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Within nonlinear electrodynamics (NED), photons follow null geodesics of an effective geometry, which
is different from the geometry of the spacetime itself. Over the last years, several works were dedicated to
investigate the motion of photons in the effective geometry of NED-based magnetically charged regular black
hole (RBH) solutions. However, there are few works considering electrically charged RBHs. We study the light
rings, shadows, and gravitational lensing of the electrically charged RBH solution proposed by Irina Dymnikova
(ID), which is a static and spherically symmetric spacetime with a NED source. We show that the shadow
associated to the effective geometry can be almost 10% bigger that the one associated to the standard geometry.
We also find that the ID solution may mimic the shadow properties of the Reissner-Nordström (RN) BH, for low-
to-extreme values of the electric charge. Besides that, by using the backwards ray-tracing technique, we obtain
that ID and RN BH solutions can have a very similar gravitational lensing, for some values of the correspondent
electric charges. We also show that the motion of photons in the effective geometry can be interpreted as a
non-geodesic curve submitted to a 4-force term, from the perspective of an observer in the standard geometry.

I. INTRODUCTION

General Relativity (GR) is a well-established classical grav-
itational theory [1–3]. Although it has accumulated remark-
able and numerous triumphs, it presents limitations, specially
at the core of the standard black hole (BH) solutions. GR
predicts the existence of singularities, which are pathologies
where the laws of physics break down [4], challenging the va-
lidity of Einstein’s theory.

A possibility to overcome such pathologies is to consider
appropriated distributions of matter, leading to singularity-
free BH solutions within GR. The first line element for a
non-singular BH geometry was proposed by James Bardeen
in 1968 [5]. By minimally coupling GR and nonlinear elec-
trodynamics (NED), it was shown that it is possible to ob-
tain various exact charged RBH solutions (cf. Refs. [6–9]).
In these theories, the Bardeen geometry can be interpreted
as a RBH sourced by a nonlinear magnetic [10] or electric
monopole [11].

NED models can be seen as possible ultraviolet comple-
tions of linear electrodynamics, i.e., for electromagnetic fields
with magnitudes approaching [12]:

Ecri = 1.3× 1018 V

m
and Bcri = 4.4× 109 T. (1)

One of the first covariant models of NED was proposed in
1934 (the so-called Born-Infeld electrodynamics) as an at-
tempt to obtain a finite self-energy density for the electric
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charge [13, 14]. Another influential model of NED is the
Euler-Heisenberg theory [15], which is related with two im-
portant predictions of Quantum Electrodynamics (QED): the
light-by-light scattering [16, 17] and the vacuum birefrin-
gence [18, 19]. Beyond BH physics (see also Refs. [20–
29]) and QED, NED has also applications in string/M-
theories [30–33] and cosmology [34–37]. Among the appli-
cations of NED in BH physics, one important result is that
the motion of photons can be interpreted as a null geodesic
of an effective geometry [38–41], which is different from the
geometry of the spacetime itself.

Since NED affects the motion of photons, the analysis of
light rings (LRs), shadows, and gravitational lensing – which
are of utmost importance within the context of BH physics –
requires special attention. The LRs are circular photon orbits
that can be studied by analyzing the null geodesics in a given
(effective) geometry, as it was done for some NED-based
magnetically charged RBHs [42–45]. Noticeably, the analy-
sis of the null geodesics alone is not enough to distinguish the
type of charge of a BH in the same NED theory [46]. Besides
that, in the electromagnetic channel, the LRs are closely re-
lated to the BH shadow [47], as seen by a distant observer. The
BH shadow is related to the dark region formed when a BH is
illuminated by some source of light, for instance, an accretion
disk that surrounds the BH [3]. Recently, some works study-
ing the shadows of NED-based RBHs, considering the effec-
tive geometry, were performed [48–53], but focusing mainly
on magnetically charged solutions.

The study of the deflection of a light ray by a compact ob-
ject due to the gravitational interaction plays an important role
in Einstein’s theory. For instance, the first confirmed pre-
diction of GR, the deflection of light by the Sun [54, 55],
is an example of gravitational lensing effect. Over the last
decades, several works on gravitational lensing in standard
BH spacetimes have been done (see, e.g., Refs. [58–66] and
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references therein). In the background of NED-based RBH
solutions, considering the effective geometry, the gravitational
lensing was studied for electric and magnetic models [67–71].
However, the computation of gravitational lensing using back-
wards ray-tracing techniques [47, 72] has not been performed
so far in the background of electrically charged NED-based
RBHs.

It is also important to emphasize that, within NED, electri-
cally charged RBHs are, in general, derived in the so-called
P framework [20]. In this framework, the electric models
could exist, from the theoretical point of view, if they satisfy
the weak energy condition [22]. The weak energy condition
leads to a de-Sitter behavior at the core of the central object,
providing a regular center, and the Maxwell limit can be sat-
isfied at infinity, which is the case, e.g., for the solutions in
Refs. [7, 22].

Although it is widely believed that astrophysical BHs are
essentially neutral, it has been argued that (at least) a small
non-zero electric charge is possible [73–75], which can affect
the motion of charged particles. Therefore the study of elec-
trically charged BHs, in the spherically symmetric case, can
be useful not only to improve our theoretical understanding of
BH physics, but also to gauge the role of NED and its hypo-
thetical impact in the context of astrophysical BHs.

The aim of this work is to study the imprints of NED in
the trajectories of the photons by analyzing the LRs, shadows
and gravitational lensing. For concreteness, we focus on the
static and spherically symmetric electrically charged NED-
based RBH solution proposed by Irina Dymnikova (ID) [22].
Since the casual structure of the ID solution is similar to
the Reissner-Nordström (RN) one, we compare our results to
those obtained in the RN geometry. The remainder of this
paper is organized as follows. In Sec. II we review the ID
geometry. The null geodesic equations, considering the stan-
dard and effective geometries, are studied in Sec. III. Our
main results are presented in Sec. IV, and our final remarks
in Sec. V. Throughout this paper we use the natural units, for
which G = c = ~ = 1, and the metric signature (+,−,−,−).

