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Abstract

Several authors are currently working on generalized Appell polynomials and their
applications in the framework of hypercomplex function theory in Rn+1. A few years
ago, two of the authors of this paper introduced a prototype of these generalized Appell
polynomials, which heavily draws on a one-parameter family of non-symmetric number
triangles T (n), n ≥ 2. In this paper, we prove several new and interesting properties of
finite and infinite sums constructed from entries of T (n), similar to the ordinary Pascal
triangle, which is not a part of that family. In particular, we obtain a recurrence relation
for a family of finite sums, analogous to the ordinary Fibonacci sequence, and derive
its corresponding generating function.

1 Introduction

Almost ten years ago, Falcão and Malonek [7] proved a set of basic properties of a one-
parameter family of non-symmetric Pascal triangles. Such family, obtained as result of
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studies on generalized Appell polynomials in the framework of hypercomplex function theory
in Rn+1 [6], is given by the infinite array of rational numbers

T k
s (n) =

(
k

s

)(
n+1
2

)
k−s

(
n−1
2

)
s

(n)k
, n, k = 1, 2, . . . , s = 0, 1, . . . , k, (1)

where (a)r := a(a+ 1) · · · (a+ r− 1), for any integer r ≥ 1 is the Pochhammer symbol with
(a)0 := 1, a ≥ 0. If n = 1, then T k

0 (1) = 1 and T k
s (1) = 0, s > 0. We let T (n), n ≥ 2, denote

the family of triangles whose elements are given by (1).
The paper is organized as follows: first we recall several results related to interesting

properties of T (n), specifically those relating to sums of row entries and series along its
main diagonal. Next, we highlight the significant role played by sums over entries in the
anti-diagonals of T (n), which are similar to those found in the Fibonacci sequence within
the ordinary Pascal triangle. Naturally, the interconnections between all entries of T (n) and
those along the main diagonal rely on several well-known and lesser-known combinatorial
identities, which we use extensively throughout the paper. The final result of the paper
is some surprising revelation about a property of such an analog of Fibonacci sequence for
T (n).

2 Preliminary results

We recall here the most relevant properties of the family T (n). Relations between adjacent
elements of T (n) were obtained by Falcão and Malonek [7], while Cação et al [4] derived
results concerning the main diagonal elements of the triangle, i.e., the sequence of numbers

Tk(n) := T k
k (n) =

(
n−1
2

)
k

(n)k
, k = 0, 1, 2, . . . , n = 2, 3, . . . . (2)

The first result [4, Proposition 8] shows the relation between any element T k
s (n) of the

triangle T (n) and the main diagonal elements Tm(n), m = s, s+ 1, . . . , k

Theorem 1. For k = 0, 1, 2, . . . and r = 0, . . . , k, we have

T k
k−r(n) = (−1)r

(
k

r

) r∑
s=0

(
r

s

)
(−1)sTk−s(n). (3)

The next result [4, Proposition 11] concerns a recurrence satisfied by the sequence
(Dk(n))k≥0 consisting of alternating partial sums of the main diagonal elements, i.e.,

Dk(n) :=
k∑

s=0

(−1)sTs(n), (4)

whose first elements are

1, n+1
2n

, 3n+1
4n

, (n+1)(5n+7)
8n(n+2)

, n(11n+28)+9
16n(n+2)

, (n+1)(7n(3n+16)+107)
32n(n+2)(n+4)

, n(n(43n+281)+485)+151
64n(n+2)(n+4)

, . . . .
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Theorem 2. The sequence (Dk(n))k≥0, satisfies the recurrence relation

(n+ 1)Dk+1(n)− 2(k + n+ 1)Dk+2(n) + (2k + n+ 1)Dk(n) = 0, (5)

with initial conditions

D0(n) = 1, D1(n) =
n+ 1

2n
.

We end this section by observing that the triangular array T k
s (n) can be easily written

as a scaled integer triangle, for some values of n. In fact, it is easy to show, using the
well-known properties of the Pochhammer symbol, that

T k
s (2n+ 1) =

(
n+k−s

n

)(
n+s−1
n−1

)(
k+2n
2n

) .

Therefore, for odd values of n, the entries of the triangle
(
k+n−1
n−1

)
T k
s (n) are integers, as

illustrated in Table 1.

Triangles First rows OEIS link(
k+2
2

)
T k
s (3)

1
2 1
3 2 1
4 3 2 1

triangle A004736

(
k+4
4

)
T k
s (5)

1
3 2
6 6 3

10 12 9 4

triangle A104633

(
k+6
6

)
T k
s (7)

1
4 3

10 12 6
20 30 24 10

triangle A103252

Table 1: Some particular scaled triangles obtained from T (n), for odd n.

