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Palavras Chave modelação matemática, equação do calor, sistemas de controlo, sistemas com
tempo de atraso, otimização, controlo ótimo, extremos de Pontryagin, cálculo
fracionário, modelo SEIR, modelo farmacocinético/farmacodinâmico, pontos de
equilíbrio, estabilidade, análise da propagação de doenças, vacinação.

Resumo Nesta tese de doutoramento, aplicamos a teoria do controlo ótimo a um modelo
farmacocinético/farmacodinâmico (PK/PD) e a um modelo epidemiológico do
tipo SEIR.
Primeiro, estudamos as propriedades do modelo PK/PD para controlar a infusão
de propofol. Começamos por analisar um model matemático para a anestesia
e determinamos uma solução analítica para o problema de control ótimo de
tempo mínimo para a fase de indução da anestesia, mostrando que esta coincide
numericamente com a solução obtida usando o método de tiro. Considerando o
princípio do mínimo de Pontryagin, resolvemos o problema de controlo ótimo de
tempo mínimo através de um novo método analítico e mostramos que a taxa de
infusão contínua ótima do anestésico e o tempo mínimo requerido para passar
do estado de vigília para o estado de anesthesia são semelhantes usando os dois
métodos. Além disso, analisamos um model fracionário de Anestesia PK/PD via
derivadas fracionais de psi-Caputo.
A segunda parte da tese é dedicada ao desenvolvimento de um modelo do tipo
SEIR. Primeiramente, analisamos modelos matemáticos para a COVID-19 com
tempos de atrasos discretos e vacinação. Mas precisamente, introduzimos um
tempo de atraso que representa, matematicamente, o fato de a migração de
indivíduos suscetíveis para infetados estar sujeita a tempos de atraso. Um dos
resultados mais importantes em sistemas dinâmicos é a estabilidade. Nesta
tese demonstramos condições suficientes para a estabilidade local dos pontos de
equilíbrio endémico e livre de doença, para qualquer tempo de atraso positive.
Para combater a propagação da COVID-19, propomos um modelo com controlo,
generalizando o modelo do tipo SEIR. Além disso, introduzimos três controlos ao
modelo SEIR e analisamos o problema de controlo ótimo da transmissão da doença
usando dados reais de Itália. Os nossos resultados mostram o ajuste do modelo
aos dados reais, em particular no que diz respeito ao número de indivíduos em
quarentena e recuperados. Considerando os controlos de Pontryagin, mostramos
como num mundo perfeito seria possível diminuir drasticamente o número de
indivíduos suscetíveis, expostos, infetados, em quarentena/hospitalizados e óbitos,
aumentando a população de protegidos. Além disso, apresentamos um modelo
para manter a eficácia da vacina para a COVID-19 desde o transporte da área
de armazenamento na fábrica até ao destino desejado e introduzir a vacina na
população suscetível, a fim de controlar a disseminação da COVID-19.
Mostramos a importância da vacina para o controlo da propagação da COVID-19
e também na melhoria do resultado que poderia ser obtido se o número de vacinas
disponíveis satisfizesse as necessidades da população e fossem distribuídas de
acordo com a teoria do controlo ótimo.

Classificação de Disciplinas de Matemática 2020: 49K15, 49M05,
49N90, 34C60, 92C45, 92D30.





Keywords mathematical modeling, heat equation, control systems, delayed systems, opti-
mization, optimal control, Pontryagin extremals, fractional calculus, SEIR model,
pharmacokinetic/pharmacodynamic model, equilibrium points, stability, analysis of
the spread of diseases, vaccination.

Abstract In this Ph.D. thesis, we apply optimal control theory to various mathematical
models, including a pharmacokinetic/pharmacodynamic (PK/PD) model, a
fractional PK/PD model, and an epidemiological SEIR models.
First, we focus on the PK/PD model to control the infusion of propofol. We begin
by analyzing the mathematical model of anesthesia and provide an analytical
solution to the time-optimal control problem for the induction phase of anesthesia.
Our approach aligns closely with results obtained using the standard shooting
method. Utilizing the Pontryagin minimum principle, we propose a new analytical
method for solving the time-optimal control problem. Our findings reveal that the
optimal continuous infusion rate of the anesthetic and the minimum time required
to transition from an awake state to an anesthetized state are consistent between
both methods. Furthermore, we extend our analysis to a PK/PD anesthesia model
using psi-caputo fractional derivatives.
The second part of the thesis focuses on the development of an SEIR model.
Initially, we explore mathematical models for COVID-19 with discrete time delays
and vaccination. Specifically, we introduce a time delay to account for the delayed
migration of individuals from susceptible to infected states. We establish sufficient
conditions for the local stability of both endemic and disease-free equilibrium
points in the presence of positive time delays. To address the COVID-19
pandemic, we propose a generalized SEIR-type control model. Additionally, we
introduce three time-dependent controls for the SEIR model and analyze the
optimal control problem with respect to real data transmission in Italy. Our results
demonstrate the effectiveness of the model, particularly concerning the number
of quarantined and recovered individuals. By considering Pontryagin controls, we
illustrate the potential for significant reductions in susceptible, exposed, infected,
quarantined/hospitalized, and deceased individuals through increased population
protection. We also present a model for maintaining the efficacy of COVID-19
vaccines during transportation and distribution, emphasizing the importance of
vaccination in controlling the pandemic.

2020 Mathematics Subject Classification: 49K15, 49M05, 49N90,
34C60, 92C45, 92D30.
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CHAPTER 1
Introduction

1.1 Scope of the study

Optimal control is a mathematical theory that consists of finding a control that
optimizes a functional on a domain described by a system of differential equations.
This theory is applied in various scientific fields. The Pontryagin’s Minimum Principle
(PMP) is used to find the necessary conditions for optimal controls [1]. In this thesis,
we embark on a comprehensive exploration of various mathematical models and control
problems in the fields of anesthesia, infectious diseases, and vaccine distribution. Our
research objectives are as follows:

1. To delve into a mathematical model of anesthesia and investigate the time-optimal
control problem concerning the induction phase of anesthesia.

2. To analyze the stability of equilibrium points, both endemic and disease-free,
within infectious disease models.

3. To extend our mathematical models for infectious diseases by incorporating
discrete time delays, enhancing our understanding of real-world dynamics.

4. To forecast the spread of infectious diseases and demonstrate the effectiveness of
our epidemic models in capturing real-world scenarios.

5. To apply the principles of optimal control theory to the mathematical models
previously developed. Specifically, we employ the Pontryagin minimum/maximum
principle to derive essential optimality conditions.

6. To explore mathematical models for the transportation of vaccines, with a partic-
ular focus on the heat diffusion equation as a basis for analysis and optimization.

This thesis aims to contribute to the fields of mathematical modeling and control
theory, offering valuable insights and practical applications in the domains of anesthesia,
epidemiology, and vaccine logistics.
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1.2 Motivation

Presently, the field of modern pharmacotherapy is still under vigorous development.
Based on Guedel’s classification, the first stage of anesthesia is the induction phase, which
begins with the initial administration of anesthesia and ends with loss of consciousness [2].
Millions of people safely receive several types of anesthesia while undergoing medical
procedures: local anesthesia, regional anesthesia, general anesthesia, and sedation
[3]. However, there may be some potential complications of anesthesia including
anesthetic awareness, collapsed lung, malignant hyperthermia, nerve damage, and
postoperative delirium. Certain factors make it riskier to receive anesthesia, including
advanced age, diabetes, kidney disease, heart disease, high blood pressure and smoking
[4]. To avoid the risk, administering anesthesia should be done on a scientific basis,
based on modern pharmacotherapy, which relies on both Pharmacokinetic (PK) and
Pharmacodynamic (PD) information [5]. PK is used to describe the absorption and
distribution of anesthesia in body fluids, resulting from the administration of a certain
anesthesia dose. PD is the study of the effect resulting from anesthesia [6]. Multiple
mathematical models were already presented to predict the dynamics of the PK/PD
models [7]–[10]. Some of these models were implemented following different methods
[3], [11], [12]. Some of these models were implemented following different methods [3],
[11], [12].

The parameters of PK/PD models were fitted by Schnider et al. in [13]. In [7],
the authors study PK models for propofol, comparing Schnider et al. and Marsh et al.
models [14]. The authors of [7] conclude that Schnider’s model should always be used
in effect-site targeting mode, in which larger initial doses are administered but smaller
than those obtained from Marsh’s model. However, users of the Schnider model should
be aware that in the morbidly obese the Lean Body Mass (LBM) equation can generate
paradoxical values, resulting in excessive increases in maintenance infusion rates [13].
In [15], a new strategy is presented to develop a robust control of anesthesia for the
maintenance phase, taking into account the saturation of the actuator. The authors of
[16] address the problem of optimal control of the induction phase. For other related
works see [9], [17] and references therein.

On the other hand, multiple mathematical models were already presented to predict
the dynamics of infectious disease at a regional and global level, and some of these
models were implemented, following different methods [18], to evaluate a strategy
for preventive measures: in [19], the classical Susceptible–Infectious–Recovered (SIR)
modeling approach [20] was employed to study the parameters of this model for India
while considering different governmental lockdown measures; in [21], the length of the
incubation period of COVID-19 is estimated using confirmed COVID-19 cases reported
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between January 4 and February 24, 2020, from fifty provinces, regions, and counties
from China; in [22] a model of the outbreak in Wuhan, with individual reaction and
governmental action (holiday extension, city lockdown, hospitalisation and quarantine)
is analyzed in the light of the 1918 influenza pandemic in London; in [23], SEIR modeling
is considered to forecast the COVID-19 outbreak in Algeria by using real data from
March 1 to April 10, 2020; in [24], a modified SEIR model is considered under three
intervention scenarios (suppression, mitigation, mildness) and simulated to predict
and investigate the realities in several African countries: South Africa, Egypt, Algeria,
Nigeria, Senegal and Kenya. The list of such studies is long: see, e.g., [25] for a new
compartmental epidemiological model for COVID-19 with a case study of Portugal; [26]
for a fractional (non-integer order) model applied to COVID-19 in Galicia, Spain and
Portugal; [27] for a stochastic time-delayed COVID-19 model with application to the
Moroccan deconfinement strategy; etc.

In [28], a mathematical system, generalizing the SEIR model, is presented to
analyze the COVID-19 epidemic based on a dynamic mechanism that incorporates the
intrinsic impact of hidden latent and infectious cases on the entire process of the virus
transmission. The authors of [28] validate their model by analyzing data correlation on
public data of the National Health Commission of China from January 20 to February
9, 2020, and produce reliable estimates and predictions, revealing key parameters of
the COVID-19 epidemic.

1.3 Structure

This thesis is organized in the following manner.

In Chapter 2, we study properties of PK/PD model for controlling the infusion
of propofol. We start by analyzing a mathematical model of anesthesia and provide
an analytical solution to the time-optimal control problem for the induction phase
of anesthesia. Moreover, we also solve the time-optimal control problem by the new
proposed analytical method and find that the optimal continuous infusion rate of the
anesthetic and the minimum time that needs to be chosen to transfer from the awake
state to an anesthetized state are similar between both methods. However, the new
analytic method has the advantage of not depending on unknown initial conditions for
the adjoint variables.

In Chapter 3, we recall several definitions and properties of fractional calculus
which will be needed in the sequel. Next, we present a novel PK/PD model for the
induction phase of anesthesia, incorporating the ψ-Caputo fractional derivative. By
employing the Picard iterative process, we derive a solution for the nonhomogeneous
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ψ-Caputo fractional system. To explore the dynamics of the fractional anesthesia
model, we perform numerical analysis on solutions involving various functions of ψ
and fractional orders. All numerical simulations are conducted using the MATLAB
computing environment.

In Chapter 4, we analyze mathematical models for COVID-19 with discrete time
delays and vaccination. Sufficient conditions for the local stability of the endemic and
disease-free equilibrium points are proved for any positive time delay. The stability
results are illustrated through numerical simulations performed in MATLAB.

In Chapter 5, we apply optimal control theory to a generalized SEIR-type model.
The proposed system has three controls, representing social distancing, preventive
means, and treatment measures to combat the spread of the COVID-19 pandemic. We
analyze such optimal control problem with respect to real data transmission in Italy.
Our results show the appropriateness of the model, in particular with respect to the
number of quarantined/hospitalized (confirmed and infected) and recovered individuals.
Considering the Pontryagin controls, we show how in a perfect world one could have dras-
tically diminish the number of susceptible, exposed, infected, quarantined/hospitalized,
and death individuals, by increasing the population of insusceptible/protected.

In Chapter 6, we develop a mathematical model for transferring the vaccine
BNT162b2 based on the heat diffusion equation. Then, we apply optimal control
theory to the proposed generalized SEIR model. We introduce vaccination for the
susceptible population to control the spread of the COVID-19 epidemic. For this, we
use the Pontryagin minimum principle to find the necessary optimality conditions for
the optimal control. The optimal control problem and the heat diffusion equation are
solved numerically. Finally, several simulations are done to study and predict the spread
of the COVID-19 epidemic in Italy. In particular, we compare the model in the presence
and absence of vaccination.

1.4 Contributions

The following sections list the key contributions associated with this work.

1.4.1 Communications in international conferences and seminars

[1] M. A. Zaitri, C. J. Silva, and D. F. M. Torres, “Stability analysis of a delayed
COVID-19 model,” The Cape Verde International Days on Mathematics 2021,
Praia, Cape Verde, 2021.

[2] M. A. Zaitri, M. O. Bibi, and D. F. M. Torres, “Contrôle optimal pour limiter
la propagation de COVID-19,” Séminaire Mathématique de Béjaia, LaMOS,
University of Bejaia, Algeria, 2022.
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1.4.2 Book chapter

[1] M. A. Zaitri, M. O. Bibi, and D. F. M. Torres, Transport and optimal control of
vaccination dynamics for COVID-19. Chapter of Book : Mathematical Analysis
of Infectious Diseases, 1 st Edition, ELSEVIER, 2022, pp. 27–39. doi: https:
//doi.org/10.1016/B978-0-32-390504-6.00007-3.

1.4.3 Publications in international journals

[1] M. A. Zaitri, C. J. Silva, and D. Torres, “Stability analysis of delayed COVID-19
models,” Axioms, vol. 11, no. 8, pp. 1–21, 2022. doi: https://doi.org/10.3390/
axioms11080400.

[2] M. A. Zaitri, M. O. Bibi, and D. F. M. Torres, “Optimal control to limit the
spread of COVID-19 in italy,” Kuwait J. Sci., vol. Special issue, pp. 1–14, 2021.
doi: https://doi.org/10.48129/kjs.splcov.13961.

[3] M. A. Zaitri, C. J. Silva, and D. F. M. Torres, “An analytic method to determine
the optimal time for the induction phase of anesthesia,” Axioms, vol. 9, no. 12,
pp. 1–15, 2023. doi: https://doi.org/10.3390/axioms12090867.

Two more articles are submitted for possible publication in international journals
and wait for the necessary review reports.
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CHAPTER 2
An Analytic Method to Determine

the Optimal Time for the Induction
Phase of Anesthesia

2.1 Introduction

Pharmacokinetic/Pharmacodynamic modeling is a mathematical approach used
in pharmacology to study the relationship between drug concentrations (PK) and
their effects on the body (PD). The PK/PD models help researchers and clinicians to
understand how drugs are absorbed, distributed, metabolized, and eliminated from the
body [5].

The PK/PD models integrate PK and PD data to characterize the time course
of drug action [6]. These models can be simple or complex, depending on the drug’s
characteristics and the purpose of the modeling. The parameters of these models were
fitted by Schnider et al. in [13].

In this chapter, we consider the problem proposed in [16], to transfer a patient
from consciousness to unconsciousness. We apply the shooting method using the PMP
[1], correcting some inconsistencies found in [16] related with the stop criteria of the
algorithm and the numerical computation of the equilibrium point. Secondly, we provide
a new different analytical method to the time-optimal control problem for the induction
phase of anesthesia. To compare the methods, we perform numerical simulations to
compute the minimum time to anesthetize a man of 53 years, 77 Kg, 177 cm, as
considered in [16]. We find the optimal continuous infusion rate of the anesthetic
and the minimum time that needs to be chosen for treatment, showing that both the
shooting method of [16] and the one proposed here coincide. This chapter is organized
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as follows. In Section 2.2, we recall the PK/PD model of Bailey and Haddad [29], the
Schnider model [13], the BIS, and the equilibrium point [15]. Then, in Section 2.3, a
time-optimal control problem for the induction phase of anesthesia is posed and solved
both by the shooting and analytical methods. Finally, in Section 2.4, we compute the
parameters of the model, using the Schnider model [13], and we illustrate the results of
the time-optimal control problem through numerical simulations. We conclude that the
optimal continuous infusion rate for anesthesia and the minimum time that should be
chosen for this treatment can be found by both shooting and analytical methods. The
advantage of the new method proposed here is that it does not depend on the concrete
initial conditions, while the shooting method is very sensitive to the choice of the initial
conditions of the state and adjoint variables. We end with Section 2.5 of conclusions,
pointing also some directions for future research.

2.2 The PK/PD model

The PK/PD model consists of four compartments: intravascular blood (x1(t)),
muscle (x2(t)), fat (x3(t)), and effect site (x4(t)). The effect site compartment (brain) is
introduced to account for the finite equilibration time between the central compartment
and central nervous system concentrations [29]. This model is used to describe the
circulation of drugs in a patient’s body, being expressed by a four-dimensional dynamical
system as follows:

ẋ1(t) = −(a1 0 + a1 2 + a1 3)x1(t) + a2 1 x2(t) + a3 1 x3(t) + u(t),
ẋ2(t) = a1 2 x1(t) − a2 1 x2(t),
ẋ3(t) = a1 3 x1(t) − a3 1 x3(t),
ẋ4(t) = ae 0

v1
x1(t) − ae 0 x4(t).

(2.1)

The state variables for system (2.1) are subject to the following initial conditions:

x(0) = (x1(0), x2(0), x3(0), x4(0)) = (0, 0, 0, 0) , (2.2)

where x1(t), x2(t), x3(t) and x4(t) represent, respectively, the masses of the propofol in
the compartments of blood, muscle, fat, and effect site at time t. The control u(t) is
the continuous infusion rate of the anesthetic. The parameters a1 0 and ae 0 represent,
respectively, the rate of clearance from the central compartment and the effect site.
The parameters a1 2, a1 3, a2 1, a3 1 and ae 0/v1 are the transfer rates of the drug between
compartments. A schematic diagram of the dynamical control system (2.1) is given in
Figure 2.1.
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Figure 2.1: Schematic diagram of the PK/PD model with the effect site compartment of
Bailey and Haddad [29].

2.2.1 Schnider’s model

Following Schnider et al. [13], the LBM is calculated using the James formula, which
performs satisfactorily in normal and moderately obese patients, but not so well for
severely obese cases [30]. The James formula calculates (LBM) as follows:

for Male, LBM = 1.1 × weight − 128 ×
(

weight
height

)2

, (2.3)

for Female, LBM = 1.07 × weight − 148 ×
(

weight
height

)2

. (2.4)

The parameters of the PK/PD model (2.1) are then estimated according with Table 2.1.