II. BACKGROUND

In the F framework, the action that describes NED mini-
mally coupled with gravity can be written as [20]

S =
1

16π

∫
d4x
√
−g [R− L(F )] , (2)

where g is the determinant of the metric tensor gµν , R is
the corresponding Ricci scalar, and L(F ) is a gauge-invariant
electromagnetic Lagrangian density. The function F ≡
FµνF

µν is the Maxwell scalar, with Fµν being the standard
electromagnetic field tensor. By introducing a structural func-
tionH(P ) through a Legendre transformation [76], namely

H(P ) = 2FLF − L(F ), (3)

one can obtain an alternative form for the NED theory in the
so-called P framework [20]. Within this context, the func-
tion P ≡ PµνP

µν is a scalar obtained from the auxiliary

anti-symmetric tensor Pµν , defined as Pµν ≡ LFFµν , where
LF ≡ ∂L/∂F . The relations between the F and P frame-
works are given by (see, for instance, Ref. [22]):

P = (LF )2F, HPLF = 1, and Fµν = HPPµν , (4)

where HP ≡ ∂H/∂P . By using Eqs. (2)-(4), we can write
the corresponding action in the P framework as

S =
1

16π

∫
d4x
√
−g [R− (2PHP −H(P ))] . (5)

The corresponding field equations are given by

Gµν = −Tµν =
1

2
[4HPPναPµα − δµν (2PHP −H)] ,

(6)
which are the Einstein-NED (E-NED) field equations written
in the P framework. The conservation equation of Pµν and
the corresponding Bianchi identities are given by

∇µPµν = 0 and ∇µ (HP ? Pµν) = 0, (7)

respectively, where ? is the Hodge symbol. A correspondence
with Maxwell’s theory is obtained if H(P ) → P and HP →
1, for small P . The P framework is useful to obtain exact
solutions of Einstein field equations in the presence of NED
sources [76] and it is equivalent to the F framework where the
function F (P ) is a monotonic function of P [20].

Within the P framework, NED-based RBHs may be found
by specifying the NED source H(P ) and the appropriated
function Pµν

1. For the electrically charged RBH solution
proposed by Irina Dymnikova (ID) [22], the NED source is
specified by the following structural function:

H(P ) ≡ P

(1 + α
√
−P )2

, (8)

where α is a constant to be determined by the field equations.
To solve the field equations we need to take an ansatz for

the line element describing the spacetime. For the ID solution,
it is considered a static and spherically symmetric geometry,
with the line element of the form

ds2 = f(r)dt2 − f(r)−1dr2 − r2dΩ2, (9)

in which dΩ2 = dθ2 + sin2 θdϕ2 is the line element of a unit
2-sphere and f(r) is the metric function, given by

f(r) = 1− 2M(r)

r
. (10)

The function M(r) is determined by the E-NED field equa-
tions. From its asymptotic behavior it is possible to obtain the
total mass M(r → ∞) = M of the (regular) BH [26, 28].
Since we are considering a spherically symmetric background

1 BH solutions obtained in the P framework can also be formally derived in
the F framework by using a suitable nonuniform variational method [77].
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and a purely electric NED source, the appropriated ansatz for
Pµν can be written as

Pµν =
(
δtµδ

r
ν − δtνδrµ

)
D(r), (11)

whereD(r) is a function to be determined by the conservation
equation of Pµν (7). Notice that the NED source (8) satisfies a
correspondence with Maxwell’s theory at infinity, which can
be inferred by taking a series expansion of the model around
P = 0. Taking this into account and integrating Eq. (7), we
obtain that D(r) is given by

D(r) =
Q

r2
, (12)

where Q is the electric charge of the central object, then

P = −2Q2

r4
. (13)

The Gtt component of the E-NED field equations leads to

M(r) = −1

4

∫ r

0

H(P )x2dx, (14)

which, considering Eqs. (8) and (13), results in

M(r) =
Q2

8

[
2

3
4

√
αQ

arctan

(
r

2
1
4

√
αQ

)
− 2r√

2αQ+ r2

]
.

(15)
The value of α can be fixed by recalling that the limitM(r →
∞) = M provides the unique mass of the BH, thus

α =
π2Q3

64
√

2M2
. (16)

Since α is a model parameter, rather than an integration con-
stant (which is the case forM,Q) this means the choice of BH
mass and charge, fixes the model coupling α. But the choice
of charge to mass ratio Q/M does not fix α.

Considering Eqs. (15) and (16), and defining

z ≡ πQ2

8M
, (17)

we obtain the metric function of the ID solution, given by [22]

f ID(r) = 1− 4M

πr

[
arctan

(r
z

)
− rz

r2 + z2

]
. (18)

In the limit r →∞, f ID(r) behaves as

f ID(r)
∣∣
∞ ≈ 1− 2M

r
+
Q2

r2
− 2Q2z2

3r4
+O

[
1

r5

]
, (19)

which approaches the metric function of the RN spacetime, as
expected since the NED source associated with the ID solu-
tion satisfies a correspondence with the linear electrodynam-
ics in the weak field limit. Although the contributions of order
r−n, with n ≥ 4, in the metric function are negligible in the

weak field limit, they play an important role in the higher or-
der corrections of the weak deflection angle, as discussed in
the Appendix A. On the other hand, as we approach the core,
the ID solution has a de Sitter behavior, given by

f ID(r)
∣∣
0
≈ 1− 1

3

(
Q2

z4

)
r2 +

2Q2

5z6
r4 +O

[
r5
]
, (20)

which is related with the finiteness of the self-energy density
of the electric NED source, with Λ = Q2/z4 being an ef-
fective cosmological constant. In addition, the ID solution
reduces to the Schwarzschild solution in the chargeless limit
(Q→ 0).