When n is even, determining the scale factor becomes more challenging (Cação et al. [3]
provide further details). Table 2 illustrates the particular cases n = 2 and n = 4, as well as
the limiting case n = ∞.

3 Filling in the gap: Fibonacci-like sequences

The study conducted by Falcão and Malonek [7] did not take into consideration the rela-
tionships among the entries located along the rising diagonals of T (n) (also called northeast
diagonals [10] or anti-diagonals [2]). The aim of this paper is to fill in this gap with a sur-
prising result presented in Theorem 3. From the qualitative point of view, it shows once
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Triangles First rows OEIS link

2mkT k
s (2)

1
3 1
5 2 1

35 15 9 5

mk = A283208

2MkT k
s (4)

1
5 3
7 6 3

21 21 15 7

Mk−1 = mk−1+ A050605

2kT k
s (∞)

1
1 1
1 2 1
1 3 3 1

Pascal triangle A007318

Table 2: Other integer triangles obtained by scaling T (n).

more the particular nature of T (n) as a combinatorial object arising from generalized Appell
polynomials in hypercomplex analysis.

Consider the triangle L(n) obtained after re-indexing of the triangle T (n) as illustrated
in Figure 1. The elements Lk

s(n) of L(n) are given by

Lk
s(n) := T k−s

s (n), k = 0, 1, 2, . . . , s = 0, 1, . . . , ⌊k
2
⌋, n = 2, 3, . . . . (6)

Table 3 shows the first few lines of the array L(n), where each line has pairwise repeating
lengths. In the limiting case n = ∞, one can recognize well-known scaled triangles, as
illustrated in Table 4.

One of the most interesting patterns of the ordinary Pascal triangle is that the sum of
the elements of its anti-diagonals gives rise to the Fibonacci sequence. Following this idea,
we construct the sequence (Sk(n))k≥0

Sk(n) :=

⌊
k
2

⌋∑
s=0

Lk
s(n), (7)

consisting of the sum of the elements Lk
s(n) in the k-th rising diagonal of the array T (n).

The next result shows that the sequence (Sk(n))k≥0, built according to the construction
of the Fibonacci sequence from the elements of the ordinary Pascal triangle, is identical to
the sequence (Dk(n))k≥0, built of the alternating partial sums of the main diagonal elements
of the triangle T (n).

Theorem 3. The sequence (Sk(n))k≥0 given by (7) is identical to the sequence (Dk(n))k≥0,
given by (4).
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L0
0

L1
0 L2

1

L2
0 L3

1 L4
2

L3
0 L4

1 L5
2 L6

3

L4
0 L5

1 L6
2 L7

3 L8
4

L5
0 L6

1 L7
2 L8

3 L9
4 L10

5

L6
0 L7

1 L8
2 L9

3 L10
4 L11

5 L12
6

L7
0 L8

1 L9
2 L10

3 L11
4 L12

5 L13
6 L14

7

L15
0 L16

1 T 7
2 T 7

3 T 7
4 T 7

5 T 7
6

Figure 1: A re-indexing of the triangle T (n).

Proof. We first assume that k is even, i.e., k = 2m (m ∈ N0). Then, from (6) and (7) we
have

S2m(n) =
m∑
s=0

T 2m−s
s =

m∑
ℓ=0

Tm+ℓ
m−ℓ .

We can use (3) with k = m+ ℓ and r = 2ℓ to obtain

S2m(n) =
m∑
ℓ=0

(
m+ ℓ

2ℓ

) 2ℓ∑
s=0

(−1)s
(
2ℓ

s

)
Tm+ℓ−s(n)

=
m∑
ℓ=0

(
m+ ℓ

2ℓ

) ℓ∑
s=−ℓ

(−1)ℓ−s

(
2ℓ

ℓ− s

)
Tm+s(n).

Reversing the order of summation, we get

S2m(n) =
m∑

s=−m

(−1)sTm+s(n)Σs,m

where

Σs,m :=
m∑

ℓ=|s|

(−1)ℓ
(
m+ ℓ

2ℓ

)(
2ℓ

ℓ− s

)
.
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Lk
s(n) s = 0 s = 1 s = 2 s = 3 . . .

k = 0 1

k = 1 n+1
2n

k = 2 n+3
22n

n−1
2n

k = 3 (n+3)(n+5)
23n(n+2)

2(n−1)
22n

k = 4 (n+5)(n+7)
24n(n+2)

3(n−1)(n+3)
23n(n+2)

n−1
22n

k = 5 (n+5)(n+7)(n+9)
25n(n+2)(n+4)

4(n−1)(n+5)
24n(n+2)

3(n2−1)
23n(n+2)

k = 6 (n+7)(n+9)(n+11)
26n(n+2)(n+4)

5(n−1)(n+5)(n+7)
25n(n+2)(n+4)

6(n2−1)
24n(n+2)

(n−1)(n+3)
23n(n+2)

k = 7 (n+7)(n+9)(n+11)(n+13)
27n(n+2)(n+4)(n+6)

6(n−1)(n+7)(n+9)
26n(n+2)(n+4)

10(n−1)(n+1)(n+5)
25n(n+2)(n+4)

4(n2−1)
24n(n+2)

. . .