Parameter Estimation
a10 (min−1) 0.443 + 0.0107 (weight − 77) − 0.0159 (LBM − 59) + 0.0062 (height − 177)
a12 (min−1) 0.302 − 0.0056 (age − 53)
a13 (min−1) 0.196
a21 (min−1) (1.29 − 0.024 (age − 53)) / (18.9 − 0.391 (age − 53))
a31 (min−1) 0.0035
ae0 (min−1) 0.456

v1 (l) 4.27

Table 2.1: Parameter values for model (2.1) according with Schnider model [13].

2.2.2 The Bispectral Index (BIS)

The BIS is the depth of anesthesia indicator, which is a signal derived from the
Electroencephalography (EEG) analysis and directly related to the effect site concen-
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tration of x4(t). It quantifies the level of consciousness of a patient from 0 (no cerebral
activity) to 100 (fully awake patient), and can be described empirically by a decreasing
sigmoid function [29]:

BIS(x4(t)) = BIS0

(
1 − x4(t)γ

x4(t)γ + ECγ
50

)
, (2.5)

where BIS0 is the BIS value of an awake patient typically set to 100, EC50 corresponds
to the drug concentration associated with 50% of the maximum effect, and γ is a
parameter modeling the degree of nonlinearity. According with [31], typical values for
these parameters are EC50 = 3.4mg/l and γ = 3.

2.2.3 The equilibrium point

Following [15], the equilibrium point is obtained by equating the right hand side of
(2.1) to zero, 

0 = −(a1 0 + a1 2 + a1 3)x1 + a2 1 x2 + a3 1 x3 + u,

0 = a1 2 x1 − a2 1 x2,

0 = a1 3 x1 − a3 1 x3,

0 = ae 0
v1
x1 − ae 0 x4,

(2.6)

with the condition
x4 = EC50. (2.7)

It results that the equilibrium point xe = (xe 1, xe 2, xe 3, xe 4) is given by

xe 1 = v1 EC50, xe 2 = a1 2 v1 EC50

a2 1
, xe 3 = a1 3 v1 EC50

a3 1
, xe 4 = EC50, (2.8)

and the value of the continuous infusion rate for this equilibrium is

ue = a1 0 v1 EC50. (2.9)

The fast state is defined by

xeF (t) = (x1(t), x4(t)). (2.10)

The control of the fast dynamics is crucial, because the BIS is a direct function of the
concentration at the effect site.

2.3 Time-optimal control problem

Let x(t) = (x1(t), x2(t), x3(t), x4(t)) ∈ R4. We can write the dynamical system (2.1)
in a matrix form as follows:

ẋ(t) = Ax(t) +B u(t), (2.11)
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where

A =


−(a1 0 + a1 2 + a1 3) a2 1 a3 1 0

a1 2 −a2 1 0 0
a1 3 0 −a3 1 0
ae 0
v1

0 0 −ae 0

 and B =


1
0
0
0

 . (2.12)

Here, the continuous infusion rate u(t) is to be chosen so as to transfer the system
(2.1) from the initial state (wake state) to the fast final state (anesthetized state) in
the shortest possible time. Mathematically, we have the following time-optimal control
problem [16]: 

min
u(t)

J =
tf∫
0
dt,

ẋ(t) = Ax(t) +B u(t), x(0) = (0, 0, 0, 0),

C xeF (tf ) = xeF ,

0 ≤ u(t) ≤ Umax, t ∈ [0, tf ], tf is free,

(2.13)

where tf is the first instant of time that the desired state is reached, C and xeF are
given by

C =
 1 0

0 1

 , xeF = (xe1, xe4), (2.14)

with
xeF (tf ) = (x1(tf ), x2(tf )). (2.15)

2.3.1 The Pontryagin’s Minimum Principle (PMP)

According to the PMP [1], if ũ ∈ L1 is optimal for problem (2.13) and the final time
tf is free, then there exists

ψ(t) = (ψ1(t), . . . , ψ4(t)), t ∈ [0, tf ], ψ ∈ AC([0, tf ];R4),

called the adjoint vector, such that
ẋ(t) = ∂H

∂ψ
(t, x, u, ψ),

ψ̇(t) = −∂H

∂x
(t, x, u, ψ),

(2.16)

where the Hamiltonian H is defined by

H(t, x, u, ψ) = 1 + ψT (Ax+B u). (2.17)

Moreover, the minimality condition

H(t, x̃(t), ũ(t), ψ̃(t)) = min
0≤u≤Umax

H(t, x̃(t), u, ψ̃(t)) (2.18)
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holds almost everywhere on t ∈ [0, tf ].
Since the final time tf is free, according to the transversality condition of PMP, we

get:
H(tf , x(tf ), u(tf ), ψ(tf )) = 0. (2.19)

Solving the minimality condition (2.18) on the interior of the set of admissible
controls gives the necessary condition

ũ(t) =

0 if ψ̃1(t) > 0,

Umax if ψ̃1(t) < 0.
(2.20)

2.3.2 Shooting method

The shooting method is a numerical technique used to solve boundary value problems,
specifically in the realm of differential equations and optimal control. It transforms the
problem into an initial value problem by estimating the unknown boundary conditions.
Through iterative adjustments to these estimates, the boundary conditions are gradually
satisfied. In [32], the authors propose an algorithm that addresses numerical solutions
for parameterized optimal control problems. This algorithm incorporates multiple
shooting and recursive quadratic programming, introducing a condensing algorithm
for linearly constrained quadratic subproblems and high-rank update procedures. The
algorithm’s implementation leads to significant improvements in convergence behavior,
computing time, and storage requirements. For more on numerical approaches to solve
optimal control problems, we refer the reader to [33] and references therein.

Using (2.16), (2.17), (2.19) and (2.20), we consider the following problem:

ẋ(t) = Ax(t) +B × max (0,−Umax sign(ψ1(t))),

ψ̇(t) = −AT ψ(t),

x(0) = (0, 0, 0, 0), x1(tf ) = xe1, x4(tf ) = xe4,

ψ(0) is free, H(tf , x(tf ),max (0,−Umax sign(ψ1(tf ))), ψ(tf )) = 0.

(2.21)

Let z(t) = (x(t), ψ(t)). Then we get the following two points boundary value
problem: ż(t) = A∗z(t) +B∗,

R(z(0), z(tf )) = 0,
(2.22)

where A∗ ∈ M8×8(R) is the matrix given by

A∗ =
 A 04×4

04×4 −AT

 , (2.23)
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B∗ ∈ R8 is the vector given by

B∗ =

(0 0 0 0 0 0 0 0)T if ψ1(t) > 0,

(Umax 0 0 0 0 0 0 0)T if ψ1(t) < 0,
(2.24)

and R(z(0), z(tf)) is given by (2.2), (2.15), and (2.19). We consider the following
Cauchy problem: ż(t) = A∗z(t) +B∗,

z(0) = z0.
(2.25)

If we define the shooting function S : R8 −→ R3 by

S(z0) = R(tf , z(tf , z0)), (2.26)

where z(t, z0) represents the solution of Cauchy’s problem (2.25), then the two points
boundary value problem (2.21) is equivalent to

S(z0) = 0. (2.27)

To solve (2.27), we use Newton’s method [34].

2.3.3 Analytical method

We now propose a different method to choose the optimal control. If the pair (A,B)
satisfies the Kalman condition and all eigenvalues of matrix A ∈ n× n are real, then
any extremal control has at most n− 1 commutations on R+ (at most n− 1 switching
times). We consider the following eight possible strategies:
Strategy 1 (zero switching times)

u(t) = Umax, ∀t ∈ [0, tf ]. (2.28)

Strategy 2 (zero switching times)

u(t) = 0, ∀t ∈ [0, tf ]. (2.29)

Strategy 3 (one switching time)

u(t) =

Umax if 0 ≤ t < tc,

0 if tc < t ≤ tf ,
(2.30)

where tc is a switching time.
Strategy 4 (one switching time)

u(t) =

0 if 0 ≤ t < tc,

Umax if tc < t ≤ tf .
(2.31)
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Strategy 5 (two switching times)

u(t) =


Umax if 0 < t < tc1,

0 if tc1 < t < tc2.

Umax if tc2 < t ≤ tf ,

(2.32)

where tc1 and tc2 represent two switching times.
Strategy 6 (two switching times)

u(t) =


0 if 0 < t < tc1,

Umax if tc1 < t < tc2.

0 if tc2 < t ≤ tf .

(2.33)

Strategy 7 (three switching times)

u(t) =



Umax if 0 < t < tc1,

0 if tc1 < t < tc2.

Umax if tc2 < t ≤ tc3.

0 if tc3 < t < tf ,

(2.34)

where tc1, tc2 and tc3 represent three switching times.
Strategy 8 (three switching times)

u(t) =



0 if 0 < t < tc1,

Umax if tc1 < t < tc2.

0 if tc2 < t ≤ tc3.

Umax if tc3 < t < tf .

(2.35)

Let x(t) be the trajectory associated with the control u(t), given by the relation

x(t) = exp(A t)x(0) +
t∫

0

exp(A(t− s))Bu(t)ds, (2.36)

where exp(A) is the exponential matrix of A.
To calculate the switching times tc, tc1, tc2, tc3 and the final time tf , we have to

solve the following nonlinear equation:

x̃eF (tf ) = (xe1, xe4). (2.37)

We also solve (2.37) using the Newton method [34].
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2.4 Numerical example

In this section, we use the shooting and analytical methods to calculate the minimum
time tf to anesthetize a man of 53 years, 77 Kg, and 177 cm.

The equilibrium point and the flow rate corresponding to a BIS of 50 are:

xe = (14.518mg, 64.2371mg, 813.008mg, 3.4mg), ue = 6.0907mg/min. (2.38)

Following the Schnider model, the matrix A of the dynamic system (2.11) is given by:

A =


−0.9175 0.0683 0.0035 0
0.3020 −0.0683 0 0
0.1960 0 −0.0035 0
0.1068 0 0 −0.4560

 and B =


1
0
0
0

 . (2.39)

We are interested in solving the following minimum-time control problem:

min
tf

J(u) = tfdt,

ẋ(t) = Ax(t) +B u(t), x(0) = (0, 0, 0, 0),

xe1(tf ) = 14.518mg, xe4(tf ) = 3.4mg,

0 ≤ u(t) ≤ 106.0907, t ∈ [0, tf ], tf is free.

(2.40)

2.4.1 Numerical resolution by the shooting method

Let z(t) = (x(t), ψ(t)). We consider the following Cauchy problem:ż(t) = A∗z(t) +B∗,

z(0) = z0 = (0, 0, 0, 0, ψ01, ψ02, ψ03, ψ04),
(2.41)

where

A∗ = 10−4



−9175 683 35 0 0 0 0 0
3020 −683 0 0 0 0 0 0
196 0 −35 0 0 0 0 0
1068 0 0 −456 0 0 0 0

0 0 0 0 9175 −3020 −196 −1068
0 0 0 0 −683 683 0 0
0 0 0 0 −35 0 35 0
0 0 0 0 0 0 0 456



, (2.42)
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B∗ =



max (0,−106.0907 sign(ψ1(t)))
0
0
0
0
0
0
0



. (2.43)

The shooting function S is given by

S(z0) = (S1(z0), S2(z0), S3(z0)), (2.44)

where

S1(z0) = xe1(tf ) − 14.518,
S2(z0) = xe4(tf ) − 3.4,
S3(z0) = 1 + ψT (tf ) (Ax(tf ) +Bmax (0,−106.0907 sing ψ1(tf ))) .

All computations were performed with the MATLAB numeric computing envi-
ronment, version R2020b, using the medium order method and the function ode45
(Runge–Kutta Method) in order to solve the nonstiff differential system (2.22). We have
used the variable order method and the function ode113 (Adams–Bashforth–Moulton
method) in order to solve the nonstiff differential system (2.25); and the function fsolve
in order to solve equation S(z0) = 0. Thus, we get that the minimum time is equal to

tf = 1.8397min (2.45)

with
ψT (0) = (−0.0076, 0.0031, −0.0393, −0.0374). (2.46)

2.4.2 Numerical resolution by the analytical method

The pair (A,B) satisfies the Kalman condition and the matrix A has four real
eigenvalues. Then, the extremal control u(t) has at most three commutations on R+.
Therefore, let’s test the eight strategies provided in Section 2.3.3.

Note that the anesthesiologist begins with a bolus injection to transfer the patient
state from the consciousness state x(0) to the unconsciousness state

xeF = (14.518, 3.4),

that is,
u(0) = Umax = 106.0907mg/min. (2.47)
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Thus, Strategies 2, 4, 6 and 8 are not feasible here. Therefore, in the sequel, we
investigate Strategies 1, 3, 5, and 7 only.

Strategy 1: Let u(t) = 106.0907mg/min for all t ∈ [0, tf ]. The trajectory x(t), associ-
ated with this control u(t), is given by the following relation:

x(t) =
t∫

0

exp(A(t− s))BUmaxds, ∀t ∈ [0, tf ], (2.48)

where

exp(A (t− s)) = V D(t− s)V −1 (2.49)

with

V =


0 0.9085 0.0720 −0.0058
0 −0.3141 0.9377 −0.0266
0 −0.1898 −0.3395 −0.9996
1 −0.1997 0.0187 −0.0014

 (2.50)

and

D(τ) =


exp−0.4560 τ 0 0 0

0 exp−0.9419 τ 0 0
0 0 exp−0.0451 τ 0
0 0 0 exp−0.0024 τ

 . (2.51)

The system (2.37) takes the formx1(tf ) = 14.518,

x4(tf ) = 3.4,
(2.52)

and has no solutions. Thus, the Strategy 1 is not feasible.

Strategy 3: Let u(t), t ∈ [0, tf ], be the control defined by

u(t) =

106.0907mg/min if 0 ≤ t < tc,

0 if tc < t ≤ tf .
(2.53)

The trajectory x(t) associated with this control u(t) is given by

x(t) =


t∫

0
exp(A(t− s))BUmaxds if 0 ≤ t ≤ tc,

exp(A (t− tc))x(tc) if tc < t ≤ tf ,
(2.54)

where

exp(A (t− tc)) = V D(t− tc)V −1. (2.55)
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To calculate the switching time tc and the final time tf , we have to solve the nonlinear
system (2.52) with the new condition

tc < tf . (2.56)

Similarly to Section 2.4.1, all numerical computations were performed with MATLAB
R2020b using the command solve to solve equation (2.52). The obtained minimum
time is equal to

tf = 1.8397min (2.57)

with the switching time
tc = 0.5467min. (2.58)

Strategy 5: Let u(t), t ∈ [0, tf ], be the control defined by the relation

u(t) =


106.0907mg/min if 0 ≤ t < tc1,

0 if tc1 < t < tc2.

106.0907mg/min if tc2 < t ≤ tf ,

(2.59)

where tc1 and tc2 are the two switching times. The trajectory x(t) associated with
control (2.59) is given by

x(t) =



t∫
0
exp(A(t− s))BUmaxds if 0 ≤ t ≤ tc1,

exp(A (t− tc1))x(tc1) if tc1 < t ≤ tc2,

exp(A (t− tc2))x(tc2) +
t∫

tc2
exp(A(t− s))BUmaxds if tc2 < t ≤ tf .

(2.60)

To compute the two switching times tc1 and tc2 and the final time tf , we have to solve
the nonlinear system (2.52) with

0 ≤ tc1 ≤ tc2 ≤ tf . (2.61)

It turns out that the system (2.52) subject to condition (2.61) has no solution. Thus,
the Strategy 5 is also not feasible.

Strategy 7: Let u(t), t ∈ [0, tf ], be the control defined by the relation

u(t) =



106.0907mg/min if 0 ≤ t < tc1,

0 if tc1 < t < tc2.

106.0907mg/min if tc2 < t ≤ tc3,

0mg/min if tc3 < t ≤ tf ,

(2.62)
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where tc1, tc2 and tc3 are the three switching times. The trajectory x(t) associated with
control (2.62) is given by

x(t) =



t∫
0
exp(A(t− s))BUmaxds if 0 ≤ t ≤ tc1,

exp(A (t− tc1))x(tc1) if tc1 < t ≤ tc2,

exp(A (t− tc2))x(tc2) +
t∫

tc2
exp(A(t− s))BUmaxds if tc2 < t ≤ tc3,

exp(A (t− tc3))x(tc3) if tc3 < t ≤ tf .

(2.63)

To compute the three switching times tc1, tc2 and tc3 and the final time tf , we have to
solve the nonlinear system (2.52) with

0 ≤ tc1 ≤ tc2 ≤ tc3 ≤ tf . (2.64)

It turns out that the system (2.52) subject to condition (2.64) has no solution. Thus,
the Strategy 7 is also not feasible.

In Figures 2.2 and 2.3, we present the solutions of the linear system of differential
equations (2.40) under the optimal control u(t) illustrated in Figure 2.4, where the
black curve corresponds to the one obtained by the shooting method, as explained in
Section 2.3.2; while the blue curve corresponds to our analytical method, in the sense
of Section 2.3.3. In addition, for both figures, we show the controlled BIS Index and
the trajectory of fast states corresponding to the optimal continuous infusion rate of
the anesthetic u(t) and the minimum time tf required to transition system (2.40) from
the initial state

x0 = (0, 0, 0, 0)

to the fast final (anesthetized) state

xeF = (14.518, 3.4)

in the shortest possible time. The minimum time tf is equal to tf = 1.8397min by the
shooting method (black curve in Figure 2.2) and it is equal to tf = 1.8397min by the
analytical method (blue curve in Figure 2.3).

By using the shooting method, the black curve in Figure 2.4 shows that the op-
timal continuous infusion rate of the induction phase of anesthesia u(t) is equal to
106.0907 mg/min until the switching time

tc = 0.5467min.

19



Figure 2.2: The state trajectory, controlled BIS index and trajectry of the fast states
corresponding to the optimal control u(t) of Figure 2.4, using the shooting
method.

Figure 2.3: The state trajectory, controlled BIS index, and trajectory of the fast states
corresponding to the optimal control u(t) of Figure 2.4, using the analytical
method.

Then, it is equal to 0mg/min (Stop-Infusion) until the final time

tf = 1.8397min,

By using the analytical method, the blue curve in Figure 2.4 shows that the
optimal continuous infusion rate of the induction phase of anesthesia u(t) is equal to
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Figure 2.4: The optimal continuous infusion rate u(t) of the induction phase of anesthesia,
as obtained by the shooting and analytical methods.

106.0907mg/min until the switching time

tc = 0.5467min.

Then, it is equal to 0mg/min (Stop-Infusion) until the final time

tf = 1.8397min.

We conclude that both methods work well and give similar results. However, in general,
the shooting method does not always converge, depending on the initial conditions
(2.46). To obtain such initial values is not an easy task since no theory is available to
find them. For this reason, the proposed analytical method is logic, practical, and more
suitable for real applications.

2.5 Conclusion

The approach proposed by the theory of optimal control is very effective. The
shooting method was proposed by Zabi et al. [16], which is used to solve the time-
optimal control problem and calculate the minimum time. However, this approach
is based on Newton’s method. The convergence of Newton’s method depends on the
initial conditions, being necessary to select an appropriate initial value so that the
function is differentiable and the derivative does not vanish. This implies that the
convergence of the shooting method is attached to the choice of the initial values.
Therefore, the difficulty of the shooting method is to find the initial conditions of
the adjoint vectors. Here the aim was to propose a different approach, that we call
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“the analytical method”, that allows to solve the time-optimal control problem for the
induction phase of anesthesia without such drawback. Our method is guided by the
selection of the optimal strategy, without the need to choose initial values and study the
convergence. We claim that our method can also be applied to other PK/PD models,
in order to find the optimal time for the drug administration.