The event horizon of the BH solution (9) can be determined
by f(r) = 0. For the ID solution, the equation f(r) = 0
leads to a transcendental equation. Hence we cannot ob-
tain a closed expression for the event horizon radius as func-
tions of M and Q, although we can obtain it numerically.
The extreme charge value, Qext, can be obtained by solving
f(r) = 0 and f ′(r) = 0, simultaneously, where the prime de-
notes differentiation with respect to the coordinate r. There-
fore we can show that Qext for the ID solution is given by
QID

ext
∼= 1.07305M and the corresponding extreme event hori-

zon location by rID
ext
∼= 0.82532M (recall that for the RN BH

solution, QRN
ext = rRN

ext = M ).
In Fig. 1, we compare the metric functions of ID and RN

BHs solutions, for a given value of the normalized electric
charge, defined as q = Q/Qext, which satisfies 0 ≤ q ≤ 1.
We note that these solutions have a similar causal structure.
For 0 < q < 1 we have a Cauchy horizon, r−, and an event
horizon, r+, while for q = 1 the two horizons degenerate into
a single null hypersurface (rext). The q > 1 case is associated
to horizonless solutions. Here we will consider only BH so-
lutions, which occur when 0 ≤ q ≤ 1, with the case q = 0
corresponding to the Schwarzschild solution.

0 0.5 1 1.5 2
-6

-4

-2

0

2

FIG. 1. Comparison between the metric functions of ID
[
f ID(r)

]
and RN

[
fRN(r)

]
BH solutions, considering three distinct values of

q = 0.4, 0.7, and 1, as functions of r/M .

As a means to verify the regularity of the ID solu-
tion, we compute the Kretschmann scalar, defined as K ≡
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RµνσρR
µνσρ. For the ID solution, K is given by

K(r) =
64M2

π2y6A6z6

(
3A6B2 − 2A3By

(
9y4 + 8y2 + 3

)
+ y2

(
7y4 + 4y2 + 1

) (
5y4 + 4y2 + 3

) )
, (21)

where we defined the auxiliary functions:

A(r) = 1 + y2, (22a)
B(r) = arctan y, (22b)

and y ≡ r/z. In Fig. 2, we display the behavior of the
Kretschmann scalar of the ID solution. We see that this scalar
is finite for r ≥ 0, as long as Q 6= 0, which is enough to avoid
the existence of curvature singularities [78].

0 0.5 1 1.5 2
0

50

100

150

200

FIG. 2. Kretschmann scalar of the ID RBH solution, normalized
by π2z6, as a function of r/z. At the core of the ID solution, the
Kretschmann scalar is finite and given by K(r)|0 = 512M2/3π2z6.

III. NULL GEODESICS

In this section we present the equations of motion for null
geodesic in the standard geometry (SG) [see Eq. (9)], as well
as in the effective geometry (EG) [see Eq. (33)], where pho-
tons in NED theory propagate along null geodesics. Due to
the spherical symmetry, we consider the motion in the equa-
torial plane, i.e., θ = π/2, without loss of generality.

A. Null rings in the standard geometry

The classical Hamiltonian Hgeo that provides the equations
of motion for massless particles is given by2

Hgeo =
1

2
gµνpµpν =

1

2

(
p2
t

f(r)
− f(r)p2

r −
p2
ϕ

r2

)
, (23)

2 In the remainder of this paper, we use the term “massless particles” to refer
to any particle that follow null geodesics in the SG (9).

where pµ are the components of the 4-momentum of massless
particles. By using the Hamilton’s equations, we obtain

ṫ =
pt
f(r)

, (24)

ṙ = −f(r)pr, (25)

ϕ̇ = −pϕ
r2
. (26)

Since the Hamiltonian (23) does not depend explicitly on the
coordinates t and ϕ, pt ≡ E and pϕ ≡ −L are constants of
motion, whereE andL are the energy and angular momentum
of the massless particles, respectively. Recall also that for null
geodesics in the SG Hgeo = 0.

Using Eqs. (24)-(26), and Hgeo = 0, we may obtain a radial
equation for massless particles, given by

ṙ2 + V(r) = E2, (27)

where V(r) is the effective potential for the radial motion of
particles following null geodesics, defined as

V(r) ≡ L2 f(r)

r2
. (28)

In Fig. 3, we display the effective potential for massless parti-
cles on the ID RBH background. Notice that the local maxi-
mum of the effective potential increases as we consider higher
values of the normalized electric charge. At the local maxi-
mum of the effective potential we have unstable circular orbits
for massless particles.

1 2 3 4 5
0

0.02

0.04

0.06

0.08

FIG. 3. Effective potential for null geodesics on the background of
the ID RBH solution, normalized by the angular momentum, as func-
tion of r/r+, and for distinct values of q.

Closed circular null orbits are described by ṙ = 0 and r̈ =
0, which implies that

V = E2 and V′ = 0, (29)

respectively. Moreover if d2V/dr2 < 0, the closed circular
orbit is unstable. From Eqs. (29), we may find the radius rc
of the unstable circular orbit and the corresponding critical
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impact parameter bc at this orbit, namely

2fc−rcf ′c = 0, (30)

bc =
Lc
Ec

=
rc√
fc
. (31)

The impact parameter is defined as b ≡ L/E and the subscript
“c” denotes that the quantity under consideration is computed
at the critical radius rc. In Fig. 4, we display the motion of
massless particles on an ID RBH spacetime with q = 0.8,
obtained by solving Eqs. (26) and (27) numerically. For b <
bc, massless particles are absorbed by the central object, while
for b > bc they are scattered. At the threshold, when b = bc,
the trajectories describe a circular orbit around the BH at r =
rc. Therefore, we can interpret bc as the threshold between
absorbed and scattered null geodesics.

5 0 5
4

0

5

FIG. 4. Null trajectories on the ID RBH with q = 0.8, for distinct
choices of b. In this figure, rc = 2.3929M and bc = 4.4309M ,
with the solid and dashed black circles denoting the orbit at rc and
the event horizon location, respectively. Here the numerical infinity
was placed at r∞ = 100M .