Table 3: Values of Lk
s(n) in the first rising diagonals of the array T (n).

Triangles First rows OEIS link

2kLk
s(∞)

1
1
1 2
1 4
1 6 4
1 8 12
1 10 24 8
1 12 40 32
1 14 60 80 16

A128099
Row sums are the

Jacobsthal numbers A001045

2k−sLk
s(∞)

1
1
1 1
1 2
1 3 1
1 4 3
1 5 6 1
1 6 10 4
1 7 15 10 1

A011973
triangle of coefficients
of (one version of)

Fibonacci polynomials

Table 4: Some particular scaled triangles obtained from L(∞).

Using the formula (cf. [8, Formula 5.21]) and replacing (r,m, k) by (m+ ℓ, 2ℓ, ℓ− s) we can
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express Σs,m as

Σs,m =
m∑

ℓ=|s|

(−1)ℓ
(
m+ ℓ

ℓ− s

)(
m+ s

ℓ+ s

)
=

m∑
ℓ=|s|

(−1)ℓ
(
m+ s

s+ ℓ

)(
m+ ℓ

m+ s

)
.

We now use the relation∑
k

(−1)k
(

ℓ

m+ k

)(
s+ k

n

)
= (−1)ℓ+m

(
s−m

n− ℓ

)
, ℓ ∈ N0, m, n ∈ Z

(cf. [8, Formula 5.24]) with (k, ℓ,m, n, s) replaced by (ℓ,m+ s, s,m+ s,m) to conclude that

Σs,m = (−1)m,

which leads to

S2m(n) =
m∑

s=−m

(−1)m+sTm+s(n) =
2m∑
s=0

(−1)sTs(n) = D2m.

The case where k is odd can be handled using similar arguments.

By combining the relation (5) with the coincidence of both sequences (Sk(n))k≥0 and
(Dk(n))k≥0, we get immediately that the sequence (Sk(n))k≥0, considered as the analog(7)
of the Fibonacci sequence, can be characterized by a second-order recurrence with variable
coefficients as follows:

Corollary 4. For any integer n ≥ 2 the elements Sk(n) are recursively defined by

Sk+1(n) =
n+ 1

2(k + n)
Sk(n) +

2k + n− 1

2(k + n)
Sk−1(n), for k ≥ 1, (8)

with initial conditions

S0(n) = 1, S1(n) =
n+ 1

2n
. (9)

The recurrence (8), which connects three consecutive terms of the sequence (Sk(n))k≥0,
enables the derivation of a differential equation, whose solution is the ordinary power series
generating function of that sequence.

Theorem 5. The generating function of the sequence (Sk(n))k≥0, n = 2, 3, . . . can be written
in terms of the Gauss hypergeometric function as

Fn(x) = 2F1(1, 1; 1;x) 2F1(1,
n−1
2
;n;−x) =

2F1(1,
n−1
2
;n;−x)

1− x
.
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Proof. Let Fn be the ordinary power series generating function of the sequence (Sk(n))k≥0,
i.e.,

Fn(x) =
∞∑
k=0

Sk(n)x
k.

We rewrite the recurrence relation (8) in the following form:

(3− n− 2k)Sk−2(n)− (1 + n)Sk−1(n) + 2(n− 1)Sk(n) + 2kSk(n) = 0.

Then, we multiply by xk and sum over k ≥ 2 to obtain

(3− n)
∞∑
k=2

Sk−2(n)x
k − 2

∞∑
k=2

kSk−2(n)x
k

− (1 + n)
∞∑
k=2

Sk−1(n)x
k + 2(n− 1)

∞∑
k=2

Sk(n)x
k + 2

∞∑
k=2

kSk(n)x
k = 0,

or, equivalently,

(3− n)x2Fn(x)− 2x3F ′
n(x)− 4x2Fn(x)− (1 + n)(xFn(x) + S0(n))

+ 2(n− 1)(Fn(x)− S1(n)x− S0(n)) + 2(xF ′
n(x)− xS1(n)) = 0.