In the context of PK/PD modeling, the challenges associated with uncertainties
in plant model parameters and controller gains for achieving robust stability and
controller non-fragility are significant [35]. These challenges arise from factors like
inter-individual variability, measurement errors, and the dynamic nature of patient
characteristics and drug response. Further investigation is needed to understand and
develop effective strategies to mitigate the impact of these uncertainties in anesthesia-
related PK/PD models. This research can lead to the development of robust and
non-fragile control techniques that enhance the stability and performance of anesthesia
delivery systems. By addressing these challenges, we can improve the precision and
safety of drug administration during anesthesia procedures, ultimately benefiting patient
outcomes and healthcare practices. In this direction, the recent results of [36] may
be useful. Moreover, we plan to investigate PK/PD fractional-order models, which is
a subject under strong current research [37]. This is under investigation and will be
addressed elsewhere.
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CHAPTER 3
Pharmacokinetic/Pharmacodynamic

Anesthesia Model via psi-Caputo
Fractional Derivatives

3.1 Introduction

In recent years, the field of fractional derivatives has emerged as a promising approach
to model and understand complex biological processes characterized by non-integer
order dynamics. This unique mathematical framework has found diverse applications in
various areas of biology, where traditional integer-order calculus falls short in capturing
the intricacies of these systems [38]. One prominent field where fractional derivatives
have made significant contributions is Neurobiology. By employing fractional calculus,
researchers have been able to delve into the dynamics of neural systems with a greater
level of realism. This includes modeling the behavior of neurons, synaptic transmission,
and the propagation of nerve impulses. The incorporation of fractional derivatives
enables the consideration of memory effects and non-local behavior, providing a more
accurate representation of neural processes [39].

In this chapter, we present a novel PK/PD model for the induction phase of
anesthesia, incorporating the ψ-Caputo fractional derivative. By employing the Picard
iterative process, we derive a solution for the nonhomogeneous ψ-Caputo fractional
system. To explore the dynamics of the fractional anesthesia model, we perform
numerical analysis on solutions involving various functions of ψ and fractional orders.

The chapter is organized as follows. In Section 3.2, we provide a review of several
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definitions and properties of fractional calculus that are essential for our subsequent
discussions (Section 3.2.1). Our original contributions are then given in Section 3.3:
we obtain a solution to a general linear nonhomogeneous ψ-Caputo fractional system
(Section 3.3.1); we introduce a novel PK/PD model for the induction phase of anesthesia
based on the ψ-Caputo fractional derivative (Section 3.3.2); and finally, we compute
the model parameters using the Schnider model [13], presenting the numerical results
of the fractional PK/PD model corresponding to different ψ functions and fractional
orders (Section 3.3.3). We conclude with Section 3.4, summarizing our findings and
outlining potential directions for future research.

3.2 Preliminaries

In this section, we recall several definitions and properties of fractional calculus that
will be used in the sequel.

3.2.1 Fundamental definitions and results

Throughout the chapter, ψ designates a function of class C1[a, b] such that ψ′(t) > 0,
for all t ∈ [a, b].

Definition 3.1 (See [40]). The left ψ-Riemann-Liouville fractional integral of a function
f of order α ∈ (0, 1) is defined by

Iα,ψa f(t) = 1
Γ(α)

∫ t

a
ψ′(s) (ψ(t) − ψ(s))α−1 f(s) ds,

where Γ(·) is the Euler Gamma function.

Remark 3.1. We remark that Γ(x+ 1) = xΓ(x), for all x > 0, and for any positive
integer n we have Γ(n+ 1) = n!.

Definition 3.2 (See [40]). The ψ-Caputo fractional derivative of a function f of order
α ∈ (0, 1) can be defined as follows:

CDα,ψ
a f(t) = 1

Γ(1 − α)

∫ t

a
(ψ(t) − ψ(a))−α f ′(s) ds.

We have the following properties of the fractional operators with respect to function
ψ.

Lemma 3.1 (See [40]). Let ℜ(α) > 0 and ℜ(β) > 0. Then,

Iα,ψa (f(x) − f(a))β−1 (t) = Γ(β)
Γ(β + α) (f(t) − f(a))β−α−1 .
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Theorem 3.1 (See [41]). Let α ∈ (0, 1) and f ∈ C1(a, b). Then,

Iα,ψa
CDα,ψ

a f(t) = f(t) − f(a).

The Mittag–Leffler function appears naturally in the solution of fractional differential
equations and in its various applications: see [42], [43] and references therein.

Definition 3.3 (See [42]). The Mittag–Leffler function of one parameter, of a matrix
A, is defined as

Eα(A) =
+∞∑
l=0

Al

Γ(αl + 1) , Re(α) > 0. (3.1)

Definition 3.4 (See [42]). The Mittag–Leffler function of two parameters, of a matrix
A, is defined as

Eα,α′(A) =
+∞∑
l=0

Al

Γ(αl + α′) , Re(α) > 0, α′ > 0. (3.2)

Remark 3.2. The matrix exponential function is a special case of the matrix Mittag–
Leffler function [43]. For α′ = 1, we have Eα,1(A) = Eα(A) and E1,1(A) = eA.

Definition 3.5 (See [44]). Let f and g be two functions which are piecewise continuous
at any interval [a, b] and of exponential order. The generalized convolution of f and g
is defined by

(f ∗ψ g) (t) =
∫ t

a
f(s)g

(
ψ−1(ψ(t) + ψ(a) − ψ(s))

)
ψ′(s) ds.

3.3 Main Results

We begin by using the Picard iterative process to prove a series solution to a linear
nonhomogeneous ψ-Caputo fractional system: see Theorem 3.2, in Section 3.3.1. Then,
we generalize the state-of-the-art PK/PD model (2.1) by introducing in Section 3.3.2 a
more general ψ-Caputo fractional PK/PD model that is covered by our Theorem 3.2.
We finish our new results in Section 3.3.3, by investigating numerically the new fractional
model and comparing the efficacy of function ψ.

3.3.1 Solution of linear non homogeneous ψ-Caputo fractional systems

Consider the following linear nonhomogeneous fractional equation:

CDα,ψ
a y(t) = Ay(t) + u(t), t > a, (3.3)

subject to the initial condition
y(a) = y0, (3.4)
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where CDα,ψ
a is the ψ-Caputo fractional derivative of order α ∈ (0, 1], such that

CDα,ψ
a y(t) =

[
CDα,ψ

a y1(t), CDα,ψ
a y2(t), . . . , CDα,ψ

a yn(t)
]T
,

A is a n×n matrix, u(t) = [u1(t), u2(t), . . . , un(t)]T is a piecewise continuous integrable
function on [a,+∞), and the initial condition is y(a) = [y1(a), y2(a), . . . , yn(a)]T .

Lemma 3.2. Let p ∈ N, α ∈ (0, 1], and f be a piecewise continuous function of
exponential order at any interval [a, b]. Then,

I(p+1)α,ψ
a f(t) = (ψ(t) − ψ(a))pα+α−1

Γ(pα + α) ∗ψ f(t).

Proof. Follows by using the change of variable z = ψ−1 (ψ(t) + ψ(a) − ψ(s)), Defini-
tion 3.5, and performing direct calculations.

Lemma 3.3. Let α ∈ (0, 1] and C be a constant. Then, one has

Iα,ψa C = C

Γ(α + 1) (ψ(t) − ψ(a))α .

Proof. From Definition 3.1, we have

Iα,ψa C = C

Γ(α)

∫ t

a
ψ′(s) (ψ(t) − ψ(s))α−1 ds

= C

Γ(α) [α−1 (ψ(t) − ψ(s))]ta

= C

Γ(α + 1) (ψ(t) − ψ(a))α ,

and the proof is complete.

Now, we shall utilize the Picard iterative process [45] to formulate a series solution
to (3.3)–(3.4).

Theorem 3.2. The solution of the initial value problem (3.3)–(3.4) can be given in
series form as

y(t) =
∞∑
l=0

Al (ψ(t) − ψ(a))lα

Γ(lα + 1) y(a) +
∞∑
l=0

Al (ψ(t) − ψ(a))lα+α−1

Γ(lα + α) ∗ψ u(t). (3.5)

Proof. Applying the fractional integration operator Iα,ψa to both sides of equation (3.3),
and using Theorem 3.1, we obtain the following expression:

y(t) = y(a) + AIα,ψa y(t) + Iα,ψa u(t).
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Let ϕk be the kth approximate solution with the initial one given by

ϕ0(a) = y(a)

and, for k ≥ 1, the recurrent formula

ϕk(t) = y(a) + AIα,ψa ϕk−1(t) + Iα,ψa u(t) (3.6)

being satisfied. From formula (3.6) and Lemma 3.3, one has

ϕ1(t) = y(a) + A (ψ(t) − ψ(a))α

Γ(α + 1) y(a) + Iα,ψa u(t),

ϕ2(t) = y(a) + A (ψ(t) − ψ(a))α

Γ(α + 1) y(a) + A2 (ψ(t) − ψ(a))2α

Γ(2α + 1) y(a) + AI2(α,ψ)
a u(t) + Iα,ψa u(t),

...

ϕk(t) =
k∑
l=0

Al (ψ(t) − ψ(a))lα

Γ(lα + 1) y(a) +
k−1∑
l=0

AlI(l+1)(α,ψ)
a u(t).

By virtue of Lemma 3.2 and by taking the limit k −→ ∞ for ϕk(·), we obtain the series
formula (3.5) for the solution of (3.3)–(3.4).

Note that, in terms of the matrix Mittag–Leffler functions (3.1) and (3.2), the
solution (3.5) may be written as

y(t) = Eα (A(ψ(t) − ψ(a))α) y(a) + (ψ(t) − ψ(a))α−1Eα,α (A(ψ(t) − ψ(a))α) ∗ψ u(t).
(3.7)

3.3.2 A fractional PK/PD model

Motivated by system (2.1), we introduce here our ψ-Caputo fractional Pharmacoki-
netic/Pharmacodynamic model, which is obtained by replacing each ordinary derivative
in the system by the ψ-Caputo fractional derivative of order α ∈ (0, 1]. Then, our
proposed PK/PD model can be expressed by the following four-dimensional fractional
dynamical system:

CDα,ψ
0 y1(t) = −(a1 0 + a1 2 + a1 3) y1(t) + a2 1 y2(t) + a3 1 y3(t) + u1(t),

CDα,ψ
0 y2(t) = a1 2 y1(t) − a2 1 y2(t),

CDα,ψ
0 y3(t) = a1 3 y1(t) − a3 1 y3(t),

CDα,ψ
0 y4(t) = ae 0

v1
y1(t) − ae 0 y4(t),

(3.8)

subject to the initial conditions

y1(0) = y2(0) = y3(0) = y4(0) = 0. (3.9)
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According to the dynamical system (3.3), one may write system (3.8)–(3.9) in a matrix
form as follows:

CDα,ψ
0 y(t) = Ay(t) +B u1(t) (3.10)

with y(t) = [y1(t), y2(t), y3(t), y4(t)]T ∈ R4, y(0) = [0, 0, 0, 0]T ,

A =


−(a1 0 + a1 2 + a1 3) a2 1 a3 1 0

a1 2 −a2 1 0 0
a1 3 0 −a3 1 0
ae 0
v1

0 0 −ae 0

 and B =


1
0
0
0

 .

One mentions that the continuous infusion rate u1(t) is to be chosen in such a way
to transfer the system (3.8) from the initial state (wake state) to the fast final state
(anesthetized state).

Remark 3.3. If ψ(t) = t and α = 1, then the fractional system (3.8) reduces to the
classical PK/PD model (2.1).

3.3.3 Numerical simulations

To administer anesthesia to a 53-year-old man weighing 77 Kg and measuring 177 cm,
we utilize our proposed fractional PK/PD system described by:

CDα,ψ
0 y(t) = Ay(t) +B u1(t),

y(0) = (0, 0, 0, 0)T ,
(3.11)

where, according with Table 2.1 and [46], the matrix A is taken as

A =


−0.9175 0.0683 0.0035 0
0.3020 −0.0683 0 0
0.1960 0 −0.0035 0
0.1068 0 0 −0.4560

 and B =


1
0
0
0

 , (3.12)

with

u1(t) =

106.0907mg/min if 0 ≤ t < 0.5467,

0 if 0.5467 < t ≤ 1.8397.
(3.13)

From Theorem 3.2 of Section 3.3.1, written in form (3.7), the solution of system
(3.11) is given by

y(t) = Eα (A(ψ(t) − ψ(0))α) y(0) + (ψ(t) − ψ(0))α−1Eα,α (A(ψ(t) − ψ(0))α) ∗ψ u(t)
(3.14)

with u(t) = Bu1(t) = [u1(t), 0, 0, 0]T .

28



0 0.5 1 1.5 2

t (min)

0

10

20

30

40

50

x
1
(t

) 
(m

g
)

The compartment of blood

=t, =1

=t, =0.95

=t, =0.9

=t, =0.85

0 0.5 1 1.5 2

t (min)

0

1

2

3

4

x
4
(t

) 
(m

g
)

The compartment of effect site

=t, =1

=t, =0.95

=t, =0.9

=t, =0.85

0 0.5 1 1.5 2

t (min)

0

5

10

15

20

x
2
(t

) 
(m

g
)

The compartment of muscle

=t, =1

=t, =0.95

=t, =0.9

=t, =0.85

0 0.5 1 1.5 2

t (min)

0

2

4

6

8

10

12

x
3
(t

) 
(m

g
)

The compartment of fat

=t, =1

=t, =0.95

=t, =0.9

=t, =0.85

Figure 3.1: Analysis of the fractional PK/PD model (3.11) with functions ψ(t) = t for
fractional orders α = 1, α = 0.95, α = 0.9 and α = 0.85.

Figure 3.1 showcases the solutions derived from the fractional PK/PD model (3.11),
considering the function ψ(t) = t and exploring different fractional order values: α = 1,
α = 0.95, α = 0.9, and α = 0.85. In Figure 3.2, the curves represent the controlled
BIS (Bispectral Index) associated with the optimal continuous infusion rate of the
administered anesthetic u(t). It is noteworthy that when the function ψ(t) = t and the
fractional order is set to α = 1, then the obtained results resemblance those derived from
the classical PK/PD model (2.1). However, altering the fractional orders introduces
variations in the degree of anesthesia. The recorded values for all fractional orders fell
within the range of 40 to 50 (corresponding to the classical model), thus ensuring the
condition of anesthesia. Nevertheless, it is crucial to acknowledge that lower fractional
order values entail a higher risk of awareness during anesthesia.
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Figure 3.2: Analysis of controlled BIS with functions ψ(t) = t for fractional orders α = 1,
α = 0.95, α = 0.9 and α = 0.85.

Figure 3.3 illustrates the solutions of the fractional PK/PD model (3.11) associated
with the functions ψ(t) = t, ψ(t) =

√
t, ψ(t) = t2, and ψ(t) = t+ 0.2, when considering

a fractional order of α = 1. The graphs shown in Figure 3.4 depict the controlled
BIS corresponding to a specific value of the fractional order α = 1, under functions
ψ(t) = t, ψ(t) =

√
t, ψ(t) = t2 and ψ(t) = t+ 0.2. It is observed that selecting functions

ψ(t) =
√
t and ψ(t) = t2 does not yield satisfactory anesthesia results. On the other

hand, employing the functions ψ(t) = t and ψ(t) = t+ 0.2 leads to favorable anesthesia
outcomes. In subsequent simulations, we will maintain the functions ψ(t) = t and
ψ(t) = t+ 0.2 while altering the fractional orders.

In Figure 3.5, we present the solutions of the fractional PK/PD model (3.11)
corresponding to the functions ψ(t) = t and ψ(t) = t+ 0.2, under the fractional orders
α = 1, α = 0.9, and α = 0.8. The curves representing the controlled BIS are displayed
in Figure 3.6. It is worth noting that the recorded BIS values for all fractional orders
ranged from 50 (resembling the classical model) to 60, thereby satisfying the condition
of anesthesia. However, it is crucial to acknowledge that lower fractional order values,
specifically with the function ψ(t) = t+ 0.2, result in a reduced risk of awareness during
anesthesia.
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Figure 3.3: Analysis of the fractional PK/PD model (3.11) with functions ψ(t) = t, ψ(t) =√
t, ψ(t) = t2 and ψ(t) = t+ 0.2 for fractional order α = 1.
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√
t, ψ(t) = t2 and

ψ(t) = t+ 0.2 for fractional order α = 1.
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Figure 3.5: Analysis of the fractional PK/PD model (3.11) with functions ψ(t) = t and
ψ(t) = t+ 0.2 for fractional orders α = 1, α = 0.9, and α = 0.8.
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Figure 3.6: Analysis of controlled BIS with functions ψ(t) = t and ψ(t) = t + 0.2 for
fractional orders α = 1, α = 0.9, and α = 0.8.
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3.4 Conclusion

The incorporation of the ψ-Caputo fractional derivative in Pharmacokinetics and
Pharmacodynamics, modeling represents a significant advancement in the field. Indeed,
by utilizing fractional-order derivatives, researchers can more accurately capture the
complex and non-local behavior observed in drugs within biological systems.

The choice of the function ψ and the fractional order α holds critical importance
in modeling the relationship between drug concentrations and pharmacological effects.
This approach provides a more realistic representation of drug efficacy and dose-response
relationships, allowing for a deeper understanding of the intricate dynamics involved in
drug-target interactions.

However, further research is necessary to explore the impact of the chosen function
ψ and the fractional order α on time-delayed responses. This area remains open for
investigation, and future studies can delve into understanding how different choices of
ψ and α influence the temporal aspects of drug responses.

In summary, the incorporation of ψ-Caputo fractional derivatives in Pharmacoki-
netics and Pharmacodynamics modeling offers valuable insights and advancements.
By refining the choice of function ψ and fractional order α, researchers can enhance
the accuracy and realism of drug modeling, paving the way for a more comprehensive
understanding of drug behavior in biological systems.
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CHAPTER 4
Stability Analysis of Delayed

COVID-19 Models

4.1 Introduction

The introduction of time delays to mathematical epidemic models has been studied
in order to better understand and describe the transmission dynamics of infectious
diseases, see, e.g., [27], [47]–[49]. Moreover, time delays may have an important effect
on the stability of the equilibrium points, leading, for example, to periodic solutions
by Hopf bifurcation, see, e.g., [50] and references cited therein. As in other infectious
diseases, the latent and incubation periods have an important role on the spread of
COVID-19. The latent period of an infectious disease is the time interval between
infection and becoming infectious, whether the incubation period is the time interval
between infection and the appearance of clinical symptoms [51]–[53]. Following WHO,
the incubation period for COVID-19 is between 2 and 10 days [54]. In [53], the authors
estimated the mean latent period to be 5.5 (95% CI: 5.1–5.9) days, shorter than the
mean incubation period (6.9 days). However, and differently from other infectious
diseases, asymptomatic infected individuals can transmit the infection and this imposes
more strict mitigation strategies, see, e.g., [55]. To describe and analyze this biological
phenomenon, we generalize here a compartmental mathematical model, first proposed in
[28], by considering a system of delayed differential equations with discrete time delays.
Here, we modify the model analyzed in [28] in order to consider time delays, birth and
death rates. More precisely, we introduce a time delay that represents, mathematically,
the fact that the migration of individuals from susceptible to infected is subject to
delay. Secondly, we present a normalized version of the SEIR-type model, compute
the equilibrium points, and the basic reproduction number, and we prove sufficient
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conditions for the stability of the equilibrium points, for any positive time delay. Then,
we extend the previous model in order to consider vaccination and perform numerical
simulations taking into account the real data of the spread of COVID-19 in Italy.