In linear electrodynamics, photons follow null geodesics of
the SG. Consequently, the equations of motion for massless
particles and photons coincide. On the other hand, in NED
theory, photons are interpreted to follow the null geodesics of
an effective geometry (EG) [40], which is different of the SG.
Accordingly, the null geodesics analysis in the SG (9), consid-
ering NED-based RBHs, concern only to massless particles
with a nature other than electromagnetic. In other words, the
trajectories examined above do not describe photon motion.
In Sec. III B we analyze the appropriate equations that govern
the photon trajectories in NED-based spacetimes.

B. Light rings (LRs) in the effective geometry

In NED, electromagnetic fluctuations propagate along an
effective light cone, that in general differs from the “light-
cones” defined by the standard geometry [38, 39]. In fact,
for a general theory of NED, depending on the two inde-
pendent four dimensional relativistic invariants, F (defined
above) and Fµν ? F

µν , there are (in general) two effective
light cones, one for each polarization. This encodes the phe-
nomenon of birefringence, which substantiates a medium in-
terpretation for electromagnetic fluctuations propagating on a
NED background (regardless of the coupling to gravity). For
the particular case of NED models depending solely on F (no
dependence on Fµν ? Fµν), birefringence does not occur in
general 3. Then, the single effective light cone can be made
geometric by considering that photons propagate along null
geodesics of an effective metric tensor gµνeff , which depends on
the contributions of the NED source to the energy-momentum
tensor [38–41].

The effective metric tensor of an electrically charged RBHs
obtained in the P framework is given by [41]

gµνeff =
1

HP
gµν + 4

HPP
FP

PµσP
σν . (32)

If the NED source is characterized by a purely electric field
in the P framework, with the SG given by (9), then the corre-
sponding line element of the EG can be written as [20]

ds2
eff = geff

µνdx
µdxν =

1

Φ

(
f(r)dt2 − dr2

f(r)
− ΦHP r2dΩ2

)
,

(33)
where Φ ≡ HP /FP . From Eq. (4), we notice that the scalar F
can be written as F = (HP )2P , and if Maxwell’s weak field
limit is satisfied (as it is for the ID solution) then H(P )→ P
and HP → 1, for small P . Consequently, FP → 1, since
HP → 1, and we see that the EG (33) reduces to the SG (9),
in the weak field limit.

From Eq. (33) one concludes that apart from the overall
1/Φ factor, that is irrelevant for null geodesics (modulo pos-
sible singularities), the only difference with the respect to the
SG is the angular coefficient. Thus radial photon orbits coin-
cide with the null geodesics of the SG.

The classical Hamiltonian Heff
geo for the effective metric ten-

sor geff
µν is given by

Heff
geo =

1

2
gµνeff p̄µp̄ν =

Φ

2

(
p̄2
t

f(r)
− f(r) p̄2

r −
p̄2
ϕ

ΦHP r2

)
,

(34)
where p̄µ are the components of the 4-momentum of pho-
tons. Following the same procedure presented in Sec. III A,

3 The birefringence phenomena can take place for NED models that depends
only on F in the presence of external magnetic fields [79, 80].
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the equations of motion can be written as

ṫ =
E Φ

f(r)
, (35)

ṙ = −f(r)Φp̄r, (36)

ϕ̇ =
L

HP r2
. (37)

Using Eqs. (34)-(37), and Heff
geo = 0, we obtain a radial

equation for photons given by(
F 2
P

H2
P

)
ṙ2 + U(r) = E2, (38)

where U(r) is the effective potential for the radial motion of
photons, defined as

U(r) ≡ L2FP f(r)

H2
P r

2
. (39)

In Fig. 5, we show the effective potential (28), for some values
of q. One observes that when 0 ≤ q < 1, there are no stable
circular photon orbits for r > r+, but when q = 1 we have a
stable photon orbit exactly on the extreme event horizon, i.e.,
rext = 0.82532M . These results are similar to those obtained
in the RN geometry [81]. Moreover the profile of the effective
potential shown in Fig. 5 is similar to the profile of other NED-
based RBH solutions (see, e.g., Ref. [43]).

1 2 3 4 5
0

0.02

0.04

0.06

0.08

FIG. 5. Effective potential for photons on the background of the ID
RBH solution, as function of r/r+.

Let us now quantitatively analyze the circular photon orbits,
also known as LRs. From ṙ = 0, which implies U = E2,
we obtain the critical impact parameter associated to the LR,
namely

bl =
rl (HP )l√

(FP )l fl
, (40)

whereas from r̈ = 0, which implies U′ = 0, we get the corre-
sponding radial coordinate of the LR rl, given by

fl

[
2−

rl (F
′
P )l

(FP )l
+

2rl (H′P )l
(HP )l

]
− rlf ′l = 0. (41)

The subscript “l” denotes that the quantity under considera-
tion is computed at the LR coordinate rl. Figure 6 compares
the LR perimetral radius 4 and the critical impact parameter
of the ID and RN BHs solutions. Generically, we see that
these quantities diminish as we increase the charge. The LR
perimetral radius of the ID RBH solution is typically smaller
than the RN one, for the same values of q. For its turn, the
critical impact parameter of the ID RBH solution is smaller
than the RN one only up to q ≈ 0.8659 ≡ qcri.

0 0.2 0.4 0.6 0.8 1
2

2.4

2.8

3.2

0 0.2 0.4 0.6 0.8 1
4

4.4

4.8

5.2

FIG. 6. Top panel: Comparison between the LR perimetral radius,
given by r =

√
HP r, of the ID and RN BH solutions. Bottom panel:

Comparison between the critical impact parameter of the ID and RN
BH solutions, as functions of q.

