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1. Introduction

This work is devoted to spectral theorems beyond self-adjoint or normal operators. We 
give conditions, the existence of a positive bidiagonal factorization, to be explained later, 
such we can state a spectral Favard theorem for bounded banded semi-infinite matrices. 
The study of symmetric tridiagonal operators acting in the Hilbert space �2 can under 
an appropriate chosen basis be reduced to an infinite Jacobi matrix enabling a deeper 
understanding of this spectral theory. Here is where the theory of general orthogonal 
polynomials comes into place to derive the spectral and the resolvent set for selfadjoint 
operators (cf. [44]).

Multiple orthogonal polynomials are traditionally linked with the theory of Hermite–
Padé and its applications to the constructive function theory. For good introductions to 
multiple orthogonal polynomials see the book by Nikishin and Sorokin [44] and the chap-
ter by Van Assche in [37, Ch. 23] and for a inspiring basic introduction see [42]. Multiple 
orthogonal polynomials are a very active research area: for asymptotic of zeros see [7], 
for a Gauss–Borel perspective see [2], for Christoffel perturbations see [19], for applica-
tions to random matrix theory see [16]. Mixed multiple orthogonal polynomials, and the 
corresponding Riemann–Hilbert problem, have found applications in Brownian bridges, 
or non-intersecting Brownian motions, that leave from p points and arrive to q points 
[26], and in the discussion of multicomponent Toda, cf. [1,2]. Mixed multiple orthogonal 
polynomials also appear in applications to number theory. Apéry, cf. [3], proved in 1979 
that ζ(3) is irrational. The proof is based on an mixed Hermite–Padé approximation to 
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three functions. Also mixed multiple orthogonal polynomials and corresponding mixed 
Hermite–Padé approximations have been used to show that infinitely many values of the 
ζ function at odd integers are irrational, cf. [11], and that at least one of the numbers 
ζ(5), ζ(7), ζ(9), ζ(11) is irrational, cf. [52].

Another field of application of multiple orthogonal polynomials is the spectral anal-
ysis of high order difference operators. Spectral theorems hold beyond self-adjointness 
for normal operators (the operator commutes with its adjoint). In the case of banded 
Hessenberg operators, the self-adjointness or normality no more takes place.

A first attempt to tackle these problems has been made by Kalyagin in [38–40,8]. There 
the author defines a class of operators related with the Hermite–Padé approximants and 
connects their spectral analysis with the convergence problem for simultaneous Hermite–
Padé rational approximants of a system of resolvent functions of the operator (that 
coincides with the notion of multiple orthogonality). See also [15]. The group comprising 
Aptekarev, Denisov, and Yattselev has also made significant contributions. Noteworthy 
among their works are those focused on self-adjoint Jacobi matrices on trees and multiple 
orthogonal polynomials [4], the asymptotics of coefficients and the essential spectrum of 
Jacobi matrices on trees generated by Angelescu systems [5], and lastly, their research 
on the spectral theory of Jacobi matrices on trees whose coefficients are generated by 
multiple orthogonality [6]. At the same time this connection leads to a new solution of 
the direct and inverse spectral problems for the operators based on the Jacobi–Perron 
algorithm and vector continued fractions (cf. [9,49,50]). This approach serves as a base 
of a new method of the investigation on nonlinear discrete dynamical systems. As an 
example, global solutions of a hierarchy of discrete KdV equations are obtained (cf. 
[9,51,12–14]).

Recently, in a series of works (cf. [18,20,23]) we have analyzed the applications of 
type I and II multiple orthogonal polynomials to certain Markov chains also called non 
simple random walks (i.e., beyond birth and death). At the end we got a spectral Favard 
theorem with an application to Markov chains described in terms of a bounded banded 
(p + 2)-diagonal (with one superdiagonal and p subdiagonals) oscillatory Hessenberg 
operators that admit positive bidiagonal factorizations.

The main result we achieved in [20] is that bounded banded Hessenberg matrices 
that admit a positive bidiagonal factorization have a set of positive Lebesgue–Stieltjes 
measures, and can be spectrally described by multiple orthogonal polynomials. This 
extends to the non-normal scenario the spectral Favard theorem for Jacobi matrices (cf. 
[37]). An important feature of the method applied in [20] to describe the spectrality of a 
banded Hessenberg operator, is the multiple Gauss quadrature formula that we get with 
the exact degrees of precision.

In this paper we consider a bounded banded operator T whose semi-infinite matrix 
is a banded matrix with q superdiagonals and p subdiagonals and such that the leading 
principal submatrices are given by

T [N ] =
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T0,0 T0,q 0 0

Tp,0

0 0

TN−q,N

0 0 TN,N−p TN,N

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

where it is assumed that the entries in the extreme diagonals do not vanish

Tn+p,n �= 0, Tn,n+q �= 0, n ∈ N0. (2)

In what follows we will show that when this matrix, after a shift, admits a positive 
bidiagonal factorization and, consequently, is oscillatory, we can find a spectral Favard 
theorem. Now, we have mixed multiple orthogonal polynomials with respect to a matrix 
of positive Lebesgue–Stieltjes measures. As an application we derive the corresponding 
Gauss quadrature formula for this matrix of measures and determine their degrees of 
precision.

While the extension given in this paper of the spectral Favard theorem of [20] for 
banded Hessenberg matrices to arbitrary banded matrices is natural, there were several 
key issues to resolve before achieving this large extension. The first one was to understand 
the role of the characteristic polynomial that is no longer an orthogonal polynomial, the 
second was to find the relationship of the determinants of the two families of mixed mul-
tiple orthogonal polynomials to the characteristic polynomial and its zeros, and finally 
the extension of the positive bidiagonal factorization to this general situation and the 
application of the oscillation properties of eigenvectors.

Within this introduction we discuss, in the first place, some preliminary material on 
totally nonnegative matrices, stating (without proof) the results needed later on. Then, 
we show how the well known bounded tridiagonal Jacobi matrix for which we have 
the spectral Favard theorem happens to be oscillatory after an adequate shift and have 
a positive bidiagonal factorization. Finally, we use the Gauss–Borel factorization of a 
moment matrix to construct mixed multiple orthogonality on the step-line.

1.1. Totally nonnegative and oscillatory matrices

Totally nonnegative (TN) matrices are those with all their minors nonnegative, cf. 
[30,35], and the set of nonsingular TN matrices is denoted by InTN. Oscillatory matrices, 
cf. [35], are totally nonnegative, irreducible [36] and nonsingular. Notice that the set of 
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oscillatory matrices is denoted by IITN (irreducible invertible totally nonnegative) in 
[30]. An oscillatory matrix T is equivalently defined as a totally nonnegative matrix A
such that for some n we have that An is totally positive (all minors are positive). From 
Cauchy–Binet Theorem one can deduce the invariance of these sets of matrices under 
the usual matrix product. Thus, following [30, Theorem 1.1.2] the product of matrices 
in InTN is again InTN (a similar statement hold for TN or oscillatory matrices).

We have the important result:

Theorem 1.1 (Gantmacher–Krein Criterion). [35, Chapter 2, Theorem 10]. A totally non 
negative matrix is oscillatory if and only if it is nonsingular and the elements at the first 
subdiagonal and first superdiagonal are positive.

Regarding tridiagonal matrices we have the following classical result:

Theorem 1.2. [34, Chapter XIII,§9] and [35, Chapter 2, Theorem 11]. A tridiagonal 
matrix is oscillatory if and only if,

i) The matrix entries of the first subdiagonal and first superdiagonal are positive.
ii) All leading principal minors are positive.

Gauss–Borel factorizations are intimately related with these concepts:

Theorem 1.3. [30, Theorem 2.4.1] T ∈ InTN if and only if it admits a Gauss–Borel 
factorization T = L−1U−1 with L, U ∈ InTN, lower and upper triangular matrices, 
respectively.

The following spectral theorems are extracted from [30], see also [35].

Theorem 1.4 (Eigenvalue). [30, Theorem 5.2.1] Given an oscillatory matrix T ∈ RN×N

the eigenvalues of T are N distinct positive numbers.

Theorem 1.5 (Interlacing of eigenvalues). [30, Theorem 5.5.2] Given an oscillatory ma-
trix T ∈ RN×N the eigenvalues of T strictly interlace the eigenvalues of the two principal 
submatrices of order (N − 1), T (1) or T (N), obtained from T by deleting the first row 
and column or the last row and column.

We need to introduce the following notation. We define the total sign variation of a 
totally nonzero vector (no entry of the vector u is zero) as v(u) = cardinal{i ∈ {1, . . . , n −
1} : uiui+1 < 0}. For a general vector u ∈ Rn we define vm(u) (vM (u)) as the minimum 
(maximum) value v(y) among all totally nonzero vectors y that coincide with u in its 
nonzero entries. For vm(u) = vM (u) we write v(u) := vm(u) = vM (u).
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Theorem 1.6 (Eigenvectors). Let T ∈ RN×N be an oscillatory matrix, and u(k) (w(k)) 
the right (left) eigenvector corresponding to λk, the k-th largest eigenvalue of A. Then

i) [30, Theorem 5.3.3] We have vm(u(k)) = vM (u(k)) = v(u(k)) = k − 1 (vm(w(k)) =
vM (w(k)) = v(w(k)) = k − 1). Moreover, the first and last entry of u(k) (w(k)) are 
nonzero, and u(1) and u(N) (w(1) and w(N)) are totally nonzero; the other vectors 
may have a zero entry.

ii) From Perron–Frobenius theorem we know that u(1) (w(1)) can be chosen to be entry-
wise positive, and that the other eigenvectors u(k) (w(k)), k = 2, . . . , n have at least 
one entry sign change. In fact, u(N) (w(N)) strictly alternates the sign of its entries.

1.2. Jacobi matrices

Let us consider the tridiagonal semi-infinite real matrix

J :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m0 1 0

l1 m1 1
0 l2 m2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

and assume that lk > 0, k ∈ N. This matrix is symmetrizable, as the positive diago-
nal matrix H = diag(H0, H1, . . . ), H0 = 1, Hn := l1 · · ·ln, is such that H− 1

2 JH
1
2 is 

symmetric.
If the matrix J is bounded, all the possible eigenvalues of the submatrices J [N ] belong 

to the disk D(0, ‖J‖). As all the eigenvalues are real, let us consider those that are 
negative, and let b be the supreme of the absolute values of all negative eigenvalues. 
Notice that b � ‖J‖.

Theorem 1.7. For s � b, the matrix Js = J + sI is oscillatory and admits a positive 
bidiagonal factorization in the form

Js =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

α2 1
0 α4 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1 1 0

0 α3 1

α5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

with αn > 0.
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Proof. Take s � b, then Js has the eigenvalues of its leading principal submatrices J [N ]
s =

J [N ]+sIN+1 all positive. The corresponding characteristic polynomials are PN+1(x −s) =
det
(
xIN+1−J

[N ]
s

)
, so that detJ [N ]

s = (−1)N+1PN+1(−s) and, as −s is a lower bound for 
any possible zero of this monic polynomial, we find that (−1)N+1PN+1(−s) > 0. Hence, 
the leading principal minors of Js are all positive and the entries on the subdiagonal a 
superdiagonal are positive. Thus, we conclude, attending to Theorem 1.2, that Js is an 
oscillatory matrix.

The positive bidiagonal factorization is a consequence of Theorem 1.3 applied to Js
for s ≥ b. �

The Favard spectral theorem, see [46], ensures for a Jacobi matrix J the exis-
tence of a unique probability measure dψ such that 

∫
Pn(x)xm dψ(x) = 0, for m ∈

{0, . . . , n − 1}, that is the characteristic polynomials are orthogonal polynomials, and 
moreover 

∫
xn dψ(x) = (Jn)0,0. Thus, we see that the tridiagonal matrices to which the 

classical spectral Favard theorem applies are equivalently described as bounded tridiago-
nal matrices that after a convenient translation admit a positive bidiagonal factorization.

1.3. Mixed multiple orthogonal polynomials on the step-line

Mixed multiple orthogonal polynomials were first introduced in 1994 by Sorokin [48], 
and further extended in 1997 by him and van Iseghem in [49] when studying matrix 
orthogonality of vector polynomials. Ten years later, in 2004, it was rediscovered by 
Daems and Kuijlaars [26] in the context of multiple non-intersecting Brownian motions, 
where the name mixed multiple orthogonal was coined. It has been discussed also in 
[1,2,32,33]. Some of the forementioned papers deal q×p rectangular matrix of weights of 
rank 1 at each point of the support. However, the most fitted version for the discussion 
in this paper is the ones in [49] and [33] in where a q×p rectangular matrix of functionals 
or measures, respectively, are considered.

Let us present the mixed multiple orthogonal polynomials, on the step line, as they 
appear from the LU factorizations of a matrix of moments, following the ideas presented 
in [2].

Definition 1.8 (Matrix of measures). Let us consider a matrix of functions, which are 

right continuous and of bounded variation in a closed interval Δ, Ψ =

⎡
⎣ψ1,1 ψ1,p

ψq,1 ψq,p

⎤
⎦

and the associated matrix of Lebesgue–Stieltjes measures dΨ =

⎡
⎣dψ1,1 dψ1,p

dψq,1 dψq,p

⎤
⎦.