This chapter is organized as follows. In Section 4.2, we propose a delayed SEIQRP
mathematical model for COVID-19. Considering the normalized model of the delayed
SEIQRP model, we prove sufficient conditions for the stability of the equilibrium points
for any time delay. Then, in Section 4.3, we propose a delayed mathematical model
for COVID-19 with vaccination. Analogously, we prove sufficient conditions for the
stability of the equilibrium points of the normalized SEIQRPW with vaccination, for
any time delay. Numerical simulations and a discussion of the results are provided in
Section 4.4, illustrating the stability of both delayed models and their practical utility.

The results presented in this chapter have been published in [56].

4.2 The Delayed SEIQRP Model

In this section, we propose a delayed mathematical model for COVID-19, which
generalizes the one proposed in [28]. As mentioned in intoduction, there are many
different models but, all of them, are approximations of the reality. For example, in [57]
the possibility to become susceptible again is ignored, although we know re-infection is
possible and occurs; while in [58] deaths are not taken into account.

Our model considers six state variables: susceptible individuals, S(t); exposed
individuals, E(t); infected individuals, I(t); quarantined individuals, Q(t); recovered
individuals, R(t); and insusceptible/protected individuals, P (t). The total population
is denoted by N(t) and is given by

N(t) = S(t) + E(t) + I(t) +Q(t) +R(t) + P (t), for all t ∈ [0, T ]. (4.1)

The following assumptions are made to describe the spread of COVID-19: b is the
birth rate, µ is the death rate, α is the protection rate, β the infection rate, γ the inverse
of the average latent time, δ the rate at which infectious people enter in quarantine,
and λ the recovery rate. The time delay τ ≥ 0 represents the incubation period, that is,
the length of time before the infected individuals become infectious.

We introduce a discrete time delay that represents the transfer delay from the class
of susceptible individuals to the class of infected individuals, after the contact of a
susceptible individual with an infectious one. Precisely, the model we propose is given
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by the following system of six nonlinear ordinary delayed differential equations:

Ṡ(t) = bN(t) − βS(t−τ)I(t−τ)
N(t) − (α + µ)S(t),

Ė(t) = βS(t−τ)I(t−τ)
N(t) − (γ + µ)E(t),

İ(t) = γE(t) − (δ + µ)I(t),

Q̇(t) = δI(t) − (λ+ µ)Q(t),

Ṙ(t) = λQ(t) − µR(t),

Ṗ (t) = αS(t) − µP (t),

(4.2)

where the state variables are subject to the initial conditions S(θ) = S0, θ ∈ [−τ, 0],
E(0) = E0, I(θ) = I0, θ ∈ [−τ, 0], Q(0) = Q0, R(0) = R0, and P (0) = P0. We call (4.2)
the generalized SEIQRP delayed model. A schematic diagram of our system is given in
Figure 4.1.

Susceptible ExposedProtected

InfectedRecovered

S(t)P (t)

R(t) Q(t) I(t)

E(t)

γ

δQuarantined

β

λ

bµ µ µ

µµµ

α

Figure 4.1: Schematic diagram of the generalized SEIQRP delayed model (4.2).

4.2.1 The Normalized SEIQRP Delayed Model

In the situation where the total population size N(t) is not constant over time, it is
often convenient to consider the proportions of each compartment of individuals in the
population, namely s(t) = S(t)

N(t) , e(t) = E(t)
N(t) , i(t) = I(t)

N(t) , q(t) = Q(t)
N(t) , r(t) = R(t)

N(t) , and
p(t) = P (t)

N(t) . According to equality (4.1), we have Ṅ(t) = (b− µ)N(t). Therefore, the

37



normalized SEIQRP delayed model is given by

ṡ(t) = b− β s(t− τ) i(t− τ) − (α + b) s(t) ,

ė(t) = β s(t− τ) i(t− τ) − (γ + b) e(t) ,

i̇(t) = γ e(t) − (δ + b) i(t) ,

q̇(t) = δ i(t) − (λ+ b) q(t) ,

ṙ(t) = λ q(t) − b r(t) ,

ṗ(t) = α s(t) − b p(t) .

(4.3)

The state variables for system (4.3) are subject to the following initial conditions:
s(θ) = S0

N(0) , θ ∈ [−τ, 0], e(0) = E0

N(0) , i(θ) = I0

N(0) , θ ∈ [−τ, 0], q(0) = Q0

N(0) ,

r(0) = R0
N(0) , and p(0) = P0

N(0) , with s(t) + e(t) + i(t) + q(t) + r(t) + p(t) = 1.

In Section 4.2.2 we show that model (4.3) has two equilibrium points: the Disease
Free Equilibrium Point (DFE) and the Endemic Equilibrium Point (EE).

4.2.2 Equilibrium Points

The DFE and EE are obtained by solving the right-hand side of equations in (4.3)
equal to zero:

b− β s(t− τ) i(t− τ) − (α + b) s(t) = 0 ,
β s(t− τ) i(t− τ) − (γ + b) e(t) = 0 ,

γ e(t) − (δ + b) i(t) = 0 ,
δ i(t) − (λ+ b) q(t) = 0 ,

λ q(t) − b r(t) = 0 ,
α s(t) − b p(t) = 0 ,

from which the DFE, Σ0, is given by

Σ0 = (s0, e0, i0, q0, r0, p0) =
(

b

α + b
, 0, 0, 0, 0, α

α + b

)
, (4.4)

while the EE, Σ+, is given by

Σ+ =
(
s+, e+, i+, q+, r+, p+

)
(4.5)
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with

s+ = (δ + b) (γ + b)
β γ

,

e+ = β s+ i+

(γ + b) ,

i+ = β γ b− (δ + b) (γ + b) (α + b)
β (δ + b) (γ + b) ,

q+ = β γ b δ − δ (δ + b) (γ + b) (α + b)
β (λ+ b) (δ + b) (γ + b) ,

r+ = λ δ β γ b− λ δ (δ + b) (γ + b) (α + b)
b β (λ+ b) (δ + b) (γ + b) ,

p+ = α (δ + b) (γ + b)
b β γ

.

(4.6)

4.2.3 Basic Reproduction Number

The basic reproductive number, R0, of an infectious agent such as rabies virus is
defined as the average number of secondary infections produced by an infected individual
in an otherwise susceptible host population [59]. The R0 can not be determined from
the structure of the mathematical model alone but depends on the definition of infected
and uninfected compartments. Let

x = (x1, . . . , xn)T ,

where xi (i = 1, . . . , n) represents the number of individuals in the compartment i.
The basic reproduction number will be determined from the definition of infected and
uninfected compartments. We define Xs as the set of all disease-free states

Xs = {x ≥ 0 : xi = 0, i = 1, . . . ,m},

where m is the number of the first compartments that correspond to the infected
individuals. Let Fi(x) be the rate of appearance of new infections in compartment i,
V +
i be the rate of transfer of individuals out of compartment i and V −

i be the rate of
transfer of individuals into compartment i by all other means.

It is assumed that each function is continuously differentiable at least twice in each
variable. The disease transmission model consists of non-negative initial conditions
together with the following system of equations

ẋi = fi(x) = Fi(x) − Vi(x), i = 1, . . . , n, (4.7)

where Vi = V −
i − V +

i and the functions satisfy the following assumptions A.1–A.5

A.1 Each function represents a directed transfer of individuals, so they are all non-
negative. Mathematically

xi ≥ 0 =⇒ Fi, V
−
i , V

+
i ≥ 0, ∀i = 1, . . . , n. (4.8)
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A.2 If there is an empty compartment, there can be no transfer of individuals out of
the compartment by death, infection or any other means. Mathematically

xi = 0 =⇒ V −
i = 0, ∀i = 1, . . . , n. (4.9)

A.3 Consider the disease transmission model given by (4.7), with : fi, i = 1, . . . , n,
satisfying the conditions A.1 and A.2. If xi = 0, so fi(x) ≥ 0, that is, the
non-negative cone (xi ≥ 0, i = 1, . . . , n) is forward invariant. According to the
theorem of Wiggins [60] for each non-negative initial condition, there is a unique
non-negative solution. The following condition follows from the simple fact that
the incidence of infection for the uninfected compartments is zero.

Fi = 0, if i > m. (4.10)

A.4 To ensure that the disease-free subspace is invariant, we assume that if the
population is disease free, then the population will remain disease-free. That
is, there is no (independent of density) immigration of infectious agents. This
condition is stated as follows

x ∈ Xs =⇒ Fi(x) = V +
i (x) = 0, ∀i = 1, . . . ,m. (4.11)

A.5 The remaining condition is based on derivatives near a point of DFE. We define
a DFE of (4.7) as a locally asymptotically stable equilibrium solution of the
disease-free model, that is, (4.7) restricted to Xs.

We consider a population close to an equilibrium point without disease xe. If the
population remains close to a DFE (i.e. if the introduction of a few infectious individuals
does not result in an outbreak), then the population will return to a DFE according to
the following linear system

ẋ = Df(xe)(x− xe), (4.12)

where Df(xe) is the Jacobian matrix
(
∂fi
∂xj

)
evaluated at a DFE xe. Here, some

derivatives are one-sided, since xe is at the boundary of the domain. We limit our
attention to systems in which a DFE is stable in the absence of new infection. That is,
if F (x) is set to zero, then all eigenvalues of Df(xe) have negative real parts.

Lemma 4.1. [61] If xe is a DFE of (4.7) and the function f(x) satisfies the assump-
tions A.1–A.5, then the derivatives and are partitioned as

DF (xe) =
 F1 0

0 0

 , DV (xe) =
 J1 0
J3 J4

 ,
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where F1 and J1 are the m×m matrices defined by

F1 =
[
∂Fi
∂xj

(xe)
]

and J1 =
[
∂Vi
∂xj

(xe)
]
, with 1 ≤ i, j ≤ m.

Definition 4.1. Let λi, i = 1, . . . , l, l ≤ m be the eigenvalues of the matrix F1J
−1
1 . We

call spectral radius of the matrix F1J
−1
1 the quantity

ρ
(
F1J

−1
1

)
= max{|λi|, i = 1, . . . , l, l ≤ m}.

Definition 4.2. [61] The matrix F1J
−1
1 is called the next generation matrix for the

model (4.7) and the base reproduction number is given by

R0 = ρ
(
F1J

−1
1

)
. (4.13)

Following the method of van den Driessche [61], presented previously, one easily
compute the following basic reproduction number:

R0 = β γ b

(α + b) (δ + b) (γ + b) . (4.14)

The reader interested in the details of the algorithm according to which the basic
reproduction number (4.14) is computed, is referred to the open access article [62].

4.2.4 Stability of the Normalized SEIQRP Delayed Model

Now, we prove some sufficient conditions for the local asymptotic stability of the
DFE, Σ0, and the endemic equilibrium point, Σ+, for any time delay τ ≥ 0.

Consider the following coordinate transformation: x1(t) = s(t) − s̄, x2(t) = e(t) − ē,
x3(t) = i(t) − ī, x4(t) = q(t) − q̄, x5(t) = r(t) − r̄, and x6(t) = p(t) − p̄, where
(s̄, r̄, ī, q̄, r̄, p̄) denotes any equilibrium point of system (4.3). The linearized system of
(4.3) takes the form

Ẋ(t) = A0 X(t) + A1 X(t− τ), (4.15)

where X = (x1, x2, x3, x4, x5, x6)T ,

A0 =



−α− b 0 0 0 0 0
0 −γ − b 0 0 0 0
0 γ −δ − b 0 0 0
0 0 δ −λ− b 0 0
0 0 0 λ −b 0
α 0 0 0 0 −b


,
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and

A1 =



−β ī 0 −β s̄ 0 0 0
β ī 0 β s̄ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


.

The characteristic equation of system (4.3), for any equilibrium point, is given by

∆(y) = |y Id6×6 − A0 − A1 e
−τ y|. (4.16)

We are now in a position to prove our first two results.

Theorem 4.1 (Stability of the DFE of System (4.3)). If R0 < 1, then the DFE Σ0 is
locally asymptotically stable for any time-delay τ ≥ 0. If R0 > 1, then the DFE Σ0 is
unstable for any time-delay τ ≥ 0.

Proof. The characteristic equation of (4.3), at the DFE Σ0, is given by

P (y, τ) = (y + b)2 (y + α + b) (y + λ+ b) (y2 + Λ1 y + Λ2(y)) = 0, (4.17)

where Λ1 = δ + 2 b+ γ and Λ2(y) = (δ + b) (γ + b) − β γ b

α + b
e−τ y.

Let R0 < 1. We divide the proof into non-delayed and delayed cases.
(i) Let τ = 0. In this case, the Equation (4.17) becomes

P (y, 0) = (y + b)2 (y + α+ b) (y + λ+ b)
(
y2 + Λ1 y + (δ + b) (γ + b) − β γ b

α+ b

)
= 0 .
(4.18)

We need to prove that all roots of the characteristic Equation (4.18) have negative
real parts. It is easy to see that y1 = −b, y2 = −α− b and y3 = −λ− b are roots
of Equation (4.18) and all of them are real negative roots. Thus, we just need to
analyze the fourth term of (4.18), here denoted by P1, that is,

P1(y, 0) := y2 + Λ1 y + (δ + b) (γ + b) − β γ b

α + b
.

Using the Routh–Hurwitz Criterion [63], we know that all roots of P1(y, 0) have
negative real parts if, and only if, the coefficients of P1(y, 0) are strictly positive.
In this case, we have Λ1 = δ + 2 b+ γ > 0 and

(δ + b) (γ + b) − β γ b

α + b
> 0 if and only if R0 = β γ b

(δ + b) (γ + b) (α + b) < 1.

Therefore, we have just proved that the DFE, Σ0, is locally asymptotically stable
for τ = 0, whenever R0 < 1.
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(ii) Let τ > 0. In this case, we will use Rouché’s Theorem [64], [65] to prove that all
roots of the characteristic Equation (4.17) cannot intersect the imaginary axis,
i.e., the characteristic equation cannot have pure imaginary roots. Suppose the
contrary, that is, suppose there exists w ∈ R such that y = w i is a solution of
(4.17). Replacing y in the fourth term of (4.17), we get that

−w2 + (δ + 2 b+ γ)w i+ (δ + b) (γ + b) − β γ b

α + b
(cos(τ w) − i sin(τ w)) = 0.

Then, 
−w2 + (δ + b) (γ + b) = β γ b

α + b
cos(τ w),

(δ + 2 b+ γ)w = − β γ b

α + b
sin(τ w) .

By adding up the squares of both equations, and using the fundamental trigono-
metric formula, we obtain that

w4 +
(
(δ + b)2 + (γ + b)2

)
w2 + (δ + b)2 (γ + b)2 −

(
β γ b

α + b

)2

= 0,

which is equivalent to

w2 = 1
2

√√√√((δ + b)2 − (γ + b)2
)2

+ 4
(
β γ b

α + b

)2

− 1
2
(
(δ + b)2 + (γ + b)2

)
. (4.19)

If R0 < 1, then (δ + b)2 (γ + b)2 −
(
β γ b

α + b

)2

> 0, and

(
(δ + b)2 + (γ + b)2

)2
− 4

(
(δ + b)2 (γ + b)2 −

(
β γ b

α+ b

)2)
<
(
(δ + b)2 + (γ + b)2

)2
,

so that √√√√((δ + b)2 − (γ + b)2
)2

+ 4
(
β γ b

α + b

)2

< (δ + b)2 + (γ + b)2 .

Hence, we have w2 < 0, which is a contradiction. Therefore, we have proved that
whenever R0 < 1, the characteristic Equation (4.17) cannot have pure imaginary
roots and the DFE Σ0 is locally asymptotically stable, for any strictly positive
time-delay τ .

(iii) Suppose now that R0 > 1. We know that the characteristic Equation (4.17) has
three real negative roots y1 = −b, y2 = −α− b, and y3 = −λ− b. Thus, we need
to check if the remaining roots of

q(y) := y2 + Λ1 y + Λ2(y) (4.20)
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have negative real parts. It is easy to see that q(0) = Λ2(0) < 0 because we are
assuming R0 > 1. On the other hand, lim

y→+∞
q(y) = +∞. Therefore, by continuity

of q(y), there is at least one positive root of the characteristic Equation (4.17).
Hence, we conclude that Σ0 is unstable when R0 > 1.

The proof is complete.

Theorem 4.2 (Stability of the EE of System (4.3)). Let τ = 0. If R0 > 1, then
the EE point Σ+ is locally asymptotically stable. When τ > 0, the EE Σ+ is locally
asymptotically stable if the basic reproduction number R0 satisfies the following relations:

1 < R0 < min
3, 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b

 (4.21)

and
M1R

2
0 +M2R0 +M3 > 0, (4.22)

where

M1 = −(α + b)2
(
(δ + b)2 + (γ + b)2

)
,

M2 = 2 (α + b)2
(
(δ + γ + 2 b)2 − 3 (δ + b) (γ + b)

)
+ 2 (α + b) (δ + b) (γ + b) (δ + γ + 2 b),

M3 = 2 (α + b) (δ + b) (γ + b) (α− δ − γ − b) .

Proof. The characteristic Equation (4.16), computed at the EE Σ+, is given by

P̃ (y, τ) = (y + b)2 (y + λ+ b) (y3 + ∆1(y) y2 + ∆2(y) y + ∆3(y)) = 0 , (4.23)

where ∆1(y) = L1 + L̄1 e
−τ y, ∆2(y) = L2 + L̄2 e

−τ y, and ∆3(y) = L3 + L̄3 e
−τ y with

L1 = α + δ + γ + 3 b,

L̄1 = β γ b− (δ + b) (γ + b) (α + b)
(δ + b) (γ + b) ,

L2 = (γ + 2 b+ δ) (α + b) + (γ + b) (δ + b),
L̄2 = (γ + 2 b+ δ) (α + b) (R0 − 1) − (γ + b) (δ + b),
L3 = (α + b) (γ + b) (δ + b),
L̄3 = β γ b− 2 (α + b) (γ + b) (δ + b).