In terms of z, the functionsHP and FP are given by:

HP (r) =
r6

(r2 + z2)
3 and FP (r) =

r12
(
r2 − 2z2

)
(r2 + z2)

7 , (42)

respectively. To ensure that the effective geometry does not
flip its signature along photon’s geodesic, we need to require
that functions HP (r) and FP (r) must be positive. The func-
tion HP (r) is everywhere finite and positive for r > 0. On
the other hand, the function FP (r) is zero at

r =
√

2z ≡ reff . (43)

For r < reff , the signature of the metric changes. This
also happens to magnetically charged NED-based RBH so-
lutions [50]. In Fig. 7, we compare the location of the event

4 We notice that the concept of distance is very subtle in curved spacetimes.
In particular, the radial coordinate r is not a geometrical invariant measure
of distance. A meaningful geometrical quantity to compare distance in two
different geometries is the perimetral radius, defined by r ≡ √gϕϕ|θ=π

2
.

For the SG, we have r = r, whereas, for the EG, we obtain r =
√
HP r.

In the remainder of this paper, we shall plot the perimetral radius of the LR
to compare radial distance in different geometries.
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horizons and of the effective radius reff . We see that the re-
gion where the line element of the EG changes its signature is
always inside the event horizon. Hence, the motion of photons
outside the event horizon will not be affected by the sign flip
of the coordinates t and r, which occurs only for r < r+.

0 0.2 0.4 0.6 0.8 1
0

0.4

0.8

1.2

1.6

2

FIG. 7. Comparison between the location of the event horizon with
that of the effective radius, as functions of q.

IV. SHADOWS AND GRAVITATIONAL LENSING

A. Observational setup consistent with NED

In this section, we discuss the observational setup consis-
tent with a NED model and the applications to the shadows
and gravitational lensing on the background of the ID RBH
solution, considering the EG (33). We apply backwards ray-
tracing techniques [47, 72], in order to simulate the visual
appearance of the ID RBH (33). We solve numerically the
following geodesic equations in the effective metric:

ṫ =
EΦ

f(r)
, (44)

ϕ̇ =
L

HP r2 sin2 θ
, (45)

r̈ + Γ̄rµν ẋ
µ ẋν = 0, (46)

θ̈ + Γ̄θµν ẋ
µ ẋν = 0, (47)

where Γ̄αµν are the components of the Christoffel symbol
computed with the EG (33). The initial conditions for
Eqs. (44)-(47) are obtained by projecting the 4-momentum of
the photon into the vierbein of a given observer. We assume

that the observer follows a timelike world-line (of the SG) and
has no net charge. Hence the vierbein attached to the observer
is dictated by the SG (9). We consider a static observer in the
ID geometry, which is described by the following vierbein:

λ̂0̂
µ =

(√
f ID(r), 0, 0, 0

)
, (48)

λ̂1̂
µ =

(
0,

1√
f ID(r)

, 0, 0

)
, (49)

λ̂2̂
µ = (0, 0, r, 0) , (50)

λ̂3̂
µ = (0, 0, 0, r sin θ) , (51)

which is obtained by adopting λ̂0̂
µ as the 4-velocity of the ob-

server, and imposing orthonormality condition5 with λ̂1̂
µ, λ̂2̂

µ,
λ̂3̂
µ. The components of the 4-momentum of the photon pro-

jected into the vierbein are

p̄â = λ̂ µ
â p̄µ. (52)

We note that the components of λ̂ µ
â are computed using the

SG, since it is related to an observer following a timelike
curve, while the components of p̄µ are computed using the
EG, since it is related to the motion of photons. p̄â are the
components of the 4-momentum of the photon as measured
by a static observer in the ID spacetime. In particular, p̄t̂ is
the photon frequency and p̄r̂, p̄φ̂, p̄θ̂ are the components of the
spatial momentum measured by the static observer.

The 4-momentum of the photon p̄µ is null with respect to
the effective metric tensor gµνeff . However it is, in general, a
non-null vector with respect to the standard metric tensor gµν .
In particular, for a local static observer, the norm of the 4-
momentum is given by

p̄âp̄
â = ηâb̂λ̂ µ

â λ̂
ν
b̂
p̄µp̄ν = gµν p̄µp̄ν ∴

p̄âp̄
â = −4

HP HPP
FP

Pµσ P
σν p̄µ p̄ν , (53)

where we used Eq. (32) in the last equality and the fact
that gµνeff p̄µp̄ν = 0. Moreover, using Eqs. (11)-(12) and the
geodesic equations (35)-(38), we obtain that

p̄âp̄
â = −4

HPPL2

HP r2
(Ptr)

2 ≤ 0, (54)

which is negative since HP and HPP are positive outside the
event horizon. Therefore, the 4-momentum of the photon is a
space-like or null-like vector with respect to the metric tensor
gµν , namely

gµν p̄µ p̄ν ≤ 0. (55)

5 The orthonormality condition for the vierbein implies that gµν λ̂
µ
â λ̂

ν
b̂

=

ηâb̂, where ηâb̂ is the Minkowski metric.
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We note that, outside the event horizon, p̄â is a null vector
only for radially moving photons, since L = 0. For non-
radial geodesics, p̄â is a space-like vector. Thus, from the
viewpoint of the SG, a local static observer measures photons
that travel with a speed greater than that of massless particles
(cf. Sec. III A), except for radially moving photons that are
null also from the SG perspective.

We can parameterize the spatial components of the 4-
momentum in terms of the celestial coordinates (α, β):

p̄r̂ = p cosα cosβ, (56)

p̄θ̂ = p sinα, (57)

p̄φ̂ = p cosα sinβ, (58)

where p is the norm of the photon’s spatial 3-momentum. Us-
ing Eqs. (52), (56)-(58) and (35)-(37), we obtain that

E = p̄t̂
√
f ID

0 , (59)

ṙ = p
√
f ID

0 (Φ)0 cosα cosβ, (60)

θ̇ =
p sinα

(HP )0 r0
, (61)

L = p r0 sin θ0 cosα sinβ, (62)

where (r0, θ0) is the location of the observer. The subscript
“0” denotes that the quantity under consideration is computed
at the observer’s radial coordinate r0. We can explicitly com-
pute the norm of the 4-momentum p̄â. Using Eqs. (54) and
(62) we find that

p̄â p̄
â = (p̄t̂)2 − p2 =

−3 z2 sin2 θ0 cos2 α sin2 β p2

(r2
0 + z2)