By using the initial conditions (9) in the above equation, we get the first order linear differ-
ential equation

F ′
n(x) +

1

x− 1

(n+ 1

2
− n− 1

x2 + x

)
Fn(x) =

n− 1

x− x3
. (10)

The use of the standard integrating factor method for solving (10) leads to

Fn(x) =
(n− 1)(1 + x)

n−1
2 x1−n

1− x

∫
xn−2(1 + x)−

n+1
2 dx. (11)

Since (1 + x)−a = 2F1(1, a; 1;−x) (cf. [1, Formula 15.1.8]), we have∫
xn−2(1 + x)−

n+1
2 dx =

∫
xn−2

∞∑
k=0

(
n+ 1

2

)
k

(−x)k

k!

=
xn−1

n− 1

∞∑
k=0

(n− 1)k
(
n+1
2

)
k

(n)k

(−x)k

k!

=
xn−1

n− 1
2F1 (n− 1,

n+ 1

2
;n;−x). (12)

Combining (11) and (12) we get

Fn(x) =
(1 + x)

n−1
2 2F1(n− 1, n+1

2
;n;−x)

1− x
.
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The result follows by applying Euler’s transformation

2F1(a, b; c;−x) = (1 + x)c−a−b
2F1(c− a, c− b; c;−x).

We observe that the ODE (10) can be written as

2

n− 1
F ′
n(x) +

1

x− 1

(n+ 1

n− 1
− 2

x2 + x

)
Fn(x) =

2

x− x3
,

which gives in the limit case n = ∞,

F∞(x) = − 2

x2 + x− 2
.

Notice that F∞(x) is also the generating function of the sequence (2−kJk+1)k≥0, where Jk
denotes Jacobsthal numbers. In fact,

F∞(x) =
2

3

( 1

1− x
+

1

2 + x

)
=

∞∑
k=0

1

3

(
2 +

(
− 1

2

)k
)
xk,

and taking into account the Binet form of the Jacobsthal numbers Jk = 1
3

(
2k − (−1)k

)
(cf.

[10]), we obtain

F∞(x) =
∞∑
k=0

2−kJk+1x
k,

i.e., Sk(∞) = 2−kJk+1. Furthermore, we immediately conclude that

lim
k→∞

Sk(∞) =
2

3
.

We can obtain explicit expressions for Fn(x) for certain values of n, by using properties
of the Gauss hypergeometric function.

� F2(x) =
2
(
− 1 +

√
1 + x

)
(1− x)x

� F3(x) =
−2x+ 2(1 + x) log(1 + x)

(1− x)x2

� F4(x) =
2
(
8− 8

√
1 + x+ x

(
12 + 3x− 8

√
1 + x

))
(1− x)x3

� F5(x) =
−2x (6 + x(9 + 2x)) + 12(1 + x)2 log(1 + x)

(−1 + x)x4
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Finally, we refer to some limiting properties of Sk(n).

Theorem 6. Consider the sequence (Sk(n))k≥0, n = 2, 3, . . .. Then

lim
k→∞

Sk(n) = 2F1 (1,
n−1
2
;n;−1).

Proof. The result is an immediate consequence of the Theorem 3, along with equations (4)
and (2). In fact,

Sk(n) = Dk(n) =
k∑

s=0

(−1)sTs(n) =
k∑

s=0

(−1)s
(
n−1
2

)
s

(n)s
=

k∑
s=0

(−1)s

s!

(1)s
(
n−1
2

)
s

(n)s
,

which proves the desired result.
It is worth noting that the hypergeometric series 2F1(1,

n−1
2
;n;−1) converges absolutely

[1], since n− 1− n−1
2

> 0.

It is well known that the ratio of two consecutive ordinary Fibonacci numbers converges
to the golden ratio. Here the corresponding property can be obtained as an immediate
consequence of Theorem 6. Specifically, we have

lim
k→∞

Sk+1(n)

Sk(n)
= 1.

4 Final remarks

It was initially unclear what kind of result could be expected from constructing an analog
of the Fibonacci sequence using hypercomplex tools and following the usual rules of the
ordinary Pascal triangle. Specifically, we were uncertain about the result of summing the
rising diagonal elements of T (n). This gap was left unaddressed in our previous work [7].
However, as explained in Section 3, Theorem 3 provides the answer to this question and
leads to the main recurrence relation given in (8)-(9).

Concluding our final remarks, we would like to highlight the potential for fruitful and
interesting connections between real, complex, and hypercomplex analysis when considering
hypercomplex polynomials [5, 9, 11] from the specific discrete viewpoint of combinatorial
relations.
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