Definition 1.9 (Monomial matrices). Given r ∈ N, we consider the semi-infinite matrices 
of monomials
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X[r] :=

⎡
⎢⎢⎢⎢⎣

Ir
xIr
x2Ir

⎤
⎥⎥⎥⎥⎦ ,

that, denoting its columns by X(j)
[r] , we can write X[r] =

[
X

(1)
[r] X

(r)
[r]

]
.

Definition 1.10 (Shift matrices). The shift matrix is given by �[r] :=

⎡
⎢⎢⎢⎣

0r Ir 0r

0r 0r Ir

⎤
⎥⎥⎥⎦.

Lemma 1.11. Shift matrices act by left multiplication on monomial matrices according to

�[r]X[r] = xX[r](x), �[r]X
(j)
[r] = xX

(j)
[r] (x), j ∈ {1, . . . , r}.

Lemma 1.12. If we denote by � := �[1] =

⎡
⎢⎢⎢⎣

0 1 0

0 0 1

⎤
⎥⎥⎥⎦ we have �[r] = �r.

Definition 1.13 (Moment matrix). The matrix of moments is given by

M :=
∫
Δ

X[q](x) dΨ(x)
(
X[p](x)

)� =

∫
Δ

⎡
⎢⎢⎢⎢⎣

d Ψ(x) x dΨ(x) x2 d Ψ(x)
x dΨ(x) x2 d Ψ(x) x3 d Ψ(x)
x2 d Ψ(x) x3 d Ψ(x) x4 d Ψ(x)

⎤
⎥⎥⎥⎥⎦

=

∫
Δ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

dψ1,1(x) · · · · · · · · · · dψ1,p(x) x dψ1,1(x) · · · · · · · · · x dψ1,p(x)...
...

...
... · · · · · · · · ·...

...
...

...
dψq,1(x) · · · · · · · · · · dψq,p(x) x dψq,1(x) · · · · · · · · · x dψq,p(x)
x dψ1,1(x) · · · · · · · · · x dψ1,p(x) x2 dψ1,1 · · · · · · · · ·x2 dψ1,p(x)...

...
...

... · · · · · · · · ·...
...

...
...

x dψq,1(x) · · · · · · · · · x dψq,p(x) x2 dψq,1(x)· · · · · · · · ·x2 dψq,p(x)
...

......

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Lemma 1.14. The moment matrices are a structured matrix built up with q × p blocks 
Mn,m :=

∫
Δ xn+m d Ψ(x) ∈ Rq×p. In fact, is Hankel by blocks, i.e. Mn+1,m = Mn,m+1.

This fact can be reformulated as follows:
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Proposition 1.15. The moment matrix satisfies

�[q]M = M(�[p])�. (3)

Proof. It follows from

�[q]M =
∫
Δ

�[q]X[q](x) dΨ(x)(X[p](x))� =
∫
Δ

xX[q](x) dΨ(x)(X[p](x))�

=
∫
Δ

X[q](x) d Ψ(x)(X[p](x))�(�[p])�. �

Now, let us assume that the moment matrix M has a Gauss–Borel factorization, i.e. 
M = L−1U−1, where L is lower triangular and U upper triangular, such that none of the 
diagonal entries in both triangular matrices are zero, and the respective inverse matrices 
make sense. It is well known that such LU factorizations do exist whenever the leading 
principal submatrices are nonsingular.

Definition 1.16 (Matrix polynomials). Let us consider the matrices

B := LX[q] =

⎡
⎢⎣
B0
B1

⎤
⎥⎦ , A := (X[p])�U =

[
A0 A1

]
,

where Bn(x) is a q × q matrix polynomial and An(x) is a p × p matrix polynomial. 
Observe that

B =
[
B(1) B(q)

]
, B(b) = LX

(b)
[q] , b ∈ {1, . . . , q},

A =

⎡
⎢⎣
A(1)

A(p)

⎤
⎥⎦ , A(a) = (X(a)

[p] )�U, a ∈ {1, . . . , p}.

Lemma 1.17. The semi-infinite vectors

B(b) =

⎡
⎢⎢⎣
B

(b)
0

B
(b)
1

⎤
⎥⎥⎦ , A(a) =

[
A

(a)
0 A

(a)
1

]
,

have as entries polynomials with degrees

degB(b)
n =

⌈
n + 2 − b

⌉
− 1, degA(a)

n =
⌈
n + 2 − a

⌉
− 1. (4)
q p
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For the block polynomials we have

Bn =

⎡
⎢⎢⎣

B
(1)
nq B

(q)
nq

B
(1)
nq+q−1 B

(q)
nq+q−1

⎤
⎥⎥⎦ , An =

⎡
⎢⎢⎢⎢⎣
A

(1)
np A

(1)
np+p−1

A
(p)
np A

(p)
np+p−1

⎤
⎥⎥⎥⎥⎦ .

Lemma 1.18.

i) For r, n ∈ N, n � r, we have

r∑
a=1

⌈
n + 1 − a

r

⌉
= n. (5)

ii) For the degrees we find 
∑q

b=1(degB(b)
n + 1) =

∑p
a=1(degA(a)

n + 1) = n + 1.

Proof. i) Let us consider n = kr + j, where j = 0, . . . r − 1. For a = 1, . . . , j, we have 
that

⌈
n + 1 − a

r

⌉
=
⌈
kr + j + 1 − a

r

⌉
= k +

⌈
j + 1 − a

r

⌉
= k + 1.

For a = j + 1, . . . , r, we find

⌈
n + 1 − a

r

⌉
=
⌈
kr + j + 1 − a

r

⌉
=
⌈

(k − 1)r + r − a + j + 1
r

⌉

= (k − 1) +
⌈
r − a + j + 1

r

⌉
= k.

Therefore, Equation (5) follows.
ii) It follows from the previous result and (4). �
Proposition 1.19 (Biorthogonality). The following biorthogonality holds

∫
Δ

B(x) d Ψ(x)A(x) = I,

that entrywise can be written

q∑
b=1

p∑
a=1

∫
B(b)

n (x) dψb,a(x)A(a)
m (x) = δn,m, n,m ∈ N0. (6)
Δ
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Proof. From the definition of the moment matrix M and the Gauss–Borel factorization 
M = L−1U−1 we get

∫
Δ

X[q](x) dΨ(x)
(
X[p](x)

)� = L−1U−1.

By left and right multiplication by the triangular factors L and U , respectively, we get
∫
Δ

LX[q](x) dΨ(x)
(
X[p](x)

)�
U = I

and recalling the definition of B and A we deduce that 
∫
Δ B(x) d Ψ(x)A(x) = I, and the 

result follows immediately. �
Remark 1.20 (Matrix biorthogonality).

i) If p = q, we recover the well-known matrix biorthogonality, see [27,47,28] for matrix 
orthogonality,

∫
Δ

Bn(x) d Ψ(x)Am(x) = δn,mIp, n,m ∈ N0.

ii) For p �= q, this matrix orthogonality is lost. However, if we denote for r ∈ N by 
B

[r]
n the r × q matrix of polynomials obtained from the ∞ × q matrix B by taking 

consecutive submatrices of size r × q, and similarly for A[r]
n , i.e., obtained from the 

p ×∞ matrix A consecutive submatrices of size p ×r, we get the following generalized 
matrix biorthogonality

∫
Δ

B[r]
n d Ψ(x)A[r]

m (x) = δn,mIr, n,m ∈ N0.

From biorthogonality (6) we get mixed multiple orthogonal relations as follows:

Corollary 1.21 (Mixed multiple orthogonality). The following orthogonality relations

p∑
a=1

∫
Δ

A(a)
n (x) dψb,a(x)xm = 0, m ∈

{
0, . . . ,degB(b)

n−1

}
, b ∈ {1, . . . , q},

q∑
b=1

∫
Δ

B(b)
n (x) dψb,a(x)xm = 0, m ∈

{
0, . . . ,degA(a)

n−1

}
, a ∈ {1, . . . , p},

are satisfied.
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Remark 1.22. For q = 1 the mixed multiple orthogonality is the well known multiple 
orthogonality, or p-orthogonality, with A(a)

n the type I multiple orthogonal polynomials 
and the Bn the type II multiple orthogonal polynomials, see [44,37].

We now discuss the connection of the Gauss–Borel factorization of the moment matrix 
and the Cauchy transforms.

Definition 1.23. Let us consider the formal semi-infinite matrices

C(z) := z−1(X[q](z−1)
)�

L−1 =
[
C0 C1

]
, D(z) := z−1U−1X[p](z−1) =

⎡
⎢⎣
D0
D1

⎤
⎥⎦ .
(7)

With Cn, Dn being q × p rectangular blocks.

Remark 1.24. The previous definition is formal, as the product of matrices involves series 
instead of sums, hence to have a meaning we must ensure the convergence of these series.

Remark 1.25. We have that

C =

⎡
⎢⎣
C(1)

C(q)

⎤
⎥⎦ , D =

[
D(1) D(p)

]
,

where C(b) =
[
C

(b)
0 C

(b)
1

]
are semi-infinite row vectors and D(b) =

⎡
⎢⎣
D

(b)
0

D
(b)
1

⎤
⎥⎦ semi-infinite 

column vectors. The block matrices are

Cn =

⎡
⎢⎢⎣
C

(1)
np C

(1)
np+p−1

C
(q)
np C

(q)
np+p−1

⎤
⎥⎥⎦ , Dn =

⎡
⎢⎢⎣

D
(1)
nq D

(p)
nq

D
(1)
nq+q−1 D

(p)
nq+q−1

⎤
⎥⎥⎦ .

Proposition 1.26 (Cauchy transforms). Let us assume that z belongs to the exterior of a 
disk centered at the origin that includes all the supports suppdψb,a, for b ∈ {1, . . . , q}
and a ∈ {1, . . . , p}. Then, the matrices in (7) are the following Cauchy transforms

C(z) =
∫ d Ψ(x)

z − x
A(x), D(z) =

∫
B(x)d Ψ(x)

z − x
.

Proof. We have

C(z) = z−1(X[q](z−1)
)�MU = z−1X�

[q](z−1)
∫

X[q](x) d Ψ(x)(X[p](x))�U.
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Now, notice that for |x| < |z| it holds that

z−1(X[r](z−1)
)�

X[r](x) = 1
z

∞∑
n=0

xn

zn
Ir = Ir

z − x
,

so that, recalling that (X[p](x))�U = A(x), we get C(z) =
∫ d Ψ(x)

z−x A(x). Analogously,

D(z) = LMX[p](z−1)z−1 =
∫

LX[q](x) dΨ(x)(X[p](x))�X[p](z−1)z−1

=
∫

B(x)d Ψ(x)
z − x

. �
Remark 1.27. Entrywise, we find

C(b)
n (z) =

p∑
a=1

∫ dψb,a(x)
z − x

A(a)
n (x), D(a)

n (z) =
q∑

b=1

∫
B(b)

n (x)dψb,a(x)
z − x

,

and block entrywise

Cn(z) =
∫ d Ψ(x)

z − x
An(x), Dn(z) =

∫
Bn(x)d Ψ(x)

z − x
.

Now, let us discuss how these polynomials connect with the matrix Hermite–Padé 
problem as considered in [51]. For that aim, we first introduce:

Definition 1.28 (Stieltjes–Markov functions). Let us consider the Stieltjes–Markov func-
tions given by

ψ̂b,a(z) :=
∫
Δ

dψb,a(x)
z − x

,

i.e., the Cauchy transforms of the measures. We also introduce two families of polynomials 
of the second kind linked to the orthogonal polynomials:

R(a)
n (z) :=

q∑
b=1

∫
Δ

B
(b)
n (z) −B

(b)
n (x)

z − x
dψb,a(x),

Q(b)
n (z) :=

p∑
a=1

∫
Δ

A
(a)
n (z) −A

(a)
n (x)

z − x
dψb,a(x).

Proposition 1.29 (Matrix Hermite–Padé).
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i) The following simultaneous approximation holds

q∑
b=1

B(b)
n (z)ψ̂b,a(z) = R(a)

n (z) + O

(
1

zna+1

)
, z → ∞,

with

na := degA(a)
n−1 + 1 =

⌈
n + 1 − a

p

⌉
.

We have 
∑p

a=1 na = n and 
∑q

b=1(degB(b)
n + 1) = n + 1.

ii) Analogously, the simultaneous approximation

p∑
a=1

ψ̂b,a(z)A(a)
n (z) = Q(b)

n (z) + O

(
1

zmb+1

)
, z → ∞,

with

mb := degB(b)
n−1 + 1 =

⌈
n + 1 − b

q

⌉
,

is satisfied. We have 
∑q

b=1 mb = n and 
∑p

a=1(degA(a)
n + 1) = n + 1.