. (63)

Thus, the relation between the norm of the spatial 3-
momentum and the photon’s frequency measured by the local
observer p̄t̂ is

(p̄t̂)2 =

(
1− 3 z2 sin2 θ0 cos2 α sin2 β

(r2
0 + z2)

)
p2 . (64)

We note that, for an observer located at the equatorial plane
θ0 = π/2, the right side of Eq. (64) is positive for any direc-
tion (β, α) if the observer is located at the region

r0 > reff . (65)

The trajectory of photons is independent of the specific
value of the local frequency p̄t̂. A change in the local fre-
quency simply implies in a rescaling of the affine parameter
along the geodesic. Thus, we can always choose p̄t̂, such
that p = 1, what simplifies the initial conditions for the ray-
tracing (59)-(62). This can be achieved by choosing

p̄t̂ =

(
1− 3 z2 sin2 θ0 cos2 α sin2 β

(r2
0 + z2)

) 1
2

. (66)

We note that the choice of p̄t̂, such that p = 1, depends on the
observation angles (α, β). Therefore, the initial conditions for
the ray-tracing with normalized p are given by

E =

(
1− 3 z2 sin2 θ0 cos2 α sin2 β

(r2
0 + z2)

) 1
2 √

f ID
0 , (67)

ṙ =
√
f ID

0 (Φ)0 cosα cosβ, (68)

θ̇ =
sinα

(HP )0 r0
, (69)

L = r0 sin θ0 cosα sinβ. (70)

Dividing Eq. (70) by (67), we may obtain the relation between
the critical impact parameter bl and the observation angle of
the shadow edge βl, measured in the observer frame6 (consid-
ering α = 0 and θ0 = π/2)

sinβl =
bl
√
r2
0 + z2

√
f ID

0√
r2
0 (r2

0 + z2) + 3 b2l z
2 f ID

0

, (71)

while the shadow radius of the RBH in the observer’s screen
is given by

rs = r0 sinβl. (72)

Notice that if we place the observer very far away from the
RBH, i.e., for r0 →∞, we have

rs = bl, (73)

with bl given by Eq. (40). Hence, as seen by a distant observer,
the impact parameter is the radius of the shadow. These fea-
tures are in agreement with linear electrodynamics.

The shadow boundary curve for a distant observer can be
expressed in terms of the so-called celestial coordinates (x, y)
as [82]

rs =
√
x2 + y2, (74)

where

x = lim
r0→∞

(
−r0

p̄φ̂

p̄t̂

)
, (75)

y = lim
r0→∞

(
r0
p̄θ̂

p̄t̂

)
. (76)

The shape of the shadow can be obtained from a parametric
plot of the circle equation (74).

6 As far as we are aware, the previous works about shadows in NED place
the observer at spatial infinity where the relation between the observation
angle and the critical impact parameter is rather simple, given by Eq. (72).
In this work, we note that when the observer is placed at a finite radial
coordinate, the relation between the observational angle and the critical
impact parameter is non-trivial. The non-triviality arises due to the fact that
a local observer perceives the photon as a spacelike particle [see Eq. (54)].
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B. Main results

In Fig. 8, we present some examples of shadows for ID
RBH solutions, as seen by an observer at spatial infinity. We
note that the size of the shadows decreases with the increase
of q, as expected since the critical impact parameter, which
corresponds to the shadow radius [cf. Eq. (73)], diminishes as
we increase the charge [cf. Fig. 6].

-6 -4 -2 0 2 4 6
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0

2
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-6 -4 -2 0 2 4 6
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-2

0
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FIG. 8. Shadows of the ID RBH solution, as seen by an observer
at spatial infinity, for distinct values of q. We also consider the
Schwarzschild case q = 0, for comparison.

It is possible to quantify the influence of the EG in the shad-
ows size when compared to the SG. To do this, we analyze the
ratio between the shadow radius, seen by an observer at infin-
ity, obtained from Eq. (73) (rEG

s ) with the corresponding one
obtained from Eq. (40) (rSG

s ), as showed in Fig. 9. We also
consider the ratio between rEG

s and rRN
s . We see that rEG

s

is typically bigger than rSG
s . In particular, the highest differ-

ence between them, with rEG
s > rSG

s , occurs for the extreme
charge case, for which rEG

s is ≈ 9.29% bigger than rSG
s . Re-

markably, for some q = qcrit (see Sec. III B, in particular, the
bottom panel of Fig. 6) the shadow radius of ID and RN BHs
solutions coincide, with rEG

s < rRN
s for q < qcrit, while for

q > qcrit one has rEG
s > rRN

s .
At first sight, the result rEG

s > rSG
s might seem counter-

intuitive, since null geodesics of the EG are in general space-
like curves from the perspective of the SG. However, we
notice that the null geodesics of the EG can be interpreted
as non-geodesic curves, from the perspective of the SG, de-
scribed by

ẍµ + Γµνβ ẋ
ν ẋβ = Fµνβ ẋ

ν ẋβ , (77)

where Γµνβ are the components of the Christoffel symbol
computed with the SG (33) and Fµνβ is a 4-force term, whose

0 0.2 0.4 0.6 0.8 1
0.98

1

1.02

1.04

1.06

1.08

1.1

FIG. 9. Ratio between the shadows radius of the ID RBH solution,
for two different scenarios: (i) the effective and standard geometries
(red curve); and (ii) the effective geometry and the shadow radius of
the RN BH solution (blue-dashed curve).

analytical expression is given in Appendix B. In order to
substantiate the interpretation of photons following a non-
geodesic curve, submitted to a 4-force term, we show in the
top panels of Fig. 10 the trajectories of photons (continuous
lines), compared to the trajectories of massless particles in the
SG (blue dashed lines) for the same observational angle β.
Along the photon’s trajectories we show, as a color map plot,
the absolute value of the 4-force along the radial direction.
The regions in red have a larger absolute value, while the re-
gions in blue have a smaller absolute value. We also show in
the bottom panels of Fig. 10, the 4-force term

(
−Frνβẋν ẋβ

)
as a function of the radial coordinate. We notice that the 4-
force term along the radial direction is negative, meaning that
photons experience an additional attractive force, when com-
pared to massless particles moving in the SG. Due to this addi-
tional force, the photon is captured by the BH while the mass-
less particle (with the same observational angle β) is scattered
to infinity. Hence, such 4-force term in Eq. (77) explains why
the shadows computed with the EG are always larger than the
shadows of massless particles in the SG.

