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Abstract

This article reports on a study of the two-dimensional parameter
space of a generalized time-reversible Nosé-Hoover oscillator. Instead
of considering its original form, whose study of the one-dimensional
parameter space has recently received new insights, we examine the
Nosé-Hoover model slightly modified by using a new parameter ε to
introduce a dissipative term to its energizing-damping variable. We
use the maximum Lyapunov exponent to numerically characterize the
chaotic dynamics of the model, at representative points of the two-
dimensional parameter space, treating separately two dynamical regimes
resulting from: (i) the effect of lower values of ε and (ii) the effect
of higher values of ε. It is shown that, for higher values of the new
dissipative parameter ε, the existence of chaotic behavior only prevails
for the backwards dynamics.
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1 Introduction and preliminaries

In spite of their importance in nonlinear dynamics theory, the topologi-
cal structures of phase trajectories and the mechanisms of the emergence of
chaos, in time-reversible dynamical systems, haven’t been a subject of intense
research. To the extent of our knowledge, only a few problems have been
addressed in order to enhance our understanding of the consequences of the
Nosé’s work for time-reversible flows (see, for instance, [1], [2], [3], [4], [5], [6],
and references therein). In the context of nonlinear systems, when both the
backwards and forwards dynamics are satisfied by the same equations sub-
ject to only some sign changes of phase variables, these equations are called
time-reversible equations.

In his seminal work published in 1984 (please see [7] and [8]), Shiuchi Nosé
presented a set of equations that gave rise to a new paradigm in the study
of thermodynamics. In [1], it is shown an interesting review about the study
of Nosé-Hoover oscillator throughout the years, its meaning and connections
with other fields in an interdisciplinary context. After studying the Nosé’s
equations, Hoover and his collaborators, Posh and Vesely, obtained in 1986
the Nosé-Hoover oscillator with the following equations of motion (please see
[9] and [10])

�
x = y;

�
y = −x− yz;

�
z = α

(
y2 − 1

)
. (1)
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This system models the one-dimensional harmonic oscillator, obtained using
Nosé’s canonical equations of motion, where x represents the oscillator coor-
dinate, the variable y represents momentum and the variable z represents the
friction coefficient.

Given the time-reversible property of the one-parameter Nosé-Hoover equa-
tions, one question naturally appears: how different is the impact of a second
parameter on the backwards and forwards dynamics of time-reversible systems?
This question is justified by the possibility of computing different measures of
complexity. In a very recent work [11], we analyzed the effect of a singular pa-
rameter, present in the equations of the simple Nosé-Hoover oscillator, on the
backwards and forwards dynamical behavior by the computation of the spec-
trum of Lyapunov exponents. Adopting a comparative backwards/forwards
approach, we have identified different chaotic scenarios, estimated the pre-
dictability of attractors and determined their fractal dimension.

The findings reported in the present paper consider a generalized Nosé-
Hoover oscillator [12], namely the two-parameter, three-dimensional set of
nonlinear first-order ordinary differential equations given by

�
x = y;

�
y = −x− yz;

�
z = α

(
y2 − 1− εz

)
, (2)

which differs from the original form of the Nosé-Hoover oscillator (1) by the
small dissipative term added to the energizing-dapping variable z, which in-
cludes the parameter ε. As a consequence, there are two parameters present in
(2), namely α and ε. Here, the simultaneous variation of these two parameters
will be considered to investigate the eye-catching and noteworthy dynamical
features in the two-dimensional (α, ε)-parameter space of the modified time-
reversible Nosé-Hoover oscillator (2). Other studies regarding modifications of
the Nosé-Hoover oscillator can be find, for instance, in [4].

Due to the absence of explicit solutions for these type of systems, our
study mainly depends on numerical simulations, which have been obtained us-
ing MATHEMATICA 13.0, NDSolve StiffnessSwitching method with Machine-
precision corresponding to 16 digits of mantissa and MaxStepSize 10−9. Having
stated this, throughout our study we will consider the fixed initial conditions
x(0) = 0.9209, y(0) = −0.1560 and z(0) = 0.9179, inside the attractor with-
out transient dynamics. Our studied (α, ε)-parameter space is divided in two
subspaces

Lε =
{

(α, ε) ∈ R2 : 0 ≤ α ≤ 14 ∧ 0 ≤ ε ≤ 0.00012
}

and
Hε =

{
(α, ε) ∈ R2 : 0 ≤ α ≤ 14 ∧ 0.00012 < ε ≤ 0.05

}
.

For illustrative purposes only, taking a particular pair of parameter values
(α, ε) ∈ Lε, (α, ε) = (11, 0.00002), Fig.1 provides us with a direct comparison
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Figure 1: Joint presentation of the backwards and forwards dynamics of
the modified time-reversible Nosé-Hoover oscillator - Backwards trajectory in
dashed green and forwards trajectory in continuous pink. We exhibit the 3D-
attractor, taking t ∈ [−90, 0], t ∈ [0, 90], α = 11 and ε = 0.00002.

between attractors of the system’s backwards/forwards phase-space trajecto-
ries (backwards - corresponding to the dashed green trajectories and forwards
- corresponding to the continuous pink trajectories). As a matter of fact, the
backwards and forwards dynamics do not coincide and different topological
structures emerge in the phase-spaces.