Proof. Let us check only the first case. The other follows by similar arguments. Observe 
that

q∑
b=1

B(b)
n (z)ψ̂b,a(z) =

q∑
b=1

B(b)
n (z)

∫
Δ

dψb,a(x)
z − x

=
q∑

b=1

∫
Δ

B
(b)
n (z) −B

(b)
n (x)

z − x
dψb,a(x) +

q∑
b=1

∫
Δ

B
(b)
n (x)
z − x

dψb,a(x)

= R(a)
n (x) +

+∞∑
k=0

1
zk+1

q∑
b=1

∫
Δ

B(b)
n (x)xk dψb,a(x).

Using now the mixed multiple orthogonality conditions, see Corollary 1.21, we get the 
result. The degrees follow from Lemma 1.18. This is exactly the matrix Hermite–Padé 
problem that appears in [51]. �

Finally, we discuss the recursion relations

Proposition 1.30 (Banded recursion matrix).
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i) The following relation is fulfilled

L�[q]L
−1 = U−1(�[p])�U.

ii) The semi-infinite matrix T := L�[q]L
−1 = U−1(�[p])�U is a banded matrix with p

subdiagonals, q superdiagonals, where the p-th and q-th sub and superdiagonal entries 
are nonzero.

iii) The following recursion relations hold

TB = xB, AT = xA.

Proof. i) From the Gauss–Borel factorization and (3) we get

�[q]L
−1U−1 = L−1U−1(�[p])�,

so that

L�[q]L
−1 = U−1(�[p])�U.

ii) The matrix L�[q]L−1 has all its superdiagonals above the first q-th superdiagonal 
with zero entries, while U−1(�[p])�U has all its subdiagonals below the first p-th 
subdiagonal with zero entries. Hence, T is a general banded matrix with p + q + 1
diagonals possibly with nonzero entries. The p-th and q-th sub and superdiagonal 
entries are nonzero, taking into account that L is lower triangular and U an upper 
triangular such that none of the diagonal entries in both triangular matrices are zero.

iii) By definition B = LX[q] so that TB = L�[q]L
−1LX[q] = L�[q]X[q] = xB. Similarly, 

also by definition, we have A = (X[p])�U so that AT = (X[p])�UU−1(�[p])�U =
(X[p])�(�[p])�U = xA. �

This banded recursion matrix is the object of study of this paper. It will be the 
departure point in the next sections. We have considered a matrix of measures and the 
associated matrix of moments and derived the mixed multiple orthogonality as well as 
the banded recursion matrix. The aim in this paper is to get conditions on the banded 
matrix so that we can go back this way, to retrieve the matrix of positive measures 
and the mixed multiple orthogonal polynomials from the recursion matrix; i.e., to get a 
spectral Favard theorem.

2. Recursion polynomials and the characteristic polynomial

We begin by introducing the recursion polynomials associated to the banded matrix 
T , with truncations given in (1), as the entries of semi-infinite left and right eigenvectors:
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Definition 2.1 (Left and right recursion polynomials). Associated with the semi-infinite 
banded matrix T we consider the semi-infinite vectors

A(a) =
[
A

(a)
0 A

(a)
1

]
, a ∈ {1, . . . , p}, B(b) =

⎡
⎢⎢⎣
B

(b)
0

B
(b)
1

⎤
⎥⎥⎦ , b ∈ {1, . . . , q},

that are left and right eigenvectors with eigenvalue x of T , i.e.

A(a)T = xA(a), a ∈ {1, . . . , p}, TB(b) = xB(b), b ∈ {1, . . . , q}.

The entries of these left and right eigenvectors are polynomials in the eigenvalue x, 
known as left and right recursion polynomials, respectively, determined by the initial 
conditions

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A
(1)
0 = 1,

A
(1)
1 = ν

(1)
1 ,

...
A

(1)
p−1 = ν

(1)
p−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(2)
0 = 0,

A
(2)
1 = 1,

A
(2)
2 = ν

(2)
2 ,

...
A

(2)
p−1 = ν

(2)
p−1,

· · ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

A
(p)
0 = 0,

...
A

(p)
p−2 = 0,

A
(p)
p−1 = 1,

(8)

with ν(i)
j being arbitrary constants, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B
(1)
0 = 1,

B
(1)
1 = ξ

(1)
1 ,

...
B

(1)
q−1 = ξ

(1)
q−1,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(2)
0 = 0,

B
(2)
1 = 1,

B
(2)
2 = ξ

(2)
2 ,

...
B

(2)
q−1 = ξ

(2)
q−1,

· · ·

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B
(q)
0 = 0,

...
B

(q)
q−2 = 0,

B
(q)
q−1 = 1,

(9)

with ξ(i)
j also being arbitrary, respectively. We also define the initial condition matrices

ν :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ν
(1)
1 1

0
ν

(1)
p−1 ν

(p−1)
p−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, ξ :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ξ
(1)
1 1

0
ξ
(1)
q−1 ξ

(q−1)
q−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Once the initial conditions are fixed, the remaining polynomials are found by:
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Proposition 2.2 (General recursion relations). The recursion polynomials are uniquely 
determined by the initial conditions (8) and (9) and the recursion relations

A
(a)
n−qTn−q,n + · · · + A

(a)
n+pTn+p,n = xA(a)

n , n ∈ {0, 1, . . .}, a ∈ {1, . . . , p},

A
(a)
−q = · · · = A

(a)
−1 = 0, (10)

Tn,n−pB
(b)
n−p + · · · + Tn,n+qB

(b)
n+q = xB(b)

n , n ∈ {0, 1, . . .}, b ∈ {1, . . . , q},

B
(b)
−p = · · · = B

(b)
−1 = 0.

We use the ceiling function �x	 that maps x to the least integer greater than or equal 
to x.

Proposition 2.3. For the degrees of the left and right recursion polynomials we find

degA(a)
n =

⌈
n + 2 − a

p

⌉
− 1, degB(b)

n =
⌈
n + 2 − b

q

⌉
− 1.

Proof. By inspection we can check that, for j ∈ {1, . . . , p} and k ∈ N0, it holds that 
degA(a)

kp+j = k, for a ∈ {1, . . . , j + 1} and degA(a)
kp+j = k − 1 for a ∈ {j + 2, . . . , p}

and that, for j ∈ {1, . . . , q} and k ∈ N0, degB(b)
kq+j = k, for b ∈ {1, . . . , j + 1} and 

degB(b)
kp+j = k − 1 for b = {j + 2, . . . , q}.

However, we notice that
⌈
n + 2 − a

p

⌉
− 1 =

⌈
kp + j + 2 − a

p

⌉
− 1 = k − 1 +

⌈
j + 2 − a

p

⌉

but

⌈
j + 2 − a

p

⌉
=
{

1, a ∈ {1, . . . , j + 1},
0, a ∈ {j + 2, . . . , p},

and the stated result follows. For the recursion polynomials B(b)
n we proceed analo-

gously. �
Definition 2.4 (Characteristic polynomials). For the semi-infinite matrix T we consider 
the polynomials PN (x) as the characteristic polynomials of the truncated matrices 
T [N−1], i.e.,

PN (x) :=
{

1, N = 0,
det
(
xIN − T [N−1]), N ∈ N.

Obviously, degPN = N . For Hessenberg matrices [20] it happens that the character-
istic polynomials up to a factor coincide with the right recursion polynomials. However, 
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for the banded situation this does not hold in general. Nevertheless, there is a relation 
between determinants of the recursion polynomials, right or left, with the characteristic 
polynomials of the banded matrix T . Let us see this.

Definition 2.5. Let us introduce the following matrices of left and right recursion poly-
nomials

AN :=

⎡
⎢⎢⎣
A

(1)
N A

(1)
N+p−1

A
(p)
N A

(p)
N+p−1

⎤
⎥⎥⎦ , BN :=

⎡
⎢⎢⎣

B
(1)
N B

(q)
N

B
(1)
N+q−1 B

(q)
N+q−1

⎤
⎥⎥⎦ , N ∈ N0,

and the following products

αN := (−1)(p−1)NTp,0 · · ·TN+p−1,N−1,

βN := (−1)(q−1)NT0,q · · ·TN−1,N+q−1, N ∈ N,

and α0 = β0 = 1.

Remark 2.6. These are inspired by the matrix polynomials blocks given in the Gauss–
Borel construction of mixed multiple orthogonality, see Lemma 1.17. In fact, for M ∈ N0, 
AMp = AM and BMq = BM .

Recall that as the entries in the extreme diagonals do not vanish (2) we have that 
αN , βN �= 0. In terms of these objects we found the following important result:

Theorem 2.7. For N ∈ N0, the characteristic polynomials and determinants of left and 
right recursion polynomial blocks satisfy

PN (x) = αN detAN (x) = βN detBN (x).

Proof. For N = 0 we have that detA0 = det ν = 1. For N = 1 we get

Tp,0 detA1 =

∣∣∣∣∣∣∣∣
A

(1)
1 A

(1)
p−1 Tp,0A

(1)
p

A
(p)
1 A

(p)
p−1 Tp,0A

(p)
p

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
A

(1)
1 A

(1)
p−1 (x− T0,0)A(1)

0

A
(p)
1 A

(p)
p−1 (x− T0,0)A(p)

0

∣∣∣∣∣∣∣∣
where we have used the recursion (10) in the last column of this determinant. Now we 
express this last determinant as the following product of determinants
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∣∣∣∣∣∣∣∣
A

(1)
1 A

(1)
p−1 (x− T0,0)A(1)

0

A
(p)
1 A

(p)
p−1 (x− T0,0)A(p)

0

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
A

(1)
0 A

(1)
p−1

A
(p)
0 A

(p)
p−1

∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣

0· · · · · · · · ·0 x− T0,0

Ip−1

0......
0

∣∣∣∣∣∣∣∣∣∣
= (−1)p+1(x− T0,0).

We proceed similarly up to N = p − 1, so for N ∈ {2, . . . , p − 1}, we get that

Tp,0Tp+1,1 . . . TN+p−1,N−1 detAN :=

∣∣∣∣∣∣∣∣
A

(1)
N A

(1)
p−1 Tp,0A

(1)
p TN+p−1,N−1A

(1)
N+p−1

A
(p)
N A

(p)
p−1 Tp,0A

(p)
p TN+p−1,N−1A

(p)
N+p−1

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣
A

(1)
N A(1)

p−1 (x − T0,0)A(1)
0 − T1,0A

(1)
1 − · · · − TN−1,0A

(1)
N−1 . . . −T0,N−1A

(1)
0 − T1,N−1A

(1)
1 − · · · + (x − TN−1,N−1)A

(1)
N−1

A
(p)
N A(p)

p−1 (x − T0,0)A(p)
0 − T1,0A

(p)
1 − · · · − TN−1,0A

(p)
N−1 . . . −T0,N−1A

(p)
0 − T1,N−1A

(p)
1 − · · · + (x − TN−1,N−1)A

(p)
N−1

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣
A

(1)
0 A

(1)
p−1

A
(p)
0 A

(p)
p−1

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0N×(p−N) xIN − T [N−1]

Ip−N 0(p−N)×N

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)N(p−N)PN (x),

where, in the second equality, we have used the recursion relation (10) in the last N
columns and cancel the contributions already present in the previous columns.

For N � p, using the recursion relation similarly as above we get

TN,N−p · · ·TN+p−1,N−1 detAN = detM,

M :=

⎡
⎢⎢⎣
A

(1)
0 A

(1)
N−1

A
(p)
0 A

(p)
N−1

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−T0,N−p −T0,N−1

−TN−p−1,N−p −TN−p−1,N−1
x− TN−p,N−p −TN−p,N−1

TN−1,N−p x− TN−1,N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

In order to compute this determinant we notice that
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⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0(N−p)×p IN−p

A
(1)
0 A

(1)
p−1

A
(p)
0 A

(p)
p−1

A
(1)
p A

(1)
N−1

A
(p)
p A

(p)
N−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(xIN − T [N−1]) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Tp,0 −Tp,N−p−1

0

0 0 −TN−1,N−p−1

C(N−p)×p

0p×(n−p) M

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where C is an (N−p) ×p submatrix of xIN−T [N−1] that is not relevant for the reasoning. 
Observe that
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0(N−p)×p IN−p

A
(1)
0 A

(1)
p−1

A
(p)
0 A

(p)
p−1

A
(1)
p A

(1)
N−1

A
(p)
p A

(p)
N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0(N−p)×p IN−p

ν

A
(1)
p A

(1)
N−1

A
(p)
p A

(p)
N−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (−1)p(N−p),

where the initial conditions of recursion polynomials have been used, and we get

(−1)p(N−p)PN (x) = (−Tp,0)(−Tp+1,1) · · · (−TN−1,N−p−1) detM

so that

PN (x) = (−1)(p+1)(N−p)Tp,0Tp+1,1 · · ·TN−1,N−p−1TN,N−p · · ·TN+p−1,N−1 detAN (x)
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and observing that (−1)(p+1)(N−p) = (−1)(p−1)N we obtain the stated result. Finally, 
the second result is proven analogously. �
3. Right and left eigenvectors

We now consider determinantal polynomials constructed in terms of determinants of 
left and right recursion polynomials that happen to give left and right eigenvectors of 
T [N ].