In Fig. 11, we show the shadows and gravitational lens-
ing for the ID RBH solution with different values of q. We
have chosen the observer to be located at r0 = 15M and
θ = π/2. This figure was obtained using backwards ray-
tracing techniques, which consists in evolving the light rays
from the observer position, and backwards in time, until it
reaches a colored celestial sphere with radius rcs = 30M or
falling to the event horizon. The numerical code was written
in C++ and it is a slightly modified version of the code used
in Refs. [83, 84]. From Fig. 11 we notice that the shadow
decreases as we increase q, in agreement with the analytical
results presented in Fig. 8. We also notice that the gravita-
tional lensing varies with q. The major difference in the grav-
itational lensing arises close to the shadow edge. Far from the
shadow edge, the gravitational lensing is essentially the same.
In Appendix A, we derive an analytical approximation for the
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FIG. 10. Top panel: comparison between the trajectories of photons (continuous lines) and the trajectories of massless particles in the SG (blue
dashed lines) for the same observational angle β. The color map plots represent the contribution (−Frνβ ẋν ẋβ) along the photon’s trajectory.
The black dashed circles represent the event horizon. Bottom panel: the contribution (−Frνβ ẋν ẋβ) computed along the photon’s trajectory as
a function of the radial coordinate. We notice that the contribution is always negative for the ID spacetime, representing an attractive force to
the BH center. In the left panels, we have chosen (q = 0.8, β = 0.41, r0 = 10M ), and O is the observer’s position; while in the right panels,
we have chosen (q = 1, β = 0.04, r0 = 100M ).

scattering angle in the weak field limit, and we notice that the
lower contribution of the charge to the scattering is quadratic.

C. Fine tuned degenerated shadows for asymptotic observers

The situation where rEG
s = rRN

s suggests that the EG (32)
may mimic the shadow properties of singular BHs, such as
the RN BH solution, as seen by an observer at spatial infinity.
This property, named as shadow degeneracy, was investigated
for static, as well as stationary BHs, that are degenerated with
respect to the Schwarzschild/Kerr BHs in Ref. [85]. To ad-
dress the possibility of the ID RBH to be shadow degenerated

with respect to the RN BH, as seen by an observer at spatial
infinity, we may begin by searching for the values of the pairs
(qID, qRN), for which their corresponding bl coincide. We
name this property as fine tuned degenerated shadows, since
we need to fine tune the charges for the shadow to be degen-
erate. The fine tuned charge pairs are shown in Fig. 12. We
notice that it is possible to find fine tuned shadow degenerated
solutions for qRN . 0.9728.

In Fig. 13, we compare the shadows of the RN BH with
that of the ID RBHs for some pairs (qID, qRN), for which the
shadows are degenerated. The ID RBH and the RN BH shad-
ows can not be distinguished, as seen by a distant observer,
for low-to-extreme values of the normalized electric charge.
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(a) Schwarzschild (b) q = 0.3

(c) q = 0.6 (d) q = 1

FIG. 11. Shadow and gravitational lensing of the ID RBH solution for distinct values of q, considering the EG (33). In this figure, we have
chosen an observer located at r0 = 15M and θ = π/2. We also considered the Schwarzschild case (q = 0) for comparison.

V. FINAL REMARKS

With the recent experimental tests of NED [16–19], it is
clear that a full comprehension of the nature of electromag-
netic fields requires the consideration of nonlinear effects in
the appropriated field regime. However, the imprints of these
nonlinearities in the astrophysical environment of BHs still
need to be better understood. By studying LRs, shadows, and
gravitational lensing of the ID RBH solution, and considering
the effective geometry, which describes the motion of pho-
tons, we revealed some imprints of NED in BH physics. Our
main results can be summarized as follows:

(i) We performed the shadow analysis for an observer at a
finite radial coordinate, as well as for an observer at spatial

infinity. We noticed that the observer in a finite radial coor-
dinate perceives the photon as a spacelike particle (one may
interpret that the NED “accelerates” the photons to a superlu-
minal speed). The fact that photons are perceived as spacelike
particles by a local observer has implications to the shadow’s
observational angle, as shown in Eq. (71). For an observer
placed at spatial infinity, we recover results available in the
literature, namely that the critical impact parameter is the ra-
dius of the shadow.

(ii) We obtained that the shadow size decreases as we con-
sider higher values of the electric charge, in agreement with
linear electrodynamics. In addition, the effective geometry
can increase the shadow radius in more than 9%, in compari-
son with the standard geometry. We explained the fact that the
shadow size computed with the effective geometry is larger
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FIG. 12. Values of the normalized electric charges for which the ID
and RN BHs solutions are fine tuned shadow degenerated.
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FIG. 13. Comparison of the shadows of the RN BH with the shad-
ows of the ID RBH, as seen by an observer at infinity, considering
the pairs (qID, qRN) = (0.2, 0.2138), (0.4, 0.4231), (0.6, 0.6231),
(0.8, 0.8089), (1, 0.9728). Recall that the smaller the value of the
normalized electric charges, the bigger the shadows.

than the standard geometry by writing the photon’s equation
of motion as a non-geodesic curve submitted to a 4-force term,
from the standard geometry perspective. We obtained an ana-
lytic expression for the 4-force term and showed that it acts as

a radially attractive force, thus increasing the shadow size for
the effective geometry.