(i) Let τ = 0. In this case, the Equation (4.23) becomes

P̃ (y, 0) = (y + b)2 (y + λ+ b) (y3 + ∆̃1 y
2 + ∆̃2 y + ∆̃3) = 0, (4.24)

where ∆̃1 = L1 + L̄1, ∆̃2 = L2 + L̄2 and ∆̃3 = L3 + L̄3. We need to prove that all
the roots of the characteristic Equation (4.24) have negative real parts. It is easy
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to see that y1 = −b and y2 = −λ− b are roots of (4.24) and both are real negative
roots. Thus, we just need to consider the third term of the above equation. Let

P̃3(y, 0) := y3 + ∆̃1 y
2 + ∆̃2 y + ∆̃3 = 0 . (4.25)

Using the Routh–Hurwitz Criterion [63], we know that all roots of P̃3(y, 0) have
negative real parts if, and only if, the coefficients of P̃3(y, 0) are strictly positive
and ∆̃∗ = ∆̃1 ∆̃2 − ∆̃3 > 0. If R0 > 1, then

∆̃1 = α + δ + γ + 3 b+ (α + b) (R0 − 1) > 0,
∆̃2 = (δ + γ + 2 b) (α + b)R0 > 0,
∆̃3 = (α + b) (δ + b) (γ + b) (R0 − 1) > 0,
∆̃∗ = (α + b) (α + b) (δ + γ + 2 b)R2

0

+ (α + b) (δ2 + 3 b (δ + b) + γ (δ + γ + 3 b))R0

+ (α + b) (δ + b) (γ + b) > 0.

(ii) Let τ > 0. Using Rouché’s Theorem, we prove that all the roots of the character-
istic Equation (4.23) cannot intersect the imaginary axis, i.e., the characteristic
equation cannot have pure imaginary roots. Suppose the opposite, that is, assume
there exists w ∈ R such that y = w i is a solution of (4.23). Replacing y into the
third term of (4.23), we get that

−w3 i−L1 w
2 +L2 w i+L3 + (−L̄1 w

2 + L̄2 w i+ L̄3) (cos(τ w) − i sin(τ w)) = 0.

Then, 
−L1 w

2 + L3 = (L̄1 w
2 − L̄3) cos(τ w) − L̄2 w sin(τ w),

−w3 + L2 w = −L̄2 w cos(τ w) − (L̄1 w
2 − L̄3) sin(τ w) .

By adding up the squares of both equations, and using the fundamental trigono-
metric formula, we obtain that

w6 +K1 w
4 +K2 w

2 +K3 = 0,

where

K1 = L2
1 − L̄2

1 − 2L2,

K2 = 2 L̄1 L̄3 − 2L1 L3 + L2
2 − L̄2

2,

K3 = L2
3 − L̄2

3.
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Assume that the basic reproduction number R0 satisfies relations (4.21) and
(4.22) with the following condition:

min
(

3, 1 +
√

(α+ b)2 + (δ + b)2 + (γ + b)2

α+ b

)
= 1 +

√
(α+ b)2 + (δ + b)2 + (γ + b)2

α+ b
.

(4.26)
Then,

K1 = (δ + b)2 + (γ + b)2 + (α + b)2
(
1 − (R0 − 1)2

)
> 0.

In contrast, if R0 satisfies relations (4.21) and (4.22) with the condition

min
3, 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b

 = 3 , (4.27)

then we have

1 < R0 < 3 < 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
,

which is equivalent to

0 < R0 − 1 < 2 <

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
,

1 −
(

(α + b)2 + (δ + b)2 + (γ + b)2

(α + b)2

)
< 1 − (R0 − 1)2 < 1,

− (δ + b)2 − (γ + b)2 < (α + b)2
(
1 − (R0 − 1)2

)
< (α + b)2.

Thus,
K1 > 0.

Under the assumption that the basic reproduction number R0 satisfies relations
(4.21) and (4.22), we have

K2 = M1R
2
0 +M2R0 +M3 > 0 .

Therefore, if we assume that the basic reproduction number R0 satisfies
relations (4.21) and (4.22) with condition (4.27), then

K3 = (α + b)2 (δ + b)2 (γ + b)2
(
1 − (R0 − 2)2

)
> 0;

if R0 satisfies relations (4.21) and (4.22) with condition (4.26), then we have

1 < R0 < 1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
< 3,

which is equivalent to

−1 < R0 − 2 < −1 +

√
(α + b)2 + (δ + b)2 + (γ + b)2

α + b
< 1,
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and also equivalent to
1 − (R0 − 2)2 > 0.

Thus,
K3 > 0 .

We conclude that the left side of equation (4.23) is strictly positive, which im-
plies that this equation is not possible. Therefore, (4.24) does not have imaginary
roots, which implies that Σ+ is locally asymptotically stable for any time delay
τ > 0.

The proof is complete.

It should be noted that Theorem 4.2 is not trivial, and it is not easy to give a
biological/medical interpretation to the relations (4.21) and (4.22).

4.3 The Delayed SEIQRPW Model with Vaccination

Let us introduce in the model (4.2) a constant u and an extra variable W (t),
t ∈ [0, tf ], representing the fraction of susceptible individuals that are vaccinated and
the number of vaccines used, respectively, with

Ẇ (t) = uS(t), (4.28)

subject to the initial condition W(0) = 0. Note that (4.28) is just the production rate
of vaccinated.

The model with vaccination is given by the following system of seven nonlinear
delayed differential equations:

Ṡ(t) = bN(t) − β S(t−τ) I(t−τ)
N(t) − (α + u+ µ) S(t) ,

Ė(t) = β S(t−τ) I(t−τ)
N(t) − (γ + µ)E(t) ,

İ(t) = γE(t) − (δ + µ)I(t) ,

Q̇(t) = δI(t) − (λ+ µ)Q(t) ,

Ṙ(t) = λQ(t) − µR(t) ,

Ṗ (t) = αS(t) − µP (t) ,

Ẇ (t) = uS(t) − µW (t) ,

(4.29)

where the total population N(t) is given by

N(t) = S(t) + E(t) + I(t) +Q(t) +R(t) + P (t) +W (t) , ∀ t ∈ [0, T ] . (4.30)
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The state variables are subject to the following initial conditions: S(θ) = S0, θ ∈ [−τ, 0],
E(0) = E0, I(θ) = I0, θ ∈ [−τ, 0], Q(0) = Q0, R(0) = R0, P (0) = P0, and W (0) = 0.

Note that in model (4.29) we do not vaccinate the insusceptible/protected individuals
P (t), assumed protected through precautionary measures with a protection rate α.
Moreover, the fraction of susceptible individuals that are vaccinated is u. A schematic
diagram of our system is given in Figure 4.2.

Susceptible ExposedProtected

Infected

Recovered

S(t)P (t)

R(t) Q(t)

I(t)

E(t)

γ

δ

Quarantined

Vaccinated

β

W (t)

u

λ

b

µ

µ µ µ

µ

µµ

α

Figure 4.2: Schematic diagram of the generalized SEIQRPW delayed model (4.29).

4.3.1 Normalized SEIQRPW Delayed Model with Vaccination

Analogously to Section 4.2, we consider the proportions of each compartment of
individuals in the population, namely s(t) = S(t)

N(t) , e(t) = E(t)
N(t) , i(t) = I(t)

N(t) , q(t) = Q(t)
N(t) ,

r(t) = R(t)
N(t) , p(t) = P (t)

N(t) , and w(t) = W (t)
N(t) . According to Equation (4.30), we have

Ṅ(t) = (b− µ)N(t). Therefore, the normalized SEIQRP delayed model is given by

ṡ(t) = b− β s(t− τ) i(t− τ) − (α + u+ b) s(t),

ė(t) = β s(t− τ) i(t− τ) − (γ + b) e(t),

i̇(t) = γ e(t) − (δ + b) i(t),

q̇(t) = δ i(t) − (λ+ b) q(t),

ṙ(t) = λ q(t) − b r(t),

ṗ(t) = α s(t) − b p(t),

ẇ(t) = u s(t) − bw(t) .

(4.31)
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The state variables for system (4.31) are subject to the following initial conditions:
s(θ) = S0

N(0) , θ ∈ [−τ, 0], e(0) = E0

N(0) , i(θ) = I0

N(0) , θ ∈ [−τ, 0], q(0) = Q0

N(0) ,

r(0) = R0
N(0) , p(0) = P0

N(0) , and w(0) = 0, with s(t)+e(t)+i(t)+q(t)+r(t)+p(t)+w(t) =
1.

4.3.2 Equilibrium Points

The DFE and EE of model (4.31) can be obtained by equating the right-hand side
of Equation (4.31) to zero, hence satisfying

b− β s(t− τ) i(t− τ) − (α + u+ b) s(t) = 0 ,
β s(t− τ) i(t− τ) − (γ + b) e(t) = 0 ,

γe(t) − (δ + b)i(t) = 0 ,
δi(t) − (λ+ b)q(t) = 0 ,

λ q(t) − b r(t) = 0 ,
αs(t) − bp(t) = 0 ,
u s(t) − bw(t) = 0 .

The DFE of model (4.31), Σ1, is given by

Σ1 = (s0, e0, i0, q0, r0, p0, w0) =
(

b

α + u+ b
, 0, 0, 0, 0, α

α + u+ b
,

u

α + u+ b

)
, (4.32)

while the EE point for system (4.31), Σ+
V , is given by

Σ+
V = (s∗, e∗, i∗, q∗, r∗, p∗, w∗) , (4.33)

where

s∗ = (δ + b) (γ + b)
β γ

,

e∗ = β s+ i+

(γ + b) ,

i∗ = β γ b− (δ + b) (γ + b) (α + u+ b)
β (δ + b) (γ + b) ,

q∗ = β γ b δ − δ (δ + b) (γ + b) (α + u+ b)
β (λ+ b) (δ + b) (γ + b) ,

r∗ = λ δ β γ b− λ δ (δ + b) (γ + b) (α + u+ b)
b β (λ+ b) (δ + b) (γ + b) ,

p∗ = α (δ + b) (γ + b)
b β γ

,

w∗ = u (δ + b) (γ + b)
b β γ

.
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4.3.3 Basic reproduction number

The progression of a person from compartment e to i is not considered a new
infection. Then

F =



0
β s(t− τ) i(t− τ)

0
0
0
0
0


and V =



−b+ β s(t− τ) i(t− τ) + (α + u+ b) s(t)
+(γ + b) e(t)

−γ e(t) + (δ + b) i(t)
−δ i(t) + (λ+ b) q(t)

−λ q(t) + b r(t)
−α s(t) + b p(t)
−u s(t) + bw(t)


.

The infected compartments are e and i, which gives m = 2. The point of equilibrium
without disease Σ0 is given by (4.32), then we have:

F1 =
 0 βb

α+u+b

0 0

 , J1 =
 γ + b 0

−γ δ + b

 ,
the eigenvalues of the matrix F1 J

−1
1 are

0 and β γ b

(α + u+ b) (δ + b) (γ + b) ,

so
R̃0 = β γ b

(α + u+ b) (δ + b) (γ + b) . (4.34)

4.3.4 Stability of the Normalized SEIQRPW Delayed Model with
Vaccination

Consider the following coordinate transformation: x1(t) = s(t) − s̄, x2(t) = e(t) − ē,
x3(t) = i(t) − ī, x4(t) = q(t) − q̄, x5(t) = r(t) − r̄, x6(t) = p(t) − p̄, and x7(t) = w(t) − w̄,
where (s̄, ē, ī, q̄, r̄, p̄, w̄) denotes an equilibrium point of system (4.31). The linearized
system of (4.31) takes the form

Ẋ(t) = Ã0 X(t) + Ã1 X(t− τ), (4.35)

where X = (x1, x2, x3, x4, x5, x6, x7)T ,

Ã0 =



−α− u− b 0 0 0 0 0 0
0 −γ − b 0 0 0 0 0
0 γ −δ − b 0 0 0 0
0 0 δ −λ− b 0 0 0
0 0 0 λ −b 0 0
α 0 0 0 0 −b 0
u 0 0 0 0 0 −b


,
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Ã1 =



−β ī 0 −β s̄ 0 0 0 0
β ī 0 β s̄ 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

The characteristic equation of system (4.31) is given by

Γ̃(y) = |y Id7×7 − Ã0 − Ã1 e
−τ y|. (4.36)

We are also able to prove stability results for the normalized SEIQRPW delayed
model with vaccination.

Theorem 4.3 (Stability of the DFE of System (4.31)). If R̃0 < 1, then the DFE Σ1

is locally asymptotically stable for any time-delay τ ≥ 0. If R̃0 > 1, then the DFE is
unstable for any time-delay τ ≥ 0.

Proof. The characteristic Equation (4.36) at the DFE, Σ1, is given by

P ∗(y, τ) = (y + b)3 (y + α + u+ b) (y + λ+ b) (y2 + Γ1 y + Γ2(y)) = 0, (4.37)

where Γ1 = δ + 2 b+ γ and Γ2(y) = (δ + b) (γ + b) − β γ b

α + u+ b
e−τ y.

(i) Let τ = 0. In this case, the Equation (4.37) becomes

P ∗(y, 0) = (y + b)3 (y + α + u+ b) (y + λ+ b)(
y2 + Γ1 y + (δ + b) (γ + b) − β γ b

α + u+ b

)
= 0 . (4.38)

We need to prove that all roots of the characteristic Equation (4.38) have negative
real parts. It is easy to see that y1 = −b, y2 = −α − u− b and y3 = −λ− b are
roots of Equation (4.38) and the three are real and negative. Thus, we just need
to consider the fourth term of Equation (4.38). Let

P ∗
3 (y, 0) := y2 + Γ1 y + (δ + b) (γ + b) − β γ b

α + u+ b
.

Using the Routh–Hurwitz Criterion [63], we know that all roots of P ∗
3 (y, 0) have

negative real parts if, and only if, the coefficients of P ∗
3 (y, 0) are strictly positive.

In this case, Γ1 = δ + 2 b+ γ > 0 and

(δ+b) (γ+b)− β γ b

α + u+ b
> 0 if, and only if, R̃0 = β γ b

(α + u+ b) (δ + b) (γ + b) < 1.

Therefore, we have proved that the DFE, Σ1, is locally asymptotically stable for
τ = 0, whenever R̃0 < 1.
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(ii) Let τ > 0. Using Rouché’s Theorem, we prove that all roots of the characteristic
Equation (4.37) can not have pure imaginary roots. Suppose the contrary, i.e.,
that there exists w ∈ R such that y = w i is a solution of (4.37). Replacing y in
the fourth term of (4.37), we get

−w2 + (δ + 2 b+ γ)w i+ (δ + b) (γ + b) − β γ b

α + u+ b
(cos(τ w) − i sin(τ w)) = 0 .

Then, 
−w2 + (δ + b) (γ + b) = β γ b

α + u+ b
cos(τ w),

(δ + 2 b+ γ)w = − β γ b

α + u+ b
sin(τ w) .

By adding up the squares of both equations and using the fundamental trigono-
metric formula, one has

w4 +
(
(δ + b)2 + (γ + b)2

)
w2 + (δ + b)2 (γ + b)2 −

(
β γ b

α + u+ b

)2

= 0,

which is equivalent to

w2 = 1
2

√√√√((δ + b)2 − (γ + b)2
)2

+ 4
(

β γ b

α + u+ b

)2

− 1
2
(
(δ + b)2 + (γ + b)2

)
.

(4.39)

If R̃0 < 1, then (δ + b)2 (γ + b)2 −
(

β γ b

α + u+ b

)2

> 0, and

(
(δ + b)2 + (γ + b)2

)2
−4
(

(δ + b)2 (γ + b)2 −
(

β γ b

α+ u+ b

)2)
<
(
(δ + b)2 + (γ + b)2

)2
,

so that√√√√((δ + b)2 − (γ + b)2
)2

+ 4
(

β γ b

α + u+ b

)2

< (δ + b)2 + (γ + b)2 .

Hence, we have w2 < 0, which is a contradiction. Therefore, we have proved that
if R̃0 < 1, then the characteristic Equation (4.37) cannot have pure imaginary
roots and the DFE Σ1 is locally asymptotically stable, for any strictly positive
time delay τ .

(iii) Suppose now that R̃0 > 1. We know that the characteristic Equation (4.37) has
three real negative roots y1 = −b, y2 = −α − u − b and y3 = −λ − b. Thus, we
need to check if the remaining roots of

q∗(y) := y2 + Γ1 y + Γ2(y) (4.40)

have negative real parts. It is easy to see that q(0) = Γ2(0) < 0, because we are
assuming R̃0 > 1. On the other hand, lim

y→+∞
q∗(y) = +∞. Therefore, by continuity

of q∗(y), there is at least one positive root of the characteristic Equation (4.37).
Hence, we conclude that Σ1 is unstable, for any τ ≥ 0.
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The proof is complete.

Theorem 4.4 (Stability of the EE point of System (4.31)). Let τ = 0. If R̃0 > 1,
then the EE Σ+

V is locally asymptotically stable. When τ > 0, the EE Σ+
V is locally

asymptotically stable if the basic reproduction number R̃0 satisfies the following relations:

1 < R̃0 < min
3, 1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b

 (4.41)

and
M∗

1 R̃
2
0 +M∗

2 R̃0 +M∗
3 > 0 , (4.42)

where

M∗
1 = −(α + u+ b)2

(
(δ + b)2 + (γ + b)2

)
,

M∗
2 = 2 (α + u+ b)2

(
(δ + γ + 2 b)2 − 3 (δ + b) (γ + b)

)
+ 2 (α + u+ b) (δ + b) (γ + b) (δ + γ + 2 b),

M∗
3 = 2 (α + u+ b) (δ + b) (γ + b) (α + u− δ − γ − b) .

(4.43)

Proof. The characteristic Equation (4.36), computed at the EE Σ+
V , is given by

P̃ ∗(y, τ) = (y + b)3 (y + λ+ b) (y3 + Ω1(y) y2 + Ω2(y) y + Ω3(y)) = 0 , (4.44)

where Ω1(y) = L∗
1 + L̄∗

1 e
−τ y, Ω2(y) = L∗

2 + L̄∗
2 e

−τ y, and Ω3(y) = L∗
3 + L̄∗

3 e
−τ y with

L∗
1 = α + u+ δ + γ + 3 b,

L̄∗
1 = β γ b− (δ + b) (γ + b) (α + u+ b)

(δ + b) (γ + b) ,

L∗
2 = (γ + 2 b+ δ) (α + u+ b) + (γ + b) (δ + b),

L̄∗
2 = (γ + 2 b+ δ) (α + u+ b) (R̃0 − 1) − (γ + b) (δ + b),

L∗
3 = (α + u+ b) (γ + b) (δ + b),

L̄∗
3 = β γ b− 2 (α + u+ b) (γ + b) (δ + b).

(i) Let τ = 0. In this case, Equation (4.44) becomes

P̃ ∗(y, 0) = (y + b)3 (y + λ+ b)
(
y3 + Ω̃1 y

2 + Ω̃2 y + Ω̃3
)

= 0 , (4.45)

where Ω̃1 = L∗
1 + L̄∗

1 , Ω̃2 = L∗
2 + L̄∗

2 and Ω̃3 = L∗
3 + L̄∗

3. Looking at the roots of the
characteristic Equation (4.45), it is easy to see that y1 = −b and y2 = −λ− b are
real negative roots of (4.45). Considering the third term of the above equation,
let

P̃ ∗
3 (y, 0) := y3 + Ω̃1 y

2 + Ω̃2 y + Ω̃3 = 0 . (4.46)
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Using the Routh–Hurwitz Criterion [63], we know that all roots of P̃ ∗
3 (y, 0) have

negative real parts if, and only if, the coefficients of P̃ ∗
3 (y, 0) are strictly positive

and
Ω̃∗ = Ω̃1 Ω̃2 − Ω̃3 > 0.