Definition 3.1. Let us introduce the determinantal polynomials

Qn,N :=

∣∣∣∣∣∣∣∣∣∣∣

A
(1)
n A

(p)
n

A
(1)
N+1 A

(p)
N+1

A
(1)
N+p−1 A

(p)
N+p−1

∣∣∣∣∣∣∣∣∣∣∣
, Rn,N :=

∣∣∣∣∣∣∣∣∣∣∣

B
(1)
n B

(q)
n

B
(1)
N+1 B

(q)
N+1

B
(1)
N+q−1 B

(q)
N+q−1

∣∣∣∣∣∣∣∣∣∣∣
, (11)

the semi-infinite row and column vectors

QN :=
[
Q0,N Q1,N

]
, RN :=

⎡
⎢⎣
R0,N
R1,N

⎤
⎥⎦ ,

and corresponding truncations

Q〈N〉 :=
[
Q0,N Q1,N QN,N

]
, R〈N〉 :=

⎡
⎢⎢⎢⎢⎣
R0,N
R1,N

RN,N

⎤
⎥⎥⎥⎥⎦ .

Proposition 3.2. The following properties for polynomials Qn,N , Rn,N are satisfied

i) QN+1,N = · · · = QN+p−1,N = RN+1,N = · · · = RN+q−1,N = 0.
ii) αNQN,N = βNRN,N = PN and (−1)p−1αN+1QN+p,N = (−1)q−1βN+1RN+q,N =

PN+1.
iii) QNT = xQN and TRN = xRN .
iv)

Q〈N〉T [N ] +
[
0 0 TN+p,NQN+p,N

]
= xQ〈N〉,
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T [N ]R〈N〉 +

⎡
⎢⎢⎢⎢⎣

0

0
TN,N+qRN+q,N

⎤
⎥⎥⎥⎥⎦ = xR〈N〉. (12)

Proof. i) As Qn,N and Rn,N are the determinants in (11) we see that they vanish 
whenever two rows are equal, which happens precisely in the indicated cases.

ii) It follows from Theorem 2.7.
iii) It is a direct consequence of the fact that all appropriate rows/columns in the deter-

minants in (11) satisfy corresponding recurrences.
iv) It follows from the previous points i) and iii). �

Now, we are ready to give a set of left and right eigenvectors of the banded finite 
matrix T [N ]. Let us assume that its eigenvalues λ[N ]

k , k ∈ {1, . . . , N + 1} are simple 
(which happens for example for oscillatory matrices). These eigenvalues are the zeros of 
the characteristic polynomials PN+1(x). We also assume that λ[N ]

1 > λ
[N ]
2 > · · · > λ

[N ]
N+1.

Proposition 3.3. For k ∈ {1, . . . , N + 1}, the vectors Q〈N〉∣∣
x=λ

[N]
k

and R〈N〉∣∣
x=λ

[N]
k

are 

left and right eigenvectors of T [N ], respectively.

Proof. Properties ii) and iv) in Proposition 3.2 and an evaluation at λ[N ]
k leads to the 

result. �
4. Christoffel–Darboux formula

We present now a generalized Christoffel–Darboux formula for the determinantal poly-
nomials and the characteristic polynomial of a banded matrix. These results are an 
extension of the formulas found in [25] for the non-mixed case, see also [22]. Christoffel–
Darboux formulas, not of the type described here, for the mixed multiple orthogonality 
were discussed in [26] and also in [2,10].

Proposition 4.1 (Christoffel–Darboux type formulas).

i) For the determinantal polynomials Qn,N and Rn,N introduced in (11) we get the 
following generalized Christoffel–Darboux formula

N∑
n=0

Qn,N (x)Rn,N (y) = 1
αNβN

PN+1(x)PN (y) − PN (x)PN+1(y)
x− y

. (13)

ii) The following generalized confluent Christoffel–Darboux relation is fulfilled

N∑
Qn,NRn,N = 1

αNβN

(
P ′
N+1PN − P ′

NPN+1
)
. (14)
n=0
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Proof. We use (12) to get

−Q〈N〉(x)

⎡
⎢⎢⎢⎢⎣

0

0
TN,N+qRN+q,N (y)

⎤
⎥⎥⎥⎥⎦+

[
0 0 TN+p,NQN+p,N (x)

]
R〈N〉(y)

= (x− y)Q〈N〉(x)R〈N〉(y).

Now, recalling QN,N = α−1
N PN , QN+p,N = (−1)p−1α−1

N+1PN+1, αN+1 =
(−1)p−1TN+p,NαN , RN,N = β−1

N PN , RN+q,N = (−1)q−1β−1
N+1PN+1, βN+1 =

(−1)q−1TN,N+qβN , we obtain (13). Finally, (14) appears as a limit in (13). �
5. Biorthogonality and Christoffel numbers

We now discuss, for the truncated situation, how to construct biorthogonal families 
of left and right eigenvectors and introduce the Christoffel numbers in this setting.

Definition 5.1 (Christoffel numbers). The Christoffel numbers or coefficients are defined 
as

μ
[N ]
k,1 :=

∣∣∣∣∣∣∣∣
A

(2)
N+1
(
λ

[N ]
k

)
A

(p)
N+1
(
λ

[N ]
k

)

A
(2)
N+p−1

(
λ

[N ]
k

)
A

(p)
N+p−1

(
λ

[N ]
k

)
∣∣∣∣∣∣∣∣

βN

∑N
l=0 Ql,N

(
λ

[N ]
k

)
Rl,N

(
λ

[N ]
k

) ,

μ
[N ]
k,2 := −

∣∣∣∣∣∣∣∣
A

(1)
N+1
(
λ

[N ]
k

)
A

(3)
N+1
(
λ

[N ]
k

)
A

(p)
N+1
(
λ

[N ]
k

)

A
(1)
N+p−1

(
λ

[N ]
k

)
A

(3)
N+p−1

(
λ

[N ]
k

)
A

(p)
N+p−1

(
λ

[N ]
k

)
∣∣∣∣∣∣∣∣

βN

∑N
l=0 Ql,N

(
λ

[N ]
k

)
Rl,N

(
λ

[N ]
k

) ,

...

μ
[N ]
k,p := (−1)p−1

∣∣∣∣∣∣∣∣
A

(1)
N+1
(
λ

[N ]
k

)
A

(p−1)
N+1

(
λ

[N ]
k

)

A
(1)
N+p−1

(
λ

[N ]
k

)
A

(p−1)
N+p−1

(
λ

[N ]
k

)
∣∣∣∣∣∣∣∣

βN

∑N
l=0 Ql,N

(
λ

[N ]
k

)
Rl,N

(
λ

[N ]
k

) ,

ρ
[N ]
k,1 := βN

∣∣∣∣∣∣∣∣
B

(2)
N+1
(
λ

[N ]
k

)
B

(q)
N+1
(
λ

[N ]
k

)

B
(2) (

λ
[N ])

B
(p) (

λ
[N ])
∣∣∣∣∣∣∣∣
,

N+q−1 k N+q−1 k
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ρ
[N ]
k,2 := −βN

∣∣∣∣∣∣∣∣
B

(1)
N+1
(
λ

[N ]
k

)
B

(3)
N+1
(
λ

[N ]
k

)
B

(q)
N+1
(
λ

[N ]
k

)

B
(1)
N+q−1

(
λ

[N ]
k

)
B

(3)
n+q−1

(
λ

[N ]
k

)
B

(p)
N+q−1

(
λ

[N ]
k

)
∣∣∣∣∣∣∣∣
,

...

ρ
[N ]
k,q := (−1)q−1βN

∣∣∣∣∣∣∣∣
B

(1)
N+1
(
λ

[N ]
k

)
B

(q−1)
N+1

(
λ

[N ]
k

)

B
(1)
N+q−1

(
λ

[N ]
k

)
B

(q−1)
N+q−1

(
λ

[N ]
k

)
∣∣∣∣∣∣∣∣
.

Proposition 5.2 (Spectral properties). Assume that PN+1 has simple zeros at the set {
λ

[N ]
k

}N+1
k=1 , so that the vectors u〈N〉

k := R〈N〉(λ[N ]
k

)
and w̃〈N〉

k := Q〈N〉(λ[N ]
k

)
are right 

and left eigenvectors of T [N ], respectively, k = 1, . . . , N + 1. Then:

i) Biorthogonal families left and right eigenvectors 
{
w

〈N〉
k

}N+1
k=1 and 

{
u
〈N〉
k

}N+1
k=1 , are

w
〈N〉
k =

Q〈N〉(λ[N ]
k

)
βN

∑N
l=0 Ql,N

(
λ

[N ]
k

)
Rl,N

(
λ

[N ]
k

) , u
〈N〉
k = βNR〈N〉(λ[N ]

k

)
.

ii) The following expression holds

w
〈N〉
k,n =

αNQn−1,N
(
λ

[N ]
k

)
PN

(
λ

[N ]
k

)
P ′
N+1
(
λ

[N ]
k

) , u
〈N〉
k,n = βNRn−1,N

(
λ

[N ]
k

)
. (15)

iii) In terms of the Christoffel numbers we can write

w
〈N〉
k,n = A

(1)
n−1
(
λ

[N ]
k

)
μ

[N ]
k,1 + · · · + A

(p)
n−1
(
λ

[N ]
k

)
μ

[N ]
k,p , (16)

u
〈N〉
k,n = B

(1)
n−1
(
λ

[N ]
k

)
ρ
[N ]
k,1 + · · · + B

(q)
n−1
(
λ

[N ]
k

)
ρ
[N ]
k,q . (17)

iv) For the Christoffel numbers it holds that

⎡
⎢⎢⎢⎢⎢⎣

μ
[N ]
k,1

μ
[N ]
k,2

μ
[N ]
k,p

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ν
(1)
1 1

0
ν

(1)
ν

(p−1) 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣

w
〈N〉
k,1

w
〈N〉
k,2

w
〈N〉
k,p

⎤
⎥⎥⎥⎥⎥⎦ ,
p−1 p−1
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⎡
⎢⎢⎢⎢⎢⎣

ρ
[N ]
k,1

ρ
[N ]
k,2

ρ
[N ]
k,q

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ξ
(1)
1 1

0
ξ
(1)
q−1 ξ

(q−1)
q−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎢⎣

u
〈N〉
k,1

u
〈N〉
k,2

u
〈N〉
k,q

⎤
⎥⎥⎥⎥⎥⎦ . (18)

v) The corresponding matrices U (with columns the right eigenvectors uk arranged in 
the standard order) and W (with rows the left eigenvectors wk arranged in the stan-
dard order) satisfy

UW = WU = IN+1.

vi) In terms of the eigenvalues diagonal matrix D = diag
(
λ

[N ]
1 , . . . , λ[N ]

N+1
)

we have

UDnW =
(
T [N ])n, n ∈ N0.

Proof. i) As the zeros are simple we have that left and right eigenvectors are or-
thogonal, i.e., w̃〈N〉

k u
〈N〉
l = δk,l

∑N
r=0 Qr,N

(
λ

[N ]
k

)
Rr,N

(
λ

[N ]
k

)
. Hence, we divide by ∑N

r=0 Qr,N

(
λ

[N ]
k

)
Rr,N

(
λ

[N ]
k

)
to get normalized left eigenvectors.

ii) It follows from the previous result and Equation (14).
iii) In Equation (11) expand the determinant in Qn−1,N along its first row.
iv) Use (16) for the first p entries

⎡
⎢⎢⎢⎣
w

〈N〉
k,1

w
〈N〉
k,p

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
A

(1)
0
(
λ

[N ]
k

)
A

(p)
0
(
λ

[N ]
k

)

A
(1)
p−1
(
λ

[N ]
k

)
A

(p)
p−1
(
λ

[N ]
k

)

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣
μ

[N ]
k,1

μ
[N ]
k,p

⎤
⎥⎥⎥⎦

and the initial conditions (8)

⎡
⎢⎢⎢⎢⎢⎣

A
(1)
0
(
λ

[N ]
k

)
A

(p)
0
(
λ

[N ]
k

)
A

(1)
1
(
λ

[N ]
k

)
A

(p)
1
(
λ

[N ]
k

)

A
(1)
p−1
(
λ

[N ]
k

)
A

(p)
p−1
(
λ

[N ]
k

)

⎤
⎥⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ν
(1)
1 1

0
ν

(1)
p−1 ν

(p−1)
p−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

to obtain the result. For the right vectors proceed similarly.
v) It follows from the biorthogonality of the left and right eigenvectors.
vi) Notice that UDn =

(
T [N ])nU and use U−1 = W to get UDnW =

(
T [N ])n as 

desired. �
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6. Mixed multiple discrete orthogonality

We reformulate the previous discussed biorthogonality in terms of a set of discrete 
measures and corresponding mixed multiple discrete orthogonality. We remind that 
λ

[N ]
1 > λ

[N ]
2 > · · · > λ

[N ]
N+1.

Definition 6.1 (Step functions). Let us consider the following step functions

ψ
[N ]
b,a :=

⎧⎪⎪⎨
⎪⎪⎩

0, x < λ
[N ]
N+1,

ρ
[N ]
1,b μ

[N ]
1,a + · · · + ρ

[N ]
k,b μ

[N ]
k,a , λ

[N ]
k+1 � x < λ

[N ]
k , k ∈ {1, . . . , N},

ρ
[N ]
1,b μ

[N ]
1,a + · · · + ρ

[N ]
N+1,bμ

[N ]
N+1,a, x � λ

[N ]
1 .