(iii) For 0 < q < qcri, the shadow radius of the ID solution
is smaller than the RN one, while for q > qcri, it is bigger,
since the shadow radius corresponds to the critical impact pa-
rameter [cf. Eq. (73)]. At the threshold value, i.e., q = qcri,
the shadows of ID and RN BHs solution are the same. Notice-
ably, it is possible to find other configurations for which the
shadows of these BHs coincide. We named these configura-
tions as fine tuned degenerated shadows, since it is necessary
to fine tune the electric charges in order to obtain two geome-
tries with degenerated shadows.

(iv) We also observed that the main difference in the gravi-
tational lensing appears close to the shadow edge. In the weak
field limit, the gravitational lensing is essentially the same,
since the contributions of the charge are very small.

As an extension of this work, the study of other optical phe-
nomena, such as the birefringence, can be performed in future
work, aiming to reveal more signatures of NED within BH
physics. We also plan to consider rotating NED-based RBH
spacetimes due to their relevance in astrophysical scenarios.
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Appendix A: Weak deflection angle in the ID metric by using
the geodesic method

In Sec. IV B, we numerically computed the gravitational
lensing of the ID RBH solution. In this appendix, we derive
an expression for the deflection angle of the ID metric in the
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weak field limit by using the geodesic method and considering
the standard and effective geometries.

Considering the SG, we can rewrite Eq. (27) as(
dr

dϕ

)2

=
r4

b2
− r2f(r), (A1)

and, similarly for the EG, Eq. (38) as(
dr

dϕ

)2

=
r4H4

P

F 2
P b

2
− r2H2

P f(r)

FP
. (A2)

The impact parameter associated with the radius of maxi-
mum approximation of the particle rm is obtained by solving
(dr/dϕ) |r=rm = 0 for b. For the SG, we get

b =
rm√
fm

, (A3)

while for the EG we have

b =
rm (HP )rm√

(FP )rm fm
. (A4)

The deflection angle of the scattered massless particle is [86]

Θ(b) = γ(b)− π, (A5)

where

γ(b) = 2

∫ ∞
rm

(
dr

dϕ

)−1

dr. (A6)

Since we are interested in the weak field limit, we can ex-
pand the integrand of Eq. (A6) in powers of 1/r, considering
Eqs. (A1) or (A2), up to the fourth order. The radius rm as
function of b is obtained by solving Eqs. (A3) or (A4) and
expanding the results in powers of 2M/b up to the fourth or-
der. Following these steps, we obtain that the weak deflection
angle for the SG is given by

Θ(b) =
4M

b
+

3π
(
5M2 −Q2

)
4b2

+
16M

(
8M2 − 3Q2

)
3b3

+

5Mz
(
21
(
33M4 − 18M2Q2 +Q4

)
+ 8Q2z2

)
8b4Q2

+O
[

1

b5

]
. (A7)

Note that up to the third order in 1/b, the results for the
ID RBH solution, considering the SG, coincide with the RN
result [61, 87], with 4M/b being Einstein’s deflection an-
gle [88]. However for b−n, with n ≥ 4, the results are dif-
ferent, due to the higher order contributions of the ID metric
function (18) in the far field.

In the case of the EG we obtain

Θ(b) =
4M

b
+

3π
(
5M2 −Q2

)
4b2

+
6Mz3

b2Q2
+

16M
(
8M2 − 3Q2

)
3b3

+
16Mz2

b3
+O

[
1

b4

]
. (A8)

We see that the weak deflection angle, computed consider-
ing the EG, reproduces the results of the SG with corrections
for b−n, with n ≥ 2. These corrections can be related with
the nonlinearity of the NED source, since the EG is a direct
consequence of the nonlinearities of the electromagnetic field.
Besides that, in the chargeless limit (Q → 0), we obtain the
Schwarzschild deflection angle, as expected.

Appendix B: The description of photon’s motion from the SG
perspective

In Sec. III, the photons followed null geodesics of an effec-
tive geometry, which is different from the standard spacetime
geometry. This is the standard approach, adopted by several
authors, concerning the motion of photons in NED geome-
tries. In this Appendix, we propose an alternative (but equiv-
alent) interpretation for the motion of photons in NED space-
times. Namely, we show that, from the perspective of the SG,
the motion of photons can be interpreted as a non-geodesic
curve submitted to a 4-force term Fµαβ .

In order to establish this result, we rewrite Eq. (32) as

gµνeff =
1

HP
gµν + hµν , hµν = 4

HPP
FP

PµσP
σν . (B1)

Using gµνeff g
eff
νλ = δµλ, we obtain an analytical expression for

the covariant components of geff
νλ, given by

geff
µν = HP gµν + ΣP hµν , (B2)

where

ΣP ≡ −
H2
P

1− 2P HPPΦ
. (B3)

We notice that the geodesic equation for the effective geome-
try is written as

ẍµ + Γ̄µναẋ
ν ẋα = 0. (B4)

Using Eqs. (B1) and (B2) into the geodesic equation (B4), we
obtain that:

ẍµ + Γµναẋ
ν ẋα = Fµναẋν ẋα, (B5)

where Γµνα ≡ 1
2g
µβ (∂νgβα + ∂αgνβ − ∂βgνα) are the com-

ponents of the Christoffel symbol computed with the SG (9),
and
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Fµνα =
1

2

(
1

HP
gµν + hµν

)
[(∂βHP ) gνα − (∂αHP ) gνβ − (∂νHP ) gαβ + ∂β (ΣPhνα)− ∂ν (ΣPhβα)− ∂α (ΣPhνβ)]

−HP hµβΓβνα, (B6)

is interpreted as a 4-force term that acts on photons along their
world-line. Hence we conclude that, from the SG perspective,
the motion of photons are described as a non-geodesic curves
subjected to a 4-force term Fµαν . In Sec. IV, we show the
contribution from the 4-force term along the photon’s motion.

We notice that the contribution is negative along the radial
direction. Therefore the photons experience an additional in-
ward force in the radial direction, arising due to the NED. This
explains why the shadows computed with the EG are always
larger when compared to the SG shadows.
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