. The 

penalised regression yielded results between 8 and 99 non-zero coefficients compared to 
the standard approach, univariate GWAS regression, where no SNP was considered 

genome-wide significant. These results highlight the difficulty of achieving genome-wide 
significance with GWAS, especially in studies with small sample sizes and due to correction 

by multiple testing[24, 75]. Alternative, less stringent thresholds have been proposed[72, 
73]; however, when the P-value threshold is relaxed, it is observed that the detection rate 

increases, but this results in an estimated 8-18% of additional loci being incorrectly 
identified[74]. Moreover, for studies of moderate size, the genome-wide significance 

threshold is the preferred and recommended criterion[74]. Results obtained from both the 

Lasso and relaxed Lasso estimators were identical, mainly because the hyperparameter 
gamma was strongly influenced by the signal-to-noise ratio. In low signal-to-noise ratio 

scenarios, coefficient shrinkage is preferred and the optimal procedure involves selecting a 
gamma value close to one to solve noisy problems[45]. These results are consistent with 

simulation studies evaluating the performance of the relaxed Lasso under various 
constraints[45]. Both models resulted in the selection of eight variables, but the pseudo-R2 

(0.0558) shows that the improvement of the model compared to the null model is rather 
small, which can be explained by the size of the estimated parameters, which are close to 

zero for the chosen lambda value. This underlines one of the well-known disadvantages of 
the Lasso, namely that it can shrink the coefficients too much[41, 45]. The elastic net model 

selected a total of 52 variables, including the model intercept, while the ordinary and relaxed 

Lasso estimators selected only eight variables. This discrepancy can be easily understood 
by looking at the properties of the respective models. The elastic net allows both the 

automatic selection of features and the selection of groups of correlated predictors (i.e., 
strongly correlated predictors are usually included in or removed from the model 

together)[38, 44]. In contrast, Lasso tends to split such variables and randomly selects only 
one variable from the group[38, 41]. The adaptive Lasso model selected a total of 99 

predictor variables and outperformed all other models tested in terms of the number of 
variables selected and goodness of fit (pseudo-R2 = 0.9920). The adaptive Lasso and 
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elastic net are extensions of the Lasso, and both incorporate the ℓ( penalty of ridge 

regression, which is advantageous in the presence of multicollinearity[76, 77]. Unlike the 
ordinary Lasso and relaxed Lasso models, which apply a constant shrinkage regardless of 

the size of the parameters, the adaptive lasso assigns different weights to each covariate 

in the penalty term (derived from ridge regression), thus penalising smaller coefficients more 
severely, while larger coefficients receive a smaller penalty[42]. While the debiasing 

process of the adaptive Lasso has the potential to improve the prediction error of the model, 
it also introduces a higher risk of overfitting the data (i.e., a model performs very well on 

training data but poorly on new data; the model fits sample-specific random variations in the 
data rather than the true underlying relationships between variables). Some limitations of 

this study must be acknowledged. First, the generalisability of the results is limited by the 
small sample size and the lack of external validation. In addition, there was a sex imbalance, 

which may affect conclusions. Another drawback of this study is that the genotype matrix 
was imputed using a simple imputation method. More robust methods such as XGBoost 

(eXtreme Gradient Boosting) are now available for R[69], but due to the size of the genotype 

matrix this would require an enormous amount of computation until the matrix is fully 
imputed. Despite these limitations, this study successfully employs a robust methodology 

to overcome the challenges of high-dimensional data and the limitations of univariate 
analysis in GWAS. It also provides a promising starting point for future scientific research, 

contributing to a body of work that suggests that some individuals with COPD have a genetic 
predisposition to functional impairment[21]. 

 

Conclusion 
 
This study found SNP associations with functional impairment in COPD, but variable 

selection varied across models. The adaptive Lasso performed best, selecting 99 variables. 

Future research, including external validation and functional studies (variant-to-function), is 
needed to confirm the results and elucidate the underlying biological pathways. 
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