We now show that last step of these step functions is bounded. This implies in the 
case of positive Christoffel coefficients that these step functions are uniformly bounded 
in N . For that aim we need to introduce the matrix Iq,p ∈ Rq×p, with (Iq,p)k,l = δk,l. 
Thus, if p = q we are dealing with the identity matrix, however if p �= q is a rectangular 
matrix with a square block with the identity Imin(p,q) completed with a zero block.

Proposition 6.2. For a ∈ {1, . . . , p} and b ∈ {1, . . . , q}, we have

ρ
[N ]
1,b μ

[N ]
1,a + · · · + ρ

[N ]
N+1,bμ

[N ]
N+1,a = (ξ−1Iq,pν

−�)b,a.

Proof. Let us write (18) in the alternative form

⎡
⎢⎢⎣

μ
[N ]
1,1 μ

[N ]
1,p

μ
[N ]
N+1,1 μ

[N ]
N+1,p

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

w
〈N〉
1,1 w

〈N〉
1,p

w
〈N〉
N+1,1 w

〈N〉
N+1,p

⎤
⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ν
(1)
1 1

0
ν

(1)
p−1 ν

(p−1)
p−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−�

,

⎡
⎢⎢⎣
ρ
[N ]
1,1 ρ

[N ]
N+1,1

ρ
[N ]
1,q ρ

[N ]
N+1,q

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

ξ
(1)
1 1

0
ξ
(1)
q−1 ξ

(q−1)
q−1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

⎡
⎢⎢⎣
u
〈N〉
1,1 u

〈N〉
N+1,1

u
〈N〉
1,q u

〈N〉
N+1,q

⎤
⎥⎥⎦ .

From UW = I, we obtain
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⎡
⎢⎢⎣
u
〈N〉
1,1 u

〈N〉
N+1,1

u
〈N〉
1,q u

〈N〉
N+1,q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

w
〈N〉
1,1 w

〈N〉
1,p

w
〈N〉
N+1,1 w

〈N〉
N+1,p

⎤
⎥⎥⎦ = Iq,p.

Hence,

⎡
⎢⎢⎣
ρ
[N ]
1,1 ρ

[N ]
N+1,1

ρ
[N ]
1,q ρ

[N ]
N+1,q

⎤
⎥⎥⎦
⎡
⎢⎢⎣

μ
[N ]
1,1 μ

[N ]
1,p

μ
[N ]
N+1,1 μ

[N ]
N+1,p

⎤
⎥⎥⎦ = ξ−1Iq,pν

−� (19)

and we get μ[N ]
1,aρ

[N ]
1,b + · · · + μ

[N ]
N+1,aρ

[N ]
N+1,b = (ξ−1Iq,pν

−�)b,a. �
Notice that these functions have bounded variation and are right continuous, so it 

makes sense to consider the associated Lebesgue–Stieltjes measures.

Definition 6.3 (Matrix of discrete measures). Let us introduce a q × p matrix Ψ[N ] :=⎡
⎢⎣
ψ

[N ]
1,1 ψ

[N ]
1,p

ψ
[N ]
q,1 ψ

[N ]
q,p

⎤
⎥⎦ and the corresponding q×p matrix of discrete Lebesgue–Stieltjes measures 

supported at the zeros of PN+1,

d Ψ[N ] =

⎡
⎢⎢⎣

dψ
[N ]
1,1 dψ

[N ]
1,p

dψ
[N ]
q,1 dψ

[N ]
q,p

⎤
⎥⎥⎦ =

N+1∑
k=1

⎡
⎢⎢⎣
ρ
[N ]
k,1

ρ
[N ]
k,q

⎤
⎥⎥⎦
[
μ

[N ]
k,1 μ

[N ]
k,p

]
δ
(
x− λ

[N ]
k

)
. (20)

Remark 6.4. This matrix of discrete measures is rank 1 at each point of the support.

Theorem 6.5 (Mixed multiple discrete biorthogonality). Assume that the recursion poly-
nomials PN+1 have simple zeros 

{
λ

[N ]
k

}N+1
k=1 . The following biorthogonal relations hold

p∑
a=1

q∑
b=1

∫
B(b)

n (x) dψ
[N ]
b,a (x)A(a)

m (x) = δn,m, n,m ∈ {0, . . . , N}.

Proof. It follows from Equations (16), (17) and UW = I. �
From this biorthogonality we get the following:

Corollary 6.6 (Mixed multiple discrete orthogonality). Assume that the polynomial PN+1

has simple zeros 
{
λ

[N ]
k

}N+1
k=1 . Then, the following discrete type mixed multiple orthogo-

nality for m ∈ {1, . . . , N} is satisfied:
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p∑
a=1

∫
xn dψ

[N ]
b,a A

(a)
m = 0, n ∈

{
0, . . . ,degB(b)

m−1
}
, b ∈ {1, . . . , q},

q∑
b=1

∫
B(b)

m dψ
[N ]
b,a x

n = 0, n ∈
{
0, . . . ,degA(a)

m−1
}
, a ∈ {1, . . . , p}.

7. Positive bidiagonal factorization and Christoffel numbers positivity

Positive bidiagonal factorization (PBF) accommodates naturally to TN banded ma-
trices as all the subdiagonals may be constructed in terms of simpler bidiagonal matrices.

Definition 7.1 (Positive bidiagonal factorization). We say that a banded matrix T as in 
(1) admits a PBF if

T = L1 · · ·LpΔUq · · ·U1,

with Δ = diag(Δ0, Δ1, . . . ) and bidiagonal matrices given respectively by

Lk :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0

Lk|0 1
0 Lk|1 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, Uk :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Uk|0 0

0 1 Uk|1

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and such that the positivity constraints Lk|i, Uk|i, Δi > 0, for i ∈ N0, are satisfied.

Remark 7.2. Notice that L[N ]
1 , . . . , L[N ]

p , Δ[N ], U [N ]
q , . . . , U [N ]

1 ∈ InTN.

Proposition 7.3. The above positive bidiagonal factorization of T induces the following 
positive bidiagonal factorization for the leading principal submatrix T [N ]

T [N ] = L
[N ]
1 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

1 . (21)

Proposition 7.4. If T has a PBF then its leading principal submatrices T [N ] are oscilla-
tory.

Proof. As all factors are InTN the product matrix is InTN. Moreover, as all parameters 
in the bidiagonal factors are positive then using Gantmacher–Krein Criterion we get that 
the matrix is oscillatory. �
Proposition 7.5 (Interlacing). Let us assume that T is oscillatory. Then:

i) The polynomial PN+1 interlaces PN .
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ii) For x ∈ R, for the corresponding Wronskian we find P ′
N+1PN − P ′

NPN+1 > 0. In 
particular,

(P ′
N+1PN )

∣∣
x=λ

[N]
k

> 0, (PN+1P
′
N )
∣∣
x=λ

[N−1]
k

< 0.

iii) The confluent kernel is a positive function; i.e., αNβN

∑N
n=0 Qn,N (x)Rn,N (x) > 0

for x ∈ R.

Proof. i) Given that T [N ] is oscillatory the polynomial PN+1 interlaces PN , see Theo-
rem 1.5.

ii) As the polynomials interlace its Wronskian P ′
N+1PN −P ′

NPN+1 has constant sign for 
x ∈ R1 and, as the characteristic polynomials are monic, we have that P ′

N+1PN −
P ′
NPN+1 = x2N + O(x2N−1) for |x| → ∞. Hence, the Wronskian is positive and 

PN

(
λ

[N ]
k

)
P ′
N

(
λ

[N ]
k

)
> 0 and P ′

N

(
λ

[N−1]
k

)
PN

(
λ

[N−1]
k

)
> 0.

iii) From (14) we get 
∑N

n=0 Qn,NRn,N = 1
αNβN

(
P ′
N+1PN − P ′

NPN+1
)

and the result 
follows immediately. �

We now explore some consequences that a positive bidiagonal factorization has. For 
that aim we introduce the idea of Darboux transformation of a banded Hessenberg ma-
trix. Darboux transformations for banded Hessenberg matrices (beyond the tridiagonal 
situation) were discussed in [14]. In [21] for the tetradiagonal case, and corresponding 
multiple orthogonal polynomials in the step-line with two weights, the PBF factorization 
is given in terms of the values of the orthogonal polynomials of type I and II at 0 and, 
consequently, an spectral interpretation of the Darboux transformation is given.

Definition 7.6 (Darboux transformations of banded matrices). Let us assume that T ad-
mits a bidiagonal factorization (not necessarily positive). For each of its truncations T [N ]

we consider a chain of new auxiliary matrices, called Darboux transformations, given by 
the consecutive permutation of the unitriangular matrices in the factorization (21),

T̂ [N,+1] = L
[N ]
2 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1 ,

T̂ [N,+2] = L
[N ]
3 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1 L

[N ]
2 ,

...

T̂ [N,+(p−1)] = L[N ]
p Δ[N ]U [N ]

q · · ·U [N ]
1 L

[N ]
1 L

[N ]
2 · · ·L[N ]

p−1,

1 In terms of π[N]
k := PN+1

x−λ
[N]
k

=
∏

l�=k

(
x − λ

[N]
l

)
we have PN =

∑N+1
k=1 bkπ

[N]
k with bl = PN (λ[N]

l )
π

[N]
l (λ[N]

l )
�= 0 and 

that, as these polynomials interlaces, all the bk have the same sign; indeed, sgnPN (λ[N]
l ) = − sgnPN (λ[N]

l+1)
by interlacing and sgnπ

[N]
l (λ[N]

l ) = − sgnπ
[N]
l+1(λ

[N]
l+1) by definition. Consequently, PN

PN+1
=
∑N+1

k=1
bk

x−λ
[N]
k

, so 

that P ′
N+1PN − P ′

NPN+1 = P 2
N+1

(
PN

PN+1

)′
= −P 2

N+1
∑N+1

k=1
bk

(x−λ
[N]
k )2

= − ∑N+1
k=1 bk(π[N]

k )2, and the result 
follows.



30 A. Branquinho et al. / Advances in Mathematics 434 (2023) 109313
T̂ [N,+p] = Δ[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1 L

[N ]
2 · · ·L[N ]

p ,

and

T̂ [N,−1] = U
[N ]
1 L

[N ]
1 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

2 ,

T̂ [N,−2] = U
[N ]
2 U

[N ]
1 L

[N ]
1 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

3 ,

...

T̂ [N,−(q−1)] = U
[N ]
q−1 · · ·U

[N ]
1 L

[N ]
1 L

[N ]
2 · · ·L[N ]

p Δ[N ]U [N ]
q ,

T̂ [N,−q] = U [N ]
q · · ·U [N ]

1 L
[N ]
1 L

[N ]
2 · · ·L[N ]

p Δ[N ].

Lemma 7.7. Darboux transformations are banded matrices with only its first p subdiag-
onals, main diagonal and q superdiagonals possibly different from zero. If T admits a 
PBF then entries in these diagonals are positive.

Proof. It is a simple computation recalling the positivity of the nonzero entries. �
Lemma 7.8. Let us assume that T has a PBF. Then, for k ∈ {1, . . . , p}, we find:

i) The Darboux transformations T̂ [N,+a], a ∈ {1, . . . , p}, T̂ [N,−b], b ∈ {1, . . . , q} are 
oscillatory.

ii) The characteristic polynomial of the Darboux transformations T̂ [N,+a], a ∈{1, . . . , p}, 
T̂ [N,−b], b ∈ {1, . . . , q} is PN+1.

iii) If w, u are left and right eigenvectors of T [N ], respectively, then ŵ = wL
[N ]
1 · · ·L[N ]

a is 
a left eigenvector of T̂ [N,+a] and û = U

[N ]
b · · ·U [N ]

1 u is a right eigenvector of T̂ [N,−b].

Proof. i) Each bidiagonal factor belongs to InTN. Then, the Darboux transformation 
T̂ [N,k] is a product of matrices in InTN and, consequently, belongs to InTN. More-
over, the entries in the first subdiagonal and first superdiagonal are sums of products 
of elements coming from the entries of the positive subdiagonal or superdiagonal 
of the matrices L[N ]

j and U [N ]
m , for j = 1, . . . , p, and m = 1, . . . , q. According to 

Gantmacher–Krein Criterion is an oscillatory matrix.
ii) As T̂ [N,+a] = (L[N ]

1 · · ·L[N ]
a )−1T [N ]L

[N ]
1 · · ·L[N ]

a its characteristic polynomial is PN+1. 
Similarly, as T̂ [N,−b] = U

[N ]
b · · ·U [N ]

1 T [N ](U [N ]
b · · ·U [N ]

1 )−1 the corresponding charac-
teristic polynomial is again PN+1.

iii) We see that

λŵ = λwL
[N ]
1 · · ·L[N ]

a = wL
[N ]
1 · · ·L[N ]

a L
[N ]
a+1 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

1 L
[N ]
1 · · ·L[N ]

a

= ŵT̂ [N ],

λû = λU
[N ]
b · · ·U [N ]

1 u = U
[N ]
b · · ·U [N ]

1 L
[N ]
1 · · ·L[N ]

p Δ[N ]U [N ]
q · · ·U [N ]

b+1U
[N ]
b · · ·U [N ]

1 u
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= T̂ [N ]û. �
In order to show the positivity of the Christoffel coefficients we require of some pre-

liminary notation.

Definition 7.9. Let us define the matrices

Λ :=
[
Λ(1) Λ(p)

]
∈ Rp×p, Υ :=

⎡
⎢⎣

Υ(1)

Υ(q)

⎤
⎥⎦ ∈ Rq×q,

with

Λ(1) :=

⎡
⎢⎢⎢⎢⎣

1
0

0

⎤
⎥⎥⎥⎥⎦ , Λ(k) := 1

rk
L

[p−1]
1 · · ·L[p−1]

k−1

⎡
⎢⎢⎢⎢⎣

1
0

0

⎤
⎥⎥⎥⎥⎦ ,

rk := Lk|0Lk−1|1 · · ·L1|k−1, k ∈ {2, . . . , p},

and

Υ(1) :=
[
1 0 0

]
, Υ(k) := 1

sk

[
1 0 0

]
U

[q−1]
1 · · ·U [q−1]

k−1 ,

sk := Uk|0Uk−1|1 · · ·U1|k−1, k ∈ {2, . . . , q}.

Lemma 7.10. The matrices Λ and Υ are positive upper and lower unitriangular matrices, 
respectively.

Theorem 7.11 (Christoffel numbers positivity). Let us assume that T has a PBF and 
choose the matrices of initial conditions as

ν−� = ΛA, ξ−1 = BΥ, (22)

for some upper and lower unitriangular nonnegative matrices A ∈ Rp×p and B ∈ Rq×q, 
respectively. Then,

ρ
[N ]
k,b > 0, μ

[N ]
k,a > 0, k ∈ 1, . . . , N + 1, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Proof. Recall that the Christoffel numbers can be expressed, in terms of the initial 
condition matrices ξ and ν, through the formulas
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[
μ

[N ]
k,1 μ

[N ]
k,p

]
=
[
w

〈N〉
k,1 w

〈N〉
k,p

]
ν−�,

⎡
⎢⎢⎣
ρ
[N ]
k,1

ρ
[N ]
k,q

⎤
⎥⎥⎦ = ξ−1

⎡
⎢⎢⎣
u
〈N〉
k,1

u
〈N〉
k,q

⎤
⎥⎥⎦ ,

that relates these Christoffel numbers with the corresponding biorthogonal families of 
right and left eigenvectors. Notice that the entries of these biorthogonal right and left 
eigenvectors can be written as w〈N〉

k,a = αN
Qa−1,N
P ′

N+1PN

∣∣∣
x=λ

[N]
k

and u〈N〉
k,b = βNRb−1,N

(
λ

[N ]
k

)
, 

see (15). Hence, recall iii) in Proposition 7.5, the Christoffel numbers are positive if and 
only if

βNξ−1

⎡
⎢⎣

R0,N

Rq−1,N

⎤
⎥⎦ , 1

βN

[
Q0,N Qp−1,N

]
ν−�

are positive vectors at the points x = λ
[N ]
k , k ∈ {1, . . . , N + 1}. We will show now that 

is possible to choose the initial condition matrices ν, ξ such that this holds true.
Now, we consider left and right eigenvectors with last entry normalized to 1

[
Q0,N
QN,N

∣∣∣
x=λ

[N]
k

Q1,N
QN,N

∣∣∣
x=λ

[N]
k

1
]
,

⎡
⎢⎢⎢⎢⎢⎢⎣

R0,N
RN,N

∣∣∣
x=λ

[N]
k

R1,N
RN,N

∣∣∣
x=λ

[N]
k

1

⎤
⎥⎥⎥⎥⎥⎥⎦
.

It is important to recall that according to Theorem 1.6 the last entry of any eigenvector 
is nonzero, i.e. so that we can normalize the last entry to 1. Despite, this is not the 
biorthogonal normalization is interesting for our purposes. Recall that QN,N = α−1

N PN , 
RN,N = β−1

N PN and that, according to Theorem 1.6, the first eigenvector entries are not 
zero; i.e., αN

Q0,N
PN

∣∣∣
x=λ

[N]
k

, βN
R0,N
PN

∣∣∣
x=λ

[N]
k

�= 0. As the last entry is positive the change 

sign properties described in Theorem 1.6 leads to

αN
Q0,N

PN

∣∣∣∣
x=λ

[N]
1

> 0, αN
Q0,N

PN

∣∣∣∣
x=λ

[N]
2

< 0,

αN
Q0,N

PN

∣∣∣∣
x=λ

[N]
3

> 0,

βN
R0,N

PN

∣∣∣∣
x=λ

[N]
1

> 0, βN
R0,N

PN

∣∣∣∣
x=λ

[N]
2

< 0,

βN
R0,N

PN

∣∣∣∣
x=λ

[N]
3

> 0,
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and so on, alternating the sign. Now, as T is oscillatory and the characteristic polynomial 
PN+1 interlaces PN we have that sgnPN

(
λ

[N ]
k

)
= (−1)k−1 so that

αNQ0,N
(
λ

[N ]
k

)
, βNR0,N

(
λ

[N ]
k

)
> 0, k ∈ {1, . . . , N + 1}.

Now, we start using the Darboux transformations. Recall that T̂ [N,±1] is an oscillatory 
matrix with characteristic polynomial PN+1. Then, a left eigenvector of T [N,+1] for the 
eigenvalue λ[N ]

k can be chosen as
[
αN

Q0,N
PN

∣∣∣
x=λ

[N]
k

αN
Q1,N
PN

∣∣∣
x=λ

[N]
k

1
]
L

[N ]
1 =

[
αN

(Q0,N+L1|0Q1,N )
PN

∣∣∣
x=λ

[N]
k

1
]
,

and a right eigenvector of T [N,−1] for the eigenvalue λ[N ]
k can be taken as

U
[N ]
1

⎡
⎢⎢⎢⎢⎢⎢⎣

βN
R0,N
PN

∣∣∣
x=λ

[N]
k

βN
R1,N
PN

∣∣∣
x=λ

[N]
k

1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
βN

(R0,N+U1|0R1,N )
PN

∣∣∣
x=λ

[N]
k

1

⎤
⎥⎥⎥⎦ .

Using again the sign properties of the eigenvectors associated to an oscillatory matrix 
we get

αN

1
L1|0

Q0,N + Q1,N

PN

∣∣∣∣∣
x=λ

[N]
1

> 0, αN

1
L1|0

Q0,N + Q1,N

PN

∣∣∣∣∣
x=λ

[N]
2

< 0,

αN

1
L1|0

Q0,N + Q1,N

PN

∣∣∣∣∣
x=λ

[N]
3

> 0,

βN

1
U1|0

R0,N + R1,N

PN

∣∣∣∣∣
x=λ

[N]
1

> 0, βN

1
U1|0

R0,N + R1,N

PN

∣∣∣∣∣
x=λ

[N]
2

< 0,

βN

1
U1|0

R0,N + R1,N

PN

∣∣∣∣∣
x=λ

[N]
3

> 0,

and so on alternating the sign. Recalling the sign of PN at the zeros of PN+1 we get

αN

( 1
L1|0

Q0,N + Q1,N

)∣∣∣∣
x=λ

[N]
k

, βN

( 1
U1|0

R0,N + R1,N

)∣∣∣∣
x=λ

[N]
k

>0, k∈{1, . . . , N +1}.

Now we consider the matrices T̂ [N,±2], both oscillatory matrices with characteristic poly-
nomial PN+1. Then, for T [N,+2], a corresponding left eigenvector for the eigenvalue λ[N ]

k

can be chosen as
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[
αN

Q0,N
PN

∣∣∣
x=λ

[N]
k

αN
Q1,N
PN

∣∣∣
x=λ

[N]
k

1
]
L

[N ]
1 L

[N ]
2

=
[
αN

Q0,N+(L1|0+L2|0)Q1,N+L1|1L2|0Q2,N
PN

∣∣∣
x=λ

[N]
k

1
]
,

and for T [N,−2] a corresponding right eigenvector for the eigenvalue λ[N ]
k can be taken as

U2U1

⎡
⎢⎢⎢⎢⎢⎢⎣

βN
R0,N
PN

∣∣∣
x=λ

[N]
k

βN
R1,N
PN

∣∣∣
x=λ

[N]
k

1

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎣
βN

R0,N+(U1|0+U2|0)R1,N+U1|1U2|0R2,N
PN

∣∣∣
x=λ

[N]
k

1

⎤
⎥⎥⎥⎦ .

Hence, using the sign properties of the eigenvectors associated to an oscillatory matrix 
we get

αN

1
L1|1L2|0

Q0,N + L1|0+L2|0
L1|1L2|0

Q1,N + Q2,N

PN

∣∣∣∣∣∣
x=λ

[N]
1

> 0,

αN

1
L1|1L2|0

Q0,N + L1|0+L2|0
L1|1L2|0

Q1,N + Q2,N

PN

∣∣∣∣∣∣
x=λ

[N]
2

< 0,

βN

1
U1|1U2|0

R0,N + U1|0+U2|0
U1|1U2|0

R1,N + R2,N

PN

∣∣∣∣∣∣
x=λ

[N]
1

> 0,

βN

1
U1|1U2|0

R0,N + U1|0+U2|0
U1|1U2|0

R1,N + R2,N

PN

∣∣∣∣∣∣
x=λ

[N]
2

< 0,

and so on, alternating the sign. Recalling again the sign of PN at the zeros of PN+1, we 
get we obtain

αN

( 1
L1|1L2|0

Q0,N +
L1|0 + L2|0
L1|1L2|0

Q1,N + Q2,N

)∣∣∣∣
x=λ

[N]
k

> 0,

βN

( 1
U1|1U2|0

R0,N +
U1|0 + U2|0
U1|1U2|0

R1,N + R2,N

)∣∣∣∣
x=λ

[N]
k

> 0,

for k ∈ {1, . . . , N + 1}.
Consequently, after repeating this process up to T [N,+(p−1)] and T [N,−(q−1)] we find 

that
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βNΥ

⎡
⎢⎣

R0,N

Rq−1,N

⎤
⎥⎦ , αN

[
Q0,N Qp−1,N

]
Λ,

are positive vectors at the points x = λ
[N ]
k , k ∈ {1, . . . , N}. Therefore, if the initial 

condition matrices are chosen as indicated in (22) we get the result. �
8. Resolvent, second kind polynomials and Weyl functions

From here on we assume that N � max(p, q).

Definition 8.1. Given r ∈ N, we write 
{
e
[r]
1 , . . . , e[r]

r

}
for the canonical basis of Rr and 

consider the r × (N + 1) matrix E[r,N+1] :=
[
Ir 0r×(N+1−r)

]
. Then, we introduce the 

vectors eνa, e
ξ
b ∈ RN+1 with

eνa := E�
[p,N+1]ν

−�e[p]
a ,

(
eξb
)� :=

(
e
[q]
b

)�
ξ−1E[q,N+1].

Lemma 8.2. For the matrices U and W (introduced in v) of Proposition 5.2) we find

(eξb)
�U =

[
ρ
[N ]
1,b ρ

[N ]
N+1,b

]
, Weνa =

⎡
⎢⎢⎣

μ
[N ]
1,a

μ
[N ]
N+1,a

⎤
⎥⎥⎦ , a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Remark 8.3. In matrix form, the above Lemma 8.2 reads

⎡
⎢⎢⎣
ρ
[N ]
1,1 ρ

[N ]
N+1,1

ρ
[N ]
1,q ρ

[N ]
N+1,q

⎤
⎥⎥⎦ = ξ−1E[q,N+1]U,

⎡
⎢⎢⎣

μ
[N ]
1,1 μ

[N ]
1,p

μ
[N ]
N+1,1 μ

[N ]
N+1,p

⎤
⎥⎥⎦ = WE�

[p,N+1]ν
−�.

Also observe that (19) follows from these relations and two facts: UW = IN+1 and 
E[q,N+1]E

�
[p,N+1] = Iq,p.

For the following we need of the adjugate matrix adjA of a matrix A; i.e. of the 
transpose of the matrix of cofactors (cf. [36]).

Definition 8.4 (Second kind polynomials). The second kind characteristic polynomials are 
given by

P
(b,a)
N+1(x) := (eξb)

� adj(xIN+1 − T [N ])eνa, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.
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Proposition 8.5. For the second kind characteristic polynomials we find

P
(b,a)
N+1(x) =

N+1∑
k=1

ρ
[N ]
k,b μ

[N ]
k,aπ

[N ]
k (x), π

[N ]
k (x) :=

∏
l∈{1,...,N+1}

l �=k

(
x− λ

[N ]
l

)
.