If R̃0 > 1, then

Ω̃1 = α + u+ δ + γ + 3 b+ (α + u+ b) (R̃0 − 1) > 0,
Ω̃2 = (δ + γ + 2 b) (α + u+ b) R̃0 > 0,
Ω̃3 = (α + u+ b) (δ + b) (γ + b) (R̃0 − 1) > 0,
Ω̃∗ = (α + u+ b) (δ + γ + 2 b) R̃2

0 + (α + u+ b) (δ2 + 3 b (δ + b) + γ (δ + γ + 3 b)) R̃0

+ (α + u+ b) (δ + b) (γ + b) > 0.

(ii) Let τ > 0. By Rouché’s theorem, we prove that all roots of the characteristic
Equation (4.44) cannot intersect the imaginary axis, i.e., the characteristic equa-
tion cannot have pure imaginary roots. Suppose the opposite, i.e., that there
exists w ∈ R such that y = w i is a solution of (4.44). Replacing y in the third
term of (4.44), we get

−w3 i−L∗
1 w

2 +L∗
2 w i+L∗

3 + (−L̄∗
1 w

2 + L̄∗
2 w i+ L̄∗

3) (cos(τ w) − i sin(τ w)) = 0.

Then, 
−L∗

1 w
2 + L∗

3 = (L̄∗
1 w

2 − L̄∗
3) cos(τ w) − L̄∗

2 w sin(τ w) ,

−w3 + L∗
2 w = −L̄∗

2 w cos(τ w) − (L̄∗
1 w

2 − L̄∗
3) sin(τ w) .

By adding up the squares of both equations and using the fundamental trigono-
metric formula, we obtain that

w6 +K∗
1 w

4 +K∗
2 w

2 +K∗
3 = 0,

where
K∗

1 = (L∗
1)2 − (L̄∗

1)2 − 2L∗
2,

K∗
2 = 2 L̄∗

1 L̄
∗
3 − 2L∗

1 L
∗
3 + (L∗

2)2 − (L̄∗
2)2,

K∗
3 = (L∗

3)2 − (L̄∗
3)2.

Assume that the basic reproduction number R̃0 satisfies relations (4.41) and
(4.42) with the condition

min
3, 1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + b


= 1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b
. (4.47)
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Then,

K∗
1 = (δ + b)2 + (γ + b)2 + (α + u+ b)2

(
1 −

(
R̃0 − 1

)2
)
> 0.

In contrast, if R̃0 satisfies relations (4.41) and (4.42) under the condition

min
3, 1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b

 = 3, (4.48)

then we have

1 < R̃0 < 3 < 1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b
,

which is equivalent to

0 < R̃0 − 1 < 2 <

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b
,

1 −
(

(α + u+ b)2 + (δ + b)2 + (γ + b)2

(α + u+ b)2

)
< 1 − (R̃0 − 1)2 < 1,

− (δ + b)2 − (γ + b)2 < (α + u+ b)2
(
1 − (R̃0 − 1)2

)
< (α + u+ b)2.

Thus,
K∗

1 > 0.

Under the assumption that the basic reproduction number R̃0 satisfies relations
(4.41) and (4.42), we have

K∗
2 = M∗

1 R̃
2
0 +M∗

2 R̃0 +M∗
3 > 0 . (4.49)

Therefore, if we assume that the basic reproduction number R̃0 satisfies rela-
tions (4.41) and (4.42) with condition (4.48), then

K∗
3 = (α + u+ b)2 (δ + b)2 (γ + b)2

(
1 −

(
R̃0 − 2

)2
)
> 0; (4.50)

if R̃0 satisfies (4.41) and (4.42) with condition (4.47), then we have

1 < R̃0 < 1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b
< 3 ,

which is equivalent to

−1 < R̃0 − 2 < −1 +

√
(α + u+ b)2 + (δ + b)2 + (γ + b)2

α + u+ b
< 1,

and also equivalent to
1 −

(
R̃0 − 2

)2
> 0 .
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Thus,
K∗

3 > 0.

We have just proved that the left hand-side of Equation (4.44) is strictly positive,
which implies that this equation is not possible. Therefore, (4.45) does not have
imaginary roots, and Σ+

V is locally asymptotically stable, for any time delay τ > 0,
whenever R̃0 satisfies conditions (4.41) and (4.42).

The proof is complete.

It should be noted that Theorem 4.3 is not trivial, and it is not easy to give a
biological/medical interpretation to the relations (4.41) and (4.42).

4.4 Numerical Simulations and Discussion

In this section, we investigate, numerically, the local stability of the normalized
SEIQRP and SEIQRPW models, illustrating our results from Sections 4.2 and 4.3.
All numerical computations were performed in the numeric computing environment
MATLAB R2019b using the medium-order method and numerical interpolation [66].

4.4.1 Local Stability of the Delayed SEIQRP Model

Consider the normalized delayed SEIQRP model (4.3), proposed in Section 4.2.
Take the initial conditions

(s0, e0, i0, q0, r0, p0) = (0.7, 0.05, 0.05, 0.1, 0.05, 0.05)

and the parameter values as given in Table 4.1.

Parameter Value Units Ref
b 1 Assumed
µ 1 Assumed
δ 1 day−1 Assumed
α 1 day−1 Assumed
β 12 day−1 Assumed
γ 1 day−1 Assumed
λ 1 day−1 Assumed
tf 30 day Assumed

Table 4.1: Parameter values used in the simulations of Section 4.4.1.

In Figure 4.3, we present the numerical solutions to the delayed model (4.3) in the
time interval [0, 30] days.

Considering the parameter values from Table 4.1, we have the following value for the
basic reproduction number R0 of Section 4.2: R0 = 1.5. From Theorem 4.2, R0 = 1.5
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satisfies the conditions (4.21) and (4.22), so the EE EE = (1
3 ,

1
6 ,

1
12 ,

1
24 ,

1
24 ,

1
3) of system

(4.3) is locally asymptotically stable for any time delay τ ≥ 0.
In Figure 4.4, we observe the effect of the time delays: τ = 0, . . . , 6 on the classes e

of exposed and i of infectious. The presence of waves is due to the presence of the time
delay and is related to the emergence of the COVID-19 waves. For the study of multiple
epidemic waves in the context of COVID-19, we refer the interested reader to [67].

4.4.2 Delayed SEIQRPW Model with Vaccination: COVID-19 in Italy

Now, we study, numerically, the stability of the spread of the epi-
demic of COVID-19 in Italy for the period of three months starting from
18 October 2020, using the delayed model (4.31) that we proposed in Sec-
tion 4.3. The preliminary conditions and real data were taken and com-
puted from the database https://raw.githubusercontent.com/pcm-dpc/COVID-19/
master/dati-regioni/dpc-covid19-ita-regioni.csv (accessed on 14 August 2021).
We consider the initial conditions

(s0, e0, i0, q0, r0, p0, w0) = 1
N

(59769273, 403601, 8837, 44098, 254058, 133, 0)

with N = 60480000 [68], and the parameter values as given in Table 4.2, which are
obtained using the nonlinear least-squares solver [69]. The reader is interested in the
details of the nonlinear least-squares solver, according to which the parameters of the
delayed model (4.31) are computed, is referred to as the open-access article [69].
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Figure 4.3: Dynamics of model (4.3) with τ = 3 days. Parameter values as in Table 4.1.
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Figure 4.4: Dynamics of model (4.3) with τ ∈ [0, 6] days. Parameter values as in Table 4.1.

Parameter Value Units Ref
b 7.391‰ [68]
µ 10.658‰ [68]
α 1.1775 day−1 [69]
β 3.97 day−1 [69]
γ 0.0048 day−1 [69]
λ 0.0182256 day−1 [69]
δ 0.1432 day−1 [69]
tf 90 day Assumed

Table 4.2: Parameter values used in the simulations of Section 4.4.2, modeling the spread of
the epidemic of COVID-19 in Italy for the period of three months starting 18
October 2020.

In Figures 4.5 and 4.6, we present numerical solutions to the delayed model (4.31)
in the time interval t ∈ [0, 90] days, t = 0 representing 18 October 2020, and considering
two cases:

• Case 1: τ = 0 days (without delay), with different percentages of susceptible
individuals being vaccinated — u = 0%, u = 20%, u = 40% and u = 60%
(Figure 4.5).

• Case 2: u = 20% (fixed), with different delays — τ = 0 days, τ = 3 days, and
τ = 6 days (Figure 4.6).
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Figure 4.5: Predictions for Italy from the delayed model (4.31) with τ = 0 and u ∈
{0%, 20%, 40%, 60%}, between 18 October 2020, and 19 January 2021.

Considering the parameter values from Table 4.2, and u = 0, u = 20%, u = 40%,
u = 60%, we have the following values for the basic reproduction number R̃0 of
Section 4.3: R̃0 = 0.0647, R̃0 = 0.0554, R̃0 = 0.0484, and R̃0 = 0.043, respectively.
From Theorem 4.3, the DFE Σ1 of system (4.31) is locally asymptotically stable for
the time delay τ = 0. From Theorem 4.4, the EE Σ+

V of system (4.31) is unstable for
the time delay τ = 0.
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Figure 4.6: Predictions for Italy from the delayed model (4.31) with u = 20% and τ ∈
{0, 3, 6} days, between 18 October 2020, and 19 January 2021.

4.5 Conclusion

There is an inverse proportional relationship between the fraction u of susceptible
individuals that are vaccinated and the number of exposed, infected, and recovered
individuals: the greater the fraction of susceptible individuals that are vaccinated, the
smaller the number of exposed, infected, and recovered individuals would be, and vice
versa (see Figure 4.5). Moreover, there is a directly proportional relationship between
the transfer time delay τ from the class of susceptible individuals to the class of infected
individuals and the number of exposed, infected, and recovered individuals: the greater
the time delay, the greater the number of exposed, infected, and recovered individuals
would be, and vice versa (see Figure 4.6).
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CHAPTER 5
Optimal Control to Limit the

Spread of COVID-19

.

5.1 Introduction

A severe outbreak of respiratory illness started in Wuhan, a city of eleven million
people in central China, in December 2019. The causative agent was the novel severe
acute respiratory syndrome coronavirus 2, which was identified and isolated from a single
patient in early January 2020 and subsequently verified in sixteen additional patients.
The virus is believed to have a zoonotic origin. In particular, the Huanan Seafood
Market, a live animal and seafood wholesale market in Wuhan, was regarded as a primary
source of this epidemic, as it was found that 55% of the first four hundred twenty-five
confirmed cases were linked to the marketplace. Meanwhile, recent comparisons of the
genetic sequences of this virus and bat coronaviruses show a 96% similarity [70]. In
[28], a generalized SEIR model is presented to analyze the COVID-19 epidemic based
on a dynamic mechanism that incorporates the intrinsic impact of hidden latent and
infectious cases on the entire process of the virus transmission. The model of [28] has
shown to be a good model to describe the reality of China. Its weakness is that it just
tries to describe a reality without controlling it. Our main purpose and contribution
here is to include control measures that allow us to interfere with reality. Moreover,
we want to illustrate the validity of the model in a different context. For this reason,
we have considered real data on COVID-19 from Italy instead of China. We modify
the model analyzed in [28] in order to consider optimal control problems. Secondly,
we analyze a concrete optimal control problem, solving it analytically through the
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celebrated PMP [1]. Moreover, we perform numerical simulations of the spread of
COVID-19 in Italy.

This chapter is organized as follows. In Section 5.2, we recall the generalized
SEIR model of [28]. Our original results begin with Section 5.3, where we introduce
a generalized SEIR control system. An optimal control problem is posed and solved
analytically in Section 5.4. Then, in Section 5.5, we estimate the parameters of the
model using real data of COVID-19 from Italy, and we illustrate the usefulness of the
proposed optimal control problem through numerical simulations. Our results show
that the generalized SEIR model of [28], originally considered for China, is also effective
with respect to Italy, being able to model well-available real data, while our optimal
control approach shows clearly the positive and crucial effects of social distancing,
preventive means, and treatment in the combat of COVID-19. We end with Section 5.6
of conclusions.

The results presented in this chapter have been published in [71]

5.2 A generalized SEIR-type model

The classical SEIR model consists of four compartments: susceptible individuals
S(t), exposed individuals E(t), infected individuals I(t) and recovered individuals R(t).
This SEIR model is too simplistic to describe COVID-19 epidemic and new classes
need to be included, e.g., Deaths and Quarantined individuals, in order to describe the
reality. A generalized SEIR-type model for COVID-19 is proposed by Peng et al. [28],
being expressed by a seven-dimensional dynamical system as follows:

Ṡ(t) = −βS(t)I(t)
N

− αS(t),

Ė(t) = βS(t)I(t)
N

− γE(t),

İ(t) = γE(t) − δI(t),

Q̇(t) = δI(t) − λ(t)Q(t) − κ(t)Q(t),

Ṙ(t) = λ(t)Q(t),

Ḋ(t) = κ(t)Q(t),

Ṗ (t) = αS(t),

(5.1)

subject to fixed initial conditions

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0,

R(0) = R0, D(0) = D0, P (0) = P0.
(5.2)
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Here, the population is divided into susceptible individuals S(t), exposed individuals
E(t), infected individuals I(t), quarantined/hospitalized individuals (confirmed and
infected) Q(t), recovered individuals R(t), death individuals D(t), and insusceptible
individuals (protected population) P (t). It follows from (5.1) that

Ṡ(t) + Ė(t) + İ(t) + Q̇(t) + Ṙ(t) + Ḋ(t) + Ṗ (t) = 0,

so that
S(t) + E(t) + I(t) +Q(t) +R(t) +D(t) + P (t)

is constant along time t. This constant will be denoted by N , being determined by the
initial conditions (5.2):

N := S0 + E0 + I0 +Q0 +R0 +D0 + P0.

The constant parameters α, β, γ and δ represent, respectively, the protection rate,
infection rate, the inverse of the average latent time, and the rate at which infectious
people enter in quarantine, and they have the dimension of time−1 (day−1). The
recovery and mortality rates, respectively λ and κ, are time-dependent analytical
functions defined by

λ(t) := λ1

1 + e−λ2(t−λ3) (5.3)

and
κ(t) := κ1

eκ2(t−κ3) + e−κ2(t−κ3) , (5.4)

where the parameters λ1, λ2, λ3, κ1, κ2 and κ3 are determined empirically from real
data. Note that λ1, λ2, κ1 and κ2 have the dimension of time−1 (day−1), while λ3 and
κ3 have the dimension of time (day).

Remark 5.1. The basic reproduction number is usually computed for autonomous
systems when the right-hand side of the system does not depend explicitly on time t [61],
[72]. Here, system (5.1) depends on (5.3) and, therefore, it is a non-autonomous system.
In this case, we are not aware of a valid method to compute the basic reproduction
number.

5.3 Formulation of the Problem

We introduce three time-dependent controls to model (5.1) of [28]:
1. Control u1(t), representing the effect of social distancing;
2. Control u2(t), representing the effect of preventive means;
3. Control u3(t), representing the effect of treatment.
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Figure 5.1: Schematic diagram of the generalized SEIR-type control system (5.5).

Mathematically, we have the control system

Ṡ(t) = −βu1(t)S(t)I(t)
N

− (α + u2(t))S(t),

Ė(t) = βu1(t)S(t)I(t)
N

− γE(t),

İ(t) = γE(t) − δI(t),

Q̇(t) = δI(t) − (λ(t) + u3(t))Q(t) − κ(t)Q(t),

Ṙ(t) = (λ(t) + u3(t))Q(t),

Ḋ(t) = κ(t)Q(t),

Ṗ (t) = (α + u2(t))S(t),

(5.5)

subject to initial conditions (5.2). We call (5.5) the generalized SEIR-type control
model. A schematic diagram of our control system is given in Figure 5.1.

5.4 Optimal Control

We consider the generalized SEIR control model (5.5) and formulate an optimal
control problem to determine the strategy u(t) = (u1(t), u2(t), u3(t)), over a fixed
interval of time [0, tf ], that minimizes the cost functional

J(u) =
tf∫

0

(
w1
βu1S(t)I(t)

N
− w2R(t) − w3P (t) + v1

u2
1

2 + v2
u2

2
2 + v3

u2
3

2

)
dt, (5.6)
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where tf represents the final time of the period under study and the constants w1,
w2, w3, v1, v2 and v3 represent the weights associated with the total number of new
infections, the number of recovered individuals, the number of insusceptible individuals,
and the costs associated with the controls u1, u2 and u3, respectively. The controls u
are Lebesgue measurable and bounded:

u(t) ∈ Γ :=
{
µ = (µ1, µ2, µ3) ∈ R3 : uimin ≤ µi ≤ uimax, i = 1, 2, 3

}
. (5.7)

The intervals [uimin, uimax] also translate the fact that there are limitations to the effects
of social distancing, the preventive means and the treatment rate. Let

x(t) = (x1(t), . . . , x7(t))
= (S(t), E(t), I(t), Q(t), R(t), D(t), P (t)) ∈ R7.

The optimal control problem consists of finding the optimal trajectory x̃ associated
with the optimal control ũ ∈ L1, ũ(t) ∈ Γ, satisfying the control system (5.5), the initial
conditions

x(0) = (S0, E0, I0, Q0, R0, D0, P0) (5.8)

and giving minimum value to (5.6).
The existence of an optimal control ũ and associated optimal trajectory x̃ comes

from the convexity of the integrand of the cost functional (5.6) with respect to control
u and the Lipschitz property of the state system with respect to state variables x (see
[73] for existence results of optimal solutions). According to the PMP [1], if ũ ∈ L1 is
optimal for problem (5.5)–(5.8) and fixed final time tf , then there exists

ψ ∈ AC([0, tf ];R7), ψ(t) = (ψ1(t), . . . , ψ7(t)),

called the adjoint vector, such that
ẋ = ∂H

∂ψ
,

ψ̇ = −∂H

∂x
,

where the Hamiltonian H is defined by

H(x, u, ψ) = w1u1βx1x3

N
− w2x5 − w3x7 +

3∑
i=1

vi
u2
i

2

+ ψT
(
Ax+

( 2∑
i=1

biΛixΦi + f(x)TΦ3

)
u

)
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with

f(x) = (f1(x) f2(x) 0 0 0 0 0),

f1(x) = −βx1x3

N
,

f2(x) = βx1x3

N
,

b1 = (−1 0 0 0 0 0 1)T ,
b2 = (0 0 0 − 1 1 0 0)T ,
Λ1 = (1 0 0 0 0 0 0),
Λ2 = (0 0 0 1 0 0 0),
Φ1 = (0 1 0),
Φ2 = (0 0 1),
Φ3 = (1 0 0),

A =



−α 0 0 0 0 0 0
0 −γ 0 0 0 0 0
0 γ −δ 0 0 0 0
0 0 δ −λ(t) − κ(t) 0 0 0
0 0 0 λ(t) 0 0 0
0 0 0 κ(t) 0 0 0
α 0 0 0 0 0 0


.