2 A global view of the (α, ε)-parameter space:

the effect of ε and time-reversible chaos

In this section, the two (α, ε)-parameter spaces, Lε and Hε, are interpreted
using: (i) the maximum Lyapunov exponent and (ii) selected bifurcation di-
agrams to characterize the chaotic dynamics of the generalized oscillator (2).
In order to achieve this goal, two subsections are considered, treating sepa-
rately two dynamical regimes resulting from: the effect of lower values of ε
(Subsection 2.1) and the effect of higher values of ε (Subsection 2.2).

As established in the literature, Lyapunov exponents are used to charac-
terize the dynamics of chaotic attractors. In this section, we estimate the
spectrum of Lyapunov exponents of the modified Nosé-Hoover oscillator and
use the maximum of these values to identify regions of the (α, ε)-parameter
space corresponding to chaotic behavior.

Lyapunov exponents are taken as a valuable indicator of the exponential
divergence of infinitesimally close trajectories in the phase space, characteristic
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of the chaotic attractors. For a simple description of the Lyapunov exponents,
as a quantitative measure of the rate of separation of initially close points, as
well as the use of an effective computation method, please see our previous
work [11], and references therein.

As established in the literature, the chaotic behavior is associated with
a positive maximum Lyapunov exponent λmax. More precisely, based on the
values of the first and the second Lyapunov exponents, different dynamical
regimes can be identified. Some of these regimes are presented in the following
table.

1st Lyap 2nd Lyap Behavior
> 0 = 0 Chaotic
= 0 = 0 Quasi-periodic
= 0 < 0 Periodic

2.1 The parameter space Lε and the dynamical effect of
lower values of ε

Given the previous dynamical considerations, in Fig.2, we provide a char-
acterization of the complexity for the system (2), considering the (α, ε)-parameter
space Lε, for which 0 ≤ ε ≤ 14 and 0 ≤ ε ≤ 0.00012. In particular, Fig.2
(Upper panel) displays two pictures providing the variation of the maximum
Lyapunov exponent λmax = λ1, respectively with the backwards and forwards
dynamics. Directly related to the dashed line represented on these pictures,
the Fig.2 (Lower panel) gives insights about the long time behavior of vari-
able x, by representing bifurcation diagrams obtained from the successive local
maxima of x, for ε = 0.00002 and taking α ∈ [0, 14] as bifurcation parameter.
It is useful to notice that the chaotic windows of these bifurcation diagrams
confirm the existence of the parameter sections, of the represented straight
line, for which the respective trajectories in the parameter space are chaotic.

2.2 The parameter space Hε and the dynamical effect of
higher values of ε

Inspired by the numerical results of the previous paragraph, in Fig.3 we
provide a characterization of the complexity for the system (2), this time corre-
sponding to the (α, ε)-parameter space Hε, corresponding to with higher values
of ε, ε > 0.00012. Interestingly, the existence of chaotic behavior only prevails
for the backwards dynamics. Particularly, on the upper panel, the variation
of the maximum Lyapunov exponent is considered, for the mentioned back-
wards dynamics, taking 0 ≤ α ≤ 14 and 0.00012 < ε ≤ 0.05. Directly related
to the dashed horizontal line ε = 0.02 represented on this picture, the Fig.3
(Lower panel) gives insights about the long time behavior of variable x, by
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Figure 2: Numerical characterization of the dynamics for the modified Nosé-
Hoover oscillator corresponding to the (α, ε)-parameter space Lε, with low
values of ε, ε ≤ 0.00012. Upper panel - Variation of the maximum Lyapunov
exponent in Lε, for which 0 ≤ α ≤ 14 and 0 ≤ ε ≤ 0.00012: backwards
dynamics (left) and forwards dynamics (right). Lower panel - Bifurcation
diagrams for points (α, ε) along the horizontal dashed straight line ε = 0.00002
represented on the upper panel (ε = 0.00002 and α ∈ [0, 14]): backwards
dynamics (left) and forwards dynamics (right).
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Figure 3: Numerical characterization of the dynamics for the modified Nosé-
Hoover oscillator corresponding to the (α, ε)-parameter space with higher val-
ues of ε (ε > 0.00012). The existence of chaotic behavior only prevails for
the backwards dynamics. Upper panel - Variation of the maximum Lyapunov
exponent, for the mentioned backwards dynamics, taking 0 ≤ α ≤ 14 and
0.00012 < ε ≤ 0.05. Lower panel - Bifurcation diagram for points (α, ε) along
the horizontal dashed straight line ε = 0.02, represented on the upper panel
(ε = 0.02 and α ∈ [0, 14]).
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representing a bifurcation diagram obtained from the successive local maxima
of x, for ε = 0.02 and taking α ∈ [0, 14] as bifurcation parameter. As expected,
the chaotic windows of this bifurcation diagram confirm the existence of the
parameter sections, of the represented straight line, for which the respective
trajectories in the parameter space are chaotic.

2.3 Final considerations

In this paper, numerical simulations have been performed on a two-dimensional
parameter space of the modified Nosé-Hoover oscillator. The parameter spaces
considered display different dynamical regimes, particularly chaotic and peri-
odic structures. Curiously, for higher values of ε, ε > 0.00012, the existence of
chaotic behavior only prevails for the backwards dynamics.

We emphasize that for parameter regions whose related parameters gen-
erate chaotic trajectories in the phase-space, the first (maximum) Lyapunov
exponent is greater than zero, while the second Lyapunov exponent is equal
to zero. For parameters resulting in periodic trajectories in the phase space,
the first (maximum) Lyapunov exponent and the second Lyapunov exponent
are respectively zero and less than zero.
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