Proof. It follows from adj(xIN+1 − T [N ]) = adj(U(xIN+1 − D)W) = U adj(xIN+1 −
D)W. �
Proposition 8.6. The second kind characteristic polynomials are the second kind polyno-
mials of the characteristic polynomial; i.e.,

P
(b,a)
N+1(z) =

∫
PN+1(z) − PN+1(x)

z − x
dψ

[N ]
b,a (x)

= αN+1

∫ det(AN+1(z)) − det(AN+1(x))
z − x

dψ
[N ]
b,a (x)

= βN+1

∫ det(BN+1(z)) − det(BN+1(x))
z − x

dψ
[N ]
b,a (x).

Proof. We have

∫
PN+1(z) − PN+1(x)

z − x
dψ

[N ]
b,a (x) =

N+1∑
k=1

ρ
[N ]
k,b μ

[N ]
k,a

∫
δ
(
x− λ

[N ]
k

)PN+1(z) − PN+1(x)
z − x

,

but

∫
δ
(
x− λ

[N ]
k

)PN+1(z) − PN+1(x)
z − x

=
PN+1(z) − PN+1

(
λ

[N ]
k

)
z − λ

[N ]
k

= PN+1(z)
z − λ

[N ]
k

= π
[N ]
k (z),

and using Proposition 8.5 we obtain the first result. For the second we use Theo-
rem 2.7. �
Remark 8.7. The second kind characteristic polynomial matrix is

P
(1)
N+1 := ξ−1E[q,N+1] adj(xIN+1 − T [N ])E�

[p,N+1]ν
−�

=
N+1∑
k=1

π
[N ]
k (x)

⎡
⎢⎢⎣
ρ
[N ]
k,1

ρ
[N ]
k,q

⎤
⎥⎥⎦[μ[N ]

k,1 μ
[N ]
k,p

]

=
∫

PN+1(z) − PN+1(x)
z − x

d Ψ[N ](x),

is a q × p matrix of polynomials whose entries are the polynomials of the second kind: 
(P (1)

N+1)b,a = P
(b,a)
N+1 .
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Proposition 8.8. If T has a PBF and (22) is satisfied then degP (b,a)
N+1 = N .

Proof. The choice (22) ensures that the entries of the vectors eνa and eξb are positive. The 
PBF of T also ensures that all the Christoffel numbers are positive. Then, the definition 
of the second kind polynomials through the adjugate matrix leads to the degree N of 
these polynomials. �

The moments of the pq discrete measures dψ
[N ]
b,a are linked to the components of the 

powers of T [N ]:

Proposition 8.9 (Discrete moments). For the discrete moments we have

∫
xn dψ

[N ]
b,a (x) =

N+1∑
k=1

ρ
[N ]
k,b μ

[N ]
k,a

(
λ

[N ]
k

)n
= (eξb)

�(T [N ])neνa, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Proof. We have that (eξb)�
(
T [N ])neνa = (eξb)�UDnWeνa so that

(eξb)
�(T [N ])neνa =

[
ρ
[N ]
1,b ρ

[N ]
N+1,b

]
Dn

⎡
⎢⎢⎣

μ
[N ]
1,a

μ
[N ]
N+1,a

⎤
⎥⎥⎦ ,

and the result follows. �
Remark 8.10. In matrix form we can write∫

xn d Ψ[N ](x) = ξ−1E[q,N+1]
(
T [N ])nE�

[p,N+1]ν
−�.

Definition 8.11 (Resolvent). The resolvent matrix R[N ](z) of the leading principal sub-
matrix T [N ] is

R[N ](z) :=
(
zIN+1 − T [N ])−1 =

adj
(
zIN+1 − T [N ])

det(zIN+1 − T [N ])
.

Lemma 8.12. We have

R[N ](z) = U(zIN+1 −D)−1W. (23)

Proof. It follows immediately from the spectral decomposition of the matrix T [N ]. �
Definition 8.13 (Weyl’s functions). The Weyl functions are

S
[N ]
b,a := (eξb)

�R[N ]eνa, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.
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Proposition 8.14. The Weyl functions can be expressed as follows

S
[N ]
b,a (z) =

P
(b,a)
N+1(z)

PN+1(z)

=
N+1∑
k=1

ρ
[N ]
k,b μ

[N ]
k,a

z − λ
[N ]
k

=
∫ dψ

[N ]
b,a (x)

z − x
, a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Proof. The first equalities follow from adjugate expressions. The second expressions can 
be deduced from (23). Indeed, recalling Lemma 8.2 we get that the Weyl functions are

S
[N ]
b,a (z) =

[
ρ
[N ]
1,b ρ

[N ]
N+1,b

]
(zIN+1 −D)−1

⎡
⎢⎢⎣

μ
[N ]
1,a

μ
[N ]
N+1,a

⎤
⎥⎥⎦ =

N+1∑
k=1

ρ
[N ]
k,b μ

[N ]
k,a

z − λ
[N ]
k

. �

Remark 8.15. For the q × p matrix of Weyl functions S[N ] =

⎡
⎢⎣
S

[N ]
1,1 S

[N ]
1,p

S
[N ]
q,1 S

[N ]
q,p

⎤
⎥⎦ :=

ξ−1E[q,N+1]R
[N ]
z E�

[p,N+1]ν
−1, we can write

S[N ](z) =
P

(1)
N+1(z)

PN+1(z)
=

N+1∑
k=1

1
z − λ

[N ]
k

⎡
⎢⎢⎣
ρ
[N ]
k,1

ρ
[N ]
k,q

⎤
⎥⎥⎦[μ[N ]

k,1 μ
[N ]
k,p

]
=
∫ d Ψ[N ](x)

z − x
.

Proposition 8.16. If T has a PBF and (22) is satisfied then P (b,a)
N+1 is interlaced by PN+1.

Proof. Notice that if T has a PBF all the singularities of the Weyl functions are simple 
poles with positive residues. Consequently, each of the second kind polynomials P (b,a)

N+1 is 
interlaced by the characteristic polynomial PN+1. �

We now connect these constructions with the polynomials used in discussion of the 
Hermite–Padé problem in Proposition 1.29. Let us remind that 

{
e
[N+1]
1 , . . . , e[N+1]

N+1
}

the 
canonical basis of RN+1.

Proposition 8.17 (Vectorial polynomials of the second type). For n ∈ {1, . . . , N + 1} we 
find

∫ d Ψ[N ](x)
z − x

⎡
⎢⎢⎣
A

(1)
n−1(x)

A
(p) (x)

⎤
⎥⎥⎦ = ξ−1E[q,N+1]R

[N ](z)e[N+1]
n ,
n−1
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∫ [
B

(1)
n−1(x) B

(q)
n−1(x)

] d Ψ[N ](x)
z − x

= e[N+1]
n

�
R[N ](z)E�

[p,N+1]ν
−�,

and entrywise

p∑
a=1

∫ dψ
[N ]
b,a (x)

z − x
A

(a)
n−1(x) =

(
eξb
)�

R[N ](z)e[N+1]
n ,

q∑
b=1

∫
B

(b)
n−1(x)

dψ
[N ]
b,a (x)

z − x
= e[N+1]

n

�
R[N ](z)eνa.

Proof. From (16) and (20) we get

∫ d Ψ[N ](x)
z − x

⎡
⎢⎢⎣
A

(1)
n−1(x)

A
(p)
n−1(x)

⎤
⎥⎥⎦ =

N+1∑
k=1

⎡
⎢⎣
ρk,1

ρk,q

⎤
⎥⎦ w

〈N〉
k,n

z − λ
[N ]
k

and (18) implies

∫ d Ψ[N ](x)
z − x

⎡
⎢⎢⎣
A

(1)
n−1(x)

A
(p)
n−1(x)

⎤
⎥⎥⎦=ξ−1

N+1∑
k=1

⎡
⎢⎢⎣
u
〈N〉
k,1

u
〈N〉
k,q

⎤
⎥⎥⎦ w

〈N〉
k,n

z − λ
[N ]
k

=ξ−1E[q,N+1]

N+1∑
k=1

⎡
⎢⎢⎢⎢⎣

u
〈N〉
k,1

u
〈N〉
k,N+1

⎤
⎥⎥⎥⎥⎦

1
z − λ

[N ]
k

[
w

〈N〉
k,1 w

〈N〉
k,N+1

]
e[N+1]
n ,

and the result follows. Now, proceeding similarly and using (17) and (18) we obtain the 
second relation. �
9. Spectral Favard theorem

As the submatrices T [N ] are oscillatory, we know that PN+1(x) strictly interlaces 
PN (x) so that the positive sequence {λ[N ]

1 }∞N=1 is a strictly increasing sequence and 
{λ[N ]

N+1}∞N=1 is a strictly decreasing sequence. As well, for bounded operators, ‖T‖∞ < ∞, 
we have ‖T [N ]‖∞ < ‖T‖∞ < ∞. Therefore, there exists the limits ζ := limN→∞ λ

[N ]
N+1 �

0 and η := limN→∞ λ
[N ]
1 � ‖T‖∞. Following [24,37] we call Δ := [ζ, η] ⊆ [0, ‖T‖∞] the 

true interval of orthogonality, that is the smallest interval containing all zeros of the 
characteristic polynomials Pn, i.e. the eigenvalues of the leading principal submatrices 
of T .
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Theorem 9.1 (Favard spectral representation). Let us assume that

i) The banded matrix T is bounded and there exist s � 0 such that T + sI has a PBF.
ii) The sequences 

{
A

(1)
n , . . . , A(p)

n

}∞
n=0, 

{
B

(1)
n , . . . , B(q)

n

}∞
n=0 of recursion polynomials are 

determined by the initial condition matrices ν and ξ, respectively, such that ν−� =
ΛA, ξ−1 = BΥ, and A ∈ Rp×p is a nonnegative upper unitriangular matrices and 
B ∈ Rq×q is a nonnegative lower unitriangular matrix.

Then, there exists pq non decreasing positive functions ψb,a, a ∈ {1, . . . , p} and b ∈
{1, . . . , q} and corresponding positive Lebesgue–Stieltjes measures dψb,a with compact 
support Δ such that the following biorthogonality holds

p∑
a=1

q∑
b=1

∫
Δ

B
(b)
l (x) dψb,a(x)A(a)

k (x) = δk,l, k, l ∈ N0.

Proof. The shift in the matrix T → T + sI only shifts by s the eigenvalues of the 
truncations T [N ], so that they are positive, and the dependent variable of the recursion 
polynomials, but do not alter the interlacing properties of the polynomials and the pos-
itivity of the corresponding Christoffel numbers. From Theorem 7.11 we know that the 
sequences 

{
ψ

[N ]
a,b

}∞
N=0, a ∈ {1, . . . , p}, b ∈ {1, . . . , q} given in Definition 6.1 are positive. 

Moreover, Proposition 6.2 implies that they are uniformly bounded and nondecreasing. 
Consequently, following Helly’s results, see [24, §II] there exist subsequences that con-
verge when N → ∞ to positive nondecreasing functions ψb,a with support on Δ and 
that the discrete biorthogonal relations lead to the stated biorthogonal properties. �
Corollary 9.2 (Mixed multiple orthogonal relations). In the conditions of Theorem 9.1, 
the mixed multiple orthogonal relations are fulfilled

p∑
a=1

∫
Δ

xn dψb,a(x)A(a)
m (x) = 0, n ∈

{
0, . . . ,degB(b)

m−1
}
, b ∈ {1, . . . , q},

q∑
b=1

∫
Δ

B(b)
m (x) dψb,a(x)xn = 0, n ∈

{
0, . . . ,degA(a)

m−1
}
, a ∈ {1, . . . , p}.

Definition 9.3. Let us consider the semi-infinite matrix

E[r] :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0

0

r times

0
0 0 1

0

r
tim

es

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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and the infinite vectors

uν
a = E�

[p]ν
−�e[p]

a uξ
b =
(
e
[q]
b

)�
ξ−1E[q]

Proposition 9.4 (Spectral representation of moments and Stieltjes–Markov functions). In 
the conditions of Theorem 9.1 and in terms of the spectral functions ψb,a, a ∈ {1, . . . , p}, 
b ∈ {1, . . . , q} we find the following relations between entries of powers or the resolvent of 
the banded matrix and moments or the Cauchy transform of the measures, respectively:

(uξ
b)

�Tnuν
a =
∫
Δ

xn dψb,a(x), (uξ
b)

�(zI − T )−1uν
a =
∫
Δ

dψb,a(x)
z − x

−: ψ̂b,a(z).

Proof. Propositions 8.9 and 8.14 and Helly’s second theorem lead to the spectral repre-
sentation for the moments and Stieltjes–Markov functions ψ̂b,a(z) of T . �

Remark 9.5. In terms of Ψ =

⎡
⎣ψ1,1 ψ1,p

ψq,1 ψq,p

⎤
⎦ we have

ξ−1E[q]T
nE�

[p]ν
−� =

∫
Δ

xn d Ψ(x), ξ−1E[q](zI − T )−1E�
[p]ν

−� =
∫
Δ

d Ψ(x)
z − x

.

Proposition 9.6 (Normal convergence of Weyl functions). Given the conditions of Theo-
rem 9.1, the Weyl functions in Proposition 8.14 converge uniformly in compact subsets 
of C̄ \ Δ to the Stieltjes–Markov functions, i.e.,

S
[N ]
b,a (z) =

P
(b,a)
N+1(z)

PN+1(z)
−−−−−−−−⇒
N→∞

ψ̂b,a(z), a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Proof. Notice the uniform boundedness in N in compact subsets of C̄ \ Δ of the Weyl 
functions S[N ]

b,a for each pair a, b. Then, Vitali convergence theorem see [45, Theorem 
6.2.8] leads to the result. �
Remark 9.7. Despite the positivity of Christoffel numbers described in Theorem 7.11 we 
only have the bound proved in Proposition 6.2. Therefore, we know that the functions 
ψ

[N ]
b,a given in Definition 6.1 that are right continuous, of bounded variation, increasing 

and positive are also uniformly bounded. Therefore, Helly’s theorem can be applied to 
the large N limit.

However, this is not applicable to each family of Christoffel numbers separately. That 
is,
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ϕ
[N ]
b :=

⎧⎪⎪⎨
⎪⎪⎩

0, x < λ
[N ]
N+1,

ρ
[N ]
1,b + · · · + ρ

[N ]
k,b , λ

[N ]
k+1 � x < λ

[N ]
k , k ∈ {1, . . . , N},

ρ
[N ]
1,b + · · · + ρ

[N ]
N+1,b, x � λ

[N ]
1 ,

ϕ̃[N ]
a :=

⎧⎪⎪⎨
⎪⎪⎩

0, x < λ
[N ]
N+1,

μ
[N ]
1,a + · · · + μ

[N ]
k,a , λ

[N ]
k+1 � x < λ

[N ]
k , k ∈ {1, . . . , N},

μ
[N ]
1,a + · · · + μ

[N ]
N+1,a, x � λ

[N ]
1 ,

are right continuous, of bounded variation, increasing and positive. But, in principle, 
they might be not bounded and therefore Helly’s result may not be applicable.

Thus, to get measures from these functions we need to ensure the existence of bounds 
as follows ρ[N ]

1,b + · · · + ρ
[N ]
N+1,b � Rb and μ[N ]

1,a + · · · + μ
[N ]
N+1,a � Ma. For such situation, 

the large limit will lead to the existence of spectral measures dϕa, a ∈ 1, . . . , p and 
d ϕ̃b, b ∈ {1, . . . , q}. If these measures are absolutely continuous w.r.t. the measure dμ, 
with Radon–Nikodym derivatives the weights wa and w̃b, respectively, we could write 
dϕa = wa dμ and d ϕ̃b = w̃b dμ. A natural conjecture, that we have not yet proven, 
is that in this situation dψb,a = waw̃b dμ. This rank one simplification is assumed in a 
large number of papers dealing with mixed multiple orthogonality.

10. Mixed multiple Gaussian quadrature and degrees of precision

Gaussian quadrature formulas are an important tool in the theory of orthogonal 
polynomials and its applications to approximation theory, see for example [24,37]. Its 
extension to non-mixed multiple orthogonal polynomials was discussed in [17,31,25,20], 
degrees of precision were presented in [20]. Now, we give its extension to the mixed 
multiple orthogonal situation. Notice that for p = q we are dealing with standard ma-
trix orthogonal polynomials and such quadrature formulas have been discussed for this 
situation, see the excellent review [28] and references therein cited.

Let us assume that T has a PBF, and that the conditions of Theorem 9.1 hold, and 
introduce:

Definition 10.1. The degrees of precision or orders db,a(N), a ∈ {1, . . . , p}, b ∈ {1, . . . , q}, 
are the largest natural numbers such that

(
uξ
b

)�
Tnuν

a = (eξb)
�(T [N ])neνa, 0 � n � db,a(N), a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Proposition 10.2. In terms of the recursion polynomial degrees, see Proposition 2.3, the 
degrees of precision are

db,a(N) = degA(a)
N + degB(b)

N + 1 =
⌈
N + 2 − a

⌉
+
⌈
N + 2 − b

⌉
− 1,
p q
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a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

Proof. The vectors eξb, u
ξ
b , eνa, and uν

a are nonnegative, with the first q or p entries being 
positive numbers, and the remaining entries being zero, respectively. In the computation 
of 
(
uξ
b

)�
Tnuν

a, our focus is on determining whether (Tn)j,i, where j ∈ {0, . . . , b − 1} and 
i ∈ {0, . . . , a − 1}, involves nonzero factors Tk,l with k > N or l > N .

We observe that (Tn)j,i can be expressed as sums of products of the form

Tj,i1Ti1,i2 · · ·Tin−2,in−1Tin−1,i,

where each factor is a positive entry from the banded matrix T . Our objective is to 
analyze those products that might lead to the appearance of undesired nonzero factors 
Tk,l with k > N or l > N at an earlier stage.

When considering a specific row k, the entry Tk,k+q is the last nonzero entry as we 
move to the right. Similarly, Tk,k−p (for k ≥ p) is the last positive entry as we move to the 
left. These “optimal ascending jumps” of q units provide the fastest upward movement in 
a column, while the “optimal descending jumps” of p units offer the quickest downward 
movement.

Examining products of s + 1 factors involving optimal ascending jumps, designed to 
go from b − 1 to N + 1 as rapidly as possible, we have:

Tj,j+qTj+q,j+2qTj+2q,j+3q · · ·Tj+(s−1)q,j+sqTj+sq,N+1.

Here, s is a nonnegative integer ensuring that j + (s + 1)q ≥ N + 1 for the first time, 
which can be expressed as:

s ≥ N + 1 − j

q
− 1.

Hence, s =
⌈
N + 1 − j

q

⌉
− 1.

Moving downward to the i position using optimal descending jumps involves a product 
of r factors:

TN+1,N+1−pTN+1−p,N+1−2pTN+1−2p,N+1−3p · · ·TN+1−(r−1)p,i.

The condition N + 1 − rp ≤ i dictates r =
⌈
N + 1 − i

p

⌉
.

Combining these insights, the product:

Tj,j+qTj+q,j+2qTj+2q,j+3q · · ·Tj+(s−1)q,j+sqTj+sq,N+1

× TN+1,N+1−pTN+1−p,N+1−2p · · ·TN+1−(r−2)p,N+1−(r−1)pTN+1−(r−1)p,i
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illustrates the quickest path to reach an element Tk,l where k > N or l > N . This 
product involves r + s + 1 factors.

Thus, to avoid such scenarios, we must consider, for the entry (Tn)j,i, a power of at 
most n < r + s + 1, i.e.,

n = r + s =
⌈
N + 1 − j

q

⌉
− 1 +

⌈
N + 1 − i

p

⌉
.

Finally, we will determine the smallest value among these powers for j ∈ {0, . . . , b −1}
and i ∈ {0, . . . , a − 1}. This will give us the expression for the n-th power as follows:

n =
⌈
N + 2 − b

q

⌉
+
⌈
N + 2 − a

p

⌉
− 1,

which leads us to the desired result. �
Theorem 10.3 (Mixed multiple Gaussian quadrature formulas). The following Gauss 
quadrature formulas hold

∫
Δ

xn dψb,a(x) =
N+1∑
k=1

ρ
[N ]
k,b μ

[N ]
k,a

(
λ

[N ]
k

)n
,

0 � n � db,a(N), a ∈ {1, . . . , p}, b ∈ {1, . . . , q}.

(24)

Here the degrees of precision db,a are optimal (for any power largest than n a positive 
remainder appears, an exactness is lost).

Proof. On the one hand, from Proposition 9.4 we have that 
(
eξb
)�

Tneνa =∫
Δ xn dψb,a(x). On the other hand, from Proposition 8.9, we know that 

(
eξb
)�(

T [N ])neνa
=
∑N+1

k=1 ρ
[N ]
k,b μ

[N ]
k,a

(
λ

[N ]
k

)n. Hence, as we have

(
eξb
)�

Tneνa =
(
eξb
)�(

T [N ])neνa, 0 � n � db,a(N), a ∈ {1, . . . , p}, b ∈ {1, . . . , q},

we get (24). Notice that for n > db,a(N) a positive remainder will appear and exactness 
will be lost. Indeed, observe that Tn is oscillatory and that eνa = ΛAea and eξb = ΥBea
are positive vectors, so all the objects involved imply positive contributions. �
Remark 10.4. In terms of the number of nodes or interpolation points N = N + 1, the 
zeros of the characteristic polynomial PN+1 or, equivalently the eigenvalues of T [N ], we 
have that in the non multiple case for which a = b = p = q = 1 the degree of precision 
is 2N − 1 and we recover the well known Gauss quadrature formula, see for example 
[24,37]. For the non mixed multiple situation we recover the result we got and discussed 
in [20, Theorem 7], that is, degrees of precision da = N − 1 + degA(a)

N−1.
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Remark 10.5. Notice that for the standard orthogonality, i.e. p = q = 1, the nodes are 
the zeros of an orthogonal polynomial of certain degree. This also happens for the non 
mixed multiple situation as the characteristic polynomials and one of the families of 
recursion polynomials, say Bn, coincide. However, for mixed multiple orthogonality the 
nodes are the zeros of the characteristic polynomial of the corresponding truncation, 
which is not an orthogonal polynomial. Consequently, the nodes are not, in general, the 
zeros of the left or right recursion polynomials, that are the ones satisfying the mixed 
multiple orthogonal relations.

Remark 10.6. A quadrature is said to be interpolatory if there is a polynomial that 
interpolates the function for which a weighted integral is supposed to be approximated 
by a quadrature. In the non mixing multiple orthogonal quadrature the interpolation 
polynomial is PN = BN for all the measures dψa, a ∈ {1, . . . , p}. Now, for the mixed 
multiple orthogonality for each b ∈ {1, . . . , q}, we use the interpolation polynomials 
B

(b)
N for the measures dψb,a, a ∈ {1, . . . , p}, so that in order to have an interpolatory 

quadrature we need the degrees of precision to be at least degB(b)
N − 1, which in fact is 

the case.

Remark 10.7. For the case p = q, i.e. when we are dealing with the usual matrix orthog-
onality, as we are working with p × p blocks we take N = Mp, with M ∈ N, the degree 
of precision given in Proposition 10.2 must be the smaller degree of precision in p × p

block, i.e.

d(N) = 2 degB(p)
N + 1 = 2

⌈
N + 1 − p

p

⌉
− 1 = 2

⌈
(M − 1)p + 1

p

⌉
− 1

= 2(M − 1) + 2 − 1 = 2M − 1.

This is the optimal degree of precision according to Durán and Polo [29].

11. Conclusions and outlook

In this paper, we introduce an extension of the spectral Favard theorem, which estab-
lishes the presence of positive measures for bounded Jacobi matrices. This extension is 
formulated to encompass situations featuring a band structure with p subdiagonals and 
q superdiagonals.

The foundation for this extension arose from our observation that shifting a Jacobi 
matrix yields an oscillatory matrix, which can be factorized into a positive bidiagonal 
configuration. Our pivotal discovery lies in the fact that this positive bidiagonal factor-
ization, indicative of the matrix’s oscillatory nature, allows for a spectral interpretation. 
Consequently, we effectively validate the existence of mixed multiple orthogonal polyno-
mials tailored to bounded banded matrices that adhere to this specific pattern.
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An additional outcome of our work is the derivation of a multiple Gauss quadra-
ture approach, incorporating explicit degrees of precision, for scenarios involving mixed 
multiple orthogonality.

Looking ahead, our first objective is to extend the Karlin–MacGregor spectral interpre-
tation of birth and death Markov chains [41] to encompass multiple potential transitions, 
spanning up to p backwards and q forwards. We have already accomplished this exten-
sion within the Hessenberg framework, as demonstrated in [20]. In that context, either 
q = 1 and p can be arbitrary or p = 1 and q can be arbitrary.

An intriguing avenue for exploration involves the functional analysis interpretation of 
our findings. In the tridiagonal Jacobi scenario, the Favard spectral theorem serves as a 
crucial element in establishing the spectral theorem for bounded self-adjoint operators 
A [46, Sections 5.2 and 5.3]. Central to this proof is the role of cyclic vectors ϕ, which 
facilitate the construction of ψn = Anϕ and vectors ϕn using the Gram–Schmidt method. 
In this basis, A takes on the form of a Jacobi matrix, thus allowing the classical spectral 
Favard theorem to be applied. As a result, the spectral theorem for A becomes readily 
demonstrable [46, Theorem 5.3.1]. Moreover, in [43, Section 2] (where the Jacobi matrix 
is denoted as L and the cyclic vector for L is e0), it is shown that if Qn represents the 
corresponding orthonormal polynomials, then en = Qn(L)e0, thereby implying δk,l =
(ek, el) = (Qk(L)e0, Ql(L)e0) =

∫
Qk(x)Ql(x) dμ.

The question that arises is whether a similar construction exists for the banded op-
erators T discussed in this paper. Preliminary observations suggest that, rather than a 
cyclic vector, we might expect cyclic subspaces, which could potentially encompass both 
left and right cyclic subspaces. Understanding the construction delineated in [43] and 
the formula en = Qn(L)e0 within the framework of banded scenarios is of paramount 
importance. We hold the belief that the spectral outcomes presented in Proposition 9.4
and Remark 9.5 hold significance within this particular context.
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