The minimality condition

H(x̃(t), ũ(t), ψ̃(t)) = min
u∈Γ

H(x̃(t), u, ψ̃(t)) (5.9)

holds almost everywhere on [0, tf ]. Moreover, the transversality conditions of PMP, we
get:

ψ̃i(tf ) = 0, i = 1, . . . , 7,

hold. Solving the minimality condition (5.9) on the interior of the set of admissible
controls, Γ gives

ũ(t) =
βx̃1(t)x̃3(t)

(
ψ̃1(t) − ψ̃2(t) − w1

)
Nv1

,
x̃1(t)

(
ψ̃1(t) − ψ̃7(t)

)
v2

,
x̃4(t)

(
ψ̃4(t) − ψ̃5(t)

)
v3

 ,
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where the adjoint functions satisfy

˙̃ψ1 = − ũ1βx̃3

N2 (x̃2 + x̃3 + x̃4 + x̃5 + x̃6 + x̃7) ×
(
w1 − ψ̃1 + ψ̃2

)
+ (α + ũ2)(ψ̃1 − ψ̃7),

˙̃ψ2 =
ũ1βx̃1x̃3

(
w1 − ψ̃1 + ψ̃2

)
N2 + γ(ψ̃2 − ψ̃3),

˙̃ψ3 = − ũ1βx̃1

N2 (x̃2 + x̃3 + x̃4 + x̃5 + x̃6 + x̃7) ×
(
w1 − ψ̃1 + ψ̃2

)
+ δ(ψ̃3 − ψ̃4),

˙̃ψ4 =
ũ1βx̃1x̃3

(
w1 − ψ̃1 + ψ̃2

)
N2 + κ(t)(ψ̃4 − ψ̃6) + (λ(t) + ũ3) (ψ̃4 − ψ̃5),

˙̃ψ5 = ũ1βx̃1x̃3(w1 − ψ̃1 + ψ̃2)
N2 + w2,

˙̃ψ6 = ũ1βx̃1x̃3(w1 − ψ̃1 + ψ̃2)
N2 ,

˙̃ψ7 = ũ1βx̃1x̃3(w1 − ψ̃1 + ψ̃2)
N2 + w3.

(5.10)
Note that we have obtained an analytical explicit expression for the controls

ũ1(t), ũ2(t) and ũ3(t),

ũ1(t) =
βx̃1(t)x̃3(t)

(
ψ̃1(t) − ψ̃2(t) − w1

)
Nv1

,

ũ2(t) =
x̃1(t)

(
ψ̃1(t) − ψ̃7(t)

)
v2

,

ũ3(t) =
x̃4(t)

(
ψ̃4(t) − ψ̃5(t)

)
v3

,

(5.11)

but we do not have the controls in open-loop (because they depend on the state variables
x̃ and adjoint variables ψ̃). To plot ũ(t) as a function of t we need to solve numerically
system (5.5) and (5.10) to know the expressions for x̃ and ψ̃ and be able to obtain the
controls ui, i = 1, 2, 3, in agreement with (5.11). This is done numerically in the next
section. For more on numerical approaches to solve optimal control problems, we refer
the reader to [33], [74] and references therein.

5.5 Numerical Results

Now, our aim is to find optimal controls to limit the spread of the epidemic
of COVID-19 in Italy, by reducing the number of new infections and by increas-
ing insusceptible individuals and the percentage of those recovered, while reduc-
ing the cost during the period of three months starting from September 1, 2020.
All numerical computations were performed in the numeric computing environ-
ment MATLAB R2019b using the medium-order method and numerical interpo-
lation [66]. The rest of the preliminary conditions and real data were taken
and computed from the database https://raw.githubusercontent.com/pcm-dpc/
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Figure 5.2: The recovery and mortality rates (5.3) and (5.4) for the case of Italy (Section 5.5).

COVID-19/master/dati-regioni/dpc-covid19-ita-regioni.csv. The real data for
the COVID-19 pandemic in Italy, for September and October 2020, is summarized in
appendix: see Appendix A for recovered individuals, Appendix B for deaths, and
Appendix C for quarantined individuals.

The parameters α, β, γ, δ, (κ1, κ2, κ3) and (λ1, λ2, λ3) were fitted in the least square
sense. The parameter values as given in Table 5.1.

Parameter Initial value Estimated value
α 0.06 1.1775 × 10−7

β 1 3.97
γ 5 0.0048
δ 0.5 0.1432

(λ1, λ2, λ3) (0.01, 0.1, 10) (0.0181, 0.8111, 6.9882)
(κ1, κ2, κ3) (0.001, 0.001, 10) (0.00062, 0.0233, 54.0351)

Table 5.1: Parameter values used in the simulations of system (5.5).

The parameters of the generalized SEIR model (5.5) were calculated simultaneously
by the nonlinear least squares method [69]. These parameters have been presented
in the same table 5.1. In Figure 5.2, we plot functions λ(t) (5.3) and κ(t) (5.4). For
the optimal control problem of Section 5.4, we further fixed wi = vi = 1, u1 min = 0.1,
ujmin = 0, uimax = 1, i = 1, 2, 3, j = 1, 2.

In Figures 5.3 and 5.4, we present plots with the numerical solutions to the nonlinear
differential equations of the generalized SEIR model (5.1), in red color; to the nonlinear
differential equations of the generalized SEIR control system (5.5) under optimal controls,
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in the sense of Section 5.4, in green color; and the real data of the quarantined cases,
the number of recovered individuals, and the number of deaths from September 1 to
October 31, 2020, in orange. The computed optimal controls for Italy from September 1
to November 30, 2020, which give rise to the green curves in the plots of Figures 5.3 and
5.4, are shown in Figure 5.5. The obtained simulations allow us to predict the results
of the decisions taken in Italy, as well to give the best decisions for Italy, according to
our generalized SEIR control system and optimal control problem.

The orange curves in Figures 5.3e and 5.3f and Figure 5.4 represent the real data on
quarantine, recovered, and death cases in Italy from September 1 to October 31, 2020.
The red curves simulate what happens from the beginning of September to the end of
November following the generalized SEIR model (5.1), when the number of quarantined,
recovered, and deaths increases, and reach, respectively, two million three hundred
eighty-eight thousand (2388000), nine hundred six thousand three hundred (906300),
and forty-five thousand seven hundred (45700) cases.

The red curves in Figures 5.3c, 5.3d and 5.3a simulate what happens from the
beginning of September to the end of November, according with the generalized SEIR
model, when the number of infected, exposed and insusceptible cases reach, respectively,
one million one hundred forty-six thousand (1146000), forty-one million two hundred
fifty-thousand (41250000) and five hundred twenty-eight (528) cases.

The green curves in Figures 5.3 and 5.4 show what happens from September 1 to
November 30, 2020, under optimal control measures, when the number of infected
(Figure 5.3c) and recovered (Figure 5.3f) cases increase and reach six hundred and fifty
(650) and two hundred forty-nine thousand four hundred (249400) cases, respectively,
while the number of exposed (Figure 5.3d), insusceptible (Figure 5.3a), and quarantined
(Figure 5.3e) cases reach eighteen thousand four hundred ninety (18490), sixty million
one hundred eighty thousand (60180000), and one hundred twenty-eight (128) cases,
respectively. Deaths remain stable during the entire period, precisely, thirty-five
thousand five hundred (35500) cases (Figure 5.4).

The curves in Figure 5.5 show the optimal controls that need to be implemented in
order to reduce the overall burden of COVID-19 in Italy and obtain the best possible
situation given by the green curves in Figures 5.3 and 5.4, which takes into account the
cost reduction resulting from the controls u1, u2 and u3. The effect of social distancing
is equal to the minimum value of its constraint (u1 = 0.1), see Figure 5.5a, and this
corresponds to the application of social distancing among the entire population. The
effect of preventive measures is equal to the maximum value of its constraint until
September 19 (u2 = 1), see Figure 5.5b, then decreases gradually until it reaches zero
(u2 = 0) on November 30, 2020, see Figure 5.5c. The effect of treatment takes the
maximum value of its constraint until November 29, 2020 (u3 = 1), then decreases
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Figure 5.3: Predictions for Italy from the generalized SEIR model (5.1), in red, the general-
ized SEIR control system (5.5) under optimal controls, in green, between Sept.
1 and Nov. 30, 2020, versus available real data of quarantined and recovered
from Sept. 1 to Oct. 31, 2020, in orange.
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Figure 5.5: The Pontryagin extremal controls of the optimal control problem of Section 5.4
for the case of Italy between Sept. 1 and Nov. 30, 2020.

71



to zero on November 30, 2020, (u3 = 0), meaning a decrease in the pressure on the
health sector. Note that by taking preventive measures (u1, u2, u3), we limit the spread
of COVID-19 and we have better results. This means that, with the help of optimal
control theory, what happened in Italy would have been less dramatic.

5.6 Conclusion

Recent results have shown how the theory of optimal control is an important tool
to combat COVID-19 in a community: in [75] for a controlled sanitary deconfinement
in Portugal; in [76] from a more theoretical point of view; here for the case of Italy. We
proposed a simple SEIR-type control system, showing its effectiveness with respect to
real data from Italy in the period from Sept. 1 to Nov. 30, 2020. While the real data
(see Appendices A–B–C) is consistent with the generalized SEIR model (5.1), because
the goal of this model is to describe the COVID-19 reality, our new SEIR control system
(5.5) simulates what would happen if we took into account the values of the three
control functions, as described in Section 5.3. In agreement, the situations obtained
with controls are better then the situations obtained without controls. More precisely,
by considering the proposed controls, we show how optimal control theory could have
drastically diminish the burden of COVID-19 in the period under study while taking
into account the resulting cost reduction. In concrete, if it would have been possible to
implement optimality, in the sense of optimal control theory and Pontryagin’s optimality
conditions, the control measures of social distancing as in Figure 5.5a, preventive means
as in Figure 5.5b, and treatment as in Figure 5.5c, then it would have been possible
to decrease significantly the number of deaths (cf. Figure 5.4 and Tables B.1 and B.2,
which accounts for a decrease of 7.36% of deaths in Italy by the end of October 2020
under optimal control) with much less quarantined individuals (see Figure 5.3e and
Tables C.1 and C.2, which accounts a decrease of 99.96% of quarantined individuals in
Italy by the end of Oct. 2020 under optimal control theory). Thus, one can say that
the approach proposed by the theory of optimal control is very effective, simultaneously
from health and economic points of view, being far from trivial. Note that by PMP
one obtains an increase in the number of recovered individuals in the first period, up to
14-Oct-2020, and, after this date, a decrease in the number of recovered (cf. Figure 5.3f
and Tables A.1 and A.2), caused by the drastic reduction on the number of susceptible
and infected (see Figures 5.3b and 5.3c, respectively). While our aim here was to study
the effect of controls, guided by the application of the PMP and showing how they
can help to decrease the spread of COVID-19, other aspects remain open for further
research. In particular, it remains open to the theoretical study of the stability of the
models. In this direction, the recent results of [77], [78] may be useful.
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CHAPTER 6
Transport and Optimal Control of

Vaccination Dynamics for
COVID-19

6.1 Introduction

BNT162b2 is an mRNA-based vaccine candidate against SARS-CoV-2, currently
being developed by Pfizer and BioTech [79]. As announced on 9th November 2020,
BNT162b2 shows an efficacy against COVID-19 in patients without prior evidence of
SARS-CoV-2 infection. A first interim efficacy analysis was conducted by an external,
independent Data Monitoring Committee from the Phase 3 clinical study, and the case
split, between vaccinated individuals and those who received the placebo indicates a
vaccine efficacy rate above 90%, at seven days after the second dose, of the 94 cases
reviewed [80].

The major obstacle that must be overcome is related to the process of transporting
the vaccine, which must be stored at −70oC [81]. Pfizer indicates that the vaccine will
be distributed from its factories in the USA, Belgium and Germany. The American Wall
Street Journal revealed that Pfizer has developed a special box packed with dry ice and
a GPS tracker, which can hold 5000 doses of the vaccine under the right conditions for 10
days. Moreover, there is another obstacle related to the cost of the transportation boxes,
where a similar box of 1200 doses in −8oC costs 6868 USD, which is very expensive.

The transport of the vaccine must comply with the general standards for drug storage
and the recommended conditions. Although many transport vehicles are equipped
with refrigeration devices, assuring recommended storage conditions, simple insulated
transport boxes are often used. In this study, we use the heat diffusion equation
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and assume that the shape of the vaccine bottle is cylindrical [82]. We perform the
calculations to find out an initial temperature that ensures the arrival of the vaccine
while fulfilling the required condition of −70oC, by using insulated transfer boxes with
the internal temperature at 0oC [83].

This chapter is organized as follows. We begin by formulating the vaccination
transport model in Section 6.2. In Section 6.3, we recall the generalized SEIR model.
Then, in Section 6.4, we formulate the generalized SEIR model with vaccination as an
optimal control problem. The obtained optimal control problem is solved numerically in
Section 6.5. In Section 6.6, we present a discussion concerning the spread of COVID-19
in Italy during three months, starting from 1st November 2020. We end with Section 6.7
of conclusion, including some future research directions.

The results presented in this chapter have been published in [84]

6.2 Vaccine transport model

In this section, we present a model to maintain the effectiveness of the vaccine while
transporting it from the factory storage area to the desired destination. The aim is
to know the initial temperature that maintains the effectiveness of the vaccine, less
than −70o, and this by using the available mobile boxes at 0oC. Thus, we propose the
following mathematical model:

∂T (t, x, y, z)
∂t

− α∇2T (t, x, y, z) = 0, on [0, t∗] × Ω,
T (t∗, x, y, z) = −70oC, ∀(x, y, z) ∈ Ω,
T (t, x, y, z) = 0oC, ∀(t, x, y, z) ∈ [0, t∗] × ∂Ω,
Ω = {(x, y, z) ∈ R3 : x2 + y2 < r2, 0 < z < h} ,
∂Ω = {(x, y, z) ∈ R3 : x2 + y2 = r2, 0 ≤ z ≤ h} ,

(6.1)
where T (t, x, y, z) represents the temperature of the vaccine at the point (x, y, z) and
the time t; t∗ is the arrival time of the vaccine; and 0oC is the temperature inside the
box. The sets Ω and ∂Ω represent the interior and the border of the bottle containing
the vaccine, respectively, r and h are the radius and height of the bottle, respectively,
and α is the thermal diffusivity defined by

α = k

ρcρ
, (6.2)

where k is the thermal conductivity, cρ is the specific heat capacity, and ρ is the density.
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6.3 Initial mathematical model for COVID-19

The generalized SEIR model proposed by Peng et al. [28] is expressed by a seven-
dimensional dynamical system defined by

Ṡ(t) = −βS(t)I(t)
N

− ωS(t),

Ė(t) = βS(t)I(t)
N

− γE(t),
İ(t) = γE(t) − δI(t),
Q̇(t) = δI(t) − λ(t)Q(t) − κ(t)Q(t),
Ṙ(t) = λ(t)Q(t),
Ḋ(t) = κ(t)Q(t),
Ṗ (t) = ωS(t),

(6.3)

where the state variables are subjected to the following initial conditions:

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0, R(0) = R0, D(0) = D0, P (0) = P0.

In this model, the population is divided into the following compartments: suscepti-
ble individuals S(t), exposed individuals E(t), infected individuals I(t), quarantined
individuals Q(t), recovered individuals R(t), death individuals D(t), and insuscepti-
ble/protected individuals P (t). These variables, in total, constitute the whole population,
denoted by N :

N = S(t) + E(t) + I(t) +Q(t) +R(t) +D(t) + P (t).

The parameters ω, β, γ, δ, λ(t) and κ(t) represent the protection rate, infection rate,
inverse of the average latent time, rate at which infectious people enter in quarantine,
time-dependent recovery rate, and the time-dependent mortality rate, respectively. The
recovery λ(t) and mortality κ(t) rates are analytical functions of time, defined by

λ(t) = λ1

1 + exp(−λ2(t− λ3))
, (6.4)

κ(t) = κ1

exp(κ2(t− κ3)) + exp(−κ2(t− κ3))
, (6.5)

where the parameters λ1, λ2, λ3, κ1, κ2 and κ3 are empirically determined in Section 6.6.

6.4 Mathematical model for COVID-19 with vaccination

We now introduce the vaccine for the susceptible population in order to control the
spread of COVID-19. Let us introduce in model (6.3) a control function u(t) and an
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Figure 6.1: Schematic diagram of the generalized SEIR model with vaccination.

extra variable W (t), t ∈ [0, tf ], representing the percentage of susceptible individuals
being vaccinated and the number of vaccines used, respectively, with

dW

dt
(t) = u(t)S(t), subject to the initial condition W (0) = 0, (6.6)

where tf represents the final time of the vaccination program. Hence, our model with
vaccination is given by the following system of eight nonlinear ordinary differential
equations: 

Ṡ(t) = −βS(t)I(t)
N

− ωS(t) − u(t)S(t),

Ė(t) = βS(t)I(t)
N

− γE(t),
İ(t) = γE(t) − δI(t),
Q̇(t) = δI(t) − λ(t)Q(t) − κ(t)Q(t),
Ṙ(t) = λ(t)Q(t),
Ḋ(t) = κ(t)Q(t),
Ṗ (t) = ωS(t),
Ẇ (t) = u(t)S(t),

(6.7)

where the state variables are subject to the initial conditions:

S(0) = S0, E(0) = E0, I(0) = I0, Q(0) = Q0,

R(0) = R0, D(0) = D0, P (0) = P0, W (0) = W0 = 0.

A schematic diagram of model (6.7) is given in Figure 6.1.

6.5 Optimal Control

We consider the model with vaccination (6.7) and formulate an optimal control
problem to determine the vaccination strategy u that minimizes the cost of treatment
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and vaccination:

min
u
J(u) =

tf∫
0

(
w1I

2(t) + w2u
2(t)

)
dt, (6.8)

where w1 and w2 represent the weights associated with the cost of treatment and
vaccination, respectively. We assume that the control function u takes values between 0
and 1. When u(t) = 0, no susceptible individual is vaccinated at time t and if u(t) = 1,
then all susceptible individuals are vaccinated at time t. Let

x(t) = (x1(t), . . . , x8(t))
= (S(t), E(t), I(t), Q(t), R(t), D(t), P (t),W (t)) ∈ R8.

The optimal control problem consists in finding the control ũ and the associated optimal
trajectory x̃, satisfying the control system (6.7) with the given initial conditions

x(0) = (S0, E0, I0, Q0, R0, D0, P0,W0), (6.9)

where the control ũ ∈ Γ,

Γ = {u(·) ∈ L∞([0, tf ],R) : 0 ≤ u(t) ≤ 1, t ∈ [0, tf ]}, (6.10)

minimizes the objective functional (6.8). With the new variables, problem (6.7)–(6.10)
becomes

min
u∈Γ

J(u) =
tf∫

0

(
w1x

2
3(t) + w2u

2(t)
)
dt,

ẋ(t) = A(t)x(t) +B(x(t))u(t) + f(x(t)), x(0) = (S0, E0, I0, Q0, R0, D0, P0,W0),
(6.11)

where

A(t) =



−ω 0 0 0 0 0 0 0
0 −γ 0 0 0 0 0 0
0 γ −δ 0 0 0 0 0
0 0 δ −λ(t) − κ(t) 0 0 0 0
0 0 0 λ(t) 0 0 0 0
0 0 0 κ(t) 0 0 0 0
ω 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



,

B(x) = (−x1, 0, 0, 0, 0, 0, 0, x1)T ,

f(x) =
(

−βx1x3

N
,
βx1x3

N
, 0, 0, 0, 0, 0, 0

)T
.

The existence of the optimal control ũ and the associated optimal trajectory x̃ comes
from the convexity of the integrand of the cost functional (6.8) with respect to the
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control u and the Lipschitz property of the state system with respect to the state vector
x(t) (see [73] for existence results of optimal solutions). According to the PMP [1], if
ũ ∈ Γ is optimal for the problem (6.11) with fixed final time tf , then there exists

ψ ∈ AC([0, tf ],R8), ψ(t) = (ψ1(t), . . . , ψ8(t)),

called the adjoint vector, such that

ẋ = ∂H

∂ψ
and ψ̇ = −∂H

∂x
,

where the Hamiltonian H is defined by

H(t, x, ψ, u) = w1x
2
3 + w2u

2 + ψT (A(t)x+B(x)u+ f(x)) . (6.12)

The adjoint functions satisfy

ψ̇ = −∂H

∂x
= Ā(t, x, u)ψ + B̄(x), (6.13)

where

Ā(t, x, u) =



βx3
N

+ ω + u −βx3
N

0 0 0 0 −ω −u
0 γ −γ 0 0 0 0 0
βx1
N

−βx1
N

δ −δ 0 0 0 0
0 0 0 λ(t) + κ(t) −λ(t) −κ(t) 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



,

B̄(x) = (0, 0, −2w1x3, 0, 0, 0, 0, 0)T .

The minimality condition

H(t, x̃(t), ψ̃(t), ũ(t)) = min
u∈Γ

H(t, x̃(t), ψ̃(t), u) (6.14)

holds almost everywhere on [0, tf ]. Moreover, the transversality conditions assert that
ψ̃i(tf) = 0, i = 1, . . . , 8. It follows from Pontryagin’s minimum principle that the
extremal control ũp is given by

ũp(t) =


ũ(t) if 0 < ũ(t) < 1,
0 if ũ(t) ≤ 0,
1 if ũ(t) ≥ 1,

(6.15)

where

ũ(t) =
x̃1(t)

(
ψ̃1(t) − ψ̃8(t)

)
2w2

. (6.16)
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Figure 6.2: Numerical solution of the heat diffusion equation (6.1).

6.6 Numerical Results

The current study aims to find the initial temperature to maintain the effectiveness
of the vaccine during the transportation process, as well as determining an optimal
vaccination strategy to limit the spread of COVID-19 in Italy. For that, we reduce the
costs of treatment and vaccination, during the three months starting from 1st November
2020. We use the MATLAB R2020b program to perform all numerical computations.
The initial conditions and real data are taken from the public database Dati COVID-19
Italia, available from https://github.com/pcm-dpc/COVID-19.

We consider that the glass bottle of vaccine has a cylindrical shape with a radius
r = 1.5 cm and a height h = 4 cm and the following values:

• The thermal conductivity of glass: κ = 1W/(mK).
• The heat capacity of the vaccine: cρ = 3700 J/(kgoC)
• The density of the vaccine: ρ = 1000 kg/m3.

with the final time t∗ = 2hours. In Figure 6.2 we present the numerical solution of the
heat transfer equation (6.1), which gives the initial temperature equal to −76.5oC. The
parameter values as given in Table 6.1.
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Figure 6.3: The recovery and mortality rates.

Parameter Initial value Estimated value
α 0.06 1.1775 × 10−7

β 1 0.5425
γ 5 0.0873
δ 0.5 0.3425
ω 0.06 0.0547

(λ1, λ2, λ3) (0.01, 0.1, 10) (0.0999, 0.0501, 38.8542)
(κ1, κ2, κ3) (0.001, 0.001, 10) (0.0021, 0.0125, 66.6652)

Table 6.1: Parameter values used in the simulations of system (6.3).

The parameters of the generalized SEIR model (6.3) were calculated simultaneously
by the nonlinear least squares method [69]. These parameters over the period starting
from 1st November 2020 till 31th January 2021.

In Figure 6.3 we show the recovery rate λ(t) and the mortality rate κ(t).
We fixed w1 = w2 = 1. The numerical solutions to the nonlinear differential

equations that represent the generalized SEIR model (6.3), the generalized SEIR model
with vaccination (6.7), and the real data of the quarantined, recovered and death cases,
from 1st November till 6th December 2021, are shown in Figure 6.4.

In Figure 6.5 we present the optimal control (6.15)–(6.16) and the number of vaccines
used starting from 1st November 2020 till 31th January 2021.

The orange curves in Figure 6.4 represent the real data for the number of quarantine,
recovery, and death cases in Italy starting from 1st November till 6th December 2020.
The red curves in Figure 6.4 represent the solutions of the generalized SEIR model
(6.3) without vaccination, and they simulate what happened from the beginning of
November to the end of January. There is an increase in the number of the recovered,
death and insusceptible cases that reach, respectively, 1830000, 74050 and 58130000
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Figure 6.4: The solutions of the generalized SEIR models (6.3) and (6.7), respectively
without and with vaccination, and real data of Italy from 1st November till 6th

December 2021 with total population of N = 60480000.
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cases. The red curves for both the number of infected and quarantined individuals
have their higher limit values of 103500 cases on 11th November and 798500 on 25th

November, respectively, reaching the values 614 and 22640 cases on 31th January 2021,
respectively. We note that the number of susceptible individuals gradually decrease,
reaching 416600 cases at the end of January 2021.

The green curves in Figure 6.4 represent the solutions of the generalized SEIR
model (6.7) with vaccination, and they simulate what happened from the beginning of
November to the end of January. There is an increase in the number of recovered, death
and insusceptible cases that reach, respectively, 1135000, 60560 and 3076000 cases. The
green curves for both the number of infected and quarantined individuals have their
higher limit values of 84800 cases on 4th November and 577600 cases on 15th November,
respectively, reaching 55 and 7237 cases on 31th January 2021, respectively. We note
that the number of susceptible individuals decrease rapidly reaching 0 cases on 19th

November 2020.
The red curve in Figure 6.5 shows that the optimal vaccination of 100 percent of

the susceptible individuals takes 19 days, followed by a rapid decrease in the number of
susceptible individuals, which means they move to the class of vaccinated. The green
curve in Figure 6.5 shows the necessary number of vaccines to eliminate COVID-19,
which is estimated at 56200100 doses. The total number of vaccinated and insusceptible
individuals equal to 59276100 of the total Italian population of 60480000.

6.7 Conclusion

Our results show the importance of the vaccine for COVID-19 control and also the
best result that could be obtained if the number of available vaccines satisfies the needs
of the population and are distributed according with the theory of optimal control.

In this chapter, our optimal control problem has only one control: the vaccine. In
reality, there are several other factors to have into account and other variables to control.
In a future work, we would like to use the support maximum principle [85], as well as
the hybrid direction method [33], to elaborate a primal-dual method for solving a more
realistic optimal control problem, in presence of multiple inputs [86].
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APPENDIX A
Recovered individuals

In Tables A.1 and A.2 we show the real data of recovered individuals from COVID-19
in Italy, in September and October 2020, respectively, versus the number of recovered
individuals predicted by the model of Peng et al. [28] and the improvement one could
have done by introducing suitable controls as explained in Section 5.3 and using the
theory of optimal control as in Section 5.4.
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Table A.1: Real data of Recovered individuals (R(t)) from COVID-19, Italy, September
2020 versus number of R(t) predicted by SEIR-type model (5.1) and controlled
model (5.5). We also indicate the percentage of relative error ηR between real
data and the one predicted by model (5.1); and the improvement IR (increase
of recovered individuals with respect to real data) by introducing controls u1, u2
and u3 as in (5.5) in an optimal control way.

Day Real R R by (5.1) R by(5.5) ηR IR
01 207944 207944 207944 0% 0%
02 208201 207947 225126 0.12 % 08.12%
03 208490 207953 231873 0.25% 11.21%
04 209027 207966 234737 0.50% 12.29%
05 209610 207996 236134 0.77% 12.65%
06 210015 208060 236956 0.93% 12.82%
07 210238 208187 237538 0.97% 12.98%
08 210801 208409 238005 1.13% 12.90%
09 211272 208744 238409 1.19% 12.84%
10 211885 209176 238769 1.27% 12.68%
11 212432 209672 239096 1.29% 12.55%
12 213191 210206 239395 1.40% 12.29%
13 213634 210759 239672 1.34% 12.18%
14 213950 211324 239930 1.22% 12.14%
15 214645 211897 240170 1.28% 11.89%
16 215265 212477 240396 1.29% 11.67%
17 215954 213063 240609 1.33% 11.41%
18 216807 213657 241003 1.45% 11.16%
19 217716 214260 241186 1.58% 10.78%
20 218351 214873 241363 1.59% 10.53%
21 218703 215498 241696 1.46% 10.51%
22 219670 216136 241855 1.60% 10.09%
23 220665 216790 242009 1.75% 9.67%
24 221762 217460 242160 1.93% 9.19%
25 222716 218150 242306 2.05% 8.79%
26 223693 218861 242450 2.16% 8.38%
27 224417 219596 242591 2.14% 8.09%
28 225190 220358 242730 2.14% 7.78%
29 226506 221149 242866 2.36% 7.22%
30 227704 221973 243000 2.51% 6.71%
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Table A.2: Real data of Recovered individuals (R(t)) from COVID-19, Italy, October 2020
versus number of R(t) predicted by SEIR-type model (5.1) and controlled model
(5.5). We also indicate the percentage of relative error ηR between real data and
the one predicted by model (5.1); and the improvement IR (increase of recovered
individuals with respect to real data) by introducing controls u1, u2 and u3 as
in (5.5) in an optimal control way.

Day Real R R by (5.1) R by (5.5) ηR IR
01 222832 224334 243132 0.67% 9.11%
02 229970 223731 243263 2.71% 5.78%
03 231217 224672 243392 2.83% 5.26%
04 231914 225662 243520 2.69% 5.00%
05 232681 226703 243647 2.56% 4.71%
06 234099 227801 243772 2.69% 4.13%
07 235303 228961 243896 2.69% 3.65%
08 236363 230188 244019 2.61% 3.23%
09 237549 231490 244141 2.55% 2.77%
10 238525 232871 244263 2.37% 2.40%
11 239709 234341 244383 2.23% 1.94%
12 240600 235905 244503 1.95% 1.62%
13 242028 237573 244622 1.84% 1.07%
14 244065 239353 244740 1.93% 0.27%
15 245964 241255 244857 1.91% 0.45%
16 247872 243290 244974 1.84% 1.16%
17 249127 245468 245089 1.46% 1.62%
18 251461 247802 245205 1.45% 2.48%
19 252959 250305 245319 1.04% 3.02%
20 255005 252990 245433 0.79% 3.75%
21 257374 255872 245547 0.58% 4.59%
22 259456 258968 245659 0.18% 5.31%
23 261808 262296 245771 0.18% 6.12%
24 264117 265872 245883 0.66% 6.90%
25 266203 269718 245994 1.32% 7.59%
26 268626 273855 246104 1.94% 8.38%
27 271988 278306 246214 2.32% 9.47%
28 275404 283094 246324 2.79% 10.55%
29 279282 288247 246401 3.21% 11.77%
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APPENDIX B
Deaths

In Tables B.1 and B.2 we show the real data of death individuals from COVID-19
in Italy, in September and October 2020, respectively, versus the number of death
individuals predicted by the model of Peng et al. [28] and the improvement one could
have done by introducing suitable controls as explained in Section 5.3 and using the
theory of optimal control as in Section 5.4.
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Table B.1: Real data of Death individuals (D(t)) from COVID-19, Italy, September 2020
versus number of D(t) predicted by SEIR-type model (5.1) and controlled model
(5.5). We also indicate the percentage of relative error ηD between real data and
the one predicted by model (5.1); and the improvement ID (decrease of death
individuals with respect to real data) by introducing controls u1, u2 and u3 as in
(5.5) in an optimal control way.

Day Real D D by (5.1) D by (5.5) ηD ID
01 35491 35491 35491 0% 0%
02 35497 35495 35493 0.005% 0.01%
03 35518 35500 35494 0.05% 0.06%
04 35533 35505 35495 0.07% 0.07%
05 35541 35510 35495 0.08% 0.12%
06 35553 35515 35495 0.10% 0.16%
07 35563 35521 35495 0.11% 0.19%
08 35577 35526 35496 0.14% 0.22%
09 35587 35532 35496 0.15% 0.25%
10 35597 35538 35496 0.16% 0.28%
11 35603 35544 35496 0.16% 0.30%
12 35610 35550 35496 0.16% 0.32%
13 35624 35556 35496 0.19% 0.35%
14 35633 35563 35496 0.19% 0.38%
15 35645 35570 35496 0.21% 0.41%
16 35658 35576 35496 0.22$ 0.45%
17 35668 35583 35496 0.23% 0.48%
18 35692 35591 35496 0.28% 0.54%
19 35707 35598 35496 0.30% 0.59%
20 35724 35606 35496 0.33% 0.63%
21 35738 35614 35496 0.34% 0.67%
22 35758 35622 35496 0.38% 0.73%
23 35781 35630 35496 0.42% 0.79%
24 35801 35640 35496 0.44% 0.85%
25 35818 35648 35496 0.47% 0.89%
26 35835 35658 35496 0.49% 0.94%
27 35851 35668 35496 0.51% 0.99%
28 35875 35680 35497 0.54% 1.05%
29 35894 35690 35497 0.56% 1.10%
30 35918 35702 35497 0.60% 1.17%
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Table B.2: Real data of Death individuals (D(t)) from COVID-19, Italy, October 2020
versus number of D(t) predicted by SEIR-type model (5.1) and controlled model
(5.5). We also indicate the percentage of relative error ηD between real data and
the one predicted by model (5.1); and the improvement ID (decrease of death
individuals with respect to real data) by introducing controls u1, u2 and u3 as in
(5.5) in an optimal control way.

Day Real D D by (5.1) D by (5.5) ηD ID
01 35941 35715 35497 0% 0%
02 35968 35728 35497 0.66% 1.30%
03 35986 35742 35497 0.67% 1.35%
04 36002 35757 35497 0.68% 1.40%
05 36030 35773 35497 0.71% 1.47%
06 36061 35790 35497 0.75% 1.56%
07 36083 35808 35497 0.76% 1.62%
08 36111 35827 35497 0.78% 1.70%
09 36140 35848 35497 0.80% 1.77%
10 36166 35870 35497 0.81% 1.84%
11 36205 35894 35497 0.85% 1.95%
12 36246 35920 35497 0.89% 2.06%
13 36289 35947 35497 0.94% 2.18%
14 36372 35976 35497 1.08% 2.40%
15 36427 36008 35497 1.15% 2.55%
16 36474 36042 35497 1.18% 2.67%
17 36543 36078 35497 1.27% 2.86%
18 36616 36118 35497 1.36% 3.05%
19 36705 36160 35497 1.48% 3.29%
20 36832 36206 35497 1.69% 3.62%
21 36968 36255 35497 1.92% 3.97%
22 37059 36307 35497 2.02% 4.21%
23 37210 36364 35497 2.27% 4.60%
24 37338 36425 35497 2.44% 4.93%
25 37479 36491 35497 2.63% 5.28%
26 37700 36638 35497 2.81% 5.84%
27 37905 36720 35498 3.12% 6.35%
28 38122 36902 35498 3.20% 6.88%
29 38321 37003 35498 3.43% 7.36%
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APPENDIX C
Quarantine

In Tables C.1 and C.2 we show the real data of quarantined individuals from
COVID-19 in Italy, in September and October 2020, respectively, versus the number of
quarantined individuals predicted by the model of Peng et al. [28] and the improvement
one could have done by introducing suitable controls as explained in Section 5.3 and
using the theory of optimal control as in Section 5.4.
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Table C.1: Real data of Quarantined individuals (Q(t)) from COVID-19, Italy, September
2020 versus number of Q(t) predicted by SEIR-type model (5.1) and controlled
model (5.5). We also indicate the percentage of relative error ηQ between real
data and the one predicted by model (5.1); and the improvement IQ (decrease
of quarantined individuals with respect to real data) by introducing controls u1,
u2 and u3 as in (5.5) in an optimal control way.

Day Real Q Q by (5.1) Q by (5.5) ηQ IQ
01 26754 26754 26754 0 % 0 %
02 27817 27472 10292 01.24% 63.00%
03 28915 28120 4188 02.74% 85.51%
04 30099 28715 1901 04.59% 93.68%
05 31194 29264 1023 06.18% 96.69%
06 32078 29763 668 07.21% 97.91%
07 32993 30197 509 08.47% 98.45%
08 33789 30789 426 08.87% 98.73%
09 34734 30964 374 10.85% 98.92%
10 35708 31105 337 12.89% 99.05%
11 36767 31246 307 15.01% 99.16%
12 37503 31412 282 16.24% 99.24%
13 38509 31617 261 17.89% 99.32%
14 39187 31872 244 18.66% 99.37%
15 39712 32183 228 18.95% 99.42%
16 40532 32557 215 19.67% 99.46%
17 41413 33000 203 20.31% 99.50%
18 42457 33519 193 21.05% 99.54%
19 43161 34119 184 20.94% 99.57%
20 44098 34808 176 21.06% 99.60%
21 45079 35593 169 21.04% 99.62%
22 45489 36480 163 19.80% 99.64%
23 46114 37479 158 18.72% 99.65%
24 46780 38599 153 17.48% 99.67%
25 47718 39848 149 16.49% 99.68%
26 48593 41237 145 15.13% 99.70%
27 49618 42777 142 13.78% 99.71%
28 50323 44480 139 11.61% 99.72%
29 50630 46359 137 08.43% 99.72%
30 51263 48428 134 05.53% 99.73%
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Table C.2: Real data of Quarantined individuals (Q(t)) from COVID-19, Italy, October
2020 versus number of Q(t) predicted by SEIR-type model (5.1) and controlled
model (5.5). We also indicate the percentage of relative error ηQ between real
data and the one predicted by model (5.1); and the improvement IQ (decrease
of quarantined individuals with respect to real data) by introducing controls u1,
u2 and u3 as in (5.5) in an optimal control way.

Day Real Q Q by (5.1) Q by (5.5) ηQ IQ
01 52647 50023 130 04.98% 99.75%
02 53997 53197 129 01.48% 99.76%
03 55566 55931 127 00.65% 99.77%
04 57429 58922 126 02.59% 99.78%
05 58903 62193 124 05.58% 99.78%
06 60134 65764 123 09.36% 99.79%
07 62576 69659 122 11.31% 99.80%
08 59526 73904 121 24.15% 99.79%
09 70110 78527 120 12.00% 99.82%
10 74829 83557 119 11.63% 99.84%
11 79075 89027 118 12.58% 99.85%
12 82764 94972 118 14.75% 99.85%
13 87193 101428 117 16.32% 99.86%
14 92445 108435 117 17.29% 99.87%
15 99266 116035 116 16.89% 99.88%
16 107312 124275 115 15.80% 99.89%
17 116935 133204 114 13.91% 99.90%
18 126237 142876 114 13.18% 99.90%
19 134003 153344 113 14.43% 99.91%
20 142739 164668 112 15.36% 99.92%
21 155442 176913 112 13.81% 99.92%
22 169302 190145 111 12.31% 99.93%
23 186002 204439 111 09.91% 99.94%
24 203182 219871 110 08.21% 99.94%
25 222241 236520 109 06.42% 99.95%
26 236684 254470 109 07.51% 99.95%
27 255090 273812 108 07.33% 99.95%
28 276457 294640 107 06.57% 99.96%
29 299191 317055 107 05.97% 99.